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The SWAP gate is a ubiquitous tool for moving information on quantum hardware, yet it can be con-
sidered a classical operation because it does not entangle product states. Genuinely quantum operations
could outperform SWAP for the task of permuting qubits within an architecture, which we call routing. We
consider quantum routing in two models: (i) allowing arbitrary two-qubit unitaries, or (ii) allowing Hamil-
tonians with norm-bounded interactions. We lower bound the circuit depth or time of quantum routing
in terms of spectral properties of graphs representing the architecture interaction constraints, and give a
generalized upper bound for all simple connected n-vertex graphs. In particular, we give conditions for
a superpolynomial classical-quantum routing separation, which exclude graphs with a small spectral gap
and graphs of bounded degree. Finally, we provide examples of a quadratic separation between gate-based
and Hamiltonian routing models with a constant number of local ancillas per qubit and of an Q (n) speedup

if we also allow fast local interactions.
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I. INTRODUCTION

Scalable quantum architectures are expected to have
geometrically constrained interactions [1—6]. Unlike con-
versions between gate sets, which introduce only a loga-
rithmic overhead due to the Solovay-Kitaev theorem [7],
architecture connectivity can introduce a polynomial over-
head from the cost of simulating nonlocal interactions. For
example, a unitary implementation of a CNOT gate on the
ends of an n-qubit one-dimensional (1D) chain requires
time €2 (n) by a signaling argument. This raises a natural
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question: how do we implement general nonlocal opera-
tions in minimal depth under architectural constraints?

Depending on the implementation, it may be possible
to reconfigure the architecture connectivity. For example,
neutral atoms and ions can be physically moved in the
architecture [8,9], and optical switches can be reconfig-
ured to arbitrary connectivity [4]. It is also possible to have
application-specific connectivity such as in optical quan-
tum computers [10]. Instead, we study hardware-agnostic
methods for fixed connectivity.

A natural such method for implementing nonlocal gates
is to first permute qubits within the architecture. We call
the task of implementing an arbitrary given permutation
of qubits via operations on neighboring qubits routing.
Routing generalizes well-studied tasks, such as state trans-
fer [11-17] and state reversal (or mirroring) [18-22]. By
exploring limits on routing, we also explore limits on infor-
mation transfer and entanglement generation. In particular,
the entanglement across a bipartition can be increased by
routing, e.g., by starting with a maximally entangled qubit
pair in the left partition and sending one qubit across
the bipartition. Therefore, bounds on routing relate to
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bounds on entanglement capacity [23—26] and have further
relations to Lieb-Robinson bounds [27].

A common implementation of routing uses SWAP gates
to implement permutations [28-31]. We call this approach
classical routing since a separable state acted on by SWAP
gates cannot become entangled. In routing, we represent
architecture connectivity by a simple connected graph, G.
Classical routing algorithms have been developed using a
variety of techniques, including shortest path algorithms
[28,32-36], sorting algorithms [37—41], routing on a span-
ning tree [42], and exhaustive search [29,30]. In fact,
classical routing is equivalent to the routing via matchings
problem in classical computer science [31]. Routing via
matchings is NP complete [43,44], but efficient algorithms
exist for special cases of architecture connectivity such
as paths, complete graphs, trees, and graph products that
capture practical architectures, such as grids [31,45,46]. A
natural lower bound on classical routing arises from small
vertex cuts in the architecture [45].

In this work, we explore the extent to which genuinely
quantum operations can accelerate routing in what we call
quantum routing. The relative power of the models we
explore is depicted in Fig. 1. In Sec. II, we introduce
gate-based quantum routing with arbitrary two-qubit uni-
taries and Hamiltonian (quantum) routing by Hamiltonian
evolution with norm-bounded interactions.

A key observation is that routing can distribute entan-
glement across a bipartition of the system. Thus, by lower
bounding the circuit depth to create entanglement across
vertex cuts in the architecture, we derive bounds on quan-
tum routing and improve bounds on classical routing. The
same argument does not apply in the continuous-time
setting of the Hamiltonian model. However, we show a
similar (but weaker) lower bound from a lower bound on
the time to create entanglement across small edge cuts in
the architecture that improves on a previous bound [47] by
constant factors.

Hamiltonian
(quantum)
routing

gate-based

quantum
routing

FIG. 1. The relative power of routing models considered in
this work. Most prior work considers only using SWAP gates for
routing, which we call classical routing. In this work, we explore
the additional routing power provided by genuine quantum oper-
ations. We consider increasingly more powerful quantum routing
models: first, allowing arbitrary two-qubit gates in gate-based
quantum routing, and then allowing continuous Hamiltonian
evolution in Hamiltonian (quantum) routing.

We show lower bounds on routing by proving lower
bounds on state preparation in the respective models. The
circuit depth to distribute entanglement in the gate-based
model is lower bounded by the maximum matching size
in the edge boundary of a vertex cut. In the Hamiltonian
model, the evolution time is lower bounded in terms of
edge cuts. Our state-preparation lower bounds generalize
earlier analyses for lattices [48—50] to general graphs.

Next, in Sec. III, we prove a generalized upper bound
on classical routing. This rules out a superpolynomial
separation between classical and Hamiltonian routing con-
ditioned on the spectral gap of the Laplacian and the degree
distribution of the vertices. In particular, our results rule
out a superpolynomial separation for interaction graphs of
bounded (constant) degree, a common feature of practical
quantum architectures [1,51,52]. It is often easy to prove a
polynomial lower bound on classical routing on such archi-
tectures, implying that any quantum routing procedure will
also have polynomial overhead in the worst case. Naively,
routing thus rules out subpolynomial-depth quantum algo-
rithms in such architectures (unlike the choice of gate
set, which introduces at most polylogarithmic overhead),
showing that polynomial overhead can only be avoided by
designing specialized quantum algorithms for architectures
that avoid worst-case routing behavior.

While we can rule out a superpolynomial separation
in some cases, we are not aware of even a superconstant
speedup of Hamiltonian routing over classical routing for
any family of graphs. In Sec. [V, we give two such exam-
ples in strengthened routing models. The first is an £ (\/a
factor speedup in a strengthened routing model with one
local ancilla per qubit. The second, a ®(n) speedup, fol-
lows from allowing fast local interactions, which give an
asymptotically optimal gate-based routing algorithm and
an asymptotically optimal Hamiltonian routing algorithm
if allowed one local ancilla per qubit. Without assump-
tions, we observe that our bounds on Hamiltonian rout-
ing cannot exclude a superconstant speedup on a star
graph architecture; however, it is quite possible that tighter
bounds can be proven.

II. QUANTUM ROUTING

In this section, we introduce quantum routing and prove
lower bounds dependent on graph expansion properties.
We model the architectural constraints by a simple graph
G on n vertices, with the qubits represented by the vertex
set ¥(G) and the allowed interactions between qubits by
the edge set E(G).

A. Gate-based quantum routing

First, we consider routing in the gate-based model of
quantum computation. Analogous to the (classical) rout-
ing number [45] [see also Eq. (61) in Sec. I1I], we define

010313-2



ADVANTAGES AND LIMITATIONS OF QUANTUM ROUTING

PRX QUANTUM 4, 010313 (2023)

the gate-based quantum routing number qrt(G) as
qrt(G) := max qrt(G, ), (1)

where 7 is a permutation of the qubits and qrt(G, ) is
the minimum depth of a unitary circuit that implements the
permutation r while respecting the architecture constraints
G, i.e., only having two-qubit gates [53] acting along the
edges E(G). In this model, single-qubit gates are free since
they can be absorbed into adjacent two-qubit gates.

We briefly prove a diameter lower bound on gate-based
quantum routing. The diameter of a graph G is

diam(G) := max d(u,v), (2)

u,vel(G)

where d(u, v) is the (shortest) distance between vertices u
and v.

Theorem 11.1. For any simple graph G,

qrt(G) = diam(G). (3)

Proof. Consider two vertices u,v € V(G) at a distance
diam(G) and a circuit C of two-qubit unitaries with depth
D acting on G. Any local operator acting on u evolved in
the Heisenberg picture under C will have no support on
vertices further than distance D. In order to swap u and
v, all of the support of that Heisenberg-evolved opera-
tor must be on v, which implies D > diam(G). Therefore,
qrt(G) = diam(G). |

To prove a lower bound on gate-based quantum routing,
we relate routing to the task of generating entanglement.
We can quantify the entanglement of a pure state p on a
bipartite joint system XX, consisting of the subsystems X
and X , by the von Neumann entropy of the reduced density
operator py = Trg(p), defined as

S(px) == — Tr(px log px). 4)

[The function log(x) denotes the logarithm base 2 unless
specified otherwise. We denote the natural logarithm by
In(x).] We refer to the von Neumann entropy as “the
entropy” and denote Sy (p) := S(py). For completeness,
we list some elementary properties of the entropy that will
be useful later and can be easily verified.

Lemma IL.2. For a state p on a joint system XX, the
following statements about the entropy hold:

1. If p is a pure state, then the entropy is symmetric,
ie.,

Sx (p) = Sx(p)- (5)

FIG. 2. A graph can be partitioned into two sets of vertices X’
and X . The vertex boundary X of X is the set of vertices outside
of X that are directly connected to X, and similarly for X and
X . The edge boundary X (red) of X (and X) is the set of edges
that connect X to X.

2. The entropy is invariant under change of basis, i.e.,
S(UpU") = S(p). (6)

3. The entropy is invariant under local unitaries Uy on
XandUzonlX,ie,

Sx((Ux ® Up)p(Ux @ Up)") = Sx (). (7)

The change in entropy of the reduced state on X C V(G)
by a unitary respecting the constraints of the interaction
graph G can be bounded by a quantity proportional to the
vertex boundary of X. The set X and its vertex complement
X := V(G) \ X define a vertex partition of G; see Fig. 2.
By the invariance of the entropy under local unitaries (part
3 of Lemma I1.2), we need consider only the unitary acting
across the partition. In particular, the unitary must act on
the vertex boundary

8X :={veX|{uv)eEWG), uecX}, (8)

which forms a vertex cut in G. We formalize this bound on
the change in entropy in the following lemma derived from
the small total entangling property [54].

Lemma I1.3. [Small total entangling (STE)]. For a uni-
tary U acting nontrivially only on the joint subsystem

8X8X, the change in the entropy of any state p is
bounded by

ISx (UpU") — Sx (p)| < 2min(|3X |, 16X]).  (9)

Proof. We consider a purification system R such that
Trp(|Y){¥|) = p for some pure state |¢¥) on the joint
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system X X R. For any subsystem Y of XX,

Sy(1¥)) := Sy(Ter(1¥) (¥ ). (10)
The unitary U is a local unitary on the joint subsystem
8X 38X, so Lemma I1.2 implies

ISx (UpU') — Sx ()] = ISx (UI¥)) — Sx (1¥))]

= [Sxsx (Ul¥)) — Sxsx (1Y )1,
(11)

where we use the conditional quantum entropy, Sx|sx

(1¥)) = Sxax (1)) — Sx (I)). By the triangle inequality
and [55, theorem 11.5.1],

[Sxsx (Ul¥)) — Sxjax (1 )]

< ISypx (UIY DI + Sxsx (1Y) < 216X (12)

By symmetry of the entropy for pure states, we also obtain

1S (UpU") — Sy (0)] = |Sg5 (UI¥) — Sgpsx (1))
<2/8X]. (13)

The minimum of Eqs. (12) and (13) gives the required
bound. |

We can saturate this bound in several special cases. A
SWAP gate can saturate this bound when the subsystems §X
and 8X are single qubits that are maximally entangled with
the remainder of X and X, respectively. Furthermore, with
sufficient connectivity, we can also saturate this bound in
higher dimensions: let

8X| = [8X| < min(|X|,|X])/2 (14)
and let 8X and 8X be maximally entangled with the
remainder of X and X, respectively. Then, if we exchange
8X with 8X through simultaneous SWAPs, the entropy
increases by 2|8.X |, saturating the bound.

We now prove a lower bound on the time required for
state preparation of entangled states based on the max-
imum matching size in the edge boundary of the vertex
cut. A matching is a set of edges E’ C E(G) such that all
vertices in E’ are distinct. For any E' C E(G), we define
m(E") C E’ as the maximum(-size) matching in E’. State
preparation is the task of preparing some target state p
given an initial state pg. A special case of state preparation
is routing a particular state. If the change in entangle-
ment between initial state pp and final state p is [Sy(p) —
Sx(po)|, then a simple argument from STE gives a cir-
cuit depth lower bound of |Sx (0) — Sx (p0)|/(2]6X ), and
similar arguments have been used with the entanglement
capacity [26,56]. However, this does not account for the
time required to entangle the boundary subsystem with the

bulk subsystem. A careful accounting gives the following,
which we later show can be saturated.

Lemma IL.4. Given an initial state py and a target state
p on the bipartite system consisting of X and X, define the
change in entropy

ASz :=|8z(p) — Sz(po)|

for any subsystem Z. Then any gate-based unitary circuit C
Jfor preparing p from pg restricted by an interaction graph
G has depth

(15)

ASy :
d> —— 16
Jorany X C V(G), and
ASy + ASy

= @O 0

forY =X \éX.

Proof. We can decompose C into a sequence of disjoint
unitaries U; acting on X 8X and unitaries ¥; acting on Y5.X,
where i € N. To perform operations U; and V; simulta-
neously, they must act on disjoint subsets X;, X, C 8X,
respectively. Between each application of U;V;, there are
local unitary operations within X', X, and ¥, labeled as O,
that we allow to be performed instantaneously. The circuit
can thus be decomposed as

C=0,UsVy...00U1 V0. (18)

We lower bound d by considering the change in entropy
and applying STE (Lemma I1.3). First, we note that the
operations O; cannot change the entropy of the respective
subsystems. By STE, U; can change the entropy of X by
at most 2|X;| and V; can change the entropy of Y by at
most 2|X/|. Therefore, we have two inequalities that must
be satisfied:

d
ASy <2 |X]

i=1

(19)

d
and ASy <2 X/ (20)

i=1
Noting that | X;| < |m(d.X)|, we obtain ASy < 2d|m(9.X)|,
thus proving Eq. (16). Additionally, we note that |X;| +
|X{| < Im(3(6X))| so that

d
ASxy + ASy <2 (1X + 1X/1) < 2dIm(3(8X))],
i=1
21)

which implies Eq. (17). |
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Entanglement capacity-based state-preparation lower
bounds that are proportional to [6X | [49] can be weaker
than Lemma 11.4 by a factor €2 (r) for some partitions X .
To see this, consider the graph L,, that consists of two
complete graphs G| = K, and G = K,, with additional
edges

({x1} x V(G2)) U (F(G1) x {x2}), (22)

where we pick arbitrary vertices x; € V(Gy) and x; €
V(G,). For the partition with X = V(Gp), we have
|m(0X)| = 2 whereas [6X| = n.

Even so, we can obtain a simpler lower bound on the cir-
cuit depth as a corollary by relating the change in entropy
AS}y to that of the bulk system X \ 8X.

Corollary 11.5. Given an initial state py and target state
p, the depth of a gate-based state preparation circuit
restricted by interaction graph G with partition X ¢ V(G)
is lower bounded by

_ ASx +ASg —218X| _ ASy +ASy
=T 2m@ex) T 218X

1. (23)

Proof. Let Y := X \ 8X. The entropy of the target state
can be upper bounded using subadditivity and Ssx (o) <
|6X | for any state o as

ASg = Sy (p) — Sx(po) < Sy(p) — Sx(po) + |6X].
(24)

The Araki-Lieb triangle inequality,
Sx (00) = Sy(po) — Ssx (po)l, (25)
then gives
ASg < Sy(p) — Sg(po) + 18X| < ASy +218X].  (26)
We now apply Lemma I1.4, giving

_ ASx +ASg —2I8X| _ ASy +ASy
=T 2m@GX) T 218X]

1 (27)

as claimed, where the second inequality follows from
lm(3(8X))| < [8X]. u

Corollary IL.5 can be saturated by Algorithm II.1 when
|X| = 2k|8X | for integer k > 0, so that a set of 2|6.X | ends
of Bell pairs can be exchanged between X and X every odd
time step. The algorithm makes the additional assumptions
that |X| < |X| to allow for ASy = ASgy = |X| and that
8X has high connectivity with the rest of the graph so that
ends of Bell pairs can easily be routed to and from X . The
algorithm saturates Corollary I1.5 after every odd time step
up to and including depth d = 2k — 1.

We now show that a lower bound on the gate-based
quantum routing number follows from Lemma 11.4 by
preparing an appropriate initial state. See Fig. 3 for an
illustration of the proof concept.

Theorem 11.6. For any simple graph G and partition X <
V(G) with | X| < [V(G)|/2,

X
G 28
qrt(G) > m@X)] (28)
and
2X| — [8X| 21X| — |8X]
. 1), o
(0) Zmax( Im@@X))| |m(a(3X))|) %)

Proof. We augment the subsystems X and X with ancilla
spaces x and x', respectively, with one ancilla qubit for
each vertex in X and X . Since these ancillas are not con-
nected with the main graph, they cannot help with routing.
Each qubit and ancilla pair forms a Bell pair in the initial
state pg. Then the entropy Sx(p0) = Sg (o) = 0 since
the reduced state is pure.

The gate-based quantum routing number qrt(G) consid-
ers the worst-case permutation of the vertices. So, to show
a lower bound, it suffices to pick a permutation m that
routes all vertices v € X to X arbitrarily and routes |X|
vertices u € X to X arbitrarily. Let the resulting state be
our target state p. This gives Sxx(p) = Sg(p) = 2|X|. By

Input: Initial state of [ X|/2 Bell pairs on each of X and X where
each v € 0.X is part of a distinct Bell pair.
1 simultaneously SWAP ends of unrouted Bell pairs in X and 6.X
2 while X has unrouted ends of Bell pairs :
3 simultaneously SWAP ends of unrouted Bell pairs in Y and § X
4 simultaneously SWAP ends of unrouted Bell pairs in X and 6 X

Algorithm IL1: Saturating Corollary IL5 when |X | = 2k[6X | < I}i:’ | for integer k > 0, assuming every vertex in 6X is connected to
all vertices in X and ¥ := X \ 8X. We prepare Bell pairs on X and X and route one end of each Bell pair in X to X and vice versa.

010313-5



BAPAT, CHILDS, GORSHKOV, and EDDIE SCHOUTE

PRX QUANTUM 4, 010313 (2023)

Before routing

After routing

FIG. 3. For the proof of Theorem IL.6, we consider a bipartite system consisting of X" and X with |X| < |X|. The subsystems X and
X consist of qubits represented by vertices and are augmented with ancilla spaces x and x’, respectively. To each qubit in X and X we
associate one ancilla in x and x', respectively. We initialize each qubit-ancilla pair in a Bell state (wavy line). The entropy of subsystem
Xx is 0. We then perform routing to exchange X with a subset of X (in red). This increases the entropy of Xx to 2|.X'|. We bound the
entanglement increase for each layer of gates by twice the maximum matching size in 3(3.X ), thereby lower bounding the circuit depth

and qrt(G).

Lemma I1.4, the depth of any circuit performing this state
preparation and routing task is lower bounded as

ASy: |X]
(G, ) > = ,
d 2lm(dX)|  |m(dX)]

30)

proving (28). Similarly, Corollary I1.5 implies

ASxx + ASgy —218X|  2|1X| — |8X|

2|m(3(8X))| — m@EX)|
31

qrt(G, ) >

By exchanging the roles of X and X, Corollary IL5 also
gives the lower bound

21X] — 18X

qrt(G, ) = m@GX)] 32)

Taking the maximum of Eqgs. (31) and (32), we obtain
Eq. (29) as required. |

We now show that Theorem I1.6 lower bounds the gate-
based quantum routing number in terms of the verfex
expansion (or vertex isoperimetric number)

[8X|
min = 3
XcHGrX|<IVG)/2 | X|

c(G) := (33)

which is a well-studied property of graphs [57]. Intuitively,
the vertex expansion lower bounds how many vertices
neighbor any small enough set X . Therefore, the number of
vertices in the induced subgraph G[X U N(X)], for N(X)
the neighborhood of X, grows (or “expands”) by at least a
factor of 1 + c(G).

Corollary I1.7. For any simple graph G,

21X | B
XHGIISVG)I/2 [6X | -~ c(G)

qrt(G) = — 1L (34)

Proof. By maximizing over all allowed partitions X in
Theorem I1.6, choosing one branch of Eq. (29), and noting
[m(3(8Y))| < |8Y], for any ¥ € V(G), we have

@)=  mx L
XSHGrXI=IVG)I2 |m(3(8X))]

- max 21X| —|8X] (36)

T XSG =IM(G)/2 |6.X | '

= max X0 (37)

XSVG:XIZIVG)I/2 |8X | :

as required. |

In Appendix A, we show that the vertex expansion and
a similarly defined matching expansion,

. [m(3X)]
= min
XcrGyX|=slvG)2 X

m(G)

, (38)

are asymptotically equivalent, i.e., ¢(G) = O (m(G)).

A simple consequence of Corollary I1.7 is that gate-
based quantum routing on the star graph, §, := K, [the
complete bipartite graph with parts of size 1 and n, as
shown in Fig. 4(a)], is no faster than classical routing up
to a constant factor. A trivial classical routing strategy
has a depth upper bounded by 3n/2, whereas we have
c(S,) < 2/n so that qrt(S,) = n — 1. This is a consequence
of the small vertex cut in the star graph.
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B. Hamiltonian routing

In this section, we consider a stronger model for quan-
tum routing, namely using two-qubit Hamiltonians with
fast local operations. The Hamiltonian routing time,

hqrt(G) := max hqrt(G, ), (39)

where 7 is a permutation of qubits and hqrt(G, ), is the
minimum evolution time, normalized so that a SWAP gate
takes time 1 (discussed below), of some time-dependent
Hamiltonian H (f) that respects the architecture constraints
given by G [i.e., it is 2-local and only has interactions along
the edges E(G)] and implements w. Note that here we
consider minimizing the time as opposed to circuit depth.

A time scale follows from a normalization condition on
the two-qubit interaction strength of the Hamiltonian H (¥)
at all times. We can write any two-qubit local Hamiltonian
in the canonical form [58]

K:= ) o (40)

Jelxyz}

up to local unitaries, where w, > u, > |u;| >0, and
0y, 0y, 0, are the Pauli matrices. We impose the condition
that || K| = Zj || < 3m /4 for all interactions in H () at
all times ¢ [59], where ||| is the spectral norm. Recall
that we consider a model in which local operations can
be performed arbitrarily quickly. The shortest CNOT time
in this model is 1/3 and the shortest SWAP time is 1 [60].
Furthermore, any two-qubit unitary takes at most time
1 since any such gate can be decomposed into at most
three CNOT gates and single-qubit rotations [61]. There-
fore, this normalization guarantees hqrt(G, w) < qrt(G, )
for any permutation 7, and in particular, hqrt(G) < qrt(G).
We now show that the Hamiltonian routing time is lower
bounded by the diameter of the graph over the maximum
degree.

Theorem 11.8. For any simple graph G,

diam(G)) 1)

max, d,

hqrt(G) = Q (

where d, is the degree of v € V(G).

Proof. Pick two vertices u,v € V(G) at a distance
diam(G). In the Heisenberg evolution picture, routing must
be able to map an X operator on u at time 0, X,,(0), to X,,(T)
supported on v after some time 7. This means a Z operator
on v at time 0, Z,, has ||[Z,,X,(T)]]| = 2. Reference [62,

Eq. 7] bound this unequal time commutator after time ¢ by

I[Zy, Xu(O]]] < 2€S11=am@ (42)
where
C — 26 (e) 4 »
e max > IH9| <372 emaxd, (43)
e=(w,w)eE(G)

and H@ is a two-qubit Hamiltonian term acting only on the
ends of the edge e. Therefore, the time is lower bounded by
t = Q (diam(G)/max,, d,). |

The dependence on the maximum degree is necessary
when we consider a multigraph with two vertices con-
nected by k edges. We can then speed up any normalized
interaction between the two vertices linearly in the degree,
k. In particular, it is possible to implement a SWAP in time
1/k. We use a similar idea to show separations between
strengthened gate-based and Hamiltonian routing models
in Sec. IV. It is an open question whether a Hamiltonian
routing protocol on a simple graph can have a routing time
that is upper bounded by o (diam(G)).

We show that the Hamiltonian routing time can also be
lower bounded by an edge cut in the graph G. An edge cut
partitions G into two vertex subsets X € V(G) and X. The
edges leaving X form the edge boundary of X,

X ={(x,¥) cE|xeX,TedX})=0X, (44

and are an edge cut. We define the edge expansion (or edge
isoperimetric number or Cheeger constant) as

|0.X |

h = min :
@ XcHGXI<IVGI2 | X |

(45)

Intuitively, this corresponds to a lower bound on how many
edges leave any small enough set X . Therefore, the number
of edges in the induced subgraph G[.X U N(X)] grows (or
“expands”) by at least 1 + A(G).

In the following, we show a lower bound of hqrt(G) =
€ (1/h(G)). Because [0X| = |6X]|, the edge expansion
is always at least as large as the vertex expansion, i.e.,
h(G) = ¢(G), so this is a weaker lower bound than we
showed above on gate-based quantum routing. In particu-
lar, the star graph has h(S,) = ®(1) so our lower bound
gives hqrt(S,) = Q2 (1/kA(S,)) = Q2 (1). Since qrt(S,) =
€2 (n), this does not rule out the possibility of a large
separation between Hamiltonian and gate-based quantum
routing.

To prove the lower bound on Hamiltonian routing, we
use the continuous analog of STE, the small incremental
entangling (SIE) theorem, adapted to our setting. SIE was
conjectured by Kitaev [63] and first proven in Ref. [48].
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(@) v (b)

Star graph Sy, for n =8

Barbell graph Chp, for n =5

FIG. 4. Gate-based routing models cannot be separated up to a constant additive factor from classical routing on the star graph, but
our lower bound on Hamiltonian routing is trivial in this case because of its 2 (1) edge expansion. Classical and Hamiltonian routing
cannot be separated on the barbell graph because of its O (1/n) edge expansion.

Lemma IL.9. [Small incremental entangling (SIE)]. Given
a finite joint system XX, any Hamiltonian H with sup-
port only on X8X and any initial pure state p, the
entanglement capacity I" (H, p) is bounded as

dSx (p(0)

F#H,p):=—0r

< a||H| logd, (46)

where p(f) = U pU®) for Ult)y = e, 0 <a < 4isa
constant, and d = min(|6X |, |6X ).

It is conjectured that @ = 2 [63] but the best-known
bound gives & = 4 [64]. No generality is lost by assuming
pure states since we can add an ancillary purification sys-
tem C to X without loss of generality. The resulting state
on the joint system X X C is pure and constrained by SIE.
Since including C as an ancilla can only increase the entan-
glement capacity (we can always ignore it), we see that the
entanglement capacity is also bounded for mixed states on
XX.

We can derive another expression for I' (H,p) by
writing

d
I (H, p) = — = Tr(ox (0 log px () @7
d
— T2 jt“) log px (1)) (48)
— iTe(Trg (H, p]) log px (), (49)

where we use the Schrdodinger equation i(dp/df) = [H, p]
(setting i = 1). We see that the entanglement capacity is
linear in H.

The evolution of a system with interaction graph G,
for any X C V(G), can be described by a Hamiltonian
H = Hy + Hg + H;ys7, where Hy only has support on
the subsystem of vertices ¥ C V(G). Operations local to

X or X do not generate entanglement, so

T (H,p) =T (Hsxsz,p)- (50)

We can verify this by first explicitly computing

Trg([Hg,pD) =0 (D)

because the partial trace is cyclic on the X subsystem.
Second,

T (Hy, p) = i Tr((Hy, px 0] log px () =0 (52)

because log py (f) commutes with px () and the trace is
cyclic. By linearity, Eq. (50) holds, and we can restrict our-
selves to consider only Hamiltonians of the form Hjy ;7.

Now we can bound the entanglement capacity of any
edge cut in the graph as specified by the edge boundary of
a vertex subset X. A slightly weaker result up to constant
factors was proved in Ref. [47] by using bounds on the
entanglement capacity of bipartite product Hamiltonians
[25] instead of SIE.

Theorem 11.10. Given any X C V(G) and any pure state
p, the entanglement capacity of a Hamiltonian H with
support only on the joint subsystem 8X 8X satisfies

dSx(p(®) _ 3
dt -

o ;
['(H,p)= 7] |aX1, (33)

Jor a the constant of SIE.

Proof. We decompose the Hamiltonian into a sum of
local terms H = Y,y H” where each H is a two-
qubit Hamiltonian acting only on the ends of the edge e.
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By linearity,

T'(H,p)=T (Z H(e),p) =Y T (HY,p). (54

ecdX ecdX

We bound each term by SIE (Lemma I1.9):

Y T(H.p)<a ) IHO| (55)

ecdX ecdX

By unitary similarity (which the norm is invariant under),
we can rewrite each term in canonical form (40) and apply

our normalization condition such that ), [|H@| <
(37 /4)|9X|. m

Using this relation of entanglement capacity to edge cuts
in the graph, we show a lower bound on the time to perform
state preparation in the Hamiltonian model dependent on
the edge cut.

Corollary I1.11. Given an initial pure state py and target
pure state p on a bipartite system XX, define the change
in entanglement entropy ASx := |Sx(p) — Sx(po)|. Then
any Hamiltonian unitary evolution from py to p restricted
by interaction graph G must have evolution time

4 ASy

t> — . 56
T 3ma |0X| (56)

Proof. The claim follows directly from Theorem II.10.
|

A lower bound on Hamiltonian routing follows since
routing a particular state is a special case of state prepa-
ration.

Theorem 11.12. For any simple graph G,

8 1
hqrt(G) > Ina h(G) (57)

Proof. We prepare the same initial state as in Theorem 11.6,
where we have one half of a Bell pair at each vertex v €
V(G) that is entangled with an ancilla. To show a lower
bound, we pick some X € V(G) with |[X| < |[V(G)|/2 and
an associated ancilla space x, and pick a permutation m
that routes all vertices v € X to X arbitrarily and routes
|X| vertices u € X to X arbitrarily. Let the resulting state
be our target state p. This gives ASxy = Sy (p) = 2|1X]|.
Corollary II.11 implies that the time to implement this state

preparation and routing task is lower bounded as

4 ASy 8 1X|
) > = .
3ra [0X|  3wa |0X|

hqrt(G, (58)

We now maximize over all X to lower bound the Hamilto-
nian routing time

hqrt(G) = max hqrt(G, )

N 8 X| 8 1

> max = . (59)
XX|<WG)|/2 3we [aX|  3ma h(G)

as claimed. [ |

One simple example where this rules out a separation
between classical and Hamiltonian routing is the barbell
graph, Cy, [65]. The barbell graph consists of two com-
plete graphs, K, connected by a single edge at some
vertex in each complete graph, as shown in Fig. 4(b).
Since h(Cy,) < 2/n, Theorem 11.12 implies the Hamilto-
nian routing time on this graph is lower bounded as

4
hqrt(Cay) > ——. (60)
3o

By routing on its spanning tree, rt(C,) = O (n), so classi-
cal routing is tight up to a constant factor.

An entanglement capacity bound of O (|8X ), as given
by Theorem I1.10, matches previous results on entangle-
ment area laws for dynamics [49, theorem 1] on lattices
of constant dimension. For graphs of superconstant degree,
the distinction between bounds on the entanglement capac-
ity proportional to edge cuts (for Hamiltonian routing) and
vertex cuts (for gate-based quantum routing) are signifi-
cant. In general, |dX| < |6X | max, d,. It remains an open
question whether Hamiltonian routing can be separated by
a superconstant factor from gate-based quantum routing,
and in particular, if the Hamiltonian routing time can also
be lower bounded by the vertex expansion €2 (1/c(G)).
However, we show in Sec. IV that a stronger model of
Hamiltonian routing can be separated from gate-based
quantum routing and its routing time cannot be lower
bounded by €2 (1/¢(G)).

Another case that has been well studied is the path
graph, P,. Here, the odd-even sort [66] gives a simple
classical routing algorithm that upper bounds the circuit
depth by n. A simple bound on the vertex expansion
of the path graph is ¢(P,) < 2/n, so qrt(P,) =n—1,
matching the diameter lower bound (Theorem II.1) up
to an additive constant. Thus, a constant-factor improve-
ment over classical routing on the path is only pos-
sible in the Hamiltonian routing model. In that case,
we have h(P,) < 2/n, giving hqrt(P,) = 4n/(3ma). This
is slightly weaker (even if o =2) than a specialized
bound of 4n/(3mayp) ~ 0.222n, for ap ~ 1.912, based on
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the entanglement capacity [59]. Indeed, Ref. [67] shows
that hqrt(P,) < (1 —&)n + O(log2 n) for a constant & ~
0.034, so, for large enough n, hqrt(P,) < qrt(P,) with a
constant-factor speedup.

III. COMPARISON WITH CLASSICAL ROUTING

Fast classical routing algorithms are already known for
some graph families [31,45]. An example is the family of
grid graphs, which are Cartesian products of path graphs
P, U0Py, with dimensions Li,L; € N, where we know
rt(Pr,00Pr,) < 2Ly + Ly. We can exclude a superconstant
quantum advantage simply by the diameter lower bound
(Theorem I1.8).

In this section, we compare our quantum routing results
with general bounds on classical routing. In particular, this
gives more conditions for a superpolynomial separation.
Our results and proofs are generalizations of results in
Ref. [45] from regular graphs to irregular graphs.

In classical routing, we route a permutation 7 in mul-
tiple time steps. We first assign to each vertex v a foken
labeled 7 (v). Then, in each time step, we perform SWAP
gates on neighboring vertices to exchange their tokens
with the constraint that each vertex participates in at
most one SWAP. Routing terminates when all tokens have
been moved to their destination vertices. The difficulty
of classical routing on G is characterized by the routing
number [45]

rt(G) := max1t(G, ), (61)
where rt(G, ) is defined as the minimal number of time
steps needed to implement the permutation 7. Since gate-
based routing generalizes SWAP-based routing, qrt(G, w) <
rt(G, ) for any permutation m, and in particular, qrt(G) <

rt(G).

A. General classical routing

We now describe a classical routing algorithm that per-
forms SWAPs along a set of walks (connecting each token
with its destination) that are close to random. The number
of SWAPs that act on the same vertices at the same time
is bounded from above by the inverse spectral gap of the
(normalized) graph Laplacian, leading to high parallelism
in graphs with large spectral gap.

The set of vertices is isomorphic to an integer labeling,
V(G) = [n], so we identify each v € V(G) with a unique
integer index. Let the adjacency matrix 4 have entries

)1 if(v,u) € E(G),
Aw = [0 otherwise, (62)
for v,u € V(G), and let the diagonal matrix 7" have entries
Tw=d, and 0 otherwise, for d, = (41), the degree
of v and 1 the all-ones vector. Then the (normalized)

graph Laplacian is £ := 1 — T-1/24T-'/2. The Laplacian
is symmetric and positive semidefinite [57] and has a 0
eigenvalue for the eigenvector T'/21. Let the spectral gap,
A(G), be the smallest nonzero eigenvalue of L.

In this section, we assume n > 2 and show a general
bound on the routing number without attempting to min-
imize the constants. Let vjvy... denote a walk on the
vertices v; € ¥(G) that passes through v; at time step i.
We consider memoryless random walks with transition
probabilities denoted by Py, = P[xiy1 = v | x; = u]. These
probabilities form the transition matrix P of the random
walk on G. We choose the lazy random walk P = (1 +
AT1H/2, ie.,

1/2 ifu=nv,
1/(2d,) if (u,v) € E(G),
0 otherwise.

Pvu = (63)

In the following, we refer to lazy random walks simply as
random walks. Note that we default to right multiplication
with the transition matrix so our probability distributions
can be interpreted as column vectors. Therefore, the prob-
ability that a random walk starting at u is at v after i € N
steps is given by

Plx; = v | x0 = u] = e(v)' Ple(u), (64)
where e(v) is the column vector with a 1 in position v and
0 otherwise. The stationary distribution of the walk P is
m = Tl since PT1 =T1.

We first define a useful notion of interference between
walks.

Definition I11.1: (Interfering walks, Fig. 5). Two walks W
and W' are said to inferfere if W; = W, for some i,j € N
with |i —j| < 1.

The condition that [i —j| > 1 ensures that tokens can
be swapped along W in parallel with token swaps along
W, namely a token being swapped along W has SWAPs that
overlap at a location for two time steps.

Now, let us perform a simple random walk of a given
length starting at each vertex u and call this walk W(u).
We show that, with high probability and for sufficiently
long walks, the number of walks that interfere with a given
walk can be bounded from above. This is a generalization
of Ref. [45, lemma 2] to irregular graphs, where we explic-
itly analyze the dependence on the degree. In particular,
the entries of T/ min, d, are bounded from above by the
degree ratio

max, d,
d* =

. 65
min, d, (65)

Lemma I11.2. Let G be a connected simple graph on n ver-
tices and suppose | > In(n)/A(G). For every v € V(G), let
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FIG. 5. Shown are walks W from u to v and W from «' to v'.
Walks may intersect at a vertex (red) such that the ith location
of W and the jth location of W are the same, i.e., W; = W; We
say that W and W' interfere if there existi,j with [i —j| < 1 such
that #; = W,. We show that, with high probability, there exists
a set of walks for a permutation o of order two on V(G) that
connect v to o (v) such that the number of interfering walks can
be bounded. SWAPs along sets of walks that do not interfere with
each other significantly parallelize the routing process.

W(v) denote a random walk of length | starting at vertex v.
Let I(v) denote the total number of other walks W(u) that
interfere with W(v). Then with probability at most n—2°
there is a vertex v € V(G) with I(v) > 30ld,.

Proof. We wish to bound I(v) for any v € V(G). We
introduce an indicator random variable depending on the
random walks W(v):

(66)

1 if W(u) and W(v) interfere,
X, = .
0 otherwise.

We include the random walk starting at v in the total which
only increases the expectation of /(v). By summing over
u € V(G) and including v, the expected value of 7 (v) over
random walks is bounded by

E[/()] <E [ZXW] =) PN, =1] (67)
u u#v

V V wwi=ww; | (68

=y P
u ill]j:li—jl=1
<D D P, =Wyl (69)

u iell]j:li—jl=<1

Using Eq. (64), we have

> ) PIW(), = W]

u ie[l]
Jili—il=1
=YY e(Ww))' > Pew  (70)
u iell] Jili—fl=1
=) e(Ww))' Y PL (71)
ie[l] Jili—fl=1

The transposed vector e(W(u)i)TPf on the right-hand side
has non-negative entries for all i,j, therefore an upper
bound follows from substituting 1 by the entrywise larger
vector 7/ min, d, as

Y e(W))' Y P

ill] J:li—i =1

=Y ey Y P——1! (1)

min, d
ielll Jili—jl<l v

The distribution & is stationary under the walk P, so

. T
Sl ¥ i

i€l jili—1s1
T

<3 W(v),)" 73

< %e( (Ol ey (73)

< 3ld,, (74)

since T, <max,d, for
E[I(v)] < 3ld*.

We now bound the tail probability of I(v). We use
the multiplicative Chemoft bound, which states that for
a random variable Y =), Y; with mean p where the
¥; are independent random variables, P[X > (1 4+ 8)u] <
(eaj(l + 6)1+3)# for any & > 0. We see that the Chernoff
bound applies to I(v) < ), Xy since the walks W(u) are
independent (note that they may depend on v). Applying
the Chernoff bound with § = 9, we have

any u € V(G). Therefore,

P[I(v) > 30ld,] < P[I(v) > 10 E[I(v)]] < & n/10')ldx_
(75)

Given that 31n(e’/10'%) < —42 and using the lemma’s
assumption that / > In(n) /A(G), we obtain

e31n(39/]01°)1d,, < ¢~ 2d; < 2/ MG) (76)

We lowerboundd, > land 1/A(G) > 1 —1/n > 1/2[57,

lemma 1.7] (we assume n > 2) to obtain

n42sIMG) < 21 77
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Since there are n vertices, the probability that there exists
a vertex v with I(v) > 301d, is at most n=2°. The lemma
follows from the contrapositive. |

We can “glue” together pairs of random walks starting
at the k/2 pairs of vertices that are mapped to each other in
a permutation of order two to obtain a set of k glued walks.
We show that, with high probability, no glued walk in this
set will have many interfering other glued walks. This is
an adaptation of Ref. [45, lemma 3] to irregular graph.

Lemma IIL.3. Let G be a simple connected graph on n
vertices, let o be a permutation of order two on V(G)
with k vertices v € V(G) such that o(v) # v, and let | =
20/7(G) Inn. Then there is a set of k walks W(v) of length
21, where both W(v) and W(o (v)) have endpoints v and
o (v) and traverse the same edges (in opposite directions),
satisfying the following: if I(v) denotes the total number
of other walks W(u) that interfere with either W(v) or
W(o (v)), then I(v) < 120ld, for all v with probability at
least 1 — O (n").

Proof. We first show the existence of k conditioned ran-
dom walks (defined below) of length /, one for each vertex
v € V(G) with o (v) # v, that are close to random walks.

Define the probability of an open random walk starting
at v and ending at a random (not a priori specified) vertex
w € V(@), after t € N steps, as

PP (w) := P[W(v), = w] (78)
= Z P[W(U) = (U,Uz,---,vr—lsw)]-
17,0, U—1 €F(G)
(79)

We now define the relative pointwise distance, A: V(G) —
R, of P (w) to the stationary distribution 7 as [57]

PO —
vw 7 (w)
All random walks of length [ are close to stationary with
respect to the relative pointwise distance since [57,68,
theorem 1.16]

E@I _, —0lEQGI _

min, d, min, d,

A < 2% m, (81

where we use |E(G)| < n?, and min, d > 1.

Now we compare the statistics of an open random walk
W(v) of length / to a conditioned random walk where
we condition on the last vertex being w € V(G), which
is sampled according to the stationary distribution. The

probability of a particular open random walk W(v) can be
related to that of the conditioned random walk by

PIW()] =Y PIWQ@)| W), = wIPO (w) (82)

< 3 P ) W), = Wil + 2075 ow)
' (83)
=207 4+ 3" P () = win (w), (84)

and a corresponding lower bound can be derived simi-
larly. Therefore, for large n a conditioned random walk has
vanishing deviation from an open random walk.

For all vertices v with o (v) # v, we now condition W(v)
and W(o (v)) to have the same terminal vertex w, which is
sampled once from . We call the combined walk of W(v)
followed by the reverse of W(o (v)) the glued walk for v.
There are k glued walks that connect v to o (v) in pairs.

Finally, we bound the number of interfering glued walks
with high probability by applying Lemma I11.2. We first
arbitrarily partition the graph into X € ¥(G) and X such
that the vertices in each pair (v, o (v)) lie in different parts.
For any conditioned random walk W(v), we can write the
number of walk interferences I(v) as a sum of two random
variables, [ (v)y and I (v) ¢, defined as the number of inter-
ferences with conditioned random walks W(u) with u from
X and X, respectively, excluding W(o (v)). Note that since
the terminal vertices of each conditioned random walk in
X (or X) are sampled independently, we can apply Lemma
II1.2 individually to I(v)y and I(v)z [taking advantage
of Eq. (84)]. We can then similarly bound /(o (v))x and
I(o (v))¢. The number of glued walks that interfere with a
given (v,o (v)) glued walk is a random variable bounded
above by the sum

I(v) +1(o(v)) =1(v)x +1(v)g +1(o(V)x + (o ()
(85)

that can now be bounded from above by Lemma I11.2. This
gives I(v) + I(o(v)) < 120id, with probability at least
1—0(n). [ |

The existence of walks between opposite ends of an
order-two permutation with few intersections leads to a
classical routing algorithm that divides the walks into
disjoint sets that do not intersect. This adapts Ref. [57,
theorem 4.10] to the irregular graph setting using our
previous lemmas.

Theorem 111.4. Let o denote a permutation of order two
on the vertex set of a connected graph G. Then, for | =

201In(n)/A(G),

d. _
(G, o) < 21(120ld, + 1) = O (m log? n) . (86)
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Proof. Let W(v) be a system of walks of length 2/ satisfy-
ing Lemma II1.3. Let H be the graph whose vertices are
the walks W(v) and in which W(v) and W(u) are adja-
cent if there exist two indices 0 <i,j <L |i—j| <1, so
W(v); = W(u); or W(v); = W(u)y_;. By Lemma II1.3, the
maximum degree of H is at most 120/d, with high prob-
ability, hence by Brooks’ theorem it is vertex colorable
with at most 120/d, + 1 colors. We can therefore divide
the walks W(v) into at most 120/d, + 1 sets of independent
walks of length 2.

We now present the routing algorithm. For each set of
independent walks we sequentially do the following. For
step i with 1 <i < [, we flip tokens along the edges num-
bered i and 2/ — 1 — i in each of the walks. After / steps,
the tokens at either end of the walk have been exchanged
and the tokens not involved in any walk have not moved.
After repeating this for all independent sets, all tokens have
reached their destinations.

Since this routing algorithm succeeds with positive
probability, there exists an algorithm achieving the claimed
routing number. |

Now we generalize to all permutations.

Corollary I1L.5. For every connected simple graph G and
[ =20In(n)/A(G),

dy
rt(G) < 41(120ld, + 1) = O (1(0)2 log? n) . (87)

Proof. Any permutation of ¥(G) can be written as a prod-
uct of two permutations of order two. Use Theorem 111.4 to
route each sequentially to obtain the result. |

To the best of our knowledge, Corollary IIL.5 provides
novel upper bounds for certain irregular graphs. Of partic-
ular interest are irregular graphs where d,/ A(G)? = o (n).
One such example is an Erdos-Renyi graph G,,,, which
is an n-vertex graph where each edge is independently
present with some probability p. Hoffman et al. [69]
showed that for p > (1 + &) logn/n, for constant § > 0,
there is a constant C(8) such that

11— (G)] < (88)

ce) 0 ( 1 )
Jpn—1) v
with high probability. Thus, we have that A(G) = €2 (1)
with high probability for such p and large enough n. More-
over, the degree ratio d, — 1 for n — 00 with high proba-
bility, though it does not exactly equal 1 for finite n, giving
some irregularity. Under these conditions, Corollary II11.5
shows that 1t(G,,) = O (log” n) with high probability.

B. Conditions for a superpolynomial separation

To compare our upper bound on the routing number
and the Hamiltonian routing time lower bound, we bound

the Hamiltonian routing time in terms of the spectral gap.
We use the Cheeger inequality [57,70] that we state here
without proof.

Lemma II1.6. (Cheeger inequality). For any connected
graph G,

n2
2h6 = M(G) > 2, (89)
where the Cheeger constant is
X

¢ = min —l | . (90)

XSV@:XIZIVO)I/2 ), oy dx

The edge expansion A(G) relates to hg as
X axX
h(G) = min |9.X] < min 9] max d, = hg maxd,,
X |X| X ZxEX dx v v

o1

where X C V(G) and | X | < |V(G)|/2. We now rewrite the
Hamiltonian routing time lower bound, Theorem I1.12, in
terms of the spectral gap.

Lemma I11.7. For a connected graph G,

8 [ 1
hqrt > .
art(G) = 3ramax,d,\ 2L(G)

Proof. Using Theorem I1.12, Eq. (91) and Lemma I11.6, we
have

(92)

8
hqrt > —_— 93
q(G)_Sm_h(G) (93)
8
> 94)
3o - hg max, d,
8 1
> (95)
3ramax, d, \ 2L(G)
as claimed. [ |

A simple way to bound the slowdown when a classical
routing algorithm is used instead of a Hamiltonian routing
algorithm is the ratio of the routing times. By Corollary
II1.5 and Lemma I11.7, we have

t(G) O(d* max, d, o 2}:).

hart )\ ARG 0

By routing on a spanning tree of G, we have rt(G) = O (n)
[45], and, trivially, hqrt(G) = €2 (1). Therefore, Eq. (96) is
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nontrivial if

d, maxd, = o ( Z JL(G)W) . (97)

log“n

Moreover, it is possible to bound the routing number by a
polynomial in the Hamiltonian routing time when A(G) is
sufficiently small.

Corollary I11.8. For a simple connected graph G, rt(G) =
O (poly (hqrt(G))), where poly (x) is a polynomial in x, if

1 1
m =Q (poly (d,.(, m,logn)) . (98)

Proof. We wish to understand when rt(G) is some poly-
nomial of qrt(G), i.e., rt(G) = O(hqrt(G)") for constant
k = 1. By Corollary 1.5 and Theorem II.12, this is the
case if

di
logrt(G) o log (l(G) log ") (©99)

log hqrt(G) logﬁ
is bounded by a constant. Equation (98) is a sufficient

condition for this to hold. [ |

Similarly, we can use Cheeger’s inequality and the
diameter lower bound to obtain conditions for polyno-
mially relating the routing number and the Hamiltonian
routing time.

Theorem I11.9. For a simple connected graph G, rt(G) =
O (poly (hqrt(G))) i

1 :
max (m, dlam(G))

1
=Q (poly (d,,(, m, logn)) .

Proof. By Corollary II1.5, Lemma I11.7, and the diameter
lower bound, this happens when

(100)

log (% log n)
log max (m, diam(G))
(101)

logrt(G)
loghqrt(G)

can be upper bounded by a constant. Equation (100) is a
sufficient condition. |

We define a separation between the routing number and
the Hamiltonian routing time as a function f: R — R

such that

t(G) = Q (f(hqrt(G))) - (102)
For example, a quadratic separation corresponds to f (x) =
x%. Theorem I11.9 bounds the separation to polynomial for
trivial cases such as graphs with diam(G) = € (rn) for
¢ > 0 since rt(G) = O (n) from routing on a spanning tree
[46]. Furthermore, there is no superpolynomial separation
for bounded-degree graphs G, since diam(G) = €2 (logn)
such that Eq. (100) simplifies to

max (k(l(;),logn) =Q (poly (ﬁ,logn)) , (103)

which is always satisfied. In particular, the separation is
quadratic in the case A(G) = 2 (1).

There are families of graphs where Theorem I11.9 lim-
its the separation to polynomial that cannot be obtained
from the diameter lower bound on Hamiltonian routing,
Theorem II.8, and results for classical routing on reg-
ular graphs [45]. An example is given by a family of
irregular bounded-degree graphs constructed by Ref. [71]
with arbitrary #(G). The diameter of this graph family is
®(1/h(G)). Thus, when we pick a subpolynomial 1/k(G),
i.e., 1/h(G) = o (n°) for all constant ¢ > 0, Theorem II1.9
implies a polynomial limit on the separation that does not
follow from the diameter lower bound on Hamiltonian
routing.

However, there are graphs with large spectral gap but
unbounded degree that are not restricted to a polynomial
separation by Theorem I11.9. The star graph S, has A(S,) =
1 [57] but is a poor vertex expander since ¢(S,) = O (n™'),
giving qrt(S,) = @ (n). We cannot exclude the possibility
that Hamiltonian quantum routing could exhibit a super-
polynomial separation in this case, since our lower bound
on hqrt(S,) from Theorem 11.12 is trivial. We take a first
step toward exhibiting separations in the next section.

IV. TOWARD A SEPARATION

We have given necessary conditions for a superpolyno-
mial separation between Hamiltonian and classical routing,
but we are not even aware of any superconstant separation.
In this section, we describe separations in stronger routing
models.

A. A quadratic separation with ancillas

First we show that such a separation is possible in a
variant of the Hamiltonian routing model that allows local
ancilla qubits. The main idea of our construction is to
consider a vertex bottleneck. This argument also shows
that the Hamiltonian routing with ancillas cannot be lower
bounded by €2 (1/¢(G)).
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FIG. 6. The vertex barbell graph B,,, for n = 5, consisting of
two complete graphs connected through an additional vertex. We
have L(G) < 2/n by Lemma IIL.6.

We show a separation on a graph By, for n € N, that we
call the vertex barbell graph (see Fig. 6). It consists of two
complete graphs, Gy and G, of n vertices each and a cen-
tral vertex v, where each complete graph is fully connected
with v., forming two complete graphs of size n + 1 joined
at a vertex. We have qrt(B2,) = ©@(n): Corollary 1.7 with
1/c(B3,) = n implies the lower bound and a trivial SWAP
routing strategy implies the upper bound. The Hamiltonian
routing time is not similarly bounded because Theorem
I1.12 implies only a trivial lower bound, hqrt(B,,) = €2 (1),
since 1/h(B2,) = €2 (1), making the vertex barbell graph a
potential candidate for a separation.

We are able to show a separation in the stronger model
of Hamiltonian routing with ancillas. This model is based
on Hamiltonian routing with two additional assumptions:
(1) each qubit has one associated ancilla qubit available,
and (ii) the ancilla can perform a SWAP with its associ-
ated qubit in negligible time. We denote the Hamiltonian
routing time with ancilla as

hqrt,(G) := max hqrt, (G, ), (104)
where hqrt, (G, ) is the routing time in the Hamiltonian
routing with ancilla model of = on graph G. As a point of
comparison, we may define a modified gate-based quan-
tum routing number qrt, (G) analogously. Due to the vertex
bottleneck, we still have qrt,(B2,) = ©O(n).

We can use a protocol for fast state transfer [72] to
implement Hamiltonian routing with ancillas for the hard
case of routing on By,,.

Theorem IV.1. Given a vertex barbell graph B>, and a
permutation o that permutes all vertices from G to Gg
and vice versa, we have

hqrt,(By,,0) = O (‘\/H) : (105)

Proof. We define a Hamiltonian to construct a W state [72],
W(x,S) = Z clc,, + he.,
ves

where S C V(B2,), x € V(B2) \'S, and ¢, = |0),(1],
(respectively, c;r-} are annihilation (respectively, creation)

(106)

operators acting on qubit y € V(B3,). Evolving for time
/(2,/|S|) with initial state [/} = ag|0) + a1|1)} on x, we
have

e "I (@0]0), + a1]1),)10)s = [0)x(a0l0)s + a1 W)s),
(107)

where |W) := l/m Y ves CI'O)S is the W state over the
qubits & (an equal superposition over Hamming weight 1
strings).

The protocol is then as follows. We first use (fast) SWAPs
between each qubit and its ancilla so all data qubits in
the graph are in the state |0). We now pick some vertex
v € V(Gy) and show how to route the state originally at
v to o (v). We SWAP the data qubit at v with its ancilla to
return v to its initial state. Then we evolve by the Hamil-
tonian W(v, ¥(Gy) \ {v}) to encode the state on v on the
data qubits associated with V(Gp) \ {v}, creating a state
similar to Eq. (107), followed by the inverse operation
W(v,, V(Gp) \ {v])T. Overall, this sends the state from v
to the central vertex v, in total time 27 = /+/n — 1 (see
also Fig. 7). We repeat this process to transfer the qubit
from v, to o(v) in time 27. Then we SWAP the qubit at
o (v) with its ancilla. If the qubit that is now at o (v) needs
to be routed, we follow an analogous procedure and send
it to o (o (v)). If it does not, we pick some other vertex in
V(Gp) that still needs to be routed. We iterate in this way,
alternately handling a vertex from Gy, then Gg, until all
vertices are routed to their destination ancillas. Finally, we
simultaneously SWAP all qubits with their ancillas to finish
the routing. The total time is 47 - 2n = O (\/a |

We can now generalize the algorithm to all permutations
on By,.

Corollary IV.2. For the vertex barbell graph B;,, we have
hqrt,(By,) = O (‘\/H) -

(108)

) = v
o)eisl = s

FIG. 7. In our routing protocol for the vertex barbell graph, we
transfer the state |1/} on qubit v to u by using the intermediate
qubits S as ancillas (in the |0]}|®|SI state). The operation W(v,S)
encodes |¢) in a subspace spanned by |0)®|‘SI and the W state in
time 7/ (2\/@ ) [72]. Since this procedure is unitary, we can use
its inverse to transfer the state to u. We repeat this procedure in
Gy to transfer the state to its destination.
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Proof. Let o be any permutation of the vertices V(G).
First, we SWAP o (v.) with its ancilla, SWAP v, with o (v.),
and finally SWAP o (v.) with its ancilla again. Then, we
route all vertices that are permuted only within G or Gp
in O (1) time using SWAPs since rt(K,) < 2 [45]. Consider
now the vertex barbell subgraph of the remaining vertices
that need to move between Gy and Gy, together with v,.
This routing can be done in time O (\/ﬁ) by Theorem IV.1
and starting at o (v.). Finally, we SWAP o~ !(v.) with its
ancilla, and then with v,. [ |

Corollary IV.2 shows a quadratic separation

art, (B2,) = 2 (hqrty(B21)°) (109)
It also shows hqrta(B2,) ¢ 2 (c(B2)™') = Q(n), so
Corollary 11.7 does not generalize to Hamiltonian routing
with ancillas.

B. Optimal routing with fast local interactions

In this section, we show optimal routing for stronger
models of classical and Hamiltonian routing that allow
arbitrarily fast interactions within partitions of the graph
G. Given a partition X C V(G), let us define the fast clas-
sical routing model as classical routing with arbitrarily
fast SWAP operations within the vertex-induced subgraphs
G[X] and G[X]. Then we can define the X -fast routing
number of G, rty (G,X), as the worst-case time to route
any permutation in the fast classical routing model for a
given graph G and partition X. We denote with subscript
“f” that the interactions within the partitions X and X are
fast.

We now show that rty (G, X) = [|X|/|m(3X)]|] for any
connected simple graph G and partition X € V(G) with
[X| < |F(G)|/2. The upper bound is given by the follow-
ing routing algorithm.

Theorem IV.3. For any connected simple graph G and
partition X C V(G) with | X| < [V(G)]/2,

X1

(G, X) S [

1. (110)

Proof. For any permutation m to be routed, call the &
vertices x € X such that w(x) ¢ X marked. Similarly, we
mark the vertices x' € X such that 7 (x') ¢ X. Fix a maxi-
mum matching m(8X) = {(x,-,x;)}ff:l withx; € X and x| €
X. We repeat the following two steps for [|.X|/|m(d.X)]]
times:

1. Route as many marked vertices in X as possible
to x1,...,x in order, and route as many marked
vertices in X as possible to x{,...,x; in order.

2. Perform parallel SWAPs along (x;,x;) for all i less
than the number of remaining marked vertices.

This routes all marked vertices to their destination parti-
tions. The only contribution to the X -fast routing number
of G is a unit contribution of Item 2 every iteration. Finally,
we route all qubits within X and X to their destinations
using fast SWAPs. |

The lower bound (28) on the gate-based quantum rout-
ing number applies to the model with fast interactions since
STE still upper bounds the change in entropy for any uni-
tary acting on m(9.X ). The lower bound (rounded up, since
the routing number cannot be a fraction) is attained by
the X -fast classical routing algorithm for G, and thus the
algorithm is optimal for all gate-based models.

Given a partition X C V(G), let us define the fast Hamil-
tonian routing model as Hamiltonian routing with ancilla
and arbitrary interactions within the vertex-induced sub-
graphs G[X] and G[X]. Then we can define the X -fast
Hamiltonian routing time of G, hqrtfa (G,X), as the worst-
case time to route any permutation in the fast Hamiltonian
routing model for a given graph G and partition X. The
additional subscript “a” indicates the presence of an ancilla
at every qubit.

We give an X -fast Hamiltonian routing algorithm that
attains the lower bound on Hamiltonian routing up to a
constant factor 3wa /8 (where « is the constant of SIE,
Lemma I[1.9) for any graph G. We first prove that it
is possible to perform any two-qubit unitary in the fast
Hamiltonian routing model in time O (1/[9X|).

Lemma IV.4. For a connected simple graph G, any two-
qubit unitary U can be performed in the X -fast Hamil-
tonian routing model with partition X C V(G) in time at
most 1/]0X|.

Proof. We show how to perform a CZ operation between
v,u € V(G) in time f = 1/3]|dX|. By a decomposition of
U into at most three CZ operations plus single-qubit opera-
tions [61], the result follows. The result is trivial if v and u
are both within X or X.

Suppose, without loss of generality, v € X and u € X.
We use (fast) SWAPs between qubits on the boundary X U
8X \ {u, v} and their ancillas. Suppose the qubit at v is in
the state ag|0) + ai1|1) and u is in the state a;|0) + aj|1)
(by linearity, the protocol also works if v and u are initially
entangled with other qubits). We then encode the state of v
onto X as

apl0...0) +a|l...1) =ap|0) + a|1) (111)

by fast unitaries. Similarly, with some abuse of notation,
we encode the state of u onto X as a(’}|ﬁ) +4a) |1) where
we disregard the different register sizes with the overline
notation.
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Notice that a Hamiltonian on x,x’ € V(G)
3n
T(]l —Zy—Zy + Z,Zy) =3x[11) (1],  (112)

with Z, a Pauli-Z operator acting on the qubit at x, consists
of local terms and one normalized ZZ interaction. We can
therefore evolve by the Hamiltonian

H=3x Z 17 @ [11) (11 i,
a'eaX

(113)

where 1— is the identity operator on all subsystems
besides xx’, using fast local unitaries and ZZ interactions
along each edge in dX. By commutativity of the terms in
H, we see that

e ™ (ag)0) + a1]1)) ® (a5|0) + a}|1))

= apay|00) + aod} |01) + ahai|10) + araje 10X 11).
(114)

After performing our initial SWAP and encoding operations
in reverse, we apply a CZ operation between u and v in
time t. |

With the ability to quickly perform arbitrary two-qubit
operations in the fast Hamiltonian routing model, we give
a routing algorithm with the X -fast Hamiltonian routing
time of G upper bounded by | X|/|0X].

Theorem IV.5. For a connected simple graph G and
partition X C V(G),

X
hart,(G.X) < L

el (115)

Proof. Let m be any permutation to be routed, and sup-
pose there are k marked verticesx € X suchthatmw(x) ¢ X.
Then there are also k marked vertices x’ € X such that
m(x") ¢ X. We perform k SWAPs between each pair of
marked vertices, which, by Lemma IV.4, can be done in
time k/[0X|. Finally, we use fast local SWAPs to route
all qubits to their destination. The result follows since
k< |X]. |

Theorem I1.10 also bounds the entanglement capacity of
any Hamiltonian acting on the edge boundary dX in the
fast Hamiltonian model. Therefore, Eq. (58) implies

8 X
hart,(G.X) > —— 5

116
3ra |aX| (116)

for any X C V(G) with |X| < [V(G)|/2. It follows that
Theorem IV.5 is tight up to a multiplicative constant
3ra/8 < 4.713.

When we compare the X -fast Hamiltonian routing time
with the X -fast classical routing time (even with ancilla),

we see that
t (G, X) _9( 29 )
hqrtg, (G, X) Im(3X)| )

(117)

The vertex barbell graph with the partition V(Gy) is an
example where a speedup of ®(n) is realized.

V. CONCLUSION

In this paper, we have explored the power of gate-based
and Hamiltonian models of quantum routing, investigating
both lower bounds and separations. We showed conditions
on the spectrum of the architecture graph for a superpoly-
nomial separation. In particular, our conditions exclude
bounded-degree graphs from exhibiting a superpolynomial
separation. We also gave an example graph [71], where
diameter-based lower bounds and known classical routing
algorithms [45] cannot exclude such a separation.

One natural open question is whether the star graph S,,,
which has A(S,) = 1, can exhibit a superconstant quantum
routing separation. While our results imply that gate-based
quantum routing essentially gives no improvement over
classical routing since qrt(S,) > n — 1, the same cannot be
said for Hamiltonian routing, for which the corresponding
lower bound is trivial. In fact, if the Hamiltonian model
is strengthened by allowing a constant number of ancil-
las per qubit, a quadratic separation holds on the vertex
barbell graph, which also exhibits a similar vertex bottle-
neck. By allowing fast interactions within certain regions
of the graph, we can give optimal routing algorithms for
gate-based and Hamiltonian models and exhibit a speedup
from @ (n) for gate-based models to O (1) for Hamiltonian
models.

Our depth (or time) lower bounds can be strengthened
to include computational models with local operations and
classical communication (LOCC). LOCC models give a
stronger class of quantum routing and would allow, e.g.,
teleportation to bridge long distances. Trivially, this can
exceed the Lieb-Robinson velocity [27] and seemingly
invalidates simple lower bounds based on the diameter of
the graph. Piroli ef al. [50] showed LOCC circuit lower
bounds on state preparation for lattices and inspired us to
show similar state-preparation results for general interac-
tion graphs and to lower bound routing. Since our depth
(and time) lower bounds follow from entropic arguments
and the entropy is nonincreasing under LOCC, we see that
STE, SIE, and our state-preparation bounds (Lemma I1.4
and Corollary II.11) generalize to models including LOCC
when the entropy is nondecreasing. Thus our quantum
routing bounds (Theorems I1.6 and I1.12) also generalize
to models including LOCC. How much stronger models of
routing with LOCC can be is studied in Ref. [73].

010313-17



BAPAT, CHILDS, GORSHKOV, and EDDIE SCHOUTE

PRX QUANTUM 4, 010313 (2023)

ACKNOWLEDGMENTS

We thank Minh Tran for suggesting the possibility of
using the state transfer protocol of Ref. [72], Michael Gul-
lans for pointing out properties of Erdds-Rényi graphs, and
Dhruv Devulapalli and Andrew Guo for helpful discus-
sions.

A.B. and A V.G. acknowledge funding by the NSF
PFCQC program, ARO MURI, DoE QSA, DoE ASCR
Quantum Testbed Pathfinder program (Award No. DE-
SC0019040), NSF QLCI (Award No. OMA-2120757),
DoE ASCR Accelerated Research in Quantum Computing
program (Award No. DE-SC0020312), DARPA SAVaNT
ADVENT, AFOSR, AFOSR MURI, and U.S. Depart-
ment of Energy Award No. DE-SC0019449. E.S. and
A M.C. acknowledge support by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific
Computing Research, Quantum Testbed Pathfinder pro-
gram (Award No. DE-SC0019040) and the U.S. Army
Research Office (MURI Award No. W911NF-16-1-0349).
E.S. acknowledges support from an IBM PhD Fellowship.

APPENDIX: ASYMPTOTIC EQUIVALENCE OF
THE MATCHING EXPANSION AND VERTEX
EXPANSION

We show that the matching expansion (38) is equiva-
lent to the vertex expansion, i.e., ¢(G) = ®(m(G)). The
lower bound m(G) < ¢(G) follows from the trivial bound
[m(9X)| < |8X| for any X. The following theorem pro-
vides the upper bound.

Theorem A.1. For any simple graph G,

c(G) < 2m(G) + 0 (m(G)?). (A1)

Proof. We note that m(G) € [0, 1]. If m(G) = 1, then the
theorem holds since ¢(G) € [0, 1].

We now consider the case m(G) € [0,1). Let X C V(G)
be a partition that attains the minimum in the matching
expansion, and ¥ € V(G) is the set of vertices in m(3.X).
The set X' := X \ Y is nonempty because m(G) < 1. We
show

8X] < Y] = 2|m(3X)|. (A2)

Suppose, toward a contradiction, that there are adjacent
vertices x’ € X’ and x € X'\ Y. Then m(3X) is not max-
imal since m(9X) U {(x,x")} is a larger matching. There-
fore, X’ must consist only of vertices in ¥, giving |6X '] <
| Y] as claimed.

It follows from Eq. (A2) that

e(G) < 16X < 2m@X)| _ _ 2/m(3X)|
X7 X7 [X| — |m(3X)|
_ 2m(G)
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