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We  ar g u e t h at  all l o c alit y- pr es er vi n g   m a p pi n gs  b et w e e n f er mi o ni c  o bs er v a bl es  a n d  P a uli   m atri c es  o n

a t w o- di m e nsi o n al l atti c e  c a n  b e  g e n er at e d  fr o m t h e  e x a ct  b os o ni z ati o n i n   C h e n et  al. [ A n n.  P h ys.  ( N.

Y)  3 9 3,  2 3 4 ( 2 0 1 8)],   w h os e  g a u g e  c o nstr ai nts  pr oj e ct  o nt o t h e s u bs p a c e  of t h e t ori c  c o d e   wit h  e m er g e nt

f er mi o ns.  St arti n g fr o m t h e e x a ct b os o ni z ati o n a n d a p pl yi n g   Cli ff or d  fi nit e- d e pt h g e n er ali z e d l o c al u nit ar y

tr a nsf or m ati o n,   w e  c a n  a c hi e v e  all  p ossi bl e  f er mi o n-t o- q u bit   m a p pi n gs  ( u p  t o  t h e  r e- p airi n g  of   M aj o-

r a n a  f er mi o ns).  I n  p arti c ul ar,   w e  dis c o v er  a  n e w  s u p er c o m p a ct  e n c o di n g  usi n g  1. 2 5  q u bits  p er  f er mi o n

o n t h e s q u ar e l atti c e.   We  pr o v e t h e  e xist e n c e  of  fi nit e- d e pt h  q u a nt u m  cir c uits t o  o bt ai n f er mi o n-t o- q u bit

m a p pi n gs   wit h  q u bit-f er mi o n r ati os r = 1 + 1 / 2 k f or  p ositi v e i nt e g ers k ,  utili zi n g t h e tri vi al n ess  of  q u a n-

t u m c ell ul ar a ut o m at a i n t w o s p ati al di m e nsi o ns.   Als o,   w e pr o vi d e dir e ct c o nstr u cti o ns of f er mi o n-t o- q u bit

m a p pi n gs   wit h r ati os ar bitr aril y cl os e t o 1.   W h e n t h e r ati o r e a c h es 1, t h e f er mi o n-t o- q u bit   m a p pi n g r e d u c es

t o  t h e  o n e- di m e nsi o n al  J or d a n- Wi g n er  tr a nsf or m ati o n  al o n g  a  c ert ai n  p at h  i n  t h e  t w o- di m e nsi o n al  l at-

ti c e.  Fi n all y,   w e  e x pli citl y  d e m o nstr at e t h at t h e   Br a v yi- Kit a e v s u p erf ast si m ul ati o n, t h e   Verstr a et e- Cir a c

a u xili ar y   m et h o d,   Kit a e v’s  e x a ctl y  s ol v e d   m o d el, t h e   M aj or a n a l o o p  st a bili z er  c o d es,  a n d t h e  c o m p a ct

f er mi o n-t o- q u bit   m a p pi n g c a n all b e o bt ai n e d fr o m t h e e x a ct b os o ni z ati o n.

D OI: 1 0. 1 1 0 3/ P R X Q u a nt u m. 4. 0 1 0 3 2 6

I. I N T R O D U C TI O N

A f er mi o n-t o- q u bit   m a p pi n g is  a  d u alit y  b et w e e n l o c al
e v e n  [ 1 ]  f er mi o ni c  o p er at ors  a n d  l o c al  pr o d u cts  of  P a uli
m atri c es.  It  is   w ell  k n o w n  t h at  a n y  f er mi o ni c  s yst e m
i n  a  o n e- di m e nsi o n al  ( 1 d)  l atti c e  c a n  b e   m a p p e d  o nt o
a  1 d  s pi n  s yst e m  b y  t h e  J or d a n- Wi g n er  tr a nsf or m ati o n.
T h e  J or d a n- Wi g n er  tr a nsf or m ati o n  c a n  als o  b e  a p pli e d
t o  s yst e ms  i n  hi g h er  di m e nsi o ns  b y  c h o osi n g  a  p arti c u-
l ar  or d eri n g  of  f er mi o ns;  h o w e v er, t h e   m a p pi n g  b e c o m es
hi g hl y n o nl o c al.  Fr o m b ot h t h e or eti c al a n d pr a cti c al p oi nts
of  vi e w,   m a p pi n g  l o c al  f er mi o ni c  o p er at ors  t o  l o c al  s pi n
o p er at ors  i n  hi g h er  di m e nsi o ns  is  a n  ess e nti al  t o pi c.  I n
t h e  l ast  t w o  d e c a d es,  t h er e  h a v e  b e e n   m a n y  pr o p os als
of  f er mi o n-t o- q u bit   m a p pi n gs  f or t w o  di m e nsi o ns  [ 2 – 1 0 ]
a n d  t hr e e  or  ar bitr ar y  di m e nsi o ns  [ 1 1 – 1 4 ].   B esi d e  t h e
q u bit  d e gr e es  of fr e e d o m,  a n ot h er  a p pr o a c h  utili z es   Dir a c
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P u blis h e d  b y t h e   A m eri c a n   P h ysi c al  S o ci et y  u n d er t h e t er ms  of
t h e Cr e ati v e   C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er  distri b uti o n  of  t his   w or k   m ust   m ai nt ai n  attri b uti o n  t o  t h e
a ut h or(s)  a n d t h e  p u blis h e d  arti cl e’s titl e, j o ur n al  cit ati o n,  a n d
D OI.

m atri c es  t o  a c hi e v e  a  l o c al  r e pr es e nt ati o n  of  f er mi o ns
[1 5 – 1 8 ].   T h es e   m a p pi n gs  pl a y i m p ort a nt  r ol es i n  v ari o us
t o pi cs  of   m o d er n  p h ysi cs, s u c h as e x a ctl y s ol v a bl e   m o d els
f or t o p ol o gi c al p h as es [4 ,1 9 – 2 3 ], f er mi o ni c q u a nt u m si m u-
l ati o ns [3 ,5 ,7 ,9 ,1 1 ], a n d q u a nt u m err or c orr e cti o n [2 4 – 2 9 ].
I n  p arti c ul ar, t h e e x a ct  b os o ni z ati o ns i n   R efs. [2 ,1 2 ,1 3 ,1 6 ]
c o nstr u ct t h e t ori c  c o d e   wit h f er mi o ns i n  ar bitr ar y  di m e n-
si o ns  a n d  i m p os e  g a u g e  c o nstr ai nts  t o  r estri ct  i nt o  t h e
s u bs p a c e   wit h  e m er g e nt  f er mi o ns,   w hi c h  pr o vi d e  a n  el e-
g a nt  s p a c e-ti m e  d es cri pti o n  b y t h e   C h er n- Si m o ns  a n d t h e
St e e nr o d  s q u ar e  t o p ol o gi c al  a cti o n.   T h e  s p a c e-ti m e  pi c-
t ur es f or ot h er f er mi o n-t o- q u bit   m a p pi n gs ar e n ot   m a nif est,
b ut t h e  c o n n e cti o n  of  s o m e   m a p pi n gs   wit h t h e t ori c  c o d e
h as b e e n p oi nt e d  o ut.   W hit fi el d et al. [5 ] i n di c at e d t h at t h e
Verstr a et e- Cir a c  a u xili ar y   m et h o d  [ 3 ]  c a n  b e  r el at e d t o  a
t o p ol o gi c al   m o d el,  a n d  t h e  c o m p a ct  e n c o di n g  [9 ]  f o u n d
t h at  t h e  st a bili z er  is  si mil ar  t o  t h e  t ori c  c o d e.   T h er ef or e,
p e o pl e s h o ul d e x p e ct t h at all   m a p pi n gs ar e cl os el y r el at e d.

Fr o m  t h e  t h e or eti c al  p ers p e cti v e,  si n c e  t h e  e x a ct
b os o ni z ati o n  h as  t h e  si m pl est  s p a c e-ti m e  i nt er pr et ati o n,
it  is  n at ur al  t o  as k  a  q u esti o n:  ar e  all  f er mi o n-t o- q u bit
m a p pi n gs  i n  t w o  s p ati al  di m e nsi o ns  “ e q ui v al e nt ”  t o  t h e
e x a ct  b os o ni z ati o n ?  First,   w e  d e fi n e t h e  “ e q ui v al e n c e ”  b y
fi nit e- d e pt h  g e n er ali z e d  l o c al  u nit ar y  ( G L U)  tr a nsf or m a-
ti o ns. I nf or m all y, t h e  fi nit e- d e pt h   G L U tr a nsf or m ati o n is a
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fi nit e- d e pt h  q u a nt u m  cir c uit   wit h  a n cill a  q u bits.   We  ar g u e
t h at t h e a ns w er t o t h e a b o v e  q u esti o n is “ y es ” a n d  d e m o n-
str at e it   wit h e x a m pl es.

Fr o m t h e  pr a cti c al  p oi nt  of  vi e w, f er mi o n-t o- q u bit   m a p-
pi n gs ar e   wi d el y us e d i n f er mi o ni c q u a nt u m si m ul ati o ns of
p h ysi c al  s yst e ms.  F or  q u a nt u m  si m ul ati o ns,  a n i m p ort a nt
q u a ntit y is t h e  q u bit-f er mi o n r ati o r, t h e  n u m b er  of  q u bits
t o  si m ul at e  o n e  f er mi o n  o n  a v er a g e  si n c e  it  is  dir e ctl y
r el at e d t o t h e t ot al  n u m b er  of f er mi o ni c   m o d es e n c o d e d i n
a  q u bit  arr a y.  S u p p os e t h at   w e  e n c o d e n f er mi o ni c   m o d es
b y m q u bits; t h e n t h e  q u bit-f er mi o n  r ati o is m / n .   O n t h e
2 d s q u ar e l atti c e, t h e c o m p a ct f er mi o n-t o- q u bit   m a p pi n g i n
R ef. [ 9 ]  h as t h e r ati o r = 1. 5, a n d   R ef. [ 6 ]  gi v es a  g e n er al
c o nstr u cti o n of a f er mi o n-t o- q u bit   m a p pi n g   wit h a tr a d e- o ff
b et w e e n t h e r ati o a n d t h e l o c alit y  of l o gi c al o p er at ors.

I n t his   w or k,   w e f o c us  o n l atti c es i n t w o s p ati al  di m e n-
si o ns.  First,   w e c o nstr u ct a  n e w s u p er c o m p a ct f er mi o n-t o-
q u bit   m a p pi n g   wit h  t h e  q u bit-f er mi o n  r ati o r = 1. 2 5  o n
t h e  2 d  s q u ar e l atti c e.   M or e o v er,   w e  pr o vi d e  a  s yst e m ati c
a p pr o a c h t o  c o nstr u ct  v ari o us  2 d  b os o ni z ati o ns  b y  utili z-
i n g  t h e  i d e as  of   Cli ff or d  cir c uit  [3 0 ,3 1 ]  a n d  fi nit e- d e pt h
G L U tr a nsf or m ati o ns [ 3 2 ,3 3 ].  S u c h  a n  a p pr o a c h  pr o vi d es
a  n e w  p ers p e cti v e  t o  st u d yi n g  t h e  r el ati o ns hi p  b et w e e n
di ff er e nt  f er mi o n-t o- q u bit   m a p pi n gs.   We  fi n d  t h at  all  t h e
l o c al  f er mi o n-t o- q u bit   m a p pi n gs  c a n  b e  g e n er at e d  fr o m
t h e  e x a ct  b os o ni z ati o n  b y  fi nit e- d e pt h   G L U  tr a nsf or m a-
ti o ns. I n  p arti c ul ar,   w e  e x pli citl y  s h o w  h o w t o  o bt ai n t h e
Br a v yi- Kit a e v s u p erf ast ( B K S F) e n c o di n g, t h e   Verstr a et e-
Cir a c   m a p pi n g,   Kit a e v’s  h o n e y c o m b   m o d el, t h e   M aj or a n a
l o o p st a bili z er  c o d es ( M L S Cs),  a n d t h e  c o m p a ct f er mi o n-
t o- q u bit   m a p pi n g.

A.  S u m m a r y of r es ults

I n  S e c. II,   w e  first  d e fi n e  t h e  cr u ci al  t h e or eti c al  t e c h-
ni q u e: t h e   G L U tr a nsf or m ati o n [ 3 2 ,3 3 ].   T h e n, i n  S e c. II  B,
w e  d eri v e  t h e  f er mi o n-t o- q u bit   m a p pi n g   wit h  r ati o r =
1. 5,   w hi c h is  e q ui v al e nt  t o t h e  c o m p a ct  e n c o di n g  [ 9 ].  I n
S e c. II  C,   w e f urt h er i m pr o v e t h e r ati o t o  o bt ai n t h e s u p er-
c o m p a ct f er mi o n-t o- q u bit   m a p pi n g   wit h r ati o r = 1. 2 5. I n
S e c. II   D,   w e  pr o v e t h at  a  g e n er al  c o nstr u cti o n   wit h r ati o

r = 1 + 1 / 2 k c a n  b e  o bt ai n e d  vi a  a   G L U  tr a nsf or m ati o n
f or  a n y  p ositi v e  i nt e g er k .   T h e  pr o of  utili z es  t h e  tri vi al-
n ess  of  2 d  q u a nt u m  c ell ul ar  a ut o m at a  ( Q C A)  [ 3 4 ,3 5 ]. I n
S e c. III,   w e  d e fi n e  t h e  e q ui v al e n c e  r el ati o n  b et w e e n  dif-
f er e nt  2 d  b os o ni z ati o ns  b as e d  o n  fi nit e- d e pt h   G L U tr a ns-
f or m ati o ns  a n d  ar g u e  t h e  e q ui v al e n c e  b et w e e n  t h e  e x a ct
b os o ni z ati o n  a n d  all  ot h er  f er mi o n-t o- q u bit   m a p pi n gs.
We  d e m o nstr at e  e x pli cit   Cli ff or d  cir c uits t h at  c o n v ert t h e
e x a ct  b os o ni z ati o n t o t h e   Br a v yi- Kit a e v  s u p erf ast  e n c o d-
i n g ( S e c. III   A), t h e   Verstr a et e- Cir a c   m a p pi n g ( S e c. III  B),
Kit a e v’s h o n e y c o m b   m o d el ( S e c. III  C), t h e   M aj or a n a l o o p
st a bili z er  c o d es ( S e c. III   D),  a n d t h e J or d a n- Wi g n er tr a ns-
f or m ati o n  ( S e c. III  E).   T h e  c h ar a ct eri z ati o n  a n d  c o m p ari-
s o n b et w e e n di ff er e nt f er mi o n-t o- q u bit   m a p pi n gs is s h o w n
i n   T a bl e I.

A n  e x pli cit  f er mi o n-t o- q u bit   m a p pi n g   wit h  a n  ar bi-
tr ar y  q u bit-f er mi o n  r ati o  is  s h o w n  i n   A p p e n di x A . T h e
u nit ar y  tr a nsf or m ati o n  of  t h e   Cli ff or d  cir c uit  is  pr o vi d e d
i n   A p p e n di x B .  I n   A p p e n di x C ,   w e  pr o vi d e  a n ot h er
e x pr essi o n f or t h e s u p er c o m p a ct f er mi o n-t o- q u bit   m a p pi n g
w h er e t h e f er mi o ni c   m o d es ar e e n c o d e d i n v erti c es; s u c h a
c o nstr u cti o n is e q ui v al e nt t o t h e s u p er c o m p a ct   m a p pi n g i n
S e c. II  C b y s hifti n g a n d r e- p airi n g  of   M aj or a n a f er mi o ns.

II.   G E N E R A LI Z E D   L O C A L   U NI T A R Y   CI R C UI T S
O N   T H E   E X A C T   B O S O NI Z A TI O N

I n  t his  s e cti o n,   w e  d es cri b e  a  s yst e m ati c al   w a y  t o
d eri v e  v ari o us  f er mi o n-t o- q u bit   m a p pi n gs  fr o m t h e  e x a ct
b os o ni z ati o n  i n  t w o  s p ati al  di m e nsi o ns  pr o p os e d  i n
R ef.  [ 2 ].   T h e  e x a ct  b os o ni z ati o n  utili z es  t h e  s u bs p a c e  of
t h e  t ori c  c o d e   wit h  f er mi o ni c  e x cit ati o ns,   w hi c h   will  b e
s h ortl y r e vi e w e d i n  S e c. II   A.   We  o bt ai n  n e w f er mi o n-t o-
q u bit   m a p pi n gs  b y a p pl yi n g l o c al  u nit ar y  o p er at ors  o n t h e
e x a ct  b os o ni z ati o n.   O n t h e  ot h er  h a n d, t o i n cl u d e t h e l at-
ti c e  d ef or m ati o n t h at  c o ul d   m o dif y t h e  u n d erl yi n g   Hil b ert
s p a c e, l o c al  u nit ar y  o p er at ors ar e i ns u ffi ci e nt, a n d t h e i d e a
of   G L U o p er at ors is i ntr o d u c e d [ 3 2 ,3 3 ].   T h e p h ysi c al i nt u-
iti o n  of   G L U  o p er at ors  is  t h at   w e  ar e  all o w e d  t o  a d d  a n
e xtr a  a n cill a  q u bit  i nt o  t h e  s yst e m  or  r e m o v e  a n y  si n gl e
q u bit t h at is  u n e nt a n gl e d  fr o m t h e  r est  (f or mi n g  a t e ns or

T A B L E I.   C o m p aris o n b et w e e n f er mi o n-t o- q u bit   m a p pi n gs o n t h e 2 d s q u ar e l atti c e.

Q u bit-f er mi o n  F er mi o n p arit y   H o p pi n g  St a bili z er
r ati o r w ei g ht w ei g ht w ei g ht

Verstr a et e- Cir a c   m a p pi n g [ 3 ]a 2 1 3 – 4 6
B K S F e n c o di n g [ 1 1 ]b 2 4 2 – 6 6
Kit a e v’s h o n e y c o m b   m o d el [ 4 ] 2 2 2 – 5 6
E x a ct b os o ni z ati o n [ 2 ] 2 4 2 – 6 6
M L S C [ 7 ] 2 3 3 – 4 4 – 1 0
C o m p a ct f er mi o n-t o- q u bit   m a p pi n g [ 9 ] 1.5  1   3   8
S u p er c o m p a ct f er mi o n-t o- q u bit   m a p pi n g 1. 2 5 1 – 2 2 – 6 1 2

a T h e gr a p h str u ct ur e of t h e a u xili ar y   H a milt o ni a n is gi v e n i n  Fi g. 1 2 b el o w.
b T h e or d eri n g of e d g es is s h o w n i n  Fi g. 1 1 b el o w.

0 1 0 3 2 6- 2
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FI G.  1.   We  dis e nt a n gl e t h e  gr e e n  q u bit fr o m  ot h ers  b y  a l o c al
u nit ar y tr a nsf or m ati o n V a n d t h e n r e m o v e t his p art.   T his is c all e d
a g e n er ali z e d l o c al u nit ar y cir c uit.

pr o d u ct  st at e),  i. e.,   m a p pi n g  a  st at e | t o  a n ot h er  st at e
| ⊗ | 0 a n d  vi c e  v ers a.   As  s h o w n  i n  Fi g. 1 ,   w e  c o ul d
a p pl y  a  u nit ar y  o p er at or V m a ki n g  o n e  q u bit  dis e nt a n gl e d
fr o m t h e  ot h ers, a n d t h e n r e m o v e t his  q u bit   wit h o ut l osi n g
a n y i nf or m ati o n.

T h e   G L U  o p er at ors  dis c uss e d  a b o v e  ar e  f or  q u a nt u m
st at es,   w hi c h  c a n  als o  b e  u n d erst o o d  f or  st a bili z er  c o d es
[3 6 ] fr o m t h e   H a milt o ni a n  p ers p e cti v e.   Gi v e n t h e   Hil b ert
s p a c e f or m e d b y N q u bits, a st a bili z er c o d e is d es cri b e d b y
a   H a milt o ni a n

H st a bili z er = −

l

i= 1

S i ( 1)

wit h l ≤ N a n d  t h e  st a bili z ers S i a s  f u n cti o ns  of  P a uli
m atri c es  c o m m uti n g   wit h  e a c h  ot h er, i. e., [ S i, S j ] = 0 f or
all i, j .   T h e  gr o u n d  st at es  ( c o d e w or ds)  ar e  ei g e nst at es  of
e a c h S i.  If   w e  c o ul d  fi n d  a  u nit ar y  o p er at or V s u c h  t h at
U S lU

† = Z N (t h e  P a uli Z o n  t h e  l ast  q u bit),  all  gr o u n d
st at es  c o nt ai n  a n  u n e nt a n gl e d  tri vi al  pr o d u ct  st at e |0 o n
t h e l ast  q u bit  aft er t h e  b asis tr a nsf or m ati o n V .   T h er ef or e,
w e  c a n  r e m o v e  t h e  l ast  q u bit  fr o m  t his  s yst e m   wit h o ut
a ff e cti n g t h e ot h ers.

We  us e  a t hr e e- q u bit  bit- fli p r e p etiti o n  c o d e t o  d e m o n-
str at e  t his  dis e nt a n gl e m e nt  pr o c e d ur e.   C o nsi d er  a  t hr e e-
q u bit  bit- fli p  r e p etiti o n  c o d e   w h os e  st a bili z ers  ar e S 1 =
Z 1 Z 2 a n d S 2 = Z 2 Z 3 ; t h e c o d e w or ds ar e

|0 L = | 0 0 0 , |1 L = | 1 1 1 . ( 2)

We  t h e n  a p pl y  a   Cli ff or d  u nit ar y V = C N O T 2 → 3 t o  tr a ns-
f or m t h e st a bili z ers

V (Z 1 Z 2 )V
† = Z 1 Z 2 , V (Z 2 Z 3 )V

† = Z 3 . ( 3)

T h e  s e c o n d  st a bili z er Z 2 Z 3 i s  tri vi ali z e d  b y  dis e nt a n gl er
C N O T 2 → 3 ,   w hi c h  i n di c at es  t h at  t h e  t hir d  p h ysi c al  q u bit
m ust  b e i n t h e |0 st at e   w hil e t h e  first t w o  p h ysi c al  q u bits
still f or m t h e t w o- q u bit r e p etiti o n  c o d e.   T his f a ct  c a n  als o
b e v eri fi e d fr o m t h e st at e’s p ers p e cti v e:

C N O T 2 → 3 |0 L = | 0 0 0 , C N O T 2 → 3 |1 L = | 1 1 0 . ( 4)

H er e  t h e  t hir d  p h ysi c al  q u bit  is  al w a ys |0 a n d  is  dis e n-
t a n gl e d fr o m t h e r est  of t h e s yst e m.   H e n c e   w e c a n r e m o v e

t h e  t hir d  p h ysi c al  q u bit  a n d  o bt ai n  t h e  t w o- q u bit  bit- fli p
r e p etiti o n c o d e.

O n  t h e  ot h er  h a n d,  t h e  l o gi c al  o p er at ors  [ 3 7 ] m ust b e
c o nj u g at e d  b y t h e  dis e nt a n gl er V , s u c h t h at t h e y still c o m-
m ut e   wit h t h e tr a nsf or m e d  st a bili z ers.   H e n c e, t his  dis e n-
t a n gl e m e nt  pr o c ess  pr es er v es t h e al g e br a i n t h e c o d es p a c e
f or m e d  b y  t h e  c o d e w or ds.  I n  t h e  a b o v e  e x a m pl e,  t h e
l o gi c al o p er at ors f or c o d e w or ds i n   E q. ( 2) ar e

X L = X 1 X 2 X 3 , Z L = Z 1 , ( 5)

a n d ar e tr a nsf or m e d t o

V (X 1 X 2 X 3 )V
† = X 1 X 2 , V (Z 1 )V

† = Z 1 , ( 6)

w hi c h ar e t h e l o gi c al o p er at ors f or t h e t w o- q u bit r e p etiti o n
c o d e.

Gi v e n a f er mi o n-t o- q u bit   m a p pi n g r e pr es e nt e d  b y a st a-
bili z er  c o d e,   w e  dis e nt a n gl e  a  fr a cti o n  of  p h ysi c al  q u bits
b y c h o osi n g s p e ci fi c  u nit ar y  o p er at ors V , i. e., a fr a cti o n  of
st a bili z ers  b e c o mi n g  si n gl e  P a uli  o p er at ors  aft er  c o nj u g a-
ti o n  b y V .   Wit h t h e   G L U tr a nsf or m ati o n,   w e  c a n r e m o v e
t h e  d e gr e es  of  fr e e d o m  i n  t h e  s yst e m   w h e n  t h e y  ar e  i n
a  pr o d u ct  st at e.   H e n c e,  t h e  q u bit-f er mi o n  r ati o r c a n  b e
i m pr o v e d  b y   wis el y  a p pl yi n g  fi nit e- d e pt h   G L U  o p er at ors.
I n  t his  p a p er,   w e  us e  fi nit e- d e pt h   G L U   Cli ff or d  cir c uits
si n c e   w e  f o c us  o n  P a uli  st a bili z er   m o d els.   We  d e m o n-
str at e t h e  c o nstr u cti o n  of f er mi o n-t o- q u bit   m a p pi n gs   wit h
t h e  q u bit-f er mi o n r ati os r = 1. 5 i n  S e c. II  B a n d r = 1. 2 5
i n  S e c. II  C b y c o nj u g ati n g t h e  2 d e x a ct  b os o ni z ati o n   wit h
c ert ai n  fi nit e- d e pt h   G L U   Cli ff or d cir c uits.

A.   R e vi e w of t h e e x a ct  b os o ni z ati o n

We r e vi e w t h e  e x a ct  b os o ni z ati o n  o n t h e   Hil b ert  s p a c e
d e fi n e d i n Fi g. 2 .  T h e el e m e nts of v erti c es, e d g es, a n d f a c es
ar e d e n ot e d v , e , f .   O n e a c h f a c e f of t h e l atti c e   w e pl a c e a

p air of f er mi o ni c cr e ati o n- a n ni hil ati o n o p er at ors c f , c
†
f , or,

e q ui v al e ntl y, a p air of   M aj or a n a f er mi o ns:

γ f ≡ c f + c
†
f , γ f ≡ (c f − c

†
f ) /i. ( 7)

T h e  e v e n  f er mi o ni c  al g e br a  c o nsists  of  l o c al  o bs er v-
a bl es   wit h  a  tri vi al  f er mi o n  p arit y,  i. e.,  l o c al  o bs er v-
a bl es t h at c o m m ut e   wit h t h e t ot al f er mi o n  p arit y (− 1 ) F ≡

f (− 1 )
c
†
f c f .   T h e e v e n al g e br a is g e n er at e d b y [2 ]

1.  o n-sit e f er mi o n p arit y

P f ≡ − iγ f γ f ; (8 )

2.  t h e  F er mi o ni c h o p pi n g t er m

S e ≡ iγ L (e ) γ R (e ) , (9 )

w h er e L (e ) a n d R (e ) ar e f a c es t o t h e l eft a n d ri g ht of
e ,   wit h r es p e ct t o t h e ori e nt ati o n  of e i n  Fi g. 2 .
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1 2 3

4 5 6

7 8 9

a b

cd

FI G.  2.   B os o ni z ati o n  o n  a  s q u ar e  l atti c e  [ 2 ].   We  p ut  P a uli
m atri c es X e , Y e , Z e o n  e a c h  e d g e  a n d  o n e  c o m pl e x  f er mi o n

c f , c
†
f at  e a c h  f a c e.  I n  t his  fi g ur e,  f a c es  ar e  l a b el e d  a – d  a n d

v erti c es  ar e l a b el e d  1 – 9.   E a c h  e d g e  c o nt ai ns  a  q u bit.   We   w or k

o n t h e   M aj or a n a  b asis γ f ≡ c f + c
†
f a n d γ f ≡ − i(c f − c

†
f ) f or

c o n v e ni e n c e.

T h e  b os o ni c  d u al  of t his s yst e m i n v ol v es Z 2 - v al u e d s pi ns
( q u bits)  o n  t h e  e d g es  of  t h e  s q u ar e  l atti c e,  g e n er at e d  b y
t h e  P a uli   m atri c es X e , Y e , a n d Z e .  F or  e v er y  e d g e e , w e
d e fi n e  a  u nit ar y  o p er at or U e t h at  s q u ar es  t o  1.   H er e,   w e
l a b el  a n  e d g e t h at  c o n n e cts  v erti c es j , k b y e j k.  F or  e x a m-
pl e, i n  Fi g. 2 , t h e  e d g e  b et w e e n  f a c es b a n d c is l a b el e d
as  e d g e e 5 6 a n d t h e  e d g e  b et w e e n f a c es c a n d d is e 5 8 . O n
t h es e e d g es,   w e d e fi n e t h e c orr es p o n di n g  o p er at ors,

U e 5 6
≡ X e 5 6

Z e 2 5
, U e 5 8

≡ X e 5 8
Z e 4 5

,  ( 1 0)

w h er e X e j k
, Z e j k

ar e  P a uli   m atri c es  a cti n g  o n  a  q u bit  at
e a c h  e d g e e j k.   O p er at ors U e f or  ot h er  e d g es  ar e  d e fi n e d
usi n g tr a nsl ati o n al s y m m etr y.  Pi ct ori all y, t h e  o p er at or U e j k

i s dr a w n as

( 1 1)

c orr es p o n di n g t o t h e  v erti c al  or  h ori z o nt al  e d g e e j k. It h as
b e e n s h o w n i n   R ef. [ 2 ] t h at U e a n d S e s atisf y t h e s a m e c o m-
m ut ati o n r el ati o ns.   O n e a c h f a c e f ,   w e als o d e fi n e t h e “ fl u x
o p er at or ” W f ≡ e ⊂ f Z e , t h e  pr o d u ct  of Z e ar o u n d  a f a c e
f :

( 1 2)

T h e  b os o ni z ati o n   m a p,   w hi c h  pr es er v es t h e  c o m m ut ati o n
r el ati o n  b et w e e n o p er at ors, is

S e ← → U e , P f ← → W f ,  ( 1 3)

or, pi ct ori all y,

( 1 4)

( 1 5)

( 1 6)

O n  t h e  f er mi o ni c  si d e,  o p er at ors S e a n d P f s atisf y
a n  a d diti o n al  c o n diti o n P a P c S e 5 8

S e 5 6
S e 2 5

S e 4 5
= 1 [ 3 8 ].

T his  g e n er at es  t h e  g a u g e  c o nstr ai nts  (st a bili z er) G v ≡
W c e ⊃ v 5

X e = 1 i m p os e d  b y  h a n d  o n  b os o ni c  o p er at ors,
or, pi ct ori all y,

( 1 7)

T h e  g a u g e  c o nstr ai nt ( 1 7) c a n  b e  c o nsi d er e d  as  t h e  st a-
bili z er  ( G v | = | f or | i n  t h e  c o d es p a c e),   w hi c h
f or ms  t h e  st a bili z er  gr o u p G .   T h e  o p er at ors U e a n d W f

g e n er at e  all  l o gi c al  o p er at ors  [ 3 9 ].  I n  t h e  s etti n g  a b o v e,
q u bits  li v e  o n  e d g es  a n d  f er mi o ns  li v e  o n  f a c es,  s o  t h e
r ati o  b et w e e n  t h e  n u m b er  of  q u bits  a n d  t h e  n u m b er  of
f er mi o ns is r = 2.   We ar e g oi n g t o a p pl y  fi nit e- d e pt h   G L U
tr a nsf or m ati o ns t o l o w er t his r ati o.

B.   C o m p a ct f e r mi o n-t o- q u bit   m a p pi n g   wit h r ati o
r = 1. 5

I n  t h e  e x a ct  b os o ni z ati o n  o n  t h e  s q u ar e  l atti c e,  t h e
b os o ni c  s u bs p a c e is  c o nstr ai n e d  b y  st a bili z er ( 1 7) at  e a c h
v ert e x.  First,   w e e nl ar g e t h e  u nit c ell t o  b e a  2 × 2 s q u ar e,
as i n  Fi g. 3 .   N ot e t h at   w e h a v e c ol or e d t h e f a c es t o b e e v e n
or  o d d  as  t h e  c h e c k er b o ar d.  I n  e a c h  2 × 2  s q u ar e,  t h er e
ar e i n t ot al  f o ur  f er mi o ns,  ei g ht  q u bits,  a n d  f o ur  st a bili z-
ers,   w h os e  q u bit-f er mi o n  r ati o is r = 8 / 4 = 2.   We  a p pl y
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e v e n e v e no d d o d d

e v e n e v e no d d o d d

e v e no d d e v e no d d

e v e no d d e v e no d d

FI G.  3.   We  c ol or  t h e  f a c es  t o  “ e v e n ”  a n d  “ o d d. ”   E a c h  e d g e
c o nt ai ns a q u bit.

a  fi nit e- d e pt h   G L U  cir c uit t o  dis e nt a n gl e s o m e  q u bits  a n d
r e d u c e t h e r ati o.

I n  Fi g. 4 ,  t h e  tr a nsl ati o n-i n v ari a nt   Cli ff or d  cir c uit  is
d e fi n e d.   We  di vi d e t h e st a bili z ers i nt o t w o c as es, li vi n g  o n

a n o d d f a c e or a n e v e n f a c e, as

Aft er  c o nj u g ati o n  b y t h e   G L U   Cli ff or d  cir c uit V C d e fi n e d
i n  Fi g. 4 , t h es e st a bili z ers  b e c o m e

( 1 8)

YY

Y Y

YY

Y Y

e v e n o d d

o d d e v e n

e v e n o d d

o d d e v e n

e v e n o d d

o d d e v e n

e v e n o d d

o d d e v e n

e v e n o d d

o d d e v e n

e v e n o d d

o d d e v e n

C N O T

Y
C Y

C Z

FI G.  4.   T h e  fi nit e- d e pt h   Cli ff or d cir c uit f or t h e r = 1. 5 c o nstr u cti o n.   H er e C Y d e n ot es t h e c o ntr oll e d- Y g at e.   T h e  d e pi ct e d  u nit ari es
ar e d e n ot e d i n t h e s e q u e n c e as V 1 , V 2 , V 3 , V 4 , V 5 , V 6 .   T h e t ot al   G L U dis e nt a n gl er is V C ≡ V 6 V 5 V 4 V 3 V 2 V 1 .   Aft er c o nj u g ati o n b y u nit ar y
o p er at or V C , a p art of t h e st a bili z ers i n   E q. ( 1 7) b e c o m es a si n gl e  P a uli   m atri x,   w hi c h c a n b e r e m o v e d fr o m t h e s yst e m.
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e v e n e v e no d d o d d

e v e n e v e no d d o d d

e v e no d d e v e no d d

e v e no d d e v e no d d

FI G.  5.   T h e 2 d s q u ar e l atti c e aft er dis e nt a n gl e m e nt.   T h e q u bits
o n d as h e d e d g es ar e r e m o v e d fr o m t h e s yst e m.

( 1 9)

We  h a v e c o n v ert e d t h e st a bili z er G v , o d d i nt o a si n gl e- q u bit
st a bili z er Y u p t o a si g n.   T his q u bit   will b e i n a n ei g e nst at e
of Y a n d  c a n  b e  r e m o v e d.   H e n c e,   w e  s u c c essf ull y  eli m-
i n at e d  t h e  q u bits  o n  t h e  l eft  e d g es  of  all  o d d  f a c es.   T h e
q u bits o nl y e xist o n s oli d e d g es i n Fi g. 5 ,   w h er e t h e d as h e d
li n es  d o  n ot  c o nt ai n  a n y  d e gr e e  of  fr e e d o m.  F or  a  2 × 2
u nit s q u ar e,  o nl y si x  q u bits r e m ai n,  a n d t h e r ati o  b et w e e n
q u bits a n d f er mi o ns is 6 / 4 = 1. 5.

B y  t h e   Cli ff or d  cir c uits  i n  Fi g. 4 ,   w e  eli mi n at e  st a bi-
li z ers  o n  o d d  f a c es  a n d  c o n v ert  t h e  st a bili z ers  o n  e v e n
f a c es  t o  t ori c- c o d e-li k e  st a bili z ers.   N e xt,   w e  a n al y z e  t h e
l o gi c al  o p er at ors  r e pr es e nti n g  f er mi o n  h o p pi n g  aft er  t h e
c o nj u g ati o n.   H er e t h e c o n v e nti o n of t h e f er mi o ni c h o p pi n g
is S e ≡ iγ L (e ) γ R (e ) .   T h er e  ar e f o ur t y p es  of f er mi o ni c  h o p-
pi n g  o p er at ors [ aft er r e m o vi n g t h e  d e gr e es  of fr e e d o m i n
E q. ( 1 8)].   T h e  first t w o ar e h ori z o nt al  h o p pi n g  o p er at ors,

( 2 0)

a n d t h e n e xt t w o ar e v erti c al h o p pi n g  o p er at ors,

( 2 1)

a n d t w o t y p es of  fl u x o p er at ors,

( 2 2)

We n ot e t h at t h e st a bili z er i n   E q. ( 1 9) is t h e s a m e as t h e st a-
bili z er of t h e c o m p a ct e n c o di n g i n   R ef. [ 9 ] ( u p t o r el a b eli n g
P a uli   m atri c es X , Y , Z ).  Si n c e t h e st a bili z ers ar e t h e s a m e,
t h e s p a c es of l o gi c al o p er at ors ar e e q ui v al e nt.   We c a n r e d e-
fi n e t h e t w o li n es of   E q. ( 2 0) as t h e “ o n-sit e f er mi o n p arit y ”
a n d tr e at   E q. ( 2 2) as t h e “ h o p pi n g t er m, ”   w hi c h is e q ui v a-
l e nt t o r e- p airi n g t h e   M aj or a n a f er mi o ns as i n Fi g. 6 ,   w hi c h
r e pr o d u c es t h e c o m p a ct e n c o di n g i n   R ef. [9 ].

C.  S u p e r c o m p a ct f e r mi o n-t o- q u bit   m a p pi n g   wit h r ati o
r = 1. 2 5

I n t h e r = 1. 5  c o nstr u cti o n,   w e l a b el f a c es   wit h  “ e v e n ”
a n d  “ o d d. ”   N e xt,   w e f urt h er  c ol or t h e l atti c e,  as i n  Fi g. 7 ,
y ell o w,  bl u e,  r e d,  a n d  gr e e n.   Yell o w  a n d  r e d  b el o n g  t o

FI G.  6.   T h e r = 1. 5  c o nstr u cti o n  is  t h e  s a m e  as  t h e  c o m-
p a ct f er mi o n-t o- q u bit   m a p pi n g [ 9 ]  aft er t h e r e- p airi n g  of   M aj o-
r a n a f er mi o ns  a b o v e.   E a c h  cir cl e r e pr es e nts  a  c o m pl e x f er mi o n
f or m e d  b y  t h e  t w o   M aj or a n a  f er mi o ns.   T h e  u n d erl yi n g  arr o ws
s p e cif y t h e  or d er t o  f or m  a  f er mi o n.   T h e  arr o ws  f or m  a   K ast e-
l e y n  ori e nt ati o n, e ns uri n g t h at t h e f er mi o n  p arit y aft er r e- p airi n g
is   w ell d e fi n e d [4 0 – 4 2 ].
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FI G.  7.   T h e  2 d s q u ar e l atti c e is  c ol or e d   wit h f o ur  c ol ors:  y el-
l o w,  bl u e, r e d,  a n d  gr e e n.   Yell o w  a n d r e d  b el o n g t o t h e  ori gi n al
“ o d d ”  f a c es,  a n d  bl u e  a n d  gr e e n  b el o n g  t o  t h e  ori gi n al  “ e v e n ”
f a c es.   W hit e  d ots r e pr es e nt f er mi o ni c   m o d es i nsi d e f a c es.   C o m-
p ar e d   wit h  Fi g. 5 ,  q u bits  o n t h e  e d g es  b et w e e n  y ell o w  a n d  bl u e
f a c es   will  b e  st a bili z e d  b y  a  si n gl e  P a uli   m atri x  aft er  a  c ert ai n
u nit ar y tr a nsf or m ati o n s o t h at t h e y c a n b e r e m o v e d fr o m t h e s ys-
t e m. I n t h e  e n d,  e a c h  s oli d li n e  h as  o n e  q u bit,   w hil e t h er e is  n o
q u bit o n d as h e d li n es.

t h e  “ o d d ” f a c es,  a n d  bl u e  a n d  gr e e n  b el o n g t o t h e  “ e v e n ”
f a c es.   B as e d  o n  t h e r = 1. 5  c o nstr u cti o n  i n  t h e  pr e vi o us
s e cti o n,   w hi c h  is  o bt ai n e d  fr o m  c o nj u g ati n g  t h e  ori gi n al
2 d  b os o ni z ati o n  b y  t h e   Cli ff or d  cir c uit  s h o w n  i n  Fi g. 4 ,
w e  f urt h er  c o nj u g at e  t h e r = 1. 5  st a bili z er ( 1 9) b y  t h e

Cli ff or d  cir c uit V S C d e fi n e d  i n  Fi g. 8 t o  g e n er at e  a  n e w
f er mi o n-t o- q u bit   m a p pi n g.

St a bili z er ( 1 9) ( u p t o  a si g n)  e n cl osi n g  bl u e  a n d  y ell o w
f a c es b e c o m es

( 2 3)

O n t h e  ot h er  h a n d, st a bili z er ( 1 9) ( u p t o  a si g n)  e n cl osi n g
gr e e n a n d r e d f a c es b e c o m es

( 2 4)

w hi c h is  a  si n gl e  P a uli Y .   T h e  q u bit is  dis e nt a n gl e d fr o m
t h e r est; t h er ef or e,   w e c a n r e m o v e t h e q u bits o n t h e b o u n d-
ari es  b et w e e n  y ell o w  a n d  bl u e  f a c es.   T h e  q u bit-f er mi o n
r ati o r e d u c es t o r = 1. 2 5.  Si mil arl y,   w e c o nj u g at e t h e l o g-
i c al  o p er at ors ( 2 0) a n d ( 2 2) b y t h e   Cli ff or d  cir c uit V S C i n
Fi g. 8 ,  a n d t h e r es ults  of t h es e l o gi c al  o p er at ors  ar e list e d
i n  Fi g. 9 .

Y Y

Y Y

FI G.  8.   T h e  fi nit e- d e pt h   Cli ff or d  cir c uit t o  c o nstr u ct  b os o ni z ati o n   wit h r = 1. 2 5.   T h e  d e pi ct e d  u nit ari es  ar e V 7 , V 8 , V 9 , V 1 0 , V 1 1 , V 1 2

(fr o m t o p l eft t o  b ott o m ri g ht).   T h e   G L U  dis e nt a n gl er is V S C = V 1 2 V 1 1 V 1 0 V 9 V 8 V 7 .   Aft er  c o nj u g ati o n  b y t h e  u nit ar y  o p er at or V S C , a
p art of t h e st a bili z ers i n   E q. ( 1 9) b e c o m es a si n gl e  P a uli   m atri x,   w hi c h c a n b e r e m o v e d fr o m t h e s yst e m.
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− 1  ×

− 1  ×

− 1  ×

( a) ( b) ( c)

FI G.  9.  S h ort h a n d  r e pr es e nt ati o n  of  t h e   m a p pi n g  b et w e e n  f er mi o ni c  o p er at ors  a n d  t h e  P a uli   m atri c es.  P a n el  ( a)  r e pr es e nts  t h e
n e ar est- n ei g h b or  h ori z o nt al  h o p pi n g t er ms.   T h e  first  di a gr a m i n di c at es t h at iγ y ell o w γ bl u e i s   m a p p e d t o t h e  P a uli  o p er at or X Z Z Z i n di-
c at e d a b o v e.   T h e s e c o n d di a gr a m (t o p ri g ht) r e pr es e nts t h at iγ bl u e γ y ell o w i s   m a p p e d t o − X X Y .   T h e r e m ai ni n g di a gr a ms f oll o w t h e s a m e
r ul e,  e. g., iγ gr e e n γ r e d ↔ X X X Z a n d iγ r e d γ gr e e n ↔ − Z Z Y .  P a n el ( b) r e pr es e nts t h e  n e ar- n ei g h b or  v erti c al  h o p pi n g t er ms.   N ot e t h at t h e
f er mi o ni c  h o p pi n g t er m is γ t o γ i n t his c as e.  F or e x a m pl e, t h e  first  di a gr a m is iγ y ell o w γ gr e e n ↔ X Z .  P a n el ( c) r e pr es e nts t h e f er mi o n

p arit y o p er at ors.   E a c h f a c e f i n di c at es t h e l o c ati o n of t h e o n-sit e f er mi o ni c p arit y o p er at or − iγ f γ f ,   w hi c h is   m a p p e d t o t h e  P a uli Z Z Z
s h o w n i n t h e di a gr a m.

I n   A p p e n di x C ,   w e  d ef or m  t h e  l atti c e  a n d  r e- p air  t h e
M aj or a n a f er mi o ns t o  o bt ai n  a   m or e  s y m m etri c r e pr es e n-
t ati o n  of t his s u p er c o m p a ct f er mi o n-t o- q u bit   m a p pi n g.

D.   G e n e r al c o nst r u cti o n f o r c o m p a ct f e r mi o n-t o- q u bit
m a p pi n gs

I n  t his  s e cti o n,   w e  d es cri b e  a  g e n er al   m et h o d  t o  c o n-
str u ct  f er mi o n-t o- q u bit   m a p pi n gs   wit h  a  r e d u c e d  q u bit-
f er mi o n  r ati o  fr o m  t h e  e x a ct  b os o ni z ati o n.   T h e  e x a ct
b os o ni z ati o n  c o nt ai ns  g a u g e  c o nstr ai nts  (st a bili z ers) ( 1 7)
s u p p ort e d  o n  f a c es f ( n ort h e ast  t o  v erti c es v ),  a n d   w e
r e n a m e G v a s G f f or c o n v e ni e n c e.   We e nl ar g e t h e u nit c ell
a n d  s h o w  t h at  it  is  al w a ys  p ossi bl e  t o  a p pl y  fi nit e- d e pt h
G L U o p er at ors s u c h t h at a p orti o n of t h e st a bili z ers c a n b e
m a p p e d  t o  a  si n gl e  P a uli   m atri x.   M or e  pr e cis el y,   w e  ar e
g oi n g t o pr o v e t h at t h e st a bili z er o n e a c h   w hit e f a c e b el o w
c a n b e   m a p p e d t o a si n gl e  P a uli   m atri x, i. e.,

( 2 5)

wit h k a n y p ositi v e i nt e g er [ 4 3 ].
I nst e a d  of tr a nsf or mi n g G f o n   w hit e f a c es  dir e ctl y,   w e

ar e  g oi n g  t o  pr o v e  a  str o n g er  st at e m e nt:  t h e  g a u g e  c o n-
str ai nts G f [ E q. ( 1 7)] o n   w hit e f a c es, t h e h o p pi n g o p er at ors

U e [ E q. ( 5 1)] a cr oss h ori z o nt al e d g es, a n d t h e o p er at ors

( 2 6)

o n  gr a y  f a c es  c a n  all  b e   m a p p e d t o  a  si n gl e  P a uli   m atri x
si m ult a n e o usl y  u n d er  a  fi nit e- d e pt h   G L U  cir c uit.   T h es e
o p er at ors  o n t h e s q u ar e l atti c e ar e as f oll o ws:

( 2 7)

T o  pr o v e  t h e  a b o v e  st at e m e nt,   w e  n e e d  t o  i ntr o d u c e  a
l e m m a.

L e m m a  1: Gi v e n Z̃ e a n d ˜X e f or  all  e d g es t h at  ar e  pr o d-
u cts  of   P a uli   m atri c es  o n  a  n ei g h b or h o o d  of  t h e  e d g e  e
s atisf yi n g t h e   P a uli al g e br a,

[ ˜X e , ˜X e ] = [Z̃ e , Z̃ e ] = 0, ˜X e Z̃ e = (− 1 )δ e ,e Z̃ e ˜X e ,

t h er e  e xists  a  fi nit e- d e pt h   G L U  tr a nsf or m ati o n   m a p pi n g
˜X e , Z̃ e t o   Xe , Z e ( a si n gl e   P a uli o n e d g e e).
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Pr o of. T h e ( Cli ff or d)   Q C A i n t w o  s p ati al  di m e nsi o ns  ar e
si m pl y  ( Cli ff or d) l o c al  u nit ar y  cir c uits  a n d  s hifts  [ 3 4 ,3 5 ].
T h e   m a p

α ( X e ) = ˜X e , α ( Z e ) = Z̃ e ,  ( 2 8)

d e fi n es a   Q C A a n d c a n  b e  d e c o m p os e d i nt o a   Cli ff or d cir-
c uit  a n d  s hifts.  F or  t h e  s hift  o p er at or,   w e  c a n  i ntr o d u c e
a n cill a i n t h e |0 st at es a n d d e fi n e t h e s hift o p er at or   m o vi n g
t h e a n cill a i n t h e  o p p osit e  dir e cti o n, s u c h t h at t h e  n et  fl o w
of q u bits is z er o.   T h e n, t his s hift o p er at or c a n b e e x pr ess e d
b y  a  l o c al  u nit ar y  cir c uit  (i n v ol vi n g  t h e  a n cill a  d e gr e es
of  fr e e d o m).   Ulti m at el y,  t h es e  a n cill a  q u bits  ar e  still  i n
t h e |0 st at es  a n d  c a n  b e  r e m o v e d  b y  a  fi nit e- d e pt h   G L U
tr a nsf or m ati o n.   T h er ef or e, t h er e e xists a  fi nit e- d e pt h   G L U
tr a nsf or m ati o n fr o m X e , Z e t o ˜X e , Z̃ e , a n d vi c e v ers a.

L e m m a  2: Gi v e n  o p er at ors Z̃ e ( s e p ar at ors)  a n d X e ( fli p-
p ers) t h at  ar e  pr o d u cts  of   P a uli   m atri c es  o n  a  n ei g h b or-
h o o d of t h e e d g e e s atisf yi n g

[Z̃ e , Z̃ e ] = 0, X e Z̃ e = (− 1 )δ e ,e Z̃ e X e ,  ( 2 9)

t h er e  e xist  o p er at ors ˜X e t h at  ar e  pr o d u cts  of   P a uli   m atri-
c es o n a n ei g h b or h o o d  of e d g es e s u c h t h at

[ ˜X e , ˜X e ] = [Z̃ e , Z̃ e ] = 0, ˜X e Z̃ e = (− 1 )δ e ,e Z̃ e ˜X e .

I n  ot h er   w or ds, if t h e  fli p p ers  d o  n ot  c o m m ut e   wit h t h e m-
s el v es, t h e y c a n  b e   m o di fi e d s u c h t h at t h e   P a uli  al g e br a is
s atis fi e d.

Pr o of. If X e a n d X e d o n ot c o m m ut e,

X e X e = − X e X e , ( 3 0)

w e d e fi n e

˜X e ≡ X e Z̃ e , ˜X e ≡ X e .  ( 3 1)

N ot e  t h at Z̃ e o nl y  a ff e cts  t h e  c o m m ut ati o n  r el ati o n
b et w e e n e a n d e a n d  t his  fi x es  t h e  c o m m ut ati o n  f or  t h e
X p art a n d l e a v es t h e Z p art u n c h a n g e d.   T h er ef or e, ˜X e a n d
Z̃ e s atisf y t h e  P a uli al g e br a.

T h e  o p er at ors Z̃ e a n d X e ar e  c all e d s e p ar at ors  a n d  fli p-
p ers  [ 4 4 ].   O n c e  t h e  s e p ar at ors  a n d  fli p p ers  ar e  gi v e n,  a
Q C A is d e fi n e d b y E q. ( 2 8) [ aft er d e fi ni n g ˜X e b y   E q. ( 3 1)].
B y   L e m m a 1, t h e s e p ar at or c a n b e   m a p p e d t o a si n gl e P a uli
m atri x b y a  fi nit e- d e pt h   G L U tr a nsf or m ati o n.

T h e  o p er at ors G f o n   w hit e  f a c es, U e o n  h ori z o nt al
e d g es,  a n d G f o n  gr a y  f a c es  i n  s c h e m ati c ( 2 7) ar e  t h e

s e p ar at ors Z̃ e .   We n o w d es cri b e t h eir  fli p p ers.

1.  F or G a o n a  gr a y f a c e a ,   w e  d e fi n e its  fli p p er  b y t h e
pr o d u ct  of X e (m stri n gs  of t h e t ori c  c o d e)  c o n n e ct-
i n g  t w o  gr a y  f a c es  o n  t h e  c ol u m n  t o  t h e  ri g ht,  as
s h o w n i n Fi g. 1 0 . It c a n b e c h e c k e d t h at t his m stri n g
o nl y vi ol at es e x a ctl y o n e G f a n d c o m m ut es   wit h all
ot h er s e p ar at ors G f a n d U e .

2.   A  “ p ot e nti al ”  fli p p er [ 4 5 ] f or t h e s e p ar at or G b o n  a
w hit e f a c e b is t h e pr o d u ct of X c o n n e cti n g t h e   w hit e
f a c e t o t h e  gr a y f a c e  b el o w ( Fi g. 1 0 ).   T his  o p er at or
fli ps e x a ctl y o n e of t h e G f o n a   w hit e f a c e a n d c o m-
m ut es   wit h all U e , b ut it   m a y f ail t o c o m m ut e   wit h a
G f o n a gr a y f a c e. I n t his c as e,   w e c a n al w a ys att a c h

t h e  fli p p er f or t his G f (f o u n d i n st e p 1) t o t h e p ot e n-
ti al  fli p p er.   T his  o p er at or  b e c o m es  t h e  tr u e  fli p p er
f or a si n gl e G f .

3.  F or U 1 o n a h ori z o nt al e d g e 1,   w e st art   wit h a p ot e n-
ti al  fli p p er Z o n t his e d g e 1. It is o b vi o us t h at it  fli ps
o nl y o n e U e a n d f ails t o c o m m ut e a  fi nit e n u m b er of
G f a n d G f o n   w hit e  a n d  gr a y f a c es.  Si n c e   w e  h a v e

alr e a d y  f o u n d  t h e  fli p p ers  f or G f a n d G f ,   w e  c a n
att a c h t h es e  fli p p ers t o t h e p ot e nti al  fli p p er s u c h t h at
t h e c o m bi n e d  o p er at or c o m m ut es   will all s e p ar at ors
e x c e pt t his U 1 .

We  h a v e f o u n d t h e c o m pl et e s et  of s e p ar at ors a n d  fli p p ers
o n t h e s q u ar e l atti c e.   B y   L e m m a  1, t h e G f o n  e a c h   w hit e
f a c e c a n b e   m a p p e d t o a si n gl e  P a uli   m atri x.

FI G.  1 0.   T h e  ( p ot e nti al)  fli p p ers.  F or G a o n  t h e  gr a y  f a c e a ,
its  fli p p er is t h e  pr o d u ct  of X c o n n e cti n g t w o  gr a y f a c es  o n its
ri g ht  c ol u m n, s h o w n  b y t h e  gr e e n  o p er at or.  F or G b o n t h e   w hit e
f a c e, its p ot e nti al  fli p p er is t h e pr o d u ct of X c o n n e cti n g t o a gr a y
f a c e  b el o w,  s h o w n  b y  t h e  bl u e  o p er at or.   T his  p ot e nti al  fli p p er
m a y  a nti c o m m ut e   wit h G o n  a  gr a y  f a c e,   w hi c h  c a n  b e  fi x e d
b y att a c hi n g t h e  fli p p er f or t his G . F or U e 1

o n a  h ori z o nt al e d g e
e 1 ,  t h e  p ot e nti al  fli p p er  is Z e 1

,   w hi c h  fli ps  e x a ctl y  o n e U e a n d
a nti c o m m ut es   wit h  s o m e G f a n d G f o n   w hit e  a n d  gr a y  f a c es.

T his  c a n  b e  fi x e d  b y  att a c hi n g t h e  fli p p ers f or t h es e G f a n d G f
t o t h e p ot e nti al  fli p p er of U e 1

.
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III.   E Q UI V A L E N C E   B E T W E E N
F E R MI O N- T O- Q U BI T   M A P PI N G S   A N D   T H E

E X A C T   B O S O NI Z A TI O N

I n  t his  s e cti o n,   w e  ar g u e  t h at  a n y  l o c alit y- pr es er vi n g
f er mi o n-t o- q u bit   m a p pi n gs [4 6 ] i n t w o s p ati al  di m e nsi o ns
c a n  b e  c o n n e ct e d  t o  t h e  e x a ct  b os o ni z ati o n  b y  a  fi nit e-
d e pt h   G L U tr a nsf or m ati o n.  First,  gi v e n a f er mi o n-t o- q u bit
m a p pi n g,  it   m ust  c o nt ai n  t h e  fl u x  o p er at ors W̃ (i m a g es

of  t h e  l o c al  f er mi o n  p arit y)  a n d  t h e  g a u g e  c o nstr ai nts G̃
(i m a g es  of  t h e  pr o d u ct  of  f er mi o ni c  h o p pi n g  t er ms  i n  a
s m all  cl os e d  l o o p).   O n  a  t or us,   w e  c a n  d e fi n e  a  P a uli
st a bili z er c o d e as

H = − G̃ − W̃ . ( 3 2)

O v er  t w o  l ar g e  c y cl es  of  t h e  t or us,   w e  h a v e  t h e  f o ur-
f ol d  gr o u n d-st at e  d e g e n er a c y  si n c e   w e  d o  n ot i m p os e t h e
f er mi o ni c  c o nstr ai nts  o n  t h e  l ar g e  c y cl es.   T h e  c o d e  dis-
t a n c e is li n e ar i n t h e s yst e m si z e si n c e t h e l o gi c al  o p er at or
is  t h e  pr o d u ct  of  h o p pi n g  al o n g   wit h  t h e  l ar g e  c y cl es.  It
is  pr o v e n i n   R ef. [4 7 ] t h at a n y tr a nsl ati o n all y i n v ari a nt Z p

P a uli st a bili z er   m o d el   wit h a li n e ar c o d e dist a n c e is d e c o m-
p os e d  b y  a l o c al   Cli ff or d  cir c uit  of  c o nst a nt  d e pt h i nt o  a
fi nit e  n u m b er  of  c o pi es  of t h e t ori c  c o d e f or  a n y  pri m e p
[4 8 ].  Si n c e  t h e  d e g e n er a c y  is  f o ur  o n  t h e  t or us,  t h e  st a-
bili z er  c o d e i n   E q. ( 3 2) m ust  b e  a si n gl e  c o p y  of t h e t ori c

c o d e u p t o a   Cli ff or d cir c uit.   T h er ef or e, G̃ a n d W̃ ar e r el at e d
t o G v a n d W f i n t h e  e x a ct  b os o ni z ati o n i n  S e c. II   A b y  a
G L U tr a nsf or m ati o n (si n c e t h e t ori c  c o d es  d e fi n e d  o n  dif-
f er e nt l atti c es  ar e r el at e d  b y  a   G L U tr a nsf or m ati o n t o  a d d
or r e m o v e q u bits).

N ot e t h at t h e  a b o v e  dis c ussi o n   w or ks  f or  ar bitr ar y l at-
ti c es   wit h  a s pi nl ess f er mi o ni c   m o d e  o n  e a c h f a c e.   M or e-
o v er,   w e c a n  di vi d e t h e f a c es i nt o  di ff er e nt s ets, i. e.,  bl a c k
a n d   w hit e f a c es  o n t h e  c h e c k b o ar d,  a n d  ass o ci at e t h e s pi n
or  ot h er  d e gr e es  of  fr e e d o m   wit h  e a c h  s et  [ 4 9 ].   T h os e
l a b els d o n ot a ff e ct t h e a b o v e ar g u m e nt b as e d o n   R ef. [4 7 ].
T h er ef or e, t h e e q ui v al e n c e b et w e e n f er mi o n-t o- q u bit   m a p-
pi n gs is als o tr u e f or s pi nf ul f er mi o ns.

I n  t h e  f oll o wi n g  p art  of  t his  s e cti o n,   w e  e x pli citl y
d e m o nstr at e  h o w t o tr a nsf or m   m a n y   w ell- k n o w n f er mi o n-
t o- q u bit   m a p pi n gs i n t h e lit er at ur e t o t h e  e x a ct  b os o ni z a-
ti o n  b y  fi nit e- d e pt h   G L U   Cli ff or d cir c uits.  F or e a c h e x a m-
pl e,   w e  first  d e m o nstr at e  t h eir  l o gi c al  o p er at ors  a n d  st a-
bili z ers.   N e xt,   w e  c o nstr u ct  fi nit e- d e pt h   Cli ff or d  cir c uits
t h at tr a nsf or m t h e l o gi c al  o p er at ors  a n d  st a bili z ers  of  dif-
f er e nt f er mi o n-t o- q u bit   m a p pi n gs t o t h os e i n t h e  2 d  e x a ct
b os o ni z ati o n.

A.   B r a v yi- Kit a e v s u p e rf ast si m ul ati o n

T h e   B K S F e n c o di n g i n   R ef. [ 1 1 ] is a   m et h o d t o e n c o d e
f er mi o ni c  o p er at ors i nt o  P a uli  o p er at ors.   B K S F  e n c o di n g
e n c o d es c o m pl e x f er mi o ns at v erti c es v b y q u bits o n e d g es
e .   T h e k e y i d e a of   B K S F e n c o di n g is t o assi g n a n ar bitr ar y

or d eri n g of e d g es ar o u n d e a c h v ert e x a n d d e fi n e t h e l o gi c al
o p er at ors  a c c or di n g t o t h e  or d eri n g.   T h e f er mi o ns  ar e  p ut
at t h e  gr a p h’s  v erti c es, r e pr es e nt e d  b y   M aj or a n a  o p er at ors
γ v , γ v f or  e a c h  v ert e x v .   T h e  e v e n  al g e br a  of f er mi o ns is
g e n er at e d b y

A e j k = iγ j γ k , B v = − iγ v γ v ,  ( 3 3)

w h er e A e j k i s  d e fi n e d  o n  e a c h  e d g e e j k, t h e  e d g e  b et w e e n
v erti c es j a n d k , a n d B v i s  d e fi n e d  at  e a c h  v ert e x v .   N ot e
t h at A e j k

a n d B v a nti c o m m ut e if  a n d  o nl y if  v ert e x v c oi n-
ci d es   wit h eit h er v ert e x j or k , a n d A e a n d A e a nti c o m m ut e
if  a n d  o nl y if e a n d e ar e t w o  di ff er e nt  e d g es  c o n n e cti n g
t o t h e s a m e  v ert e x.   We c o nstr u ct  P a uli  o p er at ors li vi n g  o n
e d g es t o c a pt ur e t h e s a m e al g e br a as A e a n d B v .

F or  v ert e x v ,   w e  l a b el  t h e  e d g es  c o n n e ct e d  t o v wit h
n u m b ers  1, 2, 3, 4  o n t h e  s q u ar e l atti c e,  s h o w n i n  Fi g. 1 1 .
T h er ef or e, f or t w o  e d g es e , e c o n n e cti n g t o t h e s a m e  v er-
t e x, t h e  or d eri n g  b et w e e n t h e m is  d e fi n e d  b y t h e  assi g n e d
n u m b er, i. e.,  eit h er e < e or e > e .   N o w,   w e  c a n  d e fi n e
t h e l o gi c al o p er at or

˜A B K
e j k

= X e

e ⊃ j |e < e

Z e

e ⊃ k |e < e

Z e ,  ( 3 4)

w h er e e ⊃ j a n d e ⊃ k m e a n t h at  all  e d g es e c o n n e ct t o
v ert e x j a n d all e d g es e c o n n e ct t o v ert e x k , a n d t h e ot h er
l o gi c al o p er at or

B̃ B K
v =

e ⊃ v

Z e , ( 3 5)

w hi c h is t h e pr o d u ct of t h e  P a uli Z e o n all e d g es c o n n e ct e d

t o  v ert e x v .  Fr o m  t h e  P a uli Z i n   E q. ( 3 4), ˜A B K
e a n d ˜A B K

e

FI G.  1 1.   T h e  or d eri n g  of  e d g es  o n  e a c h  v ert e x.   T h e r e d  n u m-
b ers  ar e  t h e  l a b els.   N ot e  t h at  o n e  e d g e  is  c o n n e ct e d  t o  t w o
v erti c es,  a n d t h e t w o  n u m b ers  o n t h e t w o  v erti c es  d o  n ot  n e e d
t o  b e  t h e  s a m e.   T h e  assi g n e d  n u m b ers  d et er mi n e  t h e  r el ati v e
or d eri n g f or t w o e d g es c o n n e cti n g t o t h e s a m e v ert e x.
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a nti c o m m ut e if  a n d  o nl y if e a n d e ar e  c o n n e cti n g t o t h e
s a m e v ert e x v si n c e   w e h a v e eit h er

˜A B K
e = X e · · · a n d ˜A B K

e = X e Z e · · · f or e < e ( 3 6)

or

˜A B K
e = X e Z e · · · a n d ˜A B K

e = X e · · · f or e > e ,
( 3 7)

w h er e  “ · · · ”  d e n ot es  t h e  P a uli   m atri c es  o n  ot h er  e d g es

irr el e v a nt t o t h e c o m m ut ati o n r el ati o n.   O p er at ors ˜A B K
e a n d

B̃ B K
v ar e  d esi g n e d t o  h a v e t h e s a m e  c o m m ut ati o n r el ati o ns

as A e a n d B v i n   E q. ( 3 3).
T h e f er mi o n-t o- q u bit   m a p pi n g is

A e j k ← → ˜A B K
e j k

, B v ← → B̃ B K
v .  ( 3 8)

F or e a c h cl os e d l o o p l i n t h e  gr a p h, t h e  pr o d u ct  of ˜A B K
e o n

t his l o o p n e e ds t o s atisf y t h e c o n diti o n

e ∈ l

˜A B K
e = i|l|, ( 3 9)

w h er e |l| is  t h e  l e n gt h  of  l o o p l.   T his  is  d u e  t o  t h e
i d e ntit y  of   M aj or a n a  o p er at ors.  F or  e x a m pl e,  s u bstit ut-
i n g A e i nt o   E q. ( 3 3),   w e  h a v e t h e i d e ntit y A e 1 2

A e 2 3
A e 3 1

=
(iγ v 1

γ v 2
)(iγ v 2

γ v 3
)(iγ v 3

γ v 1
) = i3 .

B y t h e c o n v e nti o n i n  Fi g. 1 1 ,   w e h a v e

( 4 0)

We  n ot e t h at t his is t h e s a m e l o gi c al  o p er at or  as t h e  e x a ct
b os o ni z ati o n i n t h e  d u al l atti c e  aft er   w e  r el a b el t h e  P a uli
m atri c es X a n d Y .   T h e f er mi o n  p arit y t er ms i n  b ot h  c as es
ar e  a  pr o d u ct  of Z ar o u n d  a  v ert e x  ( a  f a c e  i n  t h e  d u al
l atti c e).   T h er ef or e, t h e   B K S F  a p pr o a c h   wit h t his  or d eri n g
c o n v e nti o n is t h e s a m e as t h e e x a ct b os o ni z ati o n.

N ot e  t h at,  fr o m  t h e  c o nstr u cti o n  of  t h e  l o gi c al  o p er-

at or ˜A B K
e j k

i n   E q. ( 3 4),  t h e  o nl y  pr o p ert y   w e  us e d  fr o m

t h e  assi g n e d  n u m b ers is t h at t h e y  d et er mi n e t h e  or d eri n g
of  t w o  e d g es  at  t h e  s a m e  v ert e x.  If  f a ct,  if  all  “r el a-
ti v e  or d eri n gs ” [5 0 ] f or  a  p air  of  e d g es  c o n n e cti n g t o t h e
s a m e  v ert e x  ar e  d e fi n e d,  t h e  c o nstr u cti o n  i n   E q. ( 3 4) is
still  v ali d.   Gi v e n  a  c o nstr u cti o n  fr o m  a  c h oi c e  of  r el a-
ti v e  or d eri n gs, if   w e   w a nt t o r e d e fi n e t h e r el ati v e  or d eri n g
b et w e e n  a  p air  of  e d g es e a n d e , i. e.,  s w a p pi n g  b et w e e n
t w o  c as es  i n   E qs. ( 3 6) a n d ( 3 7),   w e  c a n  si m pl y  c o nj u-
g at e  t h e C Z e ,e g at e  o n  t h e  s yst e m.   T h er ef or e,  t h e   B K S F
a p pr o a c h   wit h  di ff er e nt  c h oi c es  of  r el ati v e  or d eri n gs  c a n
b e tr a nsf or m e d fr o m o n e t o a n ot h er b y c o nj u g ati n g a pr o d-
u ct  of  c o ntr oll e d- Z (C Z )  g at es.   T his  a gr e es   wit h t h e   m ai n
r es ult:  all f er mi o n-t o- q u bit   m a p pi n gs  ar e r el at e d  b y   G L U
o p er at ors.

B.   Ve rst r a et e- Ci r a c  a u xili a r y   m et h o d

I n  t his  s e cti o n,   w e  d e m o nstr at e  t h e  e q ui v al e nt  r el a-
ti o n  b et w e e n t h e   Verstr a et e- Cir a c   m a p pi n g  [3 ]  a n d  e x a ct
b os o ni z ati o n  aft er  r e gr o u pi n g   M aj or a n a  f er mi o ns.   T h e
b asi c  i d e a  of  t h e   Verstr a et e- Cir a c   m a p pi n g  is  t o  eli mi-
n at e t h e n o nl o c al P a uli- Z stri n g fr o m t h e 1 d J or d a n- Wi g n er
tr a nsf or m ati o n  b y i ntr o d u ci n g  a u xili ar y  q u bits   wit h  g a u g e
c o nstr ai nts.  I n  t his   m a p pi n g,  e a c h  sit e i us es  f o ur   M aj o-
r a n a   m o d es γ i, γ i , γ i, γ i t o  e n c o d e  a  c o m pl e x f er mi o n  a n d
a n a u xili ar y c o m pl e x f er mi o n.  F or i m pl e m e nt ati o n,   w e p ut
t w o  q u bits  o n  e a c h  v ert e x,  o n e  f or t h e  p h ysi c al  c o m pl e x
f er mi o n  a n d t h e  ot h er f or t h e  a u xili ar y  c o m pl e x f er mi o n.
T h e   M aj or a n a o p er at ors γ i, γ i b el o n g t o t h e a u xili ar y c o m-
pl e x  f er mi o n.   T h e  a u xili ar y  f er mi o ns  st a y  i n  t h e  gr o u n d
st at e of t h e   H a milt o ni a n

H a u x = −
{j ,k }

P j k = − i
{j ,k }

γ j γ k ,  ( 4 1)

w h er e {j , k } i n cl u d es  o nl y  p airs (j , k ) t h at  ar e  c o n n e ct e d
b y  dir e ct e d  e d g es i n  Fi g. 1 2 ,  e. g., (1, 5 ), (2, 6 ), (5, 9 ), . . ..

T h e  v erti c al  h o p pi n g  o p er at or  is   m o di fi e d  as c
†
i c j →

c
†
i c j (iγ iγ j ),   w hi c h  d o es  n ot  a ff e ct t h e  pr o p erti es  of  ori gi-

n al f er mi o ns i n t h e  s p a c e  of iγ iγ j = 1.   We  or d er t h e  first
r o w  ( o d d  r o w)  fr o m  l eft  t o  ri g ht,  t h e  s e c o n d  ( e v e n  r a w)
fr o m l eft t o ri g ht,  a n d  s o  o n,  s h o w n  as  Fi g. 1 2 .   N e xt,   w e
a p pl y  t h e  1 d  J or d a n- Wi g n er  tr a nsf or m ati o n   wit h  r es p e ct

t o t h e  or d eri n g  1 → 1̃ → 2 → 2̃ → 3 → 3̃ → 4 → 4̃ →

5 → 5̃ → 6 → 6̃ → · · · ,   w h er e j a n d j̃ r e pr es e nt  t h e
p h ysi c al f er mi o n a n d a u xili ar y f er mi o n at sit e j .   T h e   m oti-
v ati o n of i ntr o d u ci n g iγ iγ j i s t o c a n c el t h e n o nl o c al Z stri n g

f or t h e c
†
i c j t er m aft er t h e J or d a n- Wi g n er tr a nsf or m ati o n. If

FI G.  1 2.   Gr a p h str u ct ur e of t h e a u xili ar y   H a milt o ni a n H a u x .
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t h e a u xili ar y s yst e m is i n t h e + 1 ei g e ns p a c e  of iγ iγ j ., t his
e xtr a t er m   w o ul d  n ot a ff e ct t h e pr o p ert y  of t h e s yst e m.

H o w e v er, t h e a u xili ar y   H a milt o ni a n b e c o m es a n o nl o c al
H a milt o ni a n  aft er  t h e  J or d a n- Wi g n er  tr a nsf or m ati o n.   T o
r es ol v e t his  pr o bl e m,   w e  p erf or m t h e  s u bstit uti o n P 1 5 →
P 1 5 P 2 6 , P 2 6 → P 2 6 P 3 7 , et c. Si n c e all P c o m m ut e   wit h e a c h
ot h er  a n d  ar e i n + 1  ei g e nst at es, t his s u bstit uti o n  d o es  n ot
c h a n g e  t h e  gr o u n d-st at e  s p a c e  [ 5 1 ].   T h e n  t h e  c o nstr ai nt
P i kP jl = − γ iγ k γ j γ l = 1  is   m a p p e d  t o  a  l o c al  g a u g e  c o n-
str ai nt (st a bili z er) aft er t h e J or d a n- Wi g n er tr a nsf or m ati o n:

( 4 2)

H er e  t h e  P a uli   m atri c es {X n , Y n , Z n } a ct  o n  t h e  a u xili ar y
q u bit n .   We  p ut  p h ysi c al  q u bits  o n  v erti c al e d g es a n d a u x-
ili ar y  q u bits  o n  h ori z o nt al  o n es.  Si n c e  p h ysi c al  q u bits a n d
a u xili ar y  q u bits  ar e  o n  di ff er e nt  e d g es,   w e   will  n ot  s h o w
t h e til d e i n t h e  f oll o wi n g t e xt  f or  c o n v e ni e n c e.   T h e  h o p-
pi n g  o p er at ors [ S e i n   E q. ( 9)] a n d f er mi o n  p arit y  o p er at ors
[P f i n   E q. ( 8)] ar e   m a p p e d t o

( 4 3)

B y c o nj u g ati n g st a bili z er ( 4 2) b y t h e   Cli ff or d cir c uits V V C

s h o w n i n  Fi g. 1 3 , t h e n e w st a bili z er is

( 4 4)

w hi c h is  pr e cis el y t h e  g a u g e  c o nstr ai nt ( 1 7) of t h e  e x a ct
b os o ni z ati o n.   T his  i m pli es  t h at  t h e  l o gi c al  s p a c e  s h o ul d
als o b e t h e s a m e as t h e e x a ct b os o ni z ati o n.   C o nj u g ati n g t h e
l o gi c al  o p er at ors ( 4 3) b y V V C ,   w e  o bt ai n t h e  n e w l o gi c al

H H H H H

H

H

S

S

S

S S

S

S

S

S

S

R

R

R

R R

R

R

R R

R

R

R

H H H H H

H H H H H

H

R R R R R

R R R R R

R R R R R

R R R R R
H H H H H

H

FI G.  1 3.   T h e  fi nit e- d e pt h   Cli ff or d  cir c uit  t o  c o n v ert  t h e
Verstr a et e- Cir a c   m a p pi n g  t o  t h e  e x a ct  b os o ni z ati o n.   D et ails  of
t h e H , R , S g at es  ar e  dis c uss e d i n   A p p e n di x B .   T h e  fi nit e- d e pt h
Cli ff or d  cir c uit t h at  c o n v erts t h e   Verstr a et e- Cir a c   m a p pi n g i nt o
t h e e x a ct b os o ni z ati o n is V V C = V V C

6 V V C
5 V V C

4 V V C
3 V V C

2 V V C
1 .

o p er at ors

( 4 5)

a n d

( 4 6)

0 1 0 3 2 6- 1 2



E Q UI V A L E N C E   B E T W E E N  F E R MI O N- T O- Q U BI T   M A P PI N G S. . . P R X   Q U A N T U M 4, 0 1 0 3 2 6 ( 2 0 2 3)

FI G.  1 4.   T o   m at c h  o ur  e x a ct  b os o ni z ati o n  t o  t h e   Verstr a et e-
Cir a c   m a p pi n g,   w e s hift o ur   M aj or a n a   m o d es o n e a c h f a c e i n t h e
f oll o wi n g   w a y:  ( 1)  s hift γ f u p w ar d  a n d l et it  b e γ o n t h e  n e w

f a c e; ( 2) s hift γ f ri g ht w ar d a n d l et it b e γ o n t h e n e w f a c e.

If   w e s hift t h e   M aj or a n a f er mi o ns i n t h e e x a ct b os o ni z ati o n
as i n  Fi g. 1 4 a n d r e- p air t h e m, t h e n   w e  fi n d t h at t h e  e x a ct
b os o ni z ati o n a n d t h e   Verstr a et e- Cir a c   m a p pi n g ar e e q ui v a-
l e nt; s e e  Fi g. 1 5 .   T h e  n e w l o gi c al  o p er at ors a n d st a bili z ers
ar e  pr e cis el y t h e l o gi c al  o p er at ors  a n d st a bili z ers  of  e x a ct
b os o ni z ati o n aft er t his s hift.

C.   Kit a e v’s  h o n e y c o m b   m o d el

T h e   H a milt o ni a n  of   Kit a e v’s  h o n e y c o m b   m o d el [ 4 ] c a n
b e   writt e n as

H = − J x

x − li n ks

X A
j X B

k − J y

y − li n ks

Y A
j Y B

j

− J z

z − li n ks

Z A
j Z B

k , ( 4 7)

w h er e t h e x , y , z li n ks  ar e  s h o w n i n  Fi g. 1 6 .   T h e  q u bit  at
e a c h sit e j c a n  b e r e pr es e nt e d  b y f o ur   M aj or a n a  o p er at ors,
b x

j , b
y
j , b

z
j , a n d γ j ,   wit h a n a d diti o n al c o nstr ai nt

D j = b x
j b

y
j b

z
j γ j = 1

( a)

( b)

( c)

FI G.  1 5.   C orr es p o n d e n c e  of  l o gi c al  o p er at ors  b et w e e n  t h e
e x a ct b os o ni z ati o n a n d t h e   Verstr a et e- Cir a c   m a p pi n g.

FI G.  1 6.   Kit a e v’s h o n e y c o m b   m o d el.   T h e r e d, bl u e, a n d gr e e n
e d g es  r e pr es e nt x , y , a n d z li n ks.  F or  e a c h li n k, t h e  pr o d u ct  of
t w o  P a uli   m atri c es  o n its  v erti c es is   m a p p e d t o t h e  pr o d u ct  of γ
a n d γ o n its v erti c es, s h o w n i n   E q. ( 5 0).

t o  eli mi n at e  t h e  r e d u n d a n c y  at  e a c h  sit e j .   T h e  P a uli
m atri c es at e a c h sit e j ar e r e pr es e nt e d as

X j = i bxj γ j , Y j = i b
y
j γ j , Z j = i bzj γ j .  ( 4 8)

T h e n, a fr e e-f er mi o n   H a milt o ni a n

H =
i

2
e j k

J α j k γ
A
j γ B

k ( 4 9)

is  e q ui v al e nt  t o  a  s e ct or  of   E q. ( 4 7),   w h er e  t h e  i n d e x α
t a k es v al u es x , y , or z d e p e n di n g o n t h e dir e cti o n of li n k j k.
F o c usi n g  o n t h e  al g e br a  g e n er at e d  b y γ j i n  a  fi x e d s e ct or,
m a p pi n g ( 4 8) i n d u c es a c orr es p o n d e n c e [2 ,4 ]:

iγ A
j γ B

k ← →

⎧
⎪⎨

⎪⎩

X A
j X B

k if j k ∈ x li n k,

Y A
j Y B

k if j k ∈ y li n k,

Z A
j Z B

k if j k ∈ z li n k.

( 5 0)

Si n c e t h e  pr o d u ct  of   M aj or a n a  h o p pi n gs  al o n g  a  h e x a g o n
is  pr o p orti o n al t o i d e ntit y,   w hi c h  gi v es  a  g a u g e  c o nstr ai nt
o n  t h e  q u bit   Hil b ert  s p a c e,   w e  c a n  s h o w  t h at  t h e  e x a ct
b os o ni z ati o n  [ 2 ]  c a n  b e  o bt ai n e d  b y  e m b e d di n g t h e  h o n-
e y c o m b l atti c e i nt o t h e  s q u ar e l atti c e.   T h e  d et ails  of  s u c h
a  pr o c e d ur e  ar e  as  f oll o ws.  St arti n g  fr o m  t h e  2 d  e x a ct
b os o ni z ati o n,   w e  s hift  a n d r el a b el t h e   M aj or a n a f er mi o ns
as i n Fi g. 1 7 .   Aft er t his r el a b eli n g a n d s hift of t h e   M aj or a n a
f er mi o n,   w e  c o nj u g at e  e v er y  q u bit  b y  a   H a d a m ar d  g at e
t h at  i m pl e m e nts  t h e  tr a nsf or m ati o n H X H † = Z , H Z H † =
X .   T h e c o m pl et e b os o ni z ati o n   m a p b e c o m es

( 5 1)
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FI G.  1 7.   T o   m at c h  o ur  e x a ct  b os o ni z ati o n t o   Kit a e v’s  h o n e y-
c o m b   m o d el,   w e  s hift  o ur   M aj or a n a   m o d es  o n  e a c h f a c e i n t h e
f oll o wi n g   w a y:  ( 1)  s hift γ f d o w n w ar d  a n d  l et  it  b e γ o n  t h e
n e w f a c e; ( 2) s hift γ f l eft w ar d  a n d l et it  b e γ o n t h e  n e w f a c e.

We r e- p air γ a n d γ e n v el o p e d i n t h e  elli ps e t o f or m  a  c o m pl e x
f er mi o n.

( 5 2)

( 5 3)

wit h t h e st a bili z er ( g a u g e c o nstr ai nt)

( 5 4)

E q u ati o ns ( 5 1)– ( 5 3) will  c orr es p o n d  t o  t h e  gr e e n,  r e d,
a n d  bl u e  li n ks  e m b e d d e d  i n  Fi g. 1 8 ,  r es p e cti v el y.   T h e
ri g ht- h a n d  si d es  of t h es e  e q u ati o ns  ar e  all   w ei g ht- 2  P a uli
o p er at ors  t h at  ar e  si mil ar  t o  t h e  s pi n-s pi n  i nt er a cti o ns  i n
Kit a e v’s  h o n e y c o m b   m o d el.   T h es e  o p er at ors  o nl y  di ff er
fr o m   Kit a e v’s  h o n e y c o m b   m o d el  b y   H a d a m ar d  g at es.

FI G.  1 8.   T h e  e m b e d di n g  of  t h e  h o n e y c o m b  l atti c e  i nt o  t h e
s q u ar e l atti c e.   T h e  r e d,  bl u e,  a n d  gr e e n li n ks  c orr es p o n d t o t h e
x , y , a n d z t y p es i n   Kit a e v’s h o n e y c o m b   m o d el.

O n c e   w e  c o nj u g at e  all t h e  q u bits  o n  h ori z o nt al  e d g es  b y
H a d a m ar d  g at es  t h at  s wit c h X ↔ Z ,  t h e n  t h e  ri g ht- h a n d
si d es  of   E qs. ( 5 1) a n d ( 5 2) b e c o m e Z Z a n d X X i nt er a c-
ti o ns  as t h e Z a n d X e d g es i n   Kit a e v’s  h o n e y c o m b   m o d el
w hil e  t h e  ri g ht- h a n d  si d e  of   E q. ( 5 3) still  f or ms  a Y Y
t er m i n   Kit a e v’s h o n e y c o m b   m o d el.   T h e n,   w e e n d u p   wit h
Kit a e v’s h o n e y c o m b   m o d el.

D.   M aj o r a n a l o o p st a bili z e r c o d es

I n  t his  s e cti o n,   w e  s h o w  t h at  t h e   M L S C  [7 ] is G L U
e q ui v al e nt t o t h e  2 d  e x a ct  b os o ni z ati o n.  Si mil ar t o   B K S F
e n c o di n g,   M aj or a n a  l o o p  st a bili z er  c o d es  e n c o d e  a  c o m-
pl e x f er mi o n  o n  v ert e x v b y  q u bits  o n e d g e e c o n n e ct e d t o
v .   M aj or a n a l o o p st a bili z er  c o d es  h a v e f er mi o ni c  h o p pi n g

FI G.  1 9.   T h e  fi nit e- d e pt h   Cli ff or d  cir c uit  f or  t h e   M L S C  t o
t h e  e x a ct  b os o ni z ati o n.   T h e  first   Cli ff or d  cir c uit   will  dis e nt a n-
gl e  t h e  q u bits  o n  t h e  e d g es  b et w e e n  r e d  a n d  y ell o w  f a c es,
s o  t h e  e d g es  b et w e e n  r e d  a n d  y ell o w  f a c es  b e c o m e  d as h e d
li n es  i n  t h e  s e c o n d  a n d  t hir d  st e ps.   T h e  first  p a n el  i n v ol v es
t hr e e u nit ar y cir c uits U M L S C

1 , U M L S C
2 , U M L S C

3 c orr es p o n di n g t o t h e
c o ntr oll e d- N O T (C N O T )  g at es  l a b el e d 1 , 2 , a n d 3 ,  r es p e c-
ti v el y.   T h e  fi nit e- d e pt h   Cli ff or d  cir c uit t h at  c o n v erts   M aj or a n a-
l o o p  st a bili z er  c o d es  t o  t h e  e x a ct  b os o ni z ati o n  is U M L S C =
U M L S C

5 U M L S C
4 U M L S C

3 U M L S C
2 U M L S C

1 .
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( a) ( b)

( c)

( d)

FI G.  2 0.   H ori z o nt al  h o p pi n gs iγ L (e ) γ R (e ) aft er  a  fi nit e- d e pt h
G L U tr a nsf or m ati o n i n  Fi g. 1 9 .   L a b els ( a)  a n d ( b)  d e n ot e  h o p-
pi n gs  b et w e e n  bl u e  a n d  or a n g e  d ots;  l a b els  ( c)  a n d  ( d)  d e n ot e
h o p pi n gs  b et w e e n  pi n k  a n d  y ell o w  d ots.   H o p pi n gs ( a), ( b),  a n d
( d)  ar e  e x a ctl y  t h e  h ori z o nt al  h o p pi n gs  i n  t h e  e x a ct  b os o ni z a-
ti o n, a n d h o p pi n g ( c) is a pr o d u ct of t h e h o p pi n g o p er at or a n d t h e
st a bili z er i n t h e e x a ct b os o ni z ati o n.

o p er ati o n A e = iγ L (e ) γ R (e ) o n  e a c h  e d g e,  f er mi o n  p arit y
o p er at or P f = − iγ f γ f o n  e a c h  v ert e x,  a n d  st a bili z ers G v

a cti n g  o n f a c es   wit h  di ff er e nt  c ol ors.   We f oll o w t h e  s a m e
pr o c e d ur e  d es cri b e d  i n  S e c. II,  c o nj u g ati n g  t h e  l o gi c al
o p er ati o ns a n d st a bili z ers  of t h e   M L S C  b y t h e  fi nit e- d e pt h
Cli ff or d cir c uits i n  Fi g. 1 9 .   T h e n t h e f o ur ki n ds of h ori z o n-
t al h o p pi n gs i n t h e   M L S C r e d u c e t o t h e h ori z o nt al h o p pi n g
i n t h e e x a ct  b os o ni z ati o n ( u p t o a st a bili z er), a n d t h e s a m e
t hi n g  h a p p e ns  t o  t h e  v erti c al  h o p pi n gs,  p arit y  o p er at ors,
a n d st a bili z ers.

St arti n g  fr o m  t h e   M L S C,  Fi gs. 2 0 a n d 2 1 s h o w  t h at
t h e  h ori z o nt al  a n d  v erti c al  h o p pi n gs iγ L (e ) γ R (e ) aft er  t h e
tr a nsf or m ati o n  c a n   m at c h t h e  h ori z o nt al  a n d  v erti c al  h o p-
pi n gs  i n  e x a ct  b os o ni z ati o n.   A n  i nt er esti n g  f a ct  is  t h at
t h e  first   Cli ff or d  cir c uit  i n  Fi g. 1 9 r e m o v es  q u bits  o n

( e)

( g) ( h)

(f)

FI G.  2 1.   L a b els  ( e) –( h)  d e n ot e  v erti c al  h o p pi n gs iγ L (e ) γ R (e )

aft er  a  fi nit e- d e pt h   G L U tr a nsf or m ati o n i n  Fi g. 1 9 .   T h e y   m at c h
t h e v erti c al h o p pi n gs i n t h e e x a ct b os o ni z ati o n.

t h e  e d g es  b et w e e n  r e d  a n d  y ell o w  f a c es  a n d   m a k es  t his
c orr es p o n d e n c e  p ossi bl e.

E.   C o n n e cti o n t o t h e J o r d a n- Wi g n e r t r a nsf o r m ati o n

I n  t his  s e cti o n,   w e  s h o w  t h at  c o nj u g ati n g  t h e  e x a ct
b os o ni z ati o n  b y  a  li n e ar- d e pt h  [ 5 2 ]   Cli ff or d  cir c uit  i n
Fi g. 2 2 will r es ult i n t h e  1 d J or d a n- Wi g n er tr a nsf or m ati o n
al o n g  t h e  p at h  i n  Fi g. 2 3 ,   w h er e  t h e  f er mi o ni c  h o p pi n g
iγ j γ k wit h j , k i n  di ff er e nt  r o ws  is   m a p p e d  t o  a  n o nl o c al
P a uli stri n g.

F or  t h e  J or d a n- Wi g n er  tr a nsf or m ati o n,  t h e  q u bit-
f er mi o n  r ati o is  1,  b ut it is  a  n o nl o c al   m a p pi n g  si n c e t h e
v erti c al  h o p pi n g  t er ms  ar e   m e di at e d  b y  a  P a uli- Z stri n g
b et w e e n  t w o  sit es.   B y  dir e ctl y  a p pl yi n g  t h e  li n e ar- d e pt h
G L U   Cli ff or d  cir c uit  i n  Fi g. 2 2 t o  t h e  l o gi c al  o p er at ors
of  t h e  e x a ct  b os o ni z ati o n,  t h e  q u bits  o n  t h e  h ori z o nt al
e d g es  ar e  dis e nt a n gl e d  a n d  d o  n ot  s h o w  u p i n t h e l o gi c al
o p er at ors.   All  st a bili z ers  b e c o m e  si n gl e- P a uli  o p er at ors

FI G.  2 2.   T h e  fi nit e- d e pt h   Cli ff or d  cir c uit t o  c o n v ert t h e  e x a ct
b os o ni z ati o n t o t h e 1 d J or d a n- Wi g n er tr a nsf or m ati o n. I n t h e  first
st e p,   w e  or d er t h e s yst e m fr o m l eft t o ri g ht, t h e n a p pl y t h e C N O T

g at e  t o  e a c h  c ol u m n  f oll o wi n g  t h e  a b o v e  or d eri n g.   T h e C N O T

g at es  ar e  a p pli e d  si m ult a n e o usl y i n t h e  s e c o n d  a n d t hir d  st e ps.
I n t h e  f o urt h  st e p,   w e  or d er t h e  s yst e m  fr o m  ri g ht t o l eft, t h e n
a p pl y t h e C N O T g at e t o  e a c h  c ol u m n  f oll o wi n g t h e  ri g ht-t o-l eft
or d eri n g.  I n t h e  fift h  st e p, C Z g at es  ar e  si m ult a n e o usl y  a p pli e d.
T h e d e pi ct e d u nit ari es ar e U J W

1 , U J W
2 , U J W

3 , U J W
4 , U J W

5 (fr o m t o p t o
b ott o m).   T h e   G L U  dis e nt a n gl er is U J W = U J W

5 U J W
4 U J W

3 U J W
2 U J W

1 .
N ot e t h at U J W

1 a n d U J W
4 ar e li n e ar- d e pt h l o c al u nit ar y cir c uits.

0 1 0 3 2 6- 1 5



Y U- A N   C H E N a n d   YIJI A   X U P R X   Q U A N T U M 4, 0 1 0 3 2 6 ( 2 0 2 3)

o n h ori z o nt al e d g es a n d c a n b e r e m o v e d b y   G L U tr a nsf or m ati o ns.   E x pli citl y, t h e h ori z o nt al a n d v erti c al h o p pi n gs ar e

( 5 5)

( 5 6)

a n d t h e f er mi o n- p arit y t er m is

( 5 7)

T h e f er mi o n- p arit y t er m is   m a p p e d t o a si n gl e  P a uli Z , t h e
s a m e as t h e J or d a n- Wi g n er tr a nsf or m ati o n.

All  st a bili z ers  ar e   m a p p e d  t o  t h e  si n gl e  P a uli   m atri x
at  e a c h  h ori z o nt al  e d g e,  a n d  t h e y  c a n  b e  r e m o v e d  fr o m
t h e  s yst e m.   N e xt,   w e  c h e c k   w h et h er t h e l o gi c al  o p er at ors

U J W U e U
†
J W , U J W W f U

†
J W m at c h t h e r es ults fr o m t h e J or d a n-

Wi g n er tr a nsf or m ati o n.   Ess e nti all y, t h e  u nit ar y U J W tr a ns-
f or ms  t h e  l o c al  o p er at ors  of  2 d  e x a ct  b os o ni z ati o n  t o
n o nl o c al  stri n gs  f or t h e   M aj or a n a  h o p pi n gs U e al o n g t h e
v erti c al  dir e cti o n  ( e d g e e is  h ori z o nt al)   w hil e  pr es er vi n g
t h e  l o c alit y  f or  t h e   M aj or a n a  h o p pi n g  i n  t h e  h ori z o nt al

dir e cti o n ( e d g e e is v erti c al).   O p er at or U J W U e U
†
J W f or  h or-

i z o nt al  e d g es e will  pi c k  u p  a Z stri n g i n  b et w e e n,   w hil e

o p er at or U J W U e U
†
J W f or  v erti c al  e d g es e is  t h e  a dj a c e nt

X X o p er at or.   T his is pr e cis el y t h e 1 d J or d a n- Wi g n er tr a ns-
f or m ati o n   wit h  r es p e ct t o t h e  or d eri n g  c h os e n i n  Fi g. 2 3 .

1

2

3

4

FI G.  2 3.   Or d eri n g  of t h e  1 d J or d a n- Wi g n er tr a nsf or m ati o n  o n
t h e s q u ar e l atti c e.

H e n c e,   w e  c a n  r e g ar d  t h e  1 d  J or d a n- Wi g n er  tr a nsf or m a-
ti o n  as  a  p arti c ul ar  c as e i n t h at   w e  r e m o v e  all t h e  q u bits
o n t h e h ori z o nt al e d g es   w h er e t h e v erti c al h o p pi n gs ar e n o
l o n g er l o c al.

A C K N O W L E D G M E N T S

Y.- A. C. t h a n ks   M ar k  St e u dt n er f or p oi nti n g o ut t h e r el a-
ti o n  b et w e e n   B K S F  e n c o di n g  a n d t h e  e x a ct  b os o ni z ati o n
a n d  d e m o nstr ati n g  t h e  a u xili ar y  q u bit   m a p pi n g.   Y.- A. C.
t h a n ks   A nt o n   K a p usti n,   T yl er   Ellis o n,  a n d   N at   T a nti-
v as a d a k ar n  f or  us ef ul  dis c ussi o ns.   Y.- A. C.  als o  t h a n ks
B o w e n   Ya n g  f or  e x pl ai ni n g  t h e  cl assi fi c ati o n  of  P a uli
st a bili z er   m o d els  i n  t w o  di m e nsi o ns.   Y. X.  t h a n ks  a d vi-
s or   M o h a m m a d   H af e zi  f or  us ef ul  dis c ussi o ns.   Y.- A. C.
r e c ei v e d  s u p p ort  fr o m  a   U ni v ersit y  of   M ar yl a n d  J QI
f ell o ws hi p  a n d  fr o m  t h e   L a b or at or y  f or  P h ysi c al  S ci-
e n c es t hr o u g h t h e   C o n d e ns e d   M att er   T h e or y   C e nt er.   Y. X.
is  s u p p ort e d  b y   A R O   Gr a nt   N o.   W 9 1 1 N F- 1 5- 1- 0 3 9 7,
N ati o n al  S ci e n c e  F o u n d ati o n   Q L CI   Gr a nt   N o.   O M A-
2 1 2 0 7 5 7,   A F O S R- M U RI   Gr a nt   N o.  F A 9 5 5 0- 1 9- 1- 0 3 9 9,
a n d   D e p art m e nt of   E n er g y   Q S A pr o gr a m.

A P P E N DI X   A:   C O N S T R U C TI O N   O F   T H E
F E R MI O N- T O- Q U BI T   M A P PI N G   WI T H   R A TI O

r = 1 + 1 / l

I n  t his  a p p e n di x,   w e  pr o vi d e  a n  e x pli cit  c o nstr u cti o n
of f er mi o n-t o- q u bit   m a p pi n gs   wit h t h e  q u bit-f er mi o n r ati o
r = 1 + 1 / l f or a n y  p ositi v e i nt e g er l.   T his c o nstr u cti o n is
si mil ar i n s pirit t o t h e   Verstr a et e- Cir a c   m a p pi n g [ 3 ] a n d t h e
a u xili ar y  q u bit   m a p pi n g [ 6 ].

We  first  s p e cif y  t h e   Hil b ert  s p a c e,  s h o w n  i n  Fi g. 2 4 .
T h e  s q u ar e  l atti c e  c o nt ai ns  r e d  v erti c es  i n  c ol u m ns  s e p-
ar at e d  b y  a  dist a n c e l.  F or  t h e  f er mi o ni c   Hil b ert  s p a c e,
w e  p ut  o n e  c o m pl e x  f er mi o n  at  e a c h  v ert e x,  g e n er at e d
b y  o p er at ors γ v , γ v .  F or  t h e  b os o ni c   Hil b ert  s p a c e,   w e
p ut  o n e  q u bit  at  e a c h  bl a c k  v ert e x  a n d  t w o  q u bits  at
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...

...

...

...

FI G.  2 4.  P h ysi c al   Hil b ert  s p a c e  of t h e f er mi o n-t o- q u bit   m a p-
pi n g   wit h r = 1 + 1 / l.   E a c h  bl a c k  sit e  d e n ot es  o n e  q u bit,  a n d
e a c h  r e d  sit e  d e n ot es  t w o  q u bits.   C ol u m ns  of  r e d  v erti c es  ar e
s e p ar at e d b y a dist a n c e l.

e a c h r e d  v ert e x.   We  d e fi n e t h e   m a p pi n g  b et w e e n t h e  e v e n
s e ct or  of  t h e  f er mi o ni c   Hil b ert  s p a c e  a n d  t h e  c o d es p a c e
( g a u g e-i n v ari a nt s u bs p a c e) of t h e b os o ni c   Hil b ert s p a c e.

T h e  h o p pi n g  o p er at ors  o n  h ori z o nt al  e d g es  ar e
m a p p e d as

,

,

,

( A 1)

a n d t h e o p er at ors  o n v erti c al e d g es ar e

,

,

( A 2)

w h er e t h e v erti c al h o p pi n g o p er at or b et w e e n bl a c k v erti c es
c o nsists of Z -stri n g o p er at ors t o t h e n e ar est r e d v erti c es o n
its ri g ht,   w hi c h h as   w ei g ht O (l).   T h e o n-sit e f er mi o n p arit y
o p er at ors at v erti c es ar e   m a p p e d as

,

.

( A 3)

O n  t h e  b os o ni c   Hil b ert  s p a c e,   w e  n e e d  t o  i ntr o d u c e  st a-
bili z ers ( g a u g e  c o nstr ai nts) t o  pr oj e ct i nt o t h e  c o d es p a c e,

w h er e t h e st a bili z ers ar e

( A 4)

f or  e a c h l × 1  r e ct a n gl e  f or m e d  b y  f o ur  r e d  v erti c es,  a n d
t h e  “· · · ”  b et w e e n  t h e  r e d  v erti c es  c o nsist  of Z -stri n g
o p er at ors.

O n e a c h l × 1 u nit c ell, t h er e ar e l f er mi o ns, l + 1 q u bits,
a n d  o n e  st a bili z er  ( g a u g e  c o nstr ai nt),  s o  t h e  d e gr e es  of
fr e e d o m   m at c h.   T h e  q u bit-f er mi o n  r ati o  of t his  c o nstr u c-
ti o n is r = 1 + 1 / l.

A P P E N DI X   B:   C LI F F O R D   G A T E S

T h e   Cli ff or d  gr o u p is  d e fi n e d  as t h e  gr o u p  of  u nit ari es
t h at  n or m ali z e  t h e  P a uli  gr o u p.   T h e   Cli ff or d  g at es  ar e
d e fi n e d  as  el e m e nts i n t h e   Cli ff or d  gr o u p  [ 3 0 ,3 1 ].  I n t his
p a p er,   w e us e si n gl e- q u bit   Cli ff or d g at es: H g at e, S g at e, R
g at e.

T h e H g at e is t h e   H a d a m ar d g at e

H =
1

√
2

1 1
1 − 1

( B 1)

t h at  s atis fi es H X H † = Z , H Z H † = X . T h e S g at e  is  t h e
p h as e g at e

S =
1 0
0 i

( B 2)

t h at s atis fi es S X S † = Y , S Y S † = − X . T h e R g at e is

R =
1

√
2

1 i
i 1

( B 3)

w h er e R Y R † = − Z , R Z R † = Y .
F or t w o- q u bit   Cli ff or d  g at es,   w e  c h o os e C N O T , C Y , a n d

C Z g at es.   T h e C N O T g at e is

C N O T =

⎡

⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎦ , ( B 4)

w h er e

C N O T (X ⊗ I )C N O T
† = X ⊗ X ,

C N O T (Z ⊗ I )C N O T
† = Z ⊗ I ,

C N O T (I ⊗ X )C N O T
† = I ⊗ X ,

C N O T (I ⊗ Z )C N O T
† = Z ⊗ Z .
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T h e C Y g at e is

C Y =

⎡

⎢
⎣

1 0 0   0
0 1 0   0
0 0 0 − i
0 0 i 0

⎤

⎥
⎦ ( B 5)

w h er e

C Y (X ⊗ I )C Y
† = X ⊗ Y ,

C Y (Z ⊗ I )C Y
† = Z ⊗ I ,

C Y (I ⊗ X )C Y
† = Z ⊗ X ,

C Y (I ⊗ Z )C Y
† = Z ⊗ Z .

T h e C Z g at e is

C Z =

⎡

⎢
⎣

1 0 0   0
0 1 0   0
0 0 1   0
0 0 0 − 1

⎤

⎥
⎦ ( B 6)

w h er e

C Z (X ⊗ I )C Z
† = X ⊗ Z ,

C Z (Z ⊗ I )C Z † = Z ⊗ I ,

C Z (I ⊗ X )C Z
† = Z ⊗ X ,

C Z (I ⊗ Z )C Z
† = I ⊗ Z .

A P P E N DI X   C:  S U P E R C O M P A C T   M A P PI N G

I n  t his  a p p e n di x,   w e  pr es e nt  a n ot h er  r e pr es e nt a-
ti o n  of  t h e  s u p er c o m p a ct  f er mi o n-t o- q u bit   m a p pi n g  i n
S e c. II  C.   W hil e t h e  s u p er c o m p a ct f er mi o n-t o- q u bit   m a p-
pi n g  e n c o d es  l o gi c al  f er mi o ns  o n  f a c es,  h er e   w e  dis c uss
a n ot h er  r e pr es e nt ati o n  t h at  e n c o d es  l o gi c al  f er mi o ns  o n
v erti c es.  I n  t his  a p p e n di x,   w e  s h o w  t h at  t his   m a p pi n g

e n c o d es l o gi c al f er mi o ns   wit h r = 1. 2 5.   O n t h e  2 d s q u ar e
l atti c e i n  Fi g. 2 5 ,  e a c h  bl a c k  v ert e x  c o nt ai ns  a  q u bit,  a n d
e a c h gr a y v ert e x c o nt ai ns t w o q u bits.   As s h o w n i n Fi gs. 2 6
a n d 2 7 , e a c h gr a y v ert e x h as t w o P a uli   m atri c es o n t h e t o p-
ri g ht a n d b ott o m-l eft c or n ers, r es p e cti v el y. F or t h e e n c o d e d
i nf or m ati o n,  e a c h  v ert e x v e n c o d es  a  s pi nl ess  f er mi o ni c

m o d e   wit h  cr e ati o n  a n d  a n ni hil ati o n  o p er at ors c
†
v , c v wit h

t h e st a n d ar d c o m m ut ati o n r el ati o n {c v , c
†
v } = δ v v w h er e v

d e n ot es t h e  v ert e x l a b el.   T h e r ati o  b et w e e n t h e  n u m b er  of
f er mi o ni c   m o d es a n d t h e n u m b er of p h ysi c al q u bits is 1. 2 5.
F or  c o n v e ni e n c e,   w e  us e t h e   M aj or a n a  b asis t o  r e pr es e nt
f er mi o ni c   m o d es

γ v = c v + c †
v , γ v =

c v − c
†
v

i
. ( C 1)

T h e l o c al f er mi o n  p arit y o p er at or at a v ert e x v is

B v ≡ (− 1 )c
†
v c v = − iγ v γ v ( C 2)

a n d t h e h o p pi n g  o p er at or  o n a n e d g e e is

A e j k = iγ j γ k , (C 3 )

w h er e j a n d k ar e  l a b els  f or  t h e  l eft  a n d  ri g ht  v er-
ti c es  of  e d g e e .   T h e  e v e n  al g e br a  of  f er mi o ns  c o nsists
of l o c al  o p er at ors   wit h  a tri vi al  f er mi o n  p arit y, i. e., l o c al
o bs er v a bl es  t h at  c o m m ut e   wit h  t h e  t ot al  f er mi o n  p arit y

(− 1 )F ≡ v (− 1 )c
†
v c v .   T h e g e n er at ors f or t h e e v e n al g e br a

of f er mi o ns ar e A e j k a n d B v o n all e d g es a n d v erti c es [ 2 ].
T h e  f er mi o n-t o- q u bit   m a p pi n gs  ar e   m a p pi n gs  fr o m

A e j k , B v t o  P a uli  stri n gs  ( pr o d u cts  of  P a uli   m atri c es)  o n
q u bits   wit h t h e  s a m e  al g e br a. I n  a d diti o n,  s u c h   m a p pi n gs
s atisf y  a  c o n diti o n t h at t h e  pr o d u ct  of A e j k al o n g  a n  ar bi-
tr ar y  cl os e d  p at h  s h o ul d  b e  t h e  i d e ntit y  o p er at or  ( u p  t o
a  p h as e)  si n c e  all   M aj or a n a  o p er at ors  c a n c el  o ut.  S u c h  a
c o nstr ai nt  r e q uir es t h e  q u bit  s yst e m t o  b e  st a bili z e d  b y  a

FI G.  2 5.   T h e p h ysi c al a n d l o gi c al   Hil b ert s p a c es f or s u p er c o m p a ct e n c o di n g.   T h e l eft- h a n d si d e is t h e p h ysi c al   Hil b ert s p a c e,   w h er e
e a c h bl a c k v ert e x c o nt ai ns o n e q u bit, a n d e a c h gr a y v ert e x c o nt ai ns t w o q u bits.   T h e ri g ht- h a n d si d e is t h e l o gi c al   Hil b ert s p a c e,   w h er e
e a c h v ert e x e n c o d es a f er mi o ni c   m o d e.   T h e q u bit-f er mi o n r ati o r is 1. 2 5 i n t his s etti n g.
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( a) ( b) ( c) ( d)

( e) (f)  ( g) ( h)

(i) (j)

FI G.  2 6.   T h e h o p pi n g t er m ˜A e a n d t h e p arit y t er m B̃ v i n t h e b os o ni c   Hil b ert s p a c e.   T h e d e fi niti o ns of ˜A e a n d B̃ v d e p e n d o n t h e c ol ors
of e d g es a n d  v erti c es. ( a) –( d)  F o ur  ki n ds  of  h ori z o nt al  h o p pi n g t er ms; ( e) –( h) f o ur  ki n ds  of  v erti c al  h o p pi n g t er ms; (i),(j)  p arit y t er ms
o n bl a c k a n d gr a y v erti c es.

st a bili z er  gr o u p, i. e.,  b ei n g i n t h e + 1  ei g e ns p a c e  of  o p er-
at ors i n t h e st a bili z er  gr o u p.   N o w,   w e  e x pli citl y  c o nstr u ct
t h e   m a p pi n g o n t h e l atti c e i n  Fi g. 2 5 :

A e j k
= iγ j γ k ← → ˜A e j k

, B v = − iγ v γ v ← → B̃ v , ( C 4)

wit h ˜A e j k a n d B̃ v d e fi n e d  i n  Fi g. 2 6 .   We   m a y  als o  s w a p

i n di c es j , k f or e j k; t h e n   w e h a v e A e kj = − A e kj ← →   − ˜A e j k .
Si n c e  t h e  q u bit  arr a y  h as  tr a nsl ati o n al  s y m m etri es,   w e
c ol or  h ori z o nt al  e d g es  pi n k,  bl a c k,  br o w n,  a n d  bl u e,  a n d
v erti c al  e d g es   m a g m a,  p ur pl e,  gr e e n,  a n d  y ell o w.   H e n c e,

t h er e  ar e  f o ur  di ff er e nt ˜A e j k c orr es p o n di n g  t o  h ori z o nt al
h o p pi n gs  al o n g e j k wit h  di ff er e nt  c ol ors,  a n d  f o ur  di ff er-

e nt ˜A e j k c orr es p o n di n g t o  v erti c al  h o p pi n gs  al o n g e j k wit h

di ff er e nt  c ol ors. It  c a n  b e  c h e c k e d t h at t w o  o p er at ors ˜A e j k

a n d ˜A e m n
a nti c o m m ut e if  a n d  o nl y if e j k a n d e m n ar e t w o

disti n ct e d g es s h ari n g o n e c o m m o n v ert e x, a n d ˜A e j k a n d B̃ v

a nti c o m m ut e if a n d o nl y if e d g e e c o nt ai ns v ert e x v . T h er e-

f or e, {A e j k , B v } a n d { ˜A e j k , B̃ v } s atisf y t h e s a m e c o m m ut ati o n

FI G.  2 7.   T h e  st a bili z er  a cts  o n  t h e  v ert e x d t h at  c o n n e cts
t o  pi n k,  bl a c k,  p ur pl e,  a n d  gr e e n  e d g es.   T his  st a bili z er  c o m es
fr o m i d e ntit y ( C 5) f or a cl os e d l o o p a → b → c → d → a . T h e

pr o d u ct of ˜A e o n a n y cl os e d l o o p is g e n er at e d b y t his st a bili z er.

r el ati o ns. It is   w ort h n oti n g t h at   w e c a n   writ e all t h e p arit y-
pr es er vi n g f er mi o ni c o p er at ors i n a s u m of pr o d u cts of A e j k

a n d B v .
Si n c e t h e  q u bit-t o-f er mi o n r ati o is  1. 2 5, t h er e  ar e st a bi-

li z ers ( g a u g e c o nstr ai nts) t h at r estri ct t h e  q u bit arr a y t o  b e
i n l o gi c al s u bs p a c e.  S u c h c o nstr ai nts ar e i nt uiti v el y r el at e d
t o t h e f a ct t h at o p er at ors   m o vi n g a   M aj or a n a f er mi o n al o n g
a  cl os e d l o o p   will  b e  pr o p orti o n al t o i d e ntit y.  F or  a   M aj o-
r a n a f er mi o n  h o p pi n g  ar o u n d  a  cl os e d l o o p l, t h e  pr o d u ct

of ˜A e j k al o n g l is pr o p orti o n al t o t h e i d e ntit y  o p er at or:

e j k∈ l

˜A e j k = i|l| ( C 5)

wit h |l| t h e l e n gt h of l o o p l.   T his c o n diti o n c o m es fr o m t h e
f a ct t h at t h e f er mi o ni c  o p er at ors A e j k

,

e j k∈ l

A e j k = i|l|γ l1 γ
2
l2

· · · γ 2
l|l|

γ l1 = i|l|γ 2
l1

= i|l| ( C 6)

w hi c h   m o v e  a   M aj or a n a f er mi o n γ al o n g  a  cl os e d l o o p l,
s h o ul d  b e a n i d e ntit y  u p t o a  p h as e f a ct or i|l|.   A c c or di n gl y,

t h e  s a m e i d e ntit y  f or ˜A e s h o ul d  als o  b e tr u e  o n t h e  q u bit

arr a y; t h e  pr o d u cts  of ˜A e al o n g  cl os e d  p at h l s h o ul d  yi el d
t h e st a bili z er ( g a u g e c o nstr ai nts)

e j k∈ l

˜A e j k = i|l|. (C 7 )

N ot e t h at t his  c o nstr ai nt  s h o ul d  b e  s atis fi e d  f or  all  p ossi-
bl e  cl os e d  l o o ps  a n d  f or m  a  st a bili z er  gr o u p.   T o  e n c o d e
N f er mi o ni c   m o d es, t his   m a p pi n g r e q uir es  1. 2 5N p h ysi c al
q u bits.   H e n c e,  t h er e  ar e  0. 2 5 N st a bili z ers.   T h e  st a bili z er
g e n er at or  of t his   m a p pi n g is t h e  o p er at or s h o w n i n  Fi g. 2 7
t h at  a cts  o n  v erti c es t h at  c o n n e ct  pi n k,  bl a c k,  gr e e n,  a n d
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FI G.  2 8.  St a bili z er  c o nstr ai nt  f or  t h e  cl os e d  l o o p d → c →
g → h → d ,   w hi c h  gi v es − I ,  a n d  it   m at c h es  i d e ntit y ( C 5) o n
t h e f er mi o n si d e A e h d

A e h g
A e g c A e d c

= − I .

p ur pl e  e d g es.   T h er e  ar e  0. 2 5 N s u c h  v erti c es,  s o  i n  t ot al
t h er e ar e 0. 2 5N st a bili z ers, as dis c uss e d a b o v e.

T his  st a bili z er  c orr es p o n ds  t o   M aj or a n a   m o vi n g  al o n g
t h e  p at h a → b → c → d → a . It c a n  b e c h e c k e d t h at t h e
st a bili z er i n  Fi g. 2 7 c o m m ut es   wit h  all t h e l o gi c al  o p er a-

t ors ˜A e , B v s h o w n i n Fi g. 2 6 .   T h e   w ei g ht of s u c h a st a bili z er
is  1 2.   T h e  l o gi c al   Hil b ert  s p a c e  is  t h e + 1  ei g e ns p a c e  of
t his  st a bili z er  t h at  a cts  o n  v erti c es  c o n n e cti n g  t o  gr e e n,
bl a c k,  p ur pl e,  a n d  r e d  e d g es.  It  is   w ort h  n oti n g  t h at  t h e
st a bili z er s h o w n i n  Fi g. 2 7 a cti n g o n di ff er e nt d c a n g e n er-
at e all t h e n o ntri vi al st a bili z ers   w h er e t h e tri vi al st a bili z ers
ar e  i d e ntit y  o p er at ors.   T h e  q u bit  s yst e m  s h o ul d  als o  b e

st a bili z e d  b y  pr o d u cts  of ˜A e j k f or  ot h er  cl os e d l o o ps,  a n d

w e   m a y   w o n d er   w h et h er  t h e  pr o d u ct  of ˜A e j k
al o n g  ot h er

l e n gt h-f o ur  s q u ar e l o o ps  gi v e  n o ntri vi al  st a bili z ers.   H o w-
e v er,  t h e  pr o d u cts  of A e j k al o n g  ot h er  l e n gt h-f o ur  s q u ar e
l o o ps  ar e i d e ntit y  o p er at ors.   H er e   w e  us e t h e  s q u ar e l o o p
d → c → g → h → d as a n e x a m pl e i n  Fi g. 2 8 .
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