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We argue that all locality-preserving mappings between fermionic observables and Pauli matrices on
a two-dimensional lattice can be generated from the exact bosonization in Chen et al. [Ann. Phys. (N.
Y) 393, 234 (2018)], whose gauge constraints project onto the subspace of the toric code with emergent
fermions. Starting from the exact bosonization and applying Clifford finite-depth generalized local unitary
transformation, we can achieve all possible fermion-to-qubit mappings (up to the re-pairing of Majo-
rana fermions). In particular, we discover a new supercompact encoding using 1.25 qubits per fermion
on the square lattice. We prove the existence of finite-depth quantum circuits to obtain fermion-to-qubit
mappings with qubit-fermion ratios » = 1 4 1/2k for positive integers k, utilizing the trivialness of quan-
tum cellular automata in two spatial dimensions. Also, we provide direct constructions of fermion-to-qubit
mappings with ratios arbitrarily close to 1. When the ratio reaches 1, the fermion-to-qubit mapping reduces
to the one-dimensional Jordan-Wigner transformation along a certain path in the two-dimensional lat-
tice. Finally, we explicitly demonstrate that the Bravyi-Kitaev superfast simulation, the Verstraete-Cirac
auxiliary method, Kitaev’'s exactly solved model, the Majorana loop stabilizer codes, and the compact

fermion-to-qubit mapping can all be obtained from the exact bosonization.
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I. INTRODUCTION

A fermion-to-qubit mapping is a duality between local
even [1] fermionic operators and local products of Pauli
matrices. It is well known that any fermionic system
in a one-dimensional (1d) lattice can be mapped onto
a 1d spin system by the Jordan-Wigner transformation.
The Jordan-Wigner transformation can also be applied
to systems in higher dimensions by choosing a particu-
lar ordering of fermions; however, the mapping becomes
highly nonlocal. From both theoretical and practical points
of view, mapping local fermionic operators to local spin
operators in higher dimensions is an essential topic. In
the last two decades, there have been many proposals
of fermion-to-qubit mappings for two dimensions [2—10]
and three or arbitrary dimensions [11-14]. Beside the
qubit degrees of freedom, another approach utilizes Dirac
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matrices to achieve a local representation of fermions
[15—18]. These mappings play important roles in various
topics of modern physics, such as exactly solvable models
for topological phases [4,19-23], fermionic quantum simu-
lations [3,5,7,9,11], and quantum error correction [24—29].
In particular, the exact bosonizations in Refs. [2,12,13,16]
construct the toric code with fermions in arbitrary dimen-
sions and impose gauge constraints to restrict into the
subspace with emergent fermions, which provide an ele-
gant space-time description by the Chern-Simons and the
Steenrod square topological action. The space-time pic-
tures for other fermion-to-qubit mappings are not manifest,
but the connection of some mappings with the toric code
has been pointed out. Whitfield ef al. [5] indicated that the
Verstraete-Cirac auxiliary method [3] can be related to a
topological model, and the compact encoding [9] found
that the stabilizer is similar to the toric code. Therefore,
people should expect that all mappings are closely related.

From the theoretical perspective, since the exact
bosonization has the simplest space-time interpretation,
it is natural to ask a question: are all fermion-to-qubit
mappings in two spatial dimensions “equivalent” to the
exact bosonization? First, we define the “equivalence” by
finite-depth generalized local unitary (GLU) transforma-
tions. Informally, the finite-depth GLU transformation is a

Published by the American Physical Society
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finite-depth quantum circuit with ancilla qubits. We argue
that the answer to the above question is “yes” and demon-
strate it with examples.

From the practical point of view, fermion-to-qubit map-
pings are widely used in fermionic quantum simulations of
physical systems. For quantum simulations, an important
quantity is the qubit-fermion ratio r, the number of qubits
to simulate one fermion on average since it is directly
related to the total number of fermionic modes encoded in
a qubit array. Suppose that we encode n fermionic modes
by m qubits; then the qubit-fermion ratio is m/n. On the
2d square lattice, the compact fermion-to-qubit mapping in
Ref. [9] has the ratio r = 1.5, and Ref. [6] gives a general
construction of a fermion-to-qubit mapping with a trade-off
between the ratio and the locality of logical operators.

In this work, we focus on lattices in two spatial dimen-
sions. First, we construct a new supercompact fermion-to-
qubit mapping with the qubit-fermion ratio » = 1.25 on
the 2d square lattice. Moreover, we provide a systematic
approach to construct various 2d bosonizations by utiliz-
ing the ideas of Clifford circuit [30,31] and finite-depth
GLU transformations [32,33]. Such an approach provides
a new perspective to studying the relationship between
different fermion-to-qubit mappings. We find that all the
local fermion-to-qubit mappings can be generated from
the exact bosonization by finite-depth GLU transforma-
tions. In particular, we explicitly show how to obtain the
Bravyi-Kitaev superfast (BKSF) encoding, the Verstraete-
Cirac mapping, Kitaev’s honeycomb model, the Majorana
loop stabilizer codes (MLSCs), and the compact fermion-
to-qubit mapping.

A. Summary of results

In Sec. I, we first define the crucial theoretical tech-
nique: the GLU transformation [32,33]. Then, in Sec. 11 B,
we derive the fermion-to-qubit mapping with ratio r =
1.5, which is equivalent to the compact encoding [9]. In
Sec. I C, we further improve the ratio to obtain the super-
compact fermion-to-qubit mapping with ratio » = 1.25. In
Sec. II D, we prove that a general construction with ratio

r=1+ 1/2k can be obtained via a GLU transformation
for any positive integer k. The proof utilizes the trivial-
ness of 2d quantum cellular automata (QCA) [34,35]. In
Sec. III, we define the equivalence relation between dif-
ferent 2d bosonizations based on finite-depth GLU trans-
formations and argue the equivalence between the exact
bosonization and all other fermion-to-qubit mappings.
We demonstrate explicit Clifford circuits that convert the
exact bosonization to the Bravyi-Kitaev superfast encod-
ing (Sec. III A), the Verstraete-Cirac mapping (Sec. 111 B),
Kitaev’s honeycomb model (Sec. I1I C), the Majorana loop
stabilizer codes (Sec. II1 D), and the Jordan-Wigner trans-
formation (Sec. II1 E). The characterization and compari-
son between different fermion-to-qubit mappings is shown
in Table 1.

An explicit fermion-to-qubit mapping with an arbi-
trary qubit-fermion ratio is shown in Appendix A. The
unitary transformation of the Clifford circuit is provided
in Appendix B. In Appendix C, we provide another
expression for the supercompact fermion-to-qubit mapping
where the fermionic modes are encoded in vertices; such a
construction is equivalent to the supercompact mapping in
Sec. I1 C by shifting and re-pairing of Majorana fermions.

II. GENERALIZED LOCAL UNITARY CIRCUITS
ON THE EXACT BOSONIZATION

In this section, we describe a systematical way to
derive various fermion-to-qubit mappings from the exact
bosonization in two spatial dimensions proposed in
Ref. [2]. The exact bosonization utilizes the subspace of
the toric code with fermionic excitations, which will be
shortly reviewed in Sec. Il A. We obtain new fermion-to-
qubit mappings by applying local unitary operators on the
exact bosonization. On the other hand, to include the lat-
tice deformation that could modify the underlying Hilbert
space, local unitary operators are insufficient, and the idea
of GLU operators is introduced [32,33]. The physical intu-
ition of GLU operators is that we are allowed to add an
extra ancilla qubit into the system or remove any single
qubit that is unentangled from the rest (forming a tensor

TABLE I. Comparison between fermion-to-qubit mappings on the 2d square lattice.
Qubit-fermion Fermion parity Hopping Stabilizer
ratio weight weight weight
Verstraete-Cirac mapping [3]° 2 1 34 6
BKSF encoding [11]° 2 4 26 6
Kitaev’s honeycomb model [4] 2 2 2-5 6
Exact bosonization [2] 2 4 26 6
MLSC [7] 2 3 34 4-10
Compact fermion-to-qubit mapping [9] 1.5 1 3 8
Supercompact fermion-to-qubit mapping 1.2 1-2 26 12

2The graph structure of the auxiliary Hamiltonian is given in Fig. 12 below.

The ordering of edges is shown in Fig. 11 below.
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FIG. 1. We disentangle the green qubit from others by a local
unitary transformation ¥ and then remove this part. This is called
a generalized local unitary circuit.

product state), i.e., mapping a state |¥) to another state
|W) ® [0} and vice versa. As shown in Fig. 1, we could
apply a unitary operator ¥ making one qubit disentangled
from the others, and then remove this qubit without losing
any information.

The GLU operators discussed above are for quantum
states, which can also be understood for stabilizer codes
[36] from the Hamiltonian perspective. Given the Hilbert
space formed by N qubits, a stabilizer code is described by
a Hamiltonian

I
Hstabilizer = - Z Si (1}
i=1

with / < N and the stabilizers S; as functions of Pauli
matrices commuting with each other, i.e., [S;,5;] = 0 for
all i,j. The ground states (codewords) are eigenstates of
each §;. If we could find a unitary operator ¥ such that
US,U" = Zy (the Pauli Z on the last qubit), all ground
states contain an unentangled trivial product state |0) on
the last qubit after the basis transformation V. Therefore,
we can remove the last qubit from this system without
affecting the others.

We use a three-qubit bit-flip repetition code to demon-
strate this disentanglement procedure. Consider a three-
qubit bit-flip repetition code whose stabilizers are S| =
Z1Z> and 8y = Z»73; the codewords are

[Ty = [111). 2)

We then apply a Clifford unitary V' = CNOT;_,3 to trans-
form the stabilizers

10), = 1000},

VZ)V'=212,, V(ZLzZ:)Vi=Z;. 3)
The second stabilizer Z;Z3 is trivialized by disentangler
CNOT;_,3, which indicates that the third physical qubit
must be in the |0) state while the first two physical qubits
still form the two-qubit repetition code. This fact can also
be verified from the state’s perspective:

CNOT2_,3 [0); = 1000}, CNOT2,3 |1); = [110). (4)

Here the third physical qubit is always |0) and is disen-
tangled from the rest of the system. Hence we can remove

the third physical qubit and obtain the two-qubit bit-flip
repetition code.

On the other hand, the logical operators [37] must be
conjugated by the disentangler ¥, such that they still com-
mute with the transformed stabilizers. Hence, this disen-
tanglement process preserves the algebra in the codespace
formed by the codewords. In the above example, the
logical operators for codewords in Eq. (2) are

X1 = XXX, Zy =17, (5)

and are transformed to

vaxexs)V=xx,  vayV'=z, ()
which are the logical operators for the two-qubit repetition
code.

Given a fermion-to-qubit mapping represented by a sta-
bilizer code, we disentangle a fraction of physical qubits
by choosing specific unitary operators V, i.e., a fraction of
stabilizers becoming single Pauli operators after conjuga-
tion by V. With the GLU transformation, we can remove
the degrees of freedom in the system when they are in
a product state. Hence, the qubit-fermion ratio » can be
improved by wisely applying finite-depth GLU operators.
In this paper, we use finite-depth GLU Clifford circuits
since we focus on Pauli stabilizer models. We demon-
strate the construction of fermion-to-qubit mappings with
the qubit-fermion ratios ¥ = 1.5 in Sec. [1B and r = 1.25
in Sec. I1 C by conjugating the 2d exact bosonization with
certain finite-depth GLU Clifford circuits.

A. Review of the exact bosonization

We review the exact bosonization on the Hilbert space
defined in Fig. 2. The elements of vertices, edges, and faces
are denoted v, e, f . On each face f of the lattice we place a

pair of fermionic creation-annihilation operators ¢r, c}, or,
equivalently, a pair of Majorana fermions:
— il - _ il : ?
Yr =¢ +cp, Vr = (cr —¢p)]i (7

The even fermionic algebra consists of local observ-
ables with a trivial fermion parity, i.e., local observ-
ables that commute with the total fermion parity (—1)F =

Hf (_1).:} 7. The even algebra is generated by [2]
1. on-site fermion parity
Pr = —iyryfs (8)
2. the Fermionic hopping term
Se = iVL©) VR(e)» )

where L(e) and R(e) are faces to the left and right of
e, with respect to the orientation of e in Fig. 2.
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FIG. 2. Bosonization on a square lattice [2]. We put Pauli
matrices X,, Y., Z, on each edge and one complex fermion
cf,c* at each face. In this figure, faces are labeled a—d and
vertices are labeled 1-9. Each edge contains a qubit. We work
on the Majorana basis ¥y = ¢ + c} and yf’ = —i(cy — c}) for
convenience.

The bosonic dual of this system involves Z,-valued spins
(qubits) on the edges of the square lattice, generated by
the Pauli matrices X, Y., and Z.. For every edge e, we
define a unitary operator U, that squares to 1. Here, we
label an edge that connects vertices j, k by ej. For exam-
ple, in Fig. 2, the edge between faces b and c is labeled
as edge esg and the edge between faces ¢ and d is esg. On
these edges, we define the corresponding operators,

Uess = XessZess, Uesy = XesgZeys (10)

where Xejk, Zeﬂr are Pauli matrices acting on a qubit at
each edge ej. Operators U, for other edges are defined
using translational symmetry. Pictorially, the operator U,

is drawn as

| .;'l TErejeT k
Ue,, = XT“ or % ,
—7—j (11)

corresponding to the vertical or horizontal edge ejy. It has
been shown in Ref. [2] that U, and S, satisfy the same com-
mutation relations. On each face /', we also define the “flux
operator” Wy = [, Ze, the product of Z, around a face

_Z_

wfz% f %

—7— (12)

The bosonization map, which preserves the commutation
relation between operators, is

S, «— U, Py «<— Wy, (13)
or, pictorially,
YL(e) —X,—
1 X € - % y
Yre) (14)
1 X TL(e) |e ’YI’R(C) - )}|ve )
—Z— (15)
_Z_
—i’]ff"}(} - % f %
—Z— (16)

On the fermionic side, operators S, and Pr satisfy
an additional condition PyP.SeySes;SeysSe;s = 1 [38].
This generates the gauge constraints (stabilizer) G, =
W, l_[g:m5 X, = 1 imposed by hand on bosonic operators,

or, pictorially,

_Z_
)A|Z f %
Gy= —X—v-X7— =1

(17)

The gauge constraint (17) can be considered as the sta-
bilizer (G, |¥) = |¥) for |¥) in the codespace), which
forms the stabilizer group G. The operators U, and Wy
generate all logical operators [39]. In the setting above,
qubits live on edges and fermions live on faces, so the
ratio between the number of qubits and the number of
fermions is r = 2. We are going to apply finite-depth GLU
transformations to lower this ratio.

B. Compact fermion-to-qubit mapping with ratio
r=1.5

In the exact bosonization on the square lattice, the
bosonic subspace is constrained by stabilizer (17) at each
vertex. First, we enlarge the unit cell to be a 2 x 2 square,
as in Fig. 3. Note that we have colored the faces to be even
or odd as the checkerboard. In each 2 x 2 square, there
are in total four fermions, eight qubits, and four stabiliz-
ers, whose qubit-fermion ratio is r = 8/4 = 2. We apply
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even odd even odd
odd even odd even
even odd even odd
odd even odd even

FIG. 3. We color the faces to “even” and “odd.” Each edge

contains a qubit.

an odd face or an even face, as

Vroia } dyow

G'v,odd = —X—v-X7—, Gv,even = —X—v-X7Z—.

After conjugation by the GLU Clifford circuit V¢ defined
in Fig. 4, these stabilizers become

_Z_ -
)J|Z odd —g’ odd ‘

|
Ve| —X—v-Xx2— Vé = v ,
a finite-depth GLU circuit to disentangle some qubits and
reduce the ratio.
In Fig. 4, the translation-invariant Clifford circuit is
defined. We divide the stabilizers into two cases, living on (18)

cYy

cz

H & o

mk m\f\" ci‘ 53) E}) 9) ‘\,_| ‘?_‘ cNoT
a\(_ even g::d — (B)even odd E}) — ﬁ—‘ I;‘en ﬁdd -
N odd | even . 4 odd E)Je\.ren G) - c;dd "eveny |
~ S E)) E)) w_‘ - }
Vi v, Vs
UV T 7Y I I A I
— / even >/odd — ’i« even ;:d e o /
o L G S \q L/ ’/m L/

odd

even odd

A€

Va

L/ L/ L/

FIG. 4. The finite-depth Clifford circuit for the » = 1.5 construction. Here CY denotes the controlled-Y gate. The depicted unitaries
are denoted in the sequence as V1, V3, V3, Va, Vs, Vg. The total GLU disentangler is Ve = Vg VsV V3 Vo V). After conjugation by unitary
operator V¢, a part of the stabilizers in Eq. (17) becomes a single Pauli matrix, which can be removed from the system.
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] ]
even ; odd even ; odd
I I
I 1 1
| odd | even | odd | even |
| 1 1
I I
even | odd | even | odd
) )
| 1 1
| odd | even ! odd | even |
I 1 1

FIG. 5. The 2d square lattice after disentanglement. The qubits
on dashed edges are removed from the system.

—L— )JZeven
)A Z eve % —X— @|; —X—
Vo| —Xx— ! xz—' [V =%

XX

/€|z

(19)

We have converted the stabilizer G, 444 into a single-qubit
stabilizer Y up to a sign. This qubit will be in an eigenstate
of Y and can be removed. Hence, we successfully elim-
inated the qubits on the left edges of all odd faces. The
qubits only exist on solid edges in Fig. 5, where the dashed
lines do not contain any degree of freedom. For a 2 x 2
unit square, only six qubits remain, and the ratio between
qubits and fermions is 6/4 = 1.5.

By the Clifford circuits in Fig. 4, we eliminate stabi-
lizers on odd faces and convert the stabilizers on even
faces to toric-code-like stabilizers. Next, we analyze the
logical operators representing fermion hopping after the
conjugation. Here the convention of the fermionic hopping
is Se = iYL(e)V()- There are four types of fermionic hop-
ping operators [after removing the degrees of freedom in
Eq. (18)]. The first two are horizontal hopping operators,

- g
Vo || oda X | V= oaa . ,
ot A ol
— 7
_— even e %
Ve even}J'..3 VCT = I—Y—E—X—: ,
A
N (20)

and the next two are vertical hopping operators,
[ —Xe— —Xe—
Vo % odd | | V&= odd |,
')

[ —Xe )
Ve % even Vg = | even i,
\ / - 21)

and two types of flux operators,

[ —2— )

Ve %odd% 14
\' 71/

Z

[
o
a
a
N

()

Ve %even% Véz%evené.
\'—z—'/ —7—

7 77— (22)

We note that the stabilizer in Eq. (19) is the same as the sta-
bilizer of the compact encoding in Ref. [9] (up to relabeling
Pauli matrices X, ¥, Z). Since the stabilizers are the same,
the spaces of logical operators are equivalent. We can rede-
fine the two lines of Eq. (20) as the “on-site fermion parity”
and treat Eq. (22) as the “hopping term,” which is equiva-
lent to re-pairing the Majorana fermions as in Fig. 6, which
reproduces the compact encoding in Ref. [9].

C. Supercompact fermion-to-qubit mapping with ratio
r= 125

In the r = 1.5 construction, we label faces with “even”
and “odd.” Next, we further color the lattice, as in Fig. 7,
yellow, blue, red, and green. Yellow and red belong to

FIG. 6. The r=1.5 construction is the same as the com-
pact fermion-to-qubit mapping [9] after the re-pairing of Majo-
rana fermions above. Each circle represents a complex fermion
formed by the two Majorana fermions. The underlying arrows
specify the order to form a fermion. The arrows form a Kaste-
leyn orientation, ensuring that the fermion parity after re-pairing
is well defined [40-42].
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oio oio oio
ioioioioioioi
otoloio]lolo
oio oio oio

FIG. 7. The 2d square lattice is colored with four colors: yel-
low, blue, red, and green. Yellow and red belong to the original
“odd” faces, and blue and green belong to the original “even”
faces. White dots represent fermionic modes inside faces. Com-
pared with Fig. 5, qubits on the edges between yellow and blue
faces will be stabilized by a single Pauli matrix after a certain
unitary transformation so that they can be removed from the sys-
tem. In the end, each solid line has one qubit, while there is no
qubit on dashed lines.

the “odd” faces, and blue and green belong to the “even”
faces. Based on the » = 1.5 construction in the previous
section, which is obtained from conjugating the original
2d bosonization by the Clifford circuit shown in Fig. 4,
we further conjugate the r = 1.5 stabilizer (19) by the

Clifford circuit Vgc defined in Fig. 8 to generate a new
fermion-to-qubit mapping.

Stabilizer (19) (up to a sign) enclosing blue and yellow
faces becomes

y P
ioloio|oi i0101 010}
; HE VR T :

1 P 4 EI
o000 oj,0foio0

1 L}
Va B I 7 S e
s¢ ofoioko: sC foitoioto]
X R |
oioyoio o,0fYo0,o0

1 1
Lrd

(23)

On the other hand, stabilizer (19) (up to a sign) enclosing
green and red faces becomes

toyotio|o oioiotio

P Ea . 1 i

FaY Fa Y [] [
foio40i0 olo|lo!o

] ] )

Vs > e vi. = ; :
SC ioYoiolo sC oyoioioi’
0:0|0.:0 oio0|loio0

1 1} 1 1

(24)

which is a single Pauli Y. The qubit is disentangled from
the rest; therefore, we can remove the qubits on the bound-
aries between yellow and blue faces. The qubit-fermion
ratio reduces to r = 1.25. Similarly, we conjugate the log-
ical operators (20) and (22) by the Cliftord circuit Vsc in
Fig. 8, and the results of these logical operators are listed
in Fig. 9.

4 —
Eooioo: Eo io oi io oio oi
./oio./oio oio\oio\ oio oio
Fa w0 Y Fa W ‘é ‘;I; 'fl‘\. I.CD
i oJo | o/o ! iojoioioi iojoio\o!
1 1 1 1
010|010 o: o:o : :
R N R as  Bze W D D e D
iofotoVYo! iofoioiol io\oio\o:
L 1 1 I 1 ! 1 :
] 1

1 O
s
o}
_;)__
(o]
_;)__

Vii Via

FIG. 8. The finite-depth Clifford circuit to construct bosonization with » = 1.25. The depicted unitaries are V7, Vg, Vo, Vo, V11, V12
(from top left to bottom right). The GLU disentangler is Vsc = Vi2V11V10Vo Vg V7. After conjugation by the unitary operator Vsc, a
part of the stabilizers in Eq. (19) becomes a single Pauli matrix, which can be removed from the system.
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a b
()I -l I ()I 1 |
L oY o) Eo'}’i O’Yi P O7E O
Z—1 = (-1)x = ]
0O, 0 ‘oYo! ¥ oYl o
—— — ——
{oio! oi o
XX (-1)x =& Z— x !:_X
oY: oY i O o_, i OYi O |
;Z Y i ' i |

(c) ,
ohel (ool (oo
(-1)x X Z— —Z
o 70 4 0.0 O.0

1 |’7 1
———— 1 1 I I I |
eI e 1010 1010
oiOfT yorio O | O/

:o:g'v’l

FIG. 9. Shorthand representation of the mapping between fermionic operators and the Pauli matrices. Panel (a) represents the
nearest-neighbor horizontal hopping terms. The first diagram indicates that iyyeliowVbiue is mapped to the Pauli operator XZZZ indi-
cated above. The second diagram (top right) represents that iypiye Vyellow is mapped to —XXY. The remaining diagrams follow the same
rule, e.g., iVpreenVred <> XXXZ and iyieqVpreen <+ —ZZY. Panel (b) represents the near-neighbor vertical hopping terms. Note that the
fermionic hopping term is y to y’ in this case. For example, the first diagram is i}yeliow Vgreen <> XZ. Panel (c) represents the fermion
parity operators. Each face f* indicates the location of the on-site fermionic parity operator —iyy yj , which is mapped to the Pauli ZZZ

shown in the diagram.

In Appendix C, we deform the lattice and re-pair the
Majorana fermions to obtain a more symmetric represen-
tation of this supercompact fermion-to-qubit mapping.

D. General construction for compact fermion-to-qubit
mappings

In this section, we describe a general method to con-
struct fermion-to-qubit mappings with a reduced qubit-
fermion ratio from the exact bosonization. The exact
bosonization contains gauge constraints (stabilizers) (17)
supported on faces f (northeast to vertices v), and we
rename G, as Gy for convenience. We enlarge the unit cell
and show that it is always possible to apply finite-depth
GLU operators such that a portion of the stabilizers can be
mapped to a single Pauli matrix. More precisely, we are
going to prove that the stabilizer on each white face below
can be mapped to a single Pauli matrix, i.e.,

2k

A————

2 (25)

with k any positive integer [43].

Instead of transforming Gy on white faces directly, we
are going to prove a stronger statement: the gauge con-
straints Gy [Eq. (17)] on white faces, the hopping operators

U, [Eq. (51)] across horizontal edges, and the operators
_ _Y_

(26)

on gray faces can all be mapped to a single Pauli matrix
simultaneously under a finite-depth GLU circuit. These
operators on the square lattice are as follows:

LL I Y” I LL Iy
o o o h
G X GZ
LL LL LL LL LL LL
o r or Lo L)
G : G G G G
i H H H Il H 2k
G G G
LL Ir Iy rr Iy LI
U or Lr Lr o or
7 G ! G ;| G
LL LL L LL Il "
L L Loy L o o
G G G
—— ]
& (27)

To prove the above statement, we need to introduce a
lemma.

Lemma 1: Given Z, and X, for all edges that are prod-
ucts of Pauli matrices on a neighborhood of the edge e

satisfying the Pauli algebra,
KeX)=12.21=0, X.Zo=(-D"¢Z/X,,

there exists a finite-depth GLU transformation mapping
Xe, Ze to X,, Z. (a single Pauli on edge e).
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Proof. The (Clifford) QCA in two spatial dimensions are
simply (Clifford) local unitary circuits and shifts [34,35].
The map

a(Xe) = X;es a(Ze) = Zes (28)
defines a QCA and can be decomposed into a Clifford cir-
cuit and shifts. For the shift operator, we can introduce
ancilla in the |0) states and define the shift operator moving
the ancilla in the opposite direction, such that the net flow
of qubits is zero. Then, this shift operator can be expressed
by a local unitary circuit (involving the ancilla degrees
of freedom). Ultimately, these ancilla qubits are still in
the |0) states and can be removed by a finite-depth GLU
transformation. Therefore, there exists a finite-depth GLU
transformation from X,, Z, to X ., Z.. and vice versa. [ |

Lemma 2: Given operators Z, (separators) and X . (flip-
pers) that are products of Pauli matrices on a neighbor-
hood of the edge e satisfying

[ZeZo1=0,  XZe=(-1)¢ZeXe,  (29)
there exist operators X , that are products of Pauli matri-
ces on a neighborhood of edges e such that

XX A=12.21=0, X.Zs=(-1)’Z/X..
In other words, if the flippers do not commute with them-
selves, they can be modified such that the Pauli algebra is
satisfied.

Proof. If X, and X, »~ do not commute,

XX, =-X,X,, (30)
we define
Xe=Xgp. (31)

Note that Z, only affects the commutation relation
between e and € and this fixes the commutation for the
X part and leaves the Z part unchanged. Therefore, X, and
Z, satisfy the Pauli algebra. |

The operators Z, and X, are called separators and flip-
pers [44]. Once the separators and flippers are given, a
QCA is defined by Eq. (28) [after defining X , by Eq. (31)].
By Lemma 1, the separator can be mapped to a single Pauli
matrix by a finite-depth GLU transformation.

The operators Gy on white faces, U, on horizontal
edges, and G} on gray faces in schematic (27) are the

separators Z,. We now describe their flippers.

1. For G/, on a gray face a, we define its flipper by the
product of X, (m strings of the toric code) connect-
ing two gray faces on the column to the right, as
shown in Fig. 10. It can be checked that this m string
only violates exactly one G} and commutes with all
other separators Gy and U,.

2. A “potential” flipper [45] for the separator G on a
white face b is the product of X connecting the white
face to the gray face below (Fig. 10). This operator
flips exactly one of the Gy on a white face and com-
mutes with all U, but it may fail to commute with a
G} on a gray face. In this case, we can always attach
the flipper for this G} (found in step 1) to the poten-
tial flipper. This operator becomes the true flipper
for a single Gy .

3. For Uj on a horizontal edge 1, we start with a poten-
tial flipper Z on this edge 1. It is obvious that it flips
only one U, and fails to commute a finite number of
Gy and G} on white and gray faces. Since we have
already found the flippers for Gy and G}, we can
attach these flippers to the potential flipper such that
the combined operator commutes will all separators
except this U).

We have found the complete set of separators and flippers
on the square lattice. By Lemma 1, the Gy on each white
face can be mapped to a single Pauli matrix.

17
Fa
rFg
a b
. 17
g A
1r 15
FaY ray

FIG. 10. The (potential) flippers. For G/, on the gray face a,
its flipper is the product of X connecting two gray faces on its
right column, shown by the green operator. For G}, on the white
face, its potential flipper is the product of X' connecting to a gray
face below, shown by the blue operator. This potential flipper
may anticommute with G’ on a gray face, which can be fixed
by attaching the flipper for this G’. For U,, on a horizontal edge
e}, the potential flipper is Z,,, which flips exactly one U, and
anticommutes with some Gy and G} on white and gray faces.
This can be fixed by attaching the flippers for these G, and G}
to the potential flipper of UL, .
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III. EQUIVALENCE BETWEEN
FERMION-TO-QUBIT MAPPINGS AND THE
EXACT BOSONIZATION

In this section, we argue that any locality-preserving
fermion-to-qubit mappings [46] in two spatial dimensions
can be connected to the exact bosonization by a finite-
depth GLU transformation. First, given a fermion-to-qubit
mapping, it must contain the flux operators W (images
of the local fermion parity) and the gauge constraints G
(images of the product of fermionic hopping terms in a
small closed loop). On a torus, we can define a Pauli
stabilizer code as

H=-) G-) W (32)

Over two large cycles of the torus, we have the four-
fold ground-state degeneracy since we do not impose the
fermionic constraints on the large cycles. The code dis-
tance is linear in the system size since the logical operator
is the product of hopping along with the large cycles. It
is proven in Ref. [47] that any translationally invariant Z,
Pauli stabilizer model with a linear code distance is decom-
posed by a local Clifford circuit of constant depth into a
finite number of copies of the toric code for any prime p
[48]. Since the degeneracy is four on the torus, the sta-
bilizer code in Eq. (32) must be a single copy of the toric
code up to a Clifford circuit. Therefore, G and W are related
to G, and W in the exact bosonization in Sec. Il A by a
GLU transformation (since the toric codes defined on dif-
ferent lattices are related by a GLU transformation to add
or remove qubits).

Note that the above discussion works for arbitrary lat-
tices with a spinless fermionic mode on each face. More-
over, we can divide the faces into different sets, i.e., black
and white faces on the checkboard, and associate the spin
or other degrees of freedom with each set [49]. Those
labels do not affect the above argument based on Ref. [47].
Therefore, the equivalence between fermion-to-qubit map-
pings is also true for spinful fermions.

In the following part of this section, we explicitly
demonstrate how to transform many well-known fermion-
to-qubit mappings in the literature to the exact bosoniza-
tion by finite-depth GLU Clifford circuits. For each exam-
ple, we first demonstrate their logical operators and sta-
bilizers. Next, we construct finite-depth Clifford circuits
that transform the logical operators and stabilizers of dif-
ferent fermion-to-qubit mappings to those in the 2d exact
bosonization.

A. Bravyi-Kitaev superfast simulation

The BKSF encoding in Ref. [11] is a method to encode
fermionic operators into Pauli operators. BKSF encoding
encodes complex fermions at vertices v by qubits on edges
e. The key idea of BKSF encoding is to assign an arbitrary

ordering of edges around each vertex and define the logical
operators according to the ordering. The fermions are put
at the graph’s vertices, represented by Majorana operators
Yv, ¥, for each vertex v. The even algebra of fermions is
generated by

dey =iyive, By =—iny,, (33)
where Aejk is defined on each edge ey, the edge between
vertices j and k, and B, is defined at each vertex v. Note
that Aejk and B, anticommute if and only if vertex v coin-
cides with either vertex j or k, and 4, and 4 anticommute
if and only if e and €' are two different edges connecting
to the same vertex. We construct Pauli operators living on
edges to capture the same algebra as 4. and B,

For vertex v, we label the edges connected to v with
numbers 1,2, 3,4 on the square lattice, shown in Fig. 11.
Therefore, for two edges e, €’ connecting to the same ver-
tex, the ordering between them is defined by the assigned
number, i.e., either e < & or e > €. Now, we can define
the logical operator

Lf=x 11 z [] 2. (34)

&ojle <e &' okle" <e

where € D j and €’ D k mean that all edges €' connect to
vertex j and all edges €” connect to vertex k, and the other
logical operator

B =T]z, (35)

eJv

which is the product of the Pauli Z, on all edges connected
to vertex v. From the Pauli Z in Eq. (34), AEK and AmgK

3 3
412 412
1 € |

3 3
412 4|2
1 1

FIG. 11. The ordering of edges on each vertex. The red num-
bers are the labels. Note that one edge is connected to two
vertices, and the two numbers on the two vertices do not need
to be the same. The assigned numbers determine the relative
ordering for two edges connecting to the same vertex.
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anticommute if and only if e and €' are connecting to the
same vertex v since we have either

A =x,... and ABX=X,Z,... fore<e (36)
or
/iEK =X.Zs--- and A"E,K =Xy--- fore>¢€,
(37
where “...” denotes the Pauli matrices on other edges

irrelevant to the commutation relation. Operators 45X and
BBX are designed to have the same commutation relations

as 4. and B, in Eq. (33).
The fermion-to-qubit mapping is

A, < A, B, «— B%K (38)
-k Ejk v

For each closed loop / in the graph, the product of /iEK on
this loop needs to satisfy the condition

[T4% =", (39)

eel

where |/| is the length of loop I This is due to the
identity of Majorana operators. For example, substitut-
ing A, into Eq. (33), we have the identity 4, ,4.,,,4
(iyw yvz)(iyvz %;)(f}’u; }"u.) =i

By the convention in Fig. 11, we have

€12 €3]

3 J—Ye,—k

Yljk: %
|

—Z—k (40)

o - iBK HBK
W ¢ 1A By =

We note that this is the same logical operator as the exact
bosonization in the dual lattice after we relabel the Pauli
matrices X and Y. The fermion parity terms in both cases
are a product of Z around a vertex (a face in the dual
lattice). Therefore, the BKSF approach with this ordering
convention is the same as the exact bosonization.

Note that, from the construction of the logical oper-
ator Amgf in Eq. (34), the only property we used from
the assigned numbers is that they determine the ordering
of two edges at the same vertex. If fact, if all “rela-
tive orderings” [50] for a pair of edges connecting to the
same vertex are defined, the construction in Eq. (34) is
still valid. Given a construction from a choice of rela-
tive orderings, if we want to redefine the relative ordering
between a pair of edges e and ¢, i.e., swapping between
two cases in Eqgs. (36) and (37), we can simply conju-
gate the CZ. s gate on the system. Therefore, the BKSF
approach with different choices of relative orderings can
be transformed from one to another by conjugating a prod-
uct of controlled-Z (CZ) gates. This agrees with the main
result: all fermion-to-qubit mappings are related by GLU
operators.

B. Verstraete-Cirac auxiliary method

In this section, we demonstrate the equivalent rela-
tion between the Verstraete-Cirac mapping [3] and exact
bosonization after regrouping Majorana fermions. The
basic idea of the Verstraete-Cirac mapping is to elimi-
nate the nonlocal Pauli-Z string from the 1d Jordan-Wigner
transformation by introducing auxiliary qubits with gauge
constraints. In this mapping, each site i uses four Majo-
rana modes y;, ¥/, ¥;, ¥/ to encode a complex fermion and
an auxiliary complex fermion. For implementation, we put
two qubits on each vertex, one for the physical complex
fermion and the other for the auxiliary complex fermion.
The Majorana operators 3, Y/ belong to the auxiliary com-
plex fermion. The auxiliary fermions stay in the ground
state of the Hamiltonian

Hyw ==Y Pr=—i) %% (41)
U .k} .k}

where {j,k} includes only pairs (j, k) that are connected
by directed edges in Fig. 12, e.g., (1,5),(2,6),(5,9),....
The vertical hopping operator is modified as cfcj —
c:.fcj (i¥:7), which does not affect the properties of origi-
nal fermions in the space of i§;)/ = 1. We order the first
row (odd row) from left to right, the second (even raw)
from left to right, and so on, shown as Fig. 12. Next, we
apply the 1d Jordan-Wigner transformation with respect
to the ordering 1 > 1 > 2—>2—>3—>3—>4—>4—
5—55—>6—>6—>---, where j and j represent the
physical fermion and auxiliary fermion at site j. The moti-
vation of introducing iy; '}?}’ is to cancel the nonlocal Z string

for the cfcj term after the Jordan-Wigner transformation. If

OBNORONO
® © 0 ©
®» @ ® ¢

&/

@ W ©

FIG. 12. Graph structure of the auxiliary Hamiltonian Hy.
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the auxiliary system is in the +1 eigenspace of iy;¥;., this
extra term would not affect the property of the system.
However, the auxiliary Hamiltonian becomes a nonlocal
Hamiltonian after the Jordan-Wigner transformation. To
resolve this problem, we perform the substitution Py5s —
P15P26, Py — PaP37, etc. Since all P commute with each
other and are in +1 eigenstates, this substitution does not
change the ground-state space [51]. Then the constraint
PuPj = —¥:¥{¥; 7/ = 1 is mapped to a local gauge con-
straint (stabilizer) after the Jordan-Wigner transformation:

2

}rh }|c

—Yi— —Xi— (42)

|
%

PikRﬂ — G}:C =

Here the Pauli matrices {Z,,Y’,,,Z,} act on the auxiliary
qubit n. We put physical qubits on vertical edges and aux-
iliary qubits on horizontal ones. Since physical qubits and
auxiliary qubits are on different edges, we will not show
the tilde in the following text for convenience. The hop-
ping operators [S, in Eq. (9)] and fermion parity operators
[Pr in Eq. (8)] are mapped to

W}(C E% f ‘
(43)

By conjugating stabilizer (42) by the Clifford circuits ¥V¢
shown in Fig. 13, the new stabilizer is

'

Ve e(vYO)l = —x—v-x2-',
(44)

which is precisely the gauge constraint (17) of the exact
bosonization. This implies that the logical space should
also be the same as the exact bosonization. Conjugating the
logical operators (43) by ¥VC, we obtain the new logical

VlVC

vC
VZ

vC
V3

Ve
Vs

A

vC
Ve

FIG. 13. The finite-depth Clifford circuit to convert the
Verstraete-Cirac mapping to the exact bosonization. Details of
the H, R, § gates are discussed in Appendix B. The finite-depth

Clifford circuit that converts the Verstraete-Cirac mapping into
the exact bosonization is V¥C = Vg’c V¥C VXC V;’C V;‘fc VYC.

operators
e %
VVeUYe(vVe)t = Jf =X
. %
(45)
and
VVCW}IC(VVC)T — Y_

(40)
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|

Pegd oL

Y= T

FIG. 14. To match our exact bosonization to the Verstraete-
Cirac mapping, we shift our Majorana modes on each face in the
following way: (1) shift yf upward and let it be ¥ on the new
face; (2) shift yy rightward and let it be y’ on the new face.

If we shift the Majorana fermions in the exact bosonization
as in Fig. 14 and re-pair them, then we find that the exact
bosonization and the Verstraete-Cirac mapping are equiva-
lent; see Fig. 15. The new logical operators and stabilizers
are precisely the logical operators and stabilizers of exact
bosonization after this shift.

C. Kitaev’s honeycomb model

The Hamiltonian of Kitaev’s honeycomb model [4] can
be written as

et X X g 3 10

x—links y—links

—J Z z'z}, (47)
z—links

where the x, y, z links are shown in Fig. 16. The qubit at
each site j can be represented by four Majorana operators,
b}‘, b}, bj, and y;, with an additional constraint

D; = bbby, =1

J

(a) 0
< 7

ﬂ‘}( /\f f}/{

b

® 1 vy
!
al;

(c) v | s /

~ ,}___r

!

~

FIG. 15. Correspondence of logical operators between the
exact bosonization and the Verstraete-Cirac mapping.

FIG. 16. Kitaev’s honeycomb model. The red, blue, and green
edges represent x, y, and z links. For each link, the product of
two Pauli matrices on its vertices is mapped to the product of y
and y’ on its vertices, shown in Eq. (50).

to eliminate the redundancy at each site j. The Pauli
matrices at each site j are represented as
X = ibjy;,

Then, a free-fermion Hamiltonian

i
H=53 Jur'vé (49)

e_fk

is equivalent to a sector of Eq. (47), where the index «
takes values x, y, or z depending on the direction of link jk.
Focusing on the algebra generated by y; in a fixed sector,
mapping (48) induces a correspondence [2,4]:

XAxE ifjk € x link,
ivi'vd <« {¥¥? ifjk e y link, (50)
Z!Z} ifjk € z link.

Since the product of Majorana hoppings along a hexagon
is proportional to identity, which gives a gauge constraint
on the qubit Hilbert space, we can show that the exact
bosonization [2] can be obtained by embedding the hon-
eycomb lattice into the square lattice. The details of such
a procedure are as follows. Starting from the 2d exact
bosonization, we shift and relabel the Majorana fermions
as in Fig. 17. After this relabeling and shift of the Majorana
fermion, we conjugate every qubit by a Hadamard gate
that implements the transformation HXH' = Z, HZH' =
X . The complete bosonization map becomes

TL(e)

i X € B %,
X,

! J—
TR(e) ¢ (51)
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— 7
N

;

l

—

FIG. 17. To match our exact bosonization to Kitaev’s honey-
comb model, we shift our Majorana modes on each face in the
following way: (1) shift yy downward and let it be y on the
new face; (2) shift yf’ leftward and let it be " on the new face.
We re-pair ¥ and ¥’ enveloped in the ellipse to form a complex
fermion.

_Z_
@ X TL(e) |e F}"R(e) - }}e ’
| (52)
—%"}ff’y} - > f T ,
(33)
with the stabilizer (gauge constraint)
| Jf
zZ
Gy= —Z—v-ZX— =1
(34)

Equations (51)+53) will correspond to the green, red,
and blue links embedded in Fig. 18, respectively. The
right-hand sides of these equations are all weight-2 Pauli
operators that are similar to the spin-spin interactions in
Kitaev’s honeycomb model. These operators only differ
from Kitaev’s honeycomb model by Hadamard gates.

I
NZAND AN
/Il /,-}( /F}/

7 1/ I
/.P\ ;;/ \/,.Y Yy \/,-Y

v

I’ "4
’Y\,}/ﬂ\ ,’Y\

il

FIG. 18. The embedding of the honeycomb lattice into the
square lattice. The red, blue, and green links correspond to the
x, ¥, and z types in Kitaev’s honeycomb model.

Once we conjugate all the qubits on horizontal edges by
Hadamard gates that switch X < Z, then the right-hand
sides of Egs. (51) and (52) become ZZ and XX interac-
tions as the Z and X edges in Kitaev’s honeycomb model
while the right-hand side of Eq. (53) still forms a YY
term in Kitaev’s honeycomb model. Then, we end up with
Kitaev’s honeycomb model.

D. Majorana loop stabilizer codes

In this section, we show that the MLSC [7] is GLU
equivalent to the 2d exact bosonization. Similar to BKSF
encoding, Majorana loop stabilizer codes encode a com-
plex fermion on vertex v by qubits on edge e connected to
v. Majorana loop stabilizer codes have fermionic hopping

MLSC MLSC MLSC
U‘]. ' UZ ' U3 I

MLSC
Uy

U;"..SC

FIG. 19. The finite-depth Clifford circuit for the MLSC to
the exact bosonization. The first Clifford circuit will disentan-
gle the qubits on the edges between red and yellow faces,
so the edges between red and yellow faces become dashed
lines in the second and third steps. The first panel involves
three unitary circuits UII“LSC, US‘LSC, U;“{LSC corresponding to the
controlled-NOT (CNOT) gates labeled (I), (2), and (3), respec-
tively. The finite-depth Clifford circuit that converts Majorana-
loop stabilizer codes to the exact bosonization is UMLSC =

LSC LSC LSC LSC LSC
UMLSC MLSC [MLSCMLSC [MLSC
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FIG. 20. Horizontal hoppings iyi()Vre) after a finite-depth
GLU transformation in Fig. 19. Labels (a) and (b) denote hop-
pings between blue and orange dots; labels (c) and (d) denote
hoppings between pink and yellow dots. Hoppings (a), (b), and
(d) are exactly the horizontal hoppings in the exact bosoniza-
tion, and hopping (c) is a product of the hopping operator and the
stabilizer in the exact bosonization.

operation A, = iyL()VR(e) On each edge, fermion parity
operator Py = —iyyy; on each vertex, and stabilizers G,
acting on faces with different colors. We follow the same
procedure described in Sec. II, conjugating the logical
operations and stabilizers of the MLSC by the finite-depth
Clifford circuits in Fig. 19. Then the four kinds of horizon-
tal hoppings in the MLSC reduce to the horizontal hopping
in the exact bosonization (up to a stabilizer), and the same
thing happens to the vertical hoppings, parity operators,
and stabilizers.

Starting from the MLSC, Figs. 20 and 21 show that
the horizontal and vertical hoppings iyi)¥r() after the
transformation can match the horizontal and vertical hop-
pings in exact bosonization. An interesting fact is that
the first Clifford circuit in Fig. 19 removes qubits on

FIG. 21. Labels (e)}+(h) denote vertical hoppings iyr()Vr()
after a finite-depth GLU transformation in Fig. 19. They match
the vertical hoppings in the exact bosonization.

the edges between red and yellow faces and makes this
correspondence possible.

E. Connection to the Jordan-Wigner transformation

In this section, we show that conjugating the exact
bosonization by a linear-depth [52] Clifford circuit in
Fig. 22 will result in the 1d Jordan-Wigner transformation
along the path in Fig. 23, where the fermionic hopping
iy;y{ with j, k in different rows is mapped to a nonlocal
Pauli string.

For the Jordan-Wigner transformation, the qubit-
fermion ratio is 1, but it is a nonlocal mapping since the
vertical hopping terms are mediated by a Pauli-Z string
between two sites. By directly applying the linear-depth
GLU Clifford circuit in Fig. 22 to the logical operators
of the exact bosonization, the qubits on the horizontal
edges are disentangled and do not show up in the logical
operators. All stabilizers become single-Pauli operators

Fant

Fan
9

uv

Fant
9
Fant

ulv

ro1°¢
" fofofoteqe

oholololo
U;wa%\e\%’\e\ ™\
3
ololololo
qla\eﬁ\#e\ SN
olololo]o
- S g gD
* olololo]lo
L gD gD gD g

ov VI N NN

NSNS NN

FIG. 22. The finite-depth Clifford circuit to convert the exact
bosonization to the 1d Jordan-Wigner transformation. In the first
step, we order the system from left to right, then apply the CNOT
gate to each column following the above ordering. The CNOT
gates are applied simultaneously in the second and third steps.
In the fourth step, we order the system from right to left, then
apply the CNOT gate to each column following the right-to-left
ordering. In the fifth step, CZ gates are simultaneously applied.
The depicted unitaries are UV, U‘;w, U‘;w, W U%uw (from top to
bottom). The GLU disentangler is Upy = in UVUEYEV RV,
Note that U{w and in are linear-depth local unitary circuits.

010326-15



YU-AN CHEN and YIJIA XU

PRX QUANTUM 4, 010326 (2023)

on horizontal edges and can be removed by GLU transformations. Explicitly, the horizontal and vertical hoppings are

_Z_

TR

(35)

and the fermion-parity term is

—7— — (57)

The fermion-parity term is mapped to a single Pauli Z, the
same as the Jordan-Wigner transformation.

All stabilizers are mapped to the single Pauli matrix
at each horizontal edge, and they can be removed from
the system. Next, we check whether the logical operators
UwU, U}W, UwWy U}w match the results from the Jordan-
Wigner transformation. Essentially, the unitary Ujw trans-
forms the local operators of 2d exact bosonization to
nonlocal strings for the Majorana hoppings U, along the
vertical direction (edge e is horizontal) while preserving
the locality for the Majorana hopping in the horizontal
direction (edge e is vertical). Operator Uyw U, U}w for hor-
izontal edges e will pick up a Z string in between, while
operator ijUgU}-w for vertical edges e is the adjacent
XX operator. This is precisely the 1d Jordan-Wigner trans-
formation with respect to the ordering chosen in Fig. 23.

FIG. 23. Ordering of the 1d Jordan-Wigner transformation on
the square lattice.

(36)

Hence, we can regard the 1d Jordan-Wigner transforma-
tion as a particular case in that we remove all the qubits
on the horizontal edges where the vertical hoppings are no
longer local.
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APPENDIX A: CONSTRUCTION OF THE
FERMION-TO-QUBIT MAPPING WITH RATIO
r=141/I

In this appendix, we provide an explicit construction
of fermion-to-qubit mappings with the qubit-fermion ratio
r = 1 4 1/I for any positive integer /. This construction is
similar in spirit to the Verstraete-Cirac mapping [3] and the
auxiliary qubit mapping [6].

We first specify the Hilbert space, shown in Fig. 24.
The square lattice contains red vertices in columns sep-
arated by a distance /. For the fermionic Hilbert space,
we put one complex fermion at each vertex, generated
by operators y,,y,. For the bosonic Hilbert space, we
put one qubit at each black vertex and two qubits at
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FIG. 24. Physical Hilbert space of the fermion-to-qubit map-
ping with » = 1 + 1/1. Each black site denotes one qubit, and
each red site denotes two qubits. Columns of red vertices are
separated by a distance /.

each red vertex. We define the mapping between the even
sector of the fermionic Hilbert space and the codespace
(gauge-invariant subspace) of the bosonic Hilbert space.

The hopping operators on horizontal edges are
mapped as
/
Wil X X
Sl L . . .
/
DL Z X
—i @ e .
X
/
Y x I
—1 —O MES—— ] X’. 1
(A1)
and the operators on vertical edges are
= i
.’lf }/ 7 Xv bl
i . . 0
. i
y I’} S
! X ?
/ ]

where the vertical hopping operator between black vertices
consists of Z-string operators to the nearest red vertices on
its right, which has weight O(J). The on-site fermion parity
operators at vertices are mapped as

¥y Z
—1 . — .
vy
—1 e — _©0

(A3)

On the bosonic Hilbert space, we need to introduce sta-
bilizers (gauge constraints) to project into the codespace,

where the stabilizers are

.Y Z ,«:/ .X
1 Z
X Z Z
® . . .Y
I VA

(A4)

for each / x 1 rectangle formed by four red vertices, and
the “...” between the red vertices consist of Z-string
operators.

On each / x 1 unit cell, there are / fermions, / + 1 qubits,
and one stabilizer (gauge constraint), so the degrees of
freedom match. The qubit-fermion ratio of this construc-
tionisr=1+1/L

APPENDIX B: CLIFFORD GATES

The Clifford group is defined as the group of unitaries
that normalize the Pauli group. The Clifford gates are
defined as elements in the Clifford group [30,31]. In this
paper, we use single-qubit Clifford gates: H gate, S gate, R
gate.

The H gate is the Hadamard gate

il

that satisfies HXH' = Z, HZH" = X. The S gate is the

(B1)

phase gate
10
S = [0 1_] (B2)
that satisfies SXST = ¥, S¥YST = —X . The R gate is
1 [1 i
k=l 1] .

where RYRY = —Z, RZRt = V.
For two-qubit Clifford gates, we choose CNOT, CY, and
CZ gates. The CNOT gate is

CNOT = , (B4)

(=R ]
—_—o oo
(=R = ]

1
0
0
0
where
cNOT(X @ I)eNoT =X @ X,
cNOT(Z @ )eNoT! = Z @ 1,

cNoT(I @ X)eNoT! =T ®@ X,
cNoT(I ® Z)eNoT! = Z @ Z.
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The CY gate is

F 0 0 0
01 0 0
Y=10 0 0 —i (B3)
00 i 0
where
cYX @y =X @7,
cY(Z@Dey' =zZ@1,
cyd ®@X)eyl =zZ@X,
cyI®2Z)eYy =Z®Z.
The CZ gate is
1 00 0
01 0 0
CZ=1p 0 1 o (B6)
0 0 0 —I

where

czXehcZ'=xXQ2Z
czZehcz' =Zx1,
czI®X)z'=ZeX,
czI®Z)cz =1®Z.

APPENDIX C: SUPERCOMPACT MAPPING

In this appendix, we present another representa-
tion of the supercompact fermion-to-qubit mapping in
Sec. IIC. While the supercompact fermion-to-qubit map-
ping encodes logical fermions on faces, here we discuss
another representation that encodes logical fermions on
vertices. In this appendix, we show that this mapping

.#"'=

—idd

encodes logical fermions with » = 1.25. On the 2d square
lattice in Fig. 25, each black vertex contains a qubit, and
each gray vertex contains two qubits. As shown in Figs. 26
and 27, each gray vertex has two Pauli matrices on the top-
right and bottom-left corners, respectively. For the encoded
information, each vertex v encodes a spinless fermionic
mode with creation and annihilation operators cI, ¢, with
the standard commutation relation {c,, CI,} =4, Where v
denotes the vertex label. The ratio between the number of
fermionic modes and the number of physical qubits is 1.25.
For convenience, we use the Majorana basis to represent
fermionic modes

vo=cy+cl, ygzc”;"z. (€D
The local fermion parity operator at a vertex v is
By = (=% = —iny, (€2)
and the hopping operator on an edge e is
Aoy = iy Vi (©3)

where j and k are labels for the left and right ver-
tices of edge e. The even algebra of fermions consists
of local operators with a trivial fermion parity, i.e., local
observables that commute with the total fermion parity

=DHf = [I,(= l)czc”. The generators for the even algebra
of fermions are Aeﬁ and B, on all edges and vertices [2].
The fermion-to-qubit mappings are mappings from
Agy, B, to Pauli strings (products of Pauli matrices) on
qubits with the same algebra. In addition, such mappings
satisfy a condition that the product of 4, along an arbi-
trary closed path should be the identity operator (up to
a phase) since all Majorana operators cancel out. Such a
constraint requires the qubit system to be stabilized by a

L

FIG. 25. The physical and logical Hilbert spaces for supercompact encoding. The left-hand side is the physical Hilbert space, where
each black vertex contains one qubit, and each gray vertex contains two qubits. The right-hand side is the logical Hilbert space, where
each vertex encodes a fermionic mode. The qubit-fermion ratio r is 1.25 in this setting.
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i (@) (b) (c) - @ g
Aoy . e . }’X o e X e

*—e 0
i k X Y : Z Y Z Y b
Z
){_.—. l(.
() 71 (f) (9) 1/ (h)y 1
] o
A, - e Z. Z. e ‘X.e X e ’ Z. g e
E?jk . p Y 4 | .Z R }f
¢ X. Y X Y i Z
- () (i)
By: * ., .Z
Z Z v

FIG. 26. The hopping term A, and the parity term B, in the bosonic Hilbert space. The definitions of 4, and B, depend on the colors
of edges and vertices. (a){d) Four kinds of horizontal hopping terms; (e)~(h) four kinds of vertical hopping terms; (i),(j) parity terms

on black and gray vertices.

stabilizer group, i.e., being in the 41 eigenspace of oper-
ators in the stabilizer group. Now, we explicitly construct
the mapping on the lattice in Fig. 25:

A,

e = 1V Ve <—> ‘iejp B, = —iyyy, <— B,, (C4)

with I‘Iejx and B, defined in Fig. 26. We may also swap
indices j, k for ej; then we have Ae;g- = —Ae;g- «—> —ffejk.
Since the qubit array has translational symmetries, we
color horizontal edges pink, black, brown, and blue, and
vertical edges magma, purple, green, and yellow. Hence,
there are four different 4., corresponding to horizontal
hoppings along e; with different colors, and four differ-
ent I‘Iejx corresponding to vertical hoppings along e with
different colors. It can be checked that two operators A,
and ffe;" . anticommute if and only if ey and e, are two
distinct edges sharing one common vertex, and /ieﬂc and E‘u
anticommute if and only if edge e contains vertex v. There-
fore, {A eje> B,}and {Aejk, B,} satisfy the same commutation

¢ Z Y.
I d c Z
-1 @ o O
R A A
.Y a .b
X Z Z

FIG. 27. The stabilizer acts on the vertex d that connects
to pink, black, purple, and green edges. This stabilizer comes
from identity (C5) for a closed loopa — b — ¢ — d — a. The
product of A, on any closed loop is generated by this stabilizer.

relations. It is worth noting that we can write all the parity-
preserving fermionic operators in a sum of products of A
and B,.

Since the qubit-to-fermion ratio is 1.25, there are stabi-
lizers (gauge constraints) that restrict the qubit array to be
in logical subspace. Such constraints are intuitively related
to the fact that operators moving a Majorana fermion along
a closed loop will be proportional to identity. For a Majo-
rana fermion hopping around a closed loop /, the product
of ﬁeﬁ along / is proportional to the identity operator:

14, ="

EjkEI

(C5)

with [/] the length of loop [. This condition comes from the
fact that the fermionic operators Aeﬂr,

|1 2 2 A1.,2 _ |l

[ T4 ="y - vig vy =y ="

%—kef

(Cé)

which move a Majorana fermion y along a closed loop /,
should be an identity up to a phase factor il. Accordingly,
the same identity for 4, should also be true on the qubit
array; the products of A, along closed path  should yield
the stabilizer (gauge constraints)

[ Ao = i".

%—kef

(C7)

Note that this constraint should be satisfied for all possi-
ble closed loops and form a stabilizer group. To encode
N fermionic modes, this mapping requires 1.25N physical
qubits. Hence, there are 0.25N stabilizers. The stabilizer
generator of this mapping is the operator shown in Fig. 27
that acts on vertices that connect pink, black, green, and
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XQ
¢ XYZ zxy 9
d c Z2
@ L @
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FIG. 28. Stabilizer constraint for the closed loop d — ¢ —
g — h — d, which gives —I, and it matches identity (C5) on

the fermion side AEMA%ABQCAE =1

purple edges. There are 0.25N such vertices, so in total
there are 0.25N stabilizers, as discussed above.

This stabilizer corresponds to Majorana moving along
the patha — b — ¢ — d — a. It can be checked that the
stabilizer in Fig. 27 commutes with all the logical opera-
tors ffe,BU shown in Fig. 26. The weight of such a stabilizer
is 12. The logical Hilbert space is the 41 eigenspace of
this stabilizer that acts on vertices connecting to green,
black, purple, and red edges. It is worth noting that the
stabilizer shown in Fig. 27 acting on different d can gener-
ate all the nontrivial stabilizers where the trivial stabilizers
are identity operators. The qubit system should also be
stabilized by products of “Iefk for other closed loops, and

we may wonder whether the product of /ie.k along other
length-four square loops give nontrivial stabilizers. How-
ever, the products of 4., along other length-four square
loops are identity operators. Here we use the square loop
d — ¢ — g — h — d as an example in Fig. 28.
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