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Quantum simulators have recently enabled experimental observations of the internal thermalization of
quantum many-body systems. Often, the global energy and particle number are conserved and the sys-
tem is prepared with a well-defined particle number—in a microcanonical subspace. However, quantum
evolution can also conserve quantities, or charges, that fail to commute with each other. Noncommuting
charges have recently emerged as a subfield at the intersection of quantum thermodynamics and quantum
information. Until now, this subfield has remained theoretical. We initiate the experimental testing of its
predictions, with a trapped-ion simulator. We prepare 6-21 spins in an approximate microcanonical sub-
space, a generalization of the microcanonical subspace for accommodating noncommuting charges, which
cannot necessarily have well-defined nontrivial values simultaneously. We simulate a Heisenberg evolu-
tion using laser-induced entangling interactions and collective spin rotations. The noncommuting charges
are the three spin components. We find that small subsystems equilibrate to near a recently predicted non-
Abelian thermal state. This work bridges quantum many-body simulators to the quantum thermodynamics

of noncommuting charges, the predictions of which can now be tested.

DOI: 10.1103/PRXQuantum.4.020318

I. INTRODUCTION

Thermalization aims the arrow of time, yet has tra-
ditionally been understood through the lens of classical
systems. An understanding of quantum thermalization is
therefore of fundamental importance. Quantum simulator
experiments have recently elucidated how closed quantum
many-body systems thermalize internally [1-4]. Typically,
the evolutions conserve no quantities (as in gate-based
evolutions) or conserve the energy and the particle number
(in analog quantum simulators). The conserved quantities,
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called charges, are represented by Hermitian operators
Qy—12,...c. The operators are usually assumed implicitly to
commute with each other, as do the commonly conserved
Hamiltonian and particle-number operator. Yet noncom-
muting operators underlie quantum physics from uncer-
tainty relations to measurement disturbance. What hap-
pens if thermodynamic charges fail to commute with each
other? This question has recently swept across quantum
thermodynamics [5-39] and infiltrated many-body the-
ory [14,19-24,33,38—40]. We initiate experimentation on
thermalization in the presence of noncommuting charges.

A many-body system thermalizes internally as a
small subsystem S approaches the appropriate thermal
state, which depends on the charges. The rest of the
global system acts as an effective environment. Argu-
ments for the form of the thermal state rely implicitly
on commutation of the charges [6,8,21,41]. For exam-
ple, the eigenstate-thermalization hypothesis explains the
internal thermalization of quantum many-body systems
governed by nondegenerate Hamiltonians [42—44]—yet
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noncommuting charges imply energy degeneracies. There-
fore, whether & can even thermalize, if charges fail to
commute with each other, is not obvious.

Information-theoretic arguments suggest that S equili-
brates to near a state dubbed the non-Abelian thermal state
(NATS) [6-9.,45],

PNaTs i=exp | —B | H — Z#yQy /Znats, (1)
y=1

where B denotes the inverse temperature, H denotes the
Hamiltonian of S, the u, denote effective chemical poten-
tials, the O, denote the ¢ nonenergy charges of S, and
the partition function Zyars normalizes the state. States
of the form given in Eq. (1) are also called generalized
Gibbs ensembles, especially if the charges commute and
the global Hamiltonian is integrable [46—48]. pyats has
the exponential form typical of thermal states. Since the
Q, fail to commute, however, two common derivations
of the form of the thermal state break down [6,8]. For
this reason, we distinguish pnaTs by the term non-Abelian.
Arguments for Eq. (1) center on information theory, kine-
matics, and idealizations, such as a very large system-and-
environment composite [7-9,45]. Whether S thermalizes
outside these idealizations, under realistic dynamics, has
remained unclear. Whether experimentalists can observe
PnaTs has remained even less clear. Experimental control
is finite, so no quantum many-body system is truly closed.
If many species of charge can leak out, many conservation
laws can be violated.

Beyond these practicalities, the extent to which non-
commuting charges permit thermalization has been fun-
damentally unclear. If just energy and particle number
are conserved, then, to thermalize &, we prepare the
global system in a microcanonical subspace: in a nar-
row energy window in a particle-number sector [49]. If
more charges are conserved, the microcanonical subspace
is a joint eigenspace shared by the ¢ global charges. If
the charges fail to commute, they share no eigenbasis,
so they may share no eigenspace: no microcanonical sub-
space necessarily exists. To accommodate noncommuting
charges [8], microcanonical subspaces have been gener-
alized to approximate microcanonical (AMC) subspaces.
In an AMC subspace, measuring any global charge has
a high probability of yielding the expected value. The
uncertainty in the initial values of the global charges may
generate uncertainty in the long-time state of S: & may
remain farther from pnats than it would remain from
the relevant thermal state if the charges commuted [21].
Furthermore, if charges fail to commute with each other,
then: (i) two derivations of the form of the thermal state
are invalid [6,8]; (i1) the Hamiltonian has degeneracies,
which hinder arguments for thermalization [21]; and (iii)
the eigenstate-thermalization hypothesis, one of the most

widely used explanations of quantum many-body ther-
malization internally, breaks down [38]. Hence the extent
to which noncommuting charges permit thermalization is
unclear.

We experimentally observe thermalization to near
PNATS, implementing the proposal in Ref. [21]. Our quan-
tum simulator consists of 21 trapped ions. Two elec-
tronic states of each ion form a qubit. We initialize the
qubits in an AMC subspace. The evolution—an effective
long-range Heisenberg coupling—conserves the global-
spin components S;‘:; -~ We implement the evolution by
interspersing a long-range Ising coupling with global rota-
tions and dynamical-decoupling sequences. Trotterization
of Heisenberg dynamics has been proposed theoretically
[50,51], realized experimentally in toy examples [52,53],
and used very recently to explore many-body physics in
ensembles of Rydberg atoms [54,55]; we demonstrate its
effectiveness in many-body experiments on trapped ions.
Two nearest-neighbor ions form the system of interest, the
other ions forming an effective environment (Fig. 1). We
measure the distance of S from pnaTs, finding significant
thermalization on average over copies of & [6-9,45]. To
begin to isolate the effects of the noncommutation on ther-
malization, we compare our experiment with an evolution
that conserves just commuting charges: the Hamiltonian
and S'. S remains farther from the thermal state if the
charges fail to commute. This observation is consistent
with the conjecture that noncommuting charges hinder
thermalization [8], as well as with the expectation that,
in finite-size global systems, resistance to thermalization
grows with the number of charges [56,57]. Our experiment
offers a particularly quantum counterpart to the landmark
experiment [58] in which a hitherto-unobserved equilib-
rium state has been observed but the quantum physics of
noncommutation of charges has been left unexplored. The
present work opens up the emerging subfield of noncom-
muting thermodynamic charges to quantum many-body
simulators.

II. EXPERIMENTAL SETUP

We begin by explaining the general experimental setup
and protocol in Sec. ITA. Section IIB motivates and
introduces our initial state.

A. Platform and protocol

We perform the experiment on a trapped-ion quantum
simulator [59]. A linear string of N = 21 40Cat jons is
confined in a linear Paul trap [Fig. 1(a)]. The noncom-
mutation of the charges is expected to influence many-
body equilibration only in such mesoscale systems, as
the correspondence principle dictates that systems grow
classical as they grow large and that noncommutation of
charges is nonclassical [8,21]. Let S, = 0, /2 (weseth =
1), where o, denotes the Pauli-y operator, for y =x,y,z.
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FIG. 1. The experimental setup and protocol. (a) A linear ion crystal of N < 21 qubits is trapped in a linear Paul trap. A small
system exchanges charges (local instances of quantities that are conserved globally) with the surrounding environment: the energy,
E, and all the components of angular momentum. (b) We Trotter approximate the Heisenberg evolution by evolving the state under
each of the three terms of the Hamiltonian [Eq. (3)] consecutively, in short time steps. We experimentally realize two terms directly
and generate the third term using resonant /2 pulses (R, and R,). This pulse sequence further protects the state against dephasing
noise (ii). The Trotter sequence contains building blocks E.. Alternating between them reduces pulse-length errors (iii). For further
details, see Appendix A. (c) The observed evolution of the 12-qubit initial state, [y+,x+,z+)®*, under the Trotter-approximated
Heisenberg model (wherein Jy = 356 rad/s and a = 0.70). To characterize the dynamics fully, we derive the spin-excitation hopping

rate in Appendix B.

Let |y£) denote the 1 eigenstates of o,,. We denote by

o) the site-j Pauli operators; and, by o = Z} Loy
the whole-chain operators. Each ion encodes a qubit in the
Zeeman states 32Ds ,2 and 428, /2, of the respective mag-
netic quantum numbers m = 5/2 and 1/2. We denote the
states by |z+) and |z—). Two nearest-neighbor qubits form
the small system of interest; the remaining qubits form the
environment.

We employ two types of coherent operations using a
laser at 729 nm, which drives the quadrupole transition that
connects the qubit states (l) Denotlng a rotated Pauli oper-
ator by O'g =cos¢ oy 9 4 sin ¢ ay , we perform global

qubit rotations U(@, ¢) = exp(—if/2 Z lagJ) (ii) The
effective long-range x-type Ising Hamlltoman,

=2 T

j=<k

o) ® 2
U _ kla x x ? ( }
entangles qubits [60]. We effect H,, by off-resonantly
coupling to the lower and upper vibrational sideband
transitions of the transverse collective modes of the ion
string [61]. Combining these two ingredients, we Trotter
approximate the Heisenberg Hamiltonian,

Jo . . .
) g0 () g (B ) g0
Y sy (o000 + 0000 +alolb),

Jj<k
3)

HHeis =

as shown in Fig. 1(b) and Appendix A. The 1/3 appears
because the Ising coupling given in Eq. (2) is distributed
across three directions (x, y, and z). We implement a
O'yU)O')fk) coupling similarly, as described in Appendix A.
The pulse sequence is designed to realize H,, while, via

dynamical decoupling, mitigating dephasing and rotation
errors.

At the beginning of each experimental trial, the trans-
verse collective modes of the ion string are cooled to near
their motional ground state. Then, we prepare the qubits
in the product state described in Sec. I1 B. We then evolve
the global system for a time # up to Joty = (357 rad/s) x
(15 ms) ~ 5.4 [Fig. 1(c)]. The global system has largely
equilibrated internally and fluctuations are small, as shown
in Sec. I A. Finally, we measure the states of pairs of
neighboring qubits via quantum state tomography. We
measure the nontrivial expectation values of the two-qubit
Pauli operators across many trials [21, Appendix G].

B. Initial state

Conventional thermalization experiments begin with
the global system in a microcanonical subspace, a joint
eigenspace shared by the global charges (apart from the
energy). As our global charges do not commute, they can-
not have well-defined nonzero values simultaneously; no
nontrivial microcanonical subspace exists. We therefore
prepare the global system in an AMC subspace, where
the charges have fairly well-defined values. We follow the
proposal in Ref. [21] for extending the definition of the
AMC subspace, devised abstractly in Ref. [8], to realis-
tic systems. In an AMC subspace, each global charge Q‘}',’t
has a variance of approximately O(N"), wherein v < 1.
Every tensor product of single-qubit pure states meets this
requirement [21].

We choose the product to answer an open question.
In Ref. [21], pnats has been found numerically to pre-
dict the long-time state of a small system best. However,
other thermal states approached pnats in accuracy as N
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grew. (The accuracy has been quantified with the relative-
entropy distance of the long-time state to a thermal state,
as detailed in Sec. II1.) Does the accuracy of NATS remain
greatest by an approximately constant amount, as N grows,
for any initial state? The answer is yes for all N realized in
our experiment.

The initial state,

[¥0) := ly+, x4, 24) V3, (4)

consistently distinguishes the NATS for an intuitive
reason synopsized here and detailed in Appendix
C. The initial state determines the inverse tempera-
ture B and chemical potentials u, in Eq. (1) [21]
as follows. Denote the global NATS by pQr =

exp (—B [ Hiteis = 50y ayc 1rS]) /Z85rs:
Zy3\1s normalizes the state. B and the p,s are defined
through [21,62]

wherein

(‘:&0|HHeis|wﬂ) =Tr (HHeis ..Olt\?;"[s) (5}

and
(Yoloy|¥o) = Tr (0" pNars)  Y¥ =xp,z. (6)

As the temperature approaches infinity, all thermal states
converge to the maximally mixed state and so lose their
distinguishability. We therefore choose the initial state
such that B is finite. Additionally, the chemical poten-
tials should be large, such that all noncommuting charges
influence pnatrs substantially. Upon choosing |vp), we
calculate B and the p values from Eq. (6) numerically,
by solving a maximum-entropy problem, following Refs.
[63,64]: B = 1.3 x 1073 s/rad and Hxy: = —1046 rad/s.

For generality, we also test other initial states. Permuting
the factors in Eq. (4), we change the temperature of the
initial state. However, our qualitative conclusions continue
to hold.

III. RESULTS

Having introduced our setup and protocol, we observe,
in Sec. Il A, the dynamics of thermalization influenced by
noncommuting charges. Section 1II B evidences thermal-
ization to near pnats. Section 111 C compares these results
with thermalization in the presence of just two commuting
charges.

A. Dynamics

Figure 2 shows how accurately the NATS predicts the
state of a small system, as a function of time. The global
system size is N = 21. To construct the blue dots, we

measure the time-dependent state p,('i J+D of each nearest-
neighbor qubit pair (j,j + 1), forj =1,2,...,N — 1. We

T NATS T Grand canonical T Canonical

Relative entropy D (nats)
o f=] f=) - b
5 » ® b N

o
b

2
o

Time t (ms)

FIG. 2. The average distance from the system-of-interest state
to the thermal prediction versus time. The ion chain consists of
N = 21 qubits. Each nearest-neighbor pair forms a small system
of interest. We measure the distance of the state to the NATS
(blue points), using the relative entropy [8], and average over
the pairs in the chain. The markers show experimental data,
while the lines are calculated numerically from Eq. (3). Each
data point is formed from 250 repetitions. The error bars are
estimated by bootstrapping [66]. The entropies are measured in
units of nats (are to base ¢). We also compare the NATS pre-
diction with two competitor thermal predictions, following Refs.
[21,47,58]: canonical and grand canonical states. At all times, the
NATS predicts the state unambiguously more accurately than the
competitors do.

then calculate the distance of the state to the NATS, mea-
sured with the relative entropy used often in quantum
information theory [65]. If x and & denote quantum states
(density operators) defined on the same Hilbert space,
the relative entropy is D(x||&) = Tr(x[log x — logé&]).
(All logarithms in this paper are to base e: entropies
are measured in units of nats—not to be confused with
the NATS—rather than in bits.) The relative entropy
boasts an operational interpretation: D(x||§) quantifies
the optimal efficiency with which the states can be dis-
tinguished, on average, in a binary hypothesis test [65].
The relative entropy to the NATS has been bounded
with quantum information-theoretic techniques [8] and
calculated numerically in simulations [21]. Appendix D
describes how we calculate pya7s numerically. We average
D(pFJ+l)||pNATs) over the N — 1 qubit pairs, producing
(D(p,(’i‘Hl)lleATs)). To our knowledge, this is the first
report on the process of quantum many-body thermaliza-
tion colored by noncommuting charges (e.g., begun in an
AMC subspace).

As in Refs. [47,58], we compare the state of the small
system with competing predictions by other thermal states:
the canonical state pcan 1= e PH /Zcan and the grand canon-
ical state pgc = exp (—B {H — pS? }) /Zac. The parti-
tion functions Z_,, and Zgc normalize the states. We denote
by H the two-site Hamiltonian and by S@ the two-site
spin operator. We call pgc “grand canonical” because S;
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is equivalent to a spinless-fermion particle-number opera-
tor via a Jordan-Wigner transformation [67]. As the blue
disks (distances to pnats) are lower than the orange tri-
angles (pgc) and green squares (pcan), the NATS always
predicts the state best.

The curves show results from numerical simulations. In
the simulations, we exactly model time evolution under
the Heisenberg Hamiltonian. The experimental markers lie
close to the theoretical curves. Yet the distance to pgc is
slightly less empirically than theoretically, on average over
time; the same is true of pcn and the opposite is true of
pnaTs- These slight mismatches arise from noise, which
we now describe.

As a real-world quantum system, the ion chain is open.
The environment affects the chain similarly to a depolariz-
ing channel, which brings the state toward the maximally
mixed state, 1/2V [65]. Of our candidate two-qubit ther-
mal states, o, lies closest to 1/4, pgc lies second closest,
and pnaTs lies farthest. We can understand why informa-
tion theoretically [7,9,45]. If one knows nothing about the
system of interest, one can mostly reasonably ascribe to the
system the state 1 /4. Knowing nothing except the average
energy, one should ascribe pcan. Knowing only the average
energy and (S), one should ascribe pgc. Knowing the
average energy and (Sg} ), one should ascribe pyats. The
more information a thermal state encodes, the farther it is
from 1 /4. The depolarizing noise, bringing the state of the
two ions closer to 1/4, brings the state closer to p.,, and
pce but not so close to pnats (in fact, away from pnaTs,
as explained in Appendix E): hence the deviations between
experimental markers and theoretical predictions in Fig. 2.

Nonetheless, the experiment exhibits considerable
resilience to noise. The chain can leak four charges (S, -
and energy) to its environment, violating the conservation
laws ideally imposed on the ions. One might expect these
many possible violations to prevent pnats from predict-
ing the long-time state accurately. However, our results
show otherwise: the chain is closed enough that pnaTs,
as a prediction, bests all competitor thermal states that
may be reasonably expected from thermodynamics and
information theory [45]. Appendix E supports this conclu-
sion with simulations of depolarization atop the Trotterized
Heisenberg evolution.

By #r = 15 ms, the curves in Fig. 2 are approximately
constant; the small system has approximately thermal-
ized. Thermalization occurs more completely at large N
than at small N but 15 ms suffices for all the curves to
drop substantially. Our choice of experimental run time
is thereby justified (for details about fluctuations in the
relative entropy, see Appendix G).

B. Thermalization to near the non-Abelian thermal
state

In Fig. 3, we focus on late times while varying the global
system size. We average over the final three time points,

as the relative entropies have equilibrated but fluctuate
slightly across that time (Appendix G). The blue disks rep-
resent the relative-entropy distance from the final system-
of-interest state, p,(f" J+D , to the NATS, averaged over qubit
pairs. The average distance declines from 0.24(2) nats to
0.085(6) nats as N grows from 6 to 21. These values
overestimate the true values by approximately 0.03 nats,
because the number of experimental trials is finite. For ref-
erence, D(x||&) obeys no upper bound. We hence answer
two open questions. Equilibration to near the NATS occurs
in realistic systems and is experimentally observable,
despite the opportunity for the spin chain to leak many
charges via decoherence. Furthermore, the orange trian-
gles (distances to pgc) lie 0.16 nats above the blue disks
(distances to pnaTs), on average; and the green squares
(distances to p,,) lie 0.26 nats above the blue disks, on
average. Hence the NATS prediction is distinguishably
most accurate at all experimentally realized N.

Appendix F analytically extends this conclusion beyond
the experimental system sizes. Consider averaging each
thermal state over the qubit pairs. The averaged pnats dif-
fers from the averaged competitor thermal states, as mea-
sured by nonzero relative-entropy distances. The distances
are lower bounded by a constant at all N, even in the ther-
modynamic limit (as N — 00). We prove this claim about
the distinguishability of pnaTs under the assumptions met
by our experiment.

We observe equilibration to near the NATS but the small

system does not thermalize entirely: (D(p,(; J+D |l oNATS)) #

0. We expect the lingering athermality to stem partially
from the finite size of the global system [68,69]. Yet non-
commutation of charges has been conjectured to hinder

0.7
¥ NATS L Grandcanonical  JL Canonical
0.6
w
£ o5
(]
i) 4
a =
[ = = = = =
G 031 =
2 - =
T 021
&
0.1 1 E ] &= -
0.0 1— T T T . T
6 9 12 15 18 21
Total number of qubits N
FIG. 3. The average distance from the long-time system-of-

interest state to the thermal prediction versus total number of
qubits. The markers show experimental data, while the lines are
calculated numerically, using unitary dynamics, from Eq. (3).
The NATS predicts the final state the most accurately at all sys-
tem sizes. Depolarizing noise appears to explain the experiment-
theory discrepancies. The N = 6 point is an outlier due to the
small size of the global system.
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TABLE 1. The average distance from the long-time system-of-
interest state to the grand canonical state, pgc, when only energy
and o/ are conserved. Each nearest-neighbor pair in the ion
chain forms a small system of interest. The long-time state of
the pair lies some distance from pgc (the most accurate thermal
prediction). We measure this distance using the relative entropy
D [8], measured in nats. Then, we average over the pairs in
the chain. The average pair thermalizes more thoroughly than if
noncommuting charges are conserved, at all global system sizes

N.

N 6 9 12 15 18 21
D 0.19(2) 0.096(10) 0.077(6) 0.066(7) 0.057(5) 0.056(6)

thermalization additionally [21]. We now dig further into
that conjecture.

C. Comparison with commuting charges

Let us compare thermalization steered by noncommut-
ing charges with thermalization steered by just commuting
charges. We realize the commuting case with the long-
range XY Hamiltonian

. 1 b () 5 (k) () 5 (k)
» ':§5W(“x o +af’af). ()

for N =21, with Jy =398 rad/s and o = 0.86 (for
details, see Appendix A). The charges are the total
energy and o.*. We Trotter approximate Hy, similarly
to Hpeis (Appendix H). We prepare |y+,x+,z+)®”’3,
such that the commuting-charge experiment parallels the
noncommuting-charge experiment (which begins in an
AMC subspace too) as closely as possible. Then, we
simulate H,,, for 10 ms [70].

Table I shows the results. The average small system
thermalizes more thoroughly when determined by com-
muting charges than when determined by noncommuting
charges. For instance, in the commuting case, the relative
entropy to pgc descends as low as 0.056(6) nats, when
N = 21. In the noncommuting case, when N = 21, the rel-
ative entropy to pnats reaches 0.085(6) > 0.056(6) nats.
This result is consistent with the conjecture that noncom-
mutation of charges hinders thermalization [21], as well
as with the expectation that, in finite-size global systems,
the long-time entanglement entropy of a small system
decreases as the number of charges grows [57]. Future
work will distinguish how much the noncommutation of
our charges is hindering thermalization and how much the
multiplicity of charges is.

IV. CONCLUSIONS

We observe the first experimental evidence of a partic-
ularly quantum equilibrium state, the non-Abelian thermal
state, which depends on noncommuting charges. Whereas

typical many-body experiments begin in a microcanon-
ical subspace, our experiment begins in an approximate
microcanonical subspace. This generalization accommo-
dates the inability of the noncommuting charges to have
well-defined nontrivial values simultaneously. Our exper-
iment provides an affirmative answer to an open question:
whether, for any initial state, the NATS remains a sub-
stantially better prediction than other thermal states as the
global system grows. Our trapped-ion experiment affir-
matively answers two more open questions: (i) whether
realistic systems exhibit the thermodynamics of noncom-
muting charges: and (ii) whether this thermodynamics can
be observed experimentally, despite the abundance of the
conservation laws that decoherence can break. Our work
therefore bridges quantum simulators to the emerging
subfield of noncommuting charges in quantum informa-
tion thermodynamics. The subfield has remained theo-
retical until now; hence many predictions now can, and
should, be tested experimentally—predictions about refer-
ence frames, second laws of thermodynamics, information
storage in dynamical fixed points, and more [5-39].

In addition to answering open questions, our results
open up avenues for future work. First, Fig. 3 contains blue
disks (distances to pnaTts) that could be fitted. The best-fit
line could be compared with the numerical prediction in
Ref. [8] and the information-theoretic bound in Ref. [21].
Obtaining a reliable fit would require the reduction of sys-
tematic errors, such as decoherence, and the performance
of more ftrials. Second, we observe that the small system
thermalizes less in the presence of noncommuting charges
than in the presence of just commuting charges. Future
studies will tease apart the effects of the noncommutation
of charges from those of the multiplicity of charges.

Third, the quantum simulation toolkit developed here
merits application to other experiments. We combine the
native interaction of our quantum simulator with rota-
tions and dynamical decoupling to simulate a non-native
Heisenberg interaction. The Trotterized long-range Hamil-
tonian, with the single-qubit control used to initialize our
system, can be advantageous for studying more many-
body physics with quantum simulators. As our experiment
reaches system sizes larger than can reasonably be simu-
lated realistically (including noise), the usefulness of our
toolkit in many-body physics is evident. These techniques
can be leveraged to explore nonequilibrium Heisenberg
dynamics [54,55], topological excitations [71], and more.
Beyond the Heisenberg model, the impact of noncommu-
tation of charges on equilibration can be studied in more
exotic contexts, such as lattice gauge theories [4,72].
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APPENDIX A: METHODS

This appendix provides details about the setup
(Sec. A1), the realization of spin-spin interactions
(Sec. A 2), the Trotterization of the Heisenberg Hamilto-
nian (Sec. A3), and the quantum state tomography and
statistical analysis (Sec. A 4).

1. Experimental setup

A linear ion crystal of 21 #°Ca* ions is trapped in a
linear Paul trap with trapping frequencies of w, = 2w x
2.930 MHz (radially) and ws = 2 x 0.217 MHz (axi-
ally). The qubit states |z+) and |z—) are coupled by
an optical quadrupole transition, which we drive with a
titanium-sapphire laser, with a sub-10-Hz line width, at
729 nm. Collective qubit operations are implemented with
a resonant beam that couples to all the qubits with approx-
imately equal strengths. Single-qubit operations are per-
formed with a steerable tightly focused beam that induces
ac Stark shifts. In some trials, the system size N is less than
21. In these cases, we hide the unused ions in the Zeeman
sublevel [32Ds/2,m = —3/2).

Recall that the initial state is ideally the product |yr)
in Eq. (4). The experimental initial state |exp) has a
fidelity | (Vexp|%0) |* = 0.90(2) for N = 21. In each exper-
imental cycle, we cool the ions via Doppler cooling and
polarization-gradient cooling [73]. We also sideband cool
all transverse collective motional modes to near their
ground states. Then, we prepare the state equation [see Eq.
(4)], simulate the Heisenberg evolution, and measure the
state. The cycle is repeated 300500 times per quantum
state-tomography measurement basis.

2. Implementing the effective Heisenberg interaction

We implement the long-range spin-spin interaction
given in Eq. (2) with a laser beam -carrying two
frequencies that couple the motional and electronic degrees
of freedom of the ion chain. The frequency components of
the beam, wy = +(w, + A), are symmetrically detuned by
A =2 x 27 kHz (for N = 21 ions) from the transverse-
center-of-mass mode, which has a frequency w, = 2 x
2.930 MHz. A third frequency component, w,. = 2w X
1.4 MHz, is added to the bichromat beam. This compo-
nent compensates for the additional ac Stark shift caused
by other electronic states [74].

The resulting spin-spin coupling effects a long-range
Ising model, ) k0’ a®. The J;; denotes the
strength of the coupling between ions j and k. J; x approxi-
mates the power law in Eq. (2), where the coupling strength
equals Jy = 468 s/rad and the exponent o = 0.86 for the
21-ion chain.

Direct realization of the desired long-range Heisenberg
Hamiltonian in Eq. (3) for trapped ions is difficult [61,75].
Instead, we simulate Hygjs via Trotterization. After the first
time step, we change the interaction from Hy, to H,,; after
the second time step, to H; and, after the third time step,
back to H,,. We perform this cycle, or Trotter step, Nr
times [76]. We can realize H,, by shifting the phase of the
bichromat light by 7 /2 relative to the phase used to realize
H,,. The implementation of H,, requires a global rotation.
Denote by R, a /2 rotation of all the qubits about the y

axis. We can effect H,; with, e.g., R;H“Ry.

3. Noise-robust Trotter sequence

In our experimental setup, most native decoherence is
dephasing relative to the o, eigenbasis, which rotations
transform into effective depolarization (Appendix E). This
noise results from temporal fluctuations of (i) the mag-
netic field and (ii) the frequency of the laser that drives the
qubits. Earlier experiments on this platform have involved
XY interactions, which enable the quantum state to stay ina
decoherence-free subspace [74,77,78]. Here, the dynamics
must be shielded from dephasing differently. We miti-
gate magnetic field noise by incorporating a dynamical-
decoupling scheme into the Trotter sequence [Fig. 1(b)].
Furthermore, we design the Trotter sequence to minimize
the number of global rotations. This minimization sup-
presses the error accumulated across all the rotations. We
reduce this error further by alternating the directions of
the rotations between Trotter steps (for further details, see
Appendix H).

To formalize the Trotter sequence, we introduce the
following notation. Let U, = exp(—iHyt) and U, =
exp(—iHyt). For y €({x,y}, R, :=exp(—in/40}")
denotes a global 7/2 rotation about the y axis. Ny denotes
the number of Trotter steps. Each Trotter step consists of
either the operation E; = U,, U R, U,, or the operation
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E_=U, UgR! U,,. To simulate a Heisenberg evolution
for a time £, we implement the Trotter sequence

RIR,.

]NTKS (A1)

Uneis () ~ RIR, [(E_)*(E4)*

This sequence protects against decoherence and over- or
under-rotation errors caused by global pulses. Numerical
simulations supporting this claim appear in Appendix 1.

The Trotter sequence lasts for 15 ms, containing < 36
Trotter steps. Each Trotter step consists of three substeps,
each lasting for approximately 139 ws. The rising and
falling slopes of each substep are pulse shaped to avoid
incoherent excitations of vibrational sidebands of the qubit
transition. The slopes reduce the effective spin-spin cou-
pling by a factor of 0.84 and the actual interaction time
is 115 ps. Thus, the effective spin-spin coupling values
used in Eq. (3) range from Jy = 336 rad/s for six qubits
to Jo = 398 rad/s for 21 qubits.

The magnetic field variations occur predominantly at
temporally stable 50-Hz harmonics. We reduce the result-
ing Zeeman-level shifts via feed-forward to a field-
compensation coil [59]. The amplitudes end up below
3 Hz, for all 50-Hz harmonics between 50 Hz and 900
Hz. Consider a simple Ramsey experiment on the qubit
transition 42S;/2(m = +1/2) <> 3?Ds;a(m = +5/2). The
corresponding (1/e)-contrast coherence time is 47(6) ms.
The global qubit rotations are driven by the elliptically
shaped 729-nm beam, which causes spatially inhomoge-
neous Rabi frequencies that vary across the ion crystal by
6%.

4. Quantum state tomography

We measure the state of each qubit pair via quantum
state tomography. In each measurement basis, 300-500
quantum state measurements are carried out. To recon-
struct the state from the measurements, we use maximum-
likelihood estimation [79]. We estimate statistical uncer-
tainties by bootstrapping [66].

APPENDIX B: RATE OF HOPPING DURING
HEISENBERG EVOLUTION

In this appendix, we derive an expression for the spin-
exchange rate of the Heisenberg Hamiltonian. For sim-
plicity, we model two qubits governed by the Heisenberg
Hamiltonian

J
H= ?ﬂ (o;}”of) + o:él)o)fm + O'Z(I)O'Z(ZJ) . (B1)

We relabel the o, eigenstates as |z+) = |t) and |z—) =]|]).
Matrices are expressed relative to the basis formed from
products of |1} and || ). The Hamiltonian can be expressed

as
I 0 0 0
Solo -1 2 o |
H==19 2 1 ol (B2)
0 0 0 I

and a pure two-qubit state as |¢¥(f)) =c(D)||]) +
ca(O1) + aa(O)11) + ea(®]11). The coefficients e (f) €
C depend on the time, #, and are normalized as
ZL] lck(®)[> = 1. The dynamics obey the Schrédinger
equation, H|y(f)) = ikd|y (f))/dt. Defining Q :=Jy/3
and setting i = 1, we express the Schrédinger equation in
matrix form as

&1(6) 10 0 0\ /e
an)l o =1 2 o) [ao |
a0l =7l 2 -1 o] lan| ®
éa(t) o 0o o 1) \ao

The solution is

c1(f) = c1(0)e™™,

1 , 1 . .
qmzzqwr“a+ﬂ%+5q@f“0—ﬁ%,

1 o, | , _
c3(t) = 5e3(0)e™ (1 4 %) + Zcr(0)e™(1 — ),

ca(t) = c4(0)e™™ .
(B4)

We aim to derive the time required for |1)) to transform
into |] 7). If the initial state is [4(0)) = |1]), the solution
reduces to

c1(®) =0,

1 . .
Cz(t) — Ee—lﬂt(l + e4lﬂf),

1 .
C3(t) — Ee—lﬂt(l _ e4lﬂf),
ca(f) = 0.

Consider measuring the o, product eigenbasis at time .
The possible outcomes 1| and | 1 result with probabilities

1 . . 11
lex () = 72+ MY oWy — 7 + 5 cos(4)
(BS)
and
les@®)? =1 - [e2(D)]*. (B6)

Therefore, the two-qubit excitation-hopping frequency
is Daip-fop = 422 = 4Jp/3. The corresponding period is
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defined as the hopping time:

2 37
Thop = —— =

iy (B7)
2lfip-p 4Jo

This result agrees with our experimental results and can be
extended simply to N qubits. If the interaction is nearest-
neighbor only, the time for hopping from site 1 to site N is
Thop = (N — 1)37 /4J.

APPENDIX C: INITIAL STATE

If the global system is prepared in [{) [Eq. (4)], pnaTs
models the long-time state of a small system distinctly
more accurately than other thermal states (., and pgc)
do, at all the global system sizes N realized (Fig. 3).
Equation (4) distinguishes pnats for two reasons.

First, suppose that the temperature is high (8 2 0). All
the thermal states resemble the maximally mixed (infinite-
temperature) state 1/2" and so resemble each other. We
therefore keep the temperature low, by keeping the spatial
density of each charge low. We separate the |y+)s from
each other maximally, for each ¥y = x,y,z. To provide a
sense of the size of B at N = 12, we compare with the
bandwidth of the Heisenberg Hamiltonian given in Eq. (3),
the greatest energy minus the least. B equals 7.13 times the
inverse of the bandwidth and 1.74 x 10~2 times the inverse
of the average energy gap.

Second, noncommuting charges distinguish NATS ther-
modynamics from more classical thermodynamics. If we
are to observe NATS physics, therefore, pyats [Eq. (1)]
should depend significantly on Q%", for all y. Hence the
iys should have large magnitudes—and so should the
expectation values (V|0 |¥o), by Eq. (6). Hence, for
each y, the o), eigenstates in |o) should be identical.
The ordering of the x4+, y+, and z+ in Eq. (4) does not
matter. Importantly, |) is not an eigenstate of any Q',
so the global system does not begin in a microcanonical
subspace; hence the experiment is not equivalent, by any
global rotation, to any experiment that conserves just o
and that leads to pgc. When N = 12, Bu. equals —1.36
times the inverse of each nonzero gap of SI'.

We numerically identify many tensor products of the
|y £)s, as well as superpositions of energy eigenstates, that
have B values much greater than our . These states suf-
fer from drawbacks that render the states unsuitable for
observing the NATS: either p,,. = 0 or only one of the
three charges has a nonzero expectation value. Such states
provide little direction information about noncommutating
charges. Furthermore, the states are highly entangled and
so are difficult to prepare experimentally. |yr) is easy to
generate, aside from having a large ) fu, S}

APPENDIX D: NUMERICAL CALCULATION OF
THE NON-ABELIAN THERMAL STATE

Consider calculating the NATS for qubits j and j +
1. One might substitute two-qubit observables into Eq.
(1). This substituting yields an accurate prediction in the
weak-coupling limit [21] However, the long-range inter-
actions of the experiment render a many-body-physics
approach more accurate [62]. We calculate B and py, .
from the definitions given in Eqgs. (5) and (6), which
depend on whole-system observables. Then, we construct

the whole-system NATS in those equations, pQyrs =

exp (—,6 [H'Ht,,iS D D ﬂ},S;,m]) /Z%4rs. Finally, we
trace out all the qubits except forj andj + 1.

We perform the trace stochastically [80], for computa-
tional feasibility. The stochastic trace requires an average
over states selected Haar randomly from the traced-out
subspace. We average over 50-1000 samples, the precise
number determined for each N as follows. First, for small
N, we calculate the trace exactly. We then determine the
number of samples required for our stochastic approxi-
mation to converge to the exact value. From this number
of samples, we estimate the number required for greater
N. (To estimate, we scale down the sample size approxi-
mately inversely proportionally with the dimensionality of
the traced-out Hilbert space, erring on the side of using
more samples than necessary.) We sample this many Haar-
random states and approximate the trace stochastically.
Then, we slightly increase the number of samples, approx-
imate the trace stochastically again, and confirm that the
result does not change significantly.

APPENDIX E: EFFECT OF DEPOLARIZING
NOISE ON RELATIVE ENTROPY

We expect depolarization to dominate the noise of our
experiment. The reason is the experimental Hamiltonian
and Trotter sequence, described in Appendix H 3, as well
as the dominant native decoherence. We rotate the qubits
to effectively transform the native oy0x coupling into the
Heisenberg Hamiltonian, which is isotropic. Meanwhile,
dephasing relative to the o, eigenbasis dominates the
native decoherence. The rotations spread the dephasing
errors to the x, y, and z directions uniformly. Such isotropic
errors effect depolarization [65]. This appendix reports
on numerical simulations of depolarized Trotter evolu-
tions. We infer that noise should not significantly affect the
conclusions drawn from our experimental observations.

We simulate the Trotterized Heisenberg-Hamiltonian
evolution, with and without depolarization, of 12 qubits.
Depolarization probabilistically interchanges the 12-qubit
state p with the maximally mixed state: p — E(p) = (1 —
p)p + pl/4. We choose a noise parameter p = 0.06 and
we apply the channel £ every 1.5 ms. This p value is 30
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FIG. 4. Relative entropies from simulations with and without
depolarizing noise versus time. We simulate 12 qubits subject to
Trotterized Heisenberg evolution alone (filled markers) or with
depolarization (empty markers). The blue circles show relative-
entropy distances to the NATS and the orange squares show
distances to the grand canonical state.

times higher than the value that best reproduces the dis-
tance of the experimental state from pgc. We simulate an
evolution of 45 ms.

Figure 4 depicts the results of the simulation. Time
runs along the x axis. Along the y axis is the relative
entropy between a system-of-interest state and a thermal
state, averaged over all the nearest-neighbor qubit pairs of
the chain (Sec. Il A). pec.ct denotes the final state of the
depolarization-free simulation and pgcpo1 denotes the final
state of the noisy simulation. We refer to the two states
collectively as p. We plot the distance of each state to the
NATS and distance to the grand canonical state. We omit
Pean fOr conciseness, although we analyze this state too. All
qualitative conclusions about pgc apply to pean. The sim-
ulation is intended to reproduce qualitative effects, rather
than exact experimental numbers, as we lack independent
quantitative evaluations of the experimental noise.

First, depolarizing noise affects D(p|| pnaTs) oppositely
to D(p||pac). The reason is that depolarization transforms
the simulated state into the maximally mixed state. pgc
lies close to 1/4, closer than pexact lies to pge. In Fig. 4,
the dashed black line lies below the solid square markers
at most times (Sec. III A explains why). Therefore, push-
ing p toward 1/4, depolarization pushes p farther toward
pce (nudges the empty square markers downward from
the solid square markers, toward the dashed black line).
In contrast, pnyaTs lies farther from 1/4 than pexae lies
from pnaTs: the solid black line lies above the filled disks
at most times (again, Sec. Il A explains why). Therefore,
pushing p toward 1/4, depolarization pushes p farther
from pnats (nudges the empty circles upward from the
filled disks, toward the solid black line). Hence depolariza-
tion increases D(p|| pnats) while decreasing D(p||pgc)-

Second, depolarization appears to affect D(p||pnats)
more slowly than it affects D(p||pgc). The reason is

that depolarization pushes D(p||pgc) in the same direc-
tion as the Trotterized Heisenberg evolution—downward.
Therefore, D(p||pac) decreases quickly. In contrast, depo-
larization competes with the Heisenberg evolution in
pushing D(p||pnaTs) downward. This competition makes
D(pdepol|| PnaTs) depart from D(pexactl|onats) slowly; the
unfilled circles in Fig. 4 separate from the filled disks more
slowly than the unfilled square markers separate from the
filled square markers.

Third, although depolarization ultimately raises
D(pdcpol|| pnaTs) well above D(pexact||pnaTs) in our simu-
lation, no such dramatic raising is visible in the experimen-
tal plot Fig. 2. That is, the empty circles in Fig. 4 rise well
above the filled disks; yet the blue disks in Fig. 2 scarcely
rise at the end of the experiment. Therefore, the exper-
imental noise is weak and does not substantially affect
(D!l pnats)).

Overall, the noise simulation affirms our main con-
clusion. We expect the experimental noise not to
affect D(p||pnats) significantly while lowering D(p||pgc)
somewhat. Regardless of noise, the simulated state
Pexact/depol lies closest to pnats by a large margin. We can
therefore have confidence that the predictive accuracy of
NATS does not stem from the dominant noise.

Simulation of the XY model yields different results but
the same conclusion: noise affects the experimental results
insignificantly. The XY model conserves only two charges
(0" and the Hamiltonian), so pnats should not pre-
dict the long-time state accurately. Indeed, D(p||pnaTs) >
D(pllpcc) at long times; and depolarization increases
both relative entropies. Due to this parallel increase, and
because the experimental noise appears to be weak, noise
is again not expected to affect our conclusion: regardless
of noise, pgc should predict the long-time state best under
the evolution of the X¥ model.

APPENDIX F: DISTINCTION BETWEEN
NON-ABELIAN THERMAL STATE AND
COMPETITORS AT ALL GLOBAL SYSTEM SIZES

The main text answers a question established in Ref.
[21]. Consider a global system of N subsystems, which
exchange noncommuting charges. Consider measuring the
long-time state of one subsystem. Measure the distance of
the state to pyars and to the competitor thermal states: the
canonical pcan and the grand canonical pge. The NATS has
been found numerically, in Ref. [21], to predict the final
state most accurately. However, as N grow, pcan and pgc
approaches pnaTs in accuracy. The reason is believed to
be the initial global state, which has a high temperature
and low chemical potentials (see Appendix A). Does pNaTs
remain substantially more accurate at all N, for any initial
state |Y)? Or do all the thermal-state predictions converge
in the thermodynamic limit (as N — 00), for every |)?
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Our experiment suggests the former, as explained in
Sec. I1I. We construct a |¢p) for which the NATS predic-
tion remains more accurate than the p.,, and pgc predic-
tions, by approximately constant-in-N amounts, at all N
values realized experimentally (Fig. 3). Appendix A pro-
vides one perspective on why this |¢) distinguishes the
thermal states. We provide another perspective here.

We prove that, under conditions realized in our experi-
ment, pyaTs, averaged over space, differs from the average
Pean and pgc. This difference remains nonzero even in
the thermodynamic limit. Appendix F 1 presents the setup,
which generalizes our experiment’s setup. In Appendix
F 2, we formalize and prove the result [81]. Appendix F 3
shows how our experiment realizes the general setup.

1. Setup

Consider a global system of N identical subsystems.
Let OY) denote observable O of subsystem j. Sometimes,
OY) will implicitly be padded with identity operators 1
acting on the other subsystems. The corresponding global
observable is 0" := ) "'_, O9).

The Hamiltonian H'™" is translationally invariant. H™*
conserves global charges O := ZJ‘:V:] oY, for y =
0,1,2,...,c. The charges do not all commute pairwise:
[Q}q),Qg,)] # 0 for at least one pair (y, y’).

We assume that some global unitary V satisfies two
requirements. First, the unitary commutes with the Hamil-
tonian: [V, H®] = 0. Second, conjugating at least one
global charge Q)" with ¥ negates the charge:

Vo vt = —oit. (F1)

We assume that the initial expectation value of this global
charge is proportional to the global system size, as in the
trapped-ion experiment:

(05"), = arN #0, (F2)

for some constant-in-N g,,.

Let |Yp) denote the initial global state. It is invari-
ant, we assume, under translations through t sites, for
some non-negative integer t. More precisely, divide
the chain into clumps of 7 subsystems. Index the
clumps with m = 1,2,...,N/t. (We assume for conve-
nience that N is an integer multiple of 7.) Consider
tracing out all the subsystems except the m™ clump:
Tr1a,..n—tye, mesLme+2...8 (1WoXWol). The form of this
state does not depend on m.

Let us define a state averaged over clumps of subsys-
tems. Let p denote any state of the global system. Consider
the clump that, starting at subsystem j, encompasses t

subsystems. This clump occupies the state

pUyHh-d+=h Tria,..j—1, j+rj+r+1,..8(0).  (F3)

Let 7; denote the operator that translates a state j — 1 sites
leftward. We define the average

N
%Z/‘E (pUJEBl.---JGBrelJ) (F4)

j=1

avg .__
P =

on the joint Hilbert space of subsystems 1 through 7. Addi-
tion and subtraction modulo N are denoted by @ and ©. If
p is fully translationally invariant (if T = 1), then p®'¢ =
Tra3,. n(p), and this definitional step can be skipped.
Multiple thermal states will interest us. The global

canonical state is defined as p2 := exp(—BH")/ZS".

The partition function is Z° := Tr(e ##""). The inverse
temperature B is defined through (Yio|H™ ) = Tr
(H™p%" ) . Define the single-site o) = Tr; (pay)- Denote

by pean the result of averaging p'S over clumps, as in Eq.
(F4).
The global NATS is defined as

s = o [ =8| B = 3" 1,0 | | /288
y=1
(F5)

This B is defined analogously to the canonical 8. The val-
ues of the temperatures values might differ but we reuse
the symbol B for convenience. The effective chemical
potentials ., are defined through [21]

gyN =Tr (Qt,?thTs) - (F6)

_ ot __wC ot
The partition function Zﬁ’;m =Tr (e ﬂ(‘["1 PRy ))

Define pg;m and pyars analogously to pd) and pZE.

Our argument concerns multiple distance measures.
Let O denote an arbitrary observable defined on an
arbitrary Hilbert space. The Schatten p-norm of O is
101], == [Tr (|O)]'/?, wherein |0] := +/OTO and p €
[0,00). The limit as p — o0 yields the operator norm:
lim,_, 00 [|O|lp =: ||O]lop- Let p and o denote operators
defined on an arbitrary Hilbert space. The Schatten p-
distance between the states is [|p — o||,. The trace dis-

tance is Du(p,0) = 3|lp — oll1.

2. Lower bounds on distances between thermal states

We now formalize the result.

Theorem 1. Let the setup and definitions be as in Sec. F 1.
Consider the distance from the average NATS to the
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average canonical state. Measured with the Schatten I-
distance or the relative entropy, this distance obeys the
lower bound

( avg |Qy|

PaarslIPBE) = Dy (pnars: PRE) = >0,

(F7)

Jfor an arbitraryj = 1,2,...,N. pcan can be replaced with
any grand canonical state that commutes with V.

The bound does not depend on N and so holds in the
thermodynamic limit.
Proof. The proof has the following outline. First, we cal-
culate the expectation value of QW0 in p{f1s; the result is
q,. Second, we show using V that the expectation value
in peas vanishes. Because the two expectation values dif-
fer, a nonzero Schatten 1-distance separates the states. The
Schatten 1-distance lower bounds the relative entropy via
Pinsker’s inequality.

O has an expectation value, in the average NATS
state, of

Tr(Q}pNats)

() T UJ@I J @rel)
-prmE ()

N
1 -
=5 Z]Tr (02 piars) (F9)
Jj=
N
L. Y 180D @ 0 @ 19¢) ®pﬁ"
N P ¥ ATS
(F10)
1
= 1r (O pRaTs) (F11)
=q,. (F12)

Equation (F9) follows from the definition of 7;. Equation
(F12) follows Eq. (F6).

Next, we show that the analogous canonical expectation
value vanishes. We begin with the global expectation value
Tr(Q} e_ﬁHml)/th‘;; By Eg. (F1), we can replace the Q5"

with — VO t. We then invoke the cyclicality of the trace:

vd can can

(F13)

Tr (Qtot e—,BH‘“‘) /7% = _Tr ([VQtyotVt] e—BH“’*) /7

= -Tr(g [VTe_BHm V]) /Z° (F14)

= —Tr(gyre ) /2, (F15)

Equation (F15) follows from [V, H*"] = 0. Let us compare
the beginning and end of Eqs. (F13)(F15). The expecta-

tion value Tr (Q;?‘ e PH' m) /Z* equals its negative and

can
so vanishes. We can reexpress the null-expectation value
in terms of the average canonical state:

O_ZTT(

BH“’*) 7

can

(F16)

Tr ([]lm‘—n ® 0V @ 1°M] e—ﬂHlot) JZe

can

I
M= I

j=1
(F17)
N
=Y Tr(QTr; (e #1)) 2zt (F18)
CTIC)
N
=T (000L) (F19
j=l
N
:Z (Q(IJT(pUJQ)l J@TGIJ)) (F20)
j=1
=Tr (0 038) - (F21)

Equations (F19) and (F20) are analogous to Eqgs. (F9) and
(F8).

We have calculated two expectation values of Q:, ,one in
Puars and one in peas. The two expectation values differ,

by Egs. (F16), (F21), and (F12):

| Tr (O paars) — Tr (O p2E)| = Igy| > 0.

We can relate the absolute difference, given in Eq. (F22),
to the trace distance. Let p and o denote quantum states
defined on an arbitrary Hilbert space. The interstate dis-
tance equals a supremum over observables O defined on
the same space [82, Lemma 9.1.1]:

(F22)

Dup,o)= sup {ITr(pO) ~Tr(@O)l}. (F23)

[0llgp=1

Let p = pyars and o = pcan. The operator Qg)/HQ;})HOP
is one normalized O. Therefore, by Eq. (F22), |q,|/
||Q§,])||Clp lower bounds the supremum in Eq. (F23). The
superscript (1) can be replaced with (j), due to translation
invariance in the 7; argument. Hence Dy (pogarss Pean) =

1y 1/110%’|lop > 0. The final inequality follows from (i)
the assumption in Eq. (F2) and (ii) the finiteness of the
single-subsystem ||Q§,”||0p. The first inequality in Eq.
(F7) follows via Pinsker’s inequality: for states p and

020318-12



THERMALIZATION WITH NONCOMMUTING CHARGES. ..

PRX QUANTUM 4, 020318 (2023)

o, D(pl|lo) = Dy(p,o). This proof remains true if pgc
replaces pean and [pgc, V] = 0. [ |

3. Realization in trapped-ion experiment

The general setup of Appendix F 1 can be realized in the
trapped-ion experiment of the main text. In the simplest
realization, Q) = 0. The unitary V = o®V:

N N
Vot = o [T | o8 = 37 (<o) = ~o
j=l

Z
j=1

(F24)

The initial state is [Wo) = |x+,y+,z4+)®V/3, so (Yolo
[Yp) X N and the state is invariant under transla-
tions through v = 3 sites. Define pS := exp (—B [H™" —
p:S)) /ZSE. The effective chemical potential p. is
defined as in the main text and Z, normalizes the state.
PSe can replace the canonical state in Eq. (F7).

The mapping just described is conceptually simple.
However, we find analytically that another mapping

achieves the tightest bound in Eq. (F7): 1/4/3 (0'JlE + 0,

N
+0,),and V = [1/\/6(20& —o,— az)] . (Alternatively,
the o, s in ¥ can be permuted in any way.)

APPENDIX G: SPATIOTEMPORAL
FLUCTUATIONS IN DISTANCES OF STATES TO
THE NON-ABELIAN THERMAL STATE

Figure 5 shows the experimentally observed fluctua-
tions, across space and time, of the relative entropy to the
NATS. The chain consists of N = 21 ions. The state of
every ion pair approaches the NATS in time. However,
nonuniformity remains; edge pairs thermalize more slowly
due to edge effects, while the central pairs thermalize more
quickly.

APPENDIX H: DERIVATIONS OF TROTTER
SEQUENCES

The evolution implemented differs from evolution under
the Heisenberg Hamiltonian given in Eq. (3) for three rea-
sons. First, the Heisenberg Hamiltonian is Trotter approxi-
mated. Second, parts of the Trotter approximation are sim-
ulated via native interactions dressed with rotations. Third,
we reduce decoherence via dynamical decoupling. Here,
we derive the experimental pulse sequence. We review
parts of the setup and introduce notation in Appendix H 1.
In Appendix H 2, we detail the two errors against which the
pulse sequence protects. We derive the pulse sequence in
Appendix H 3. Appendix H4 extends the derivation from
the Heisenberg evolution to the XY model given in Eq. (7).

15 0
14 10
13 —_
12 b
11 2
10 a
E 9 2
T 8 2
v 7 b=}
£ 6 z
= @
5 -1.2
2 10 £
g &
1
1 3 5 7 9 11 13 15 17 19
Pair number
FIG. 5. The relative entropy to the NATS for each qubit pair,

as a function of time. The spatiotemporal fluctuations show that
different qubit pairs thermalize to different extents. The chain
consists of N = 21 ions.

1. Quick review of setup and notation

We break a length-f time interval into N7 steps of
length ¢/Nt =: At each. We aim to simulate the Heisen-
berg Hamiltonian given in Eq. (3), the Jy/|j — k|* of which
we sometimes denote here by J; . Hyeis generates the fam-
ily of unitaries Upeis(f) 1= e_‘?{{Hm’. To effect this family,
we leverage single-axis Hamiltonians

N

H,, = Z Z‘{"‘ 0'}?)0'}?‘).

=1 k=j

(H1)

Hy. and H,, are native to the experimental platform.
The Hamiltonians in Eq. (HIl) generate the unitaries
e HyyAt = U,,,,. We interleave the interaction with rota-
tions R, = exp (—i /4 /"), for y =x,y,z. We denote
the single-qubit identity operator by 1.

2. Two sources of error

Our pulse sequence combats detuning and rotation
errors. The detuning error manifests as an undesired term
that creeps into the Hamiltonian in Eq. (3). Proportional
to o}, the term represents an external magnetic field. We
protect against the detuning error with dynamical decou-
pling: the detuning error undesirably rotates the state of
each ion about the z axis. We apply a r pulse about the x
axis, reflecting the state through the x-y plane. The state
then precesses about the z axis oppositely, undoing the
earlier precession. Another 7 pulse undoes the reflection.

The second error plagues the engineered rotations: a
qubit may rotate too little or too much, because the ion
string is not quite uniformly illuminated. We therefore
replace certain rotations R, with rotations RI,. An ion may
rotate too much while undergoing R, but, while under-

going RI,, rotates through the same angle oppositely. The
excess rotations cancel.
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3. Derivation of Trotter sequence

First, we divvy up the Heisenberg evolution into steps.
Then, we introduce rotations that enable dynamical decou-
pling. We Trotter approximate a Heisenberg step in two
ways. Alternating the two Trotter approximations across
a pulse sequence mitigates rotation errors. Engineering of
robust Hamiltonians has recently been demonstrated for
analog simulations [83,84] and digital circuits [85].

To simulate the Heisenberg Hamiltonian for a time
t, we evolve for Nr length-At time steps: Upeis(f) =
[UHeis(At)]N I, To facilitate dynamical decoupling, we
insert an identity operator on the left: Uy () =
18V [Ulgeis(ADTVT. We decompose the 1®V into rota-
tions about the z axis. How this decomposition facilitates
dynamical decoupling is not yet obvious, as the rotations
commute with the detuning expression. Later, though, we
will commute some of the rotations across interaction uni-
taries. The commutation will transform the z rotations into
R, rotations. For now, we decompose the 18" in two ways:

Usteis(f) = (RN (R)"T[Unteis (ADTT
= RN RO [Unteis(ADTT.

(H2)
(H3)

We implement the right-hand side of Eq. (H2) during half
the protocol and, during the other half, we implement Eq.
(H3). This alternation mitigates rotation errors.

Let us analyze Eq. (H2), then Eq. (H3). R; commutes
with Uneis(Atf) because the Heisenberg Hamiltonian con-
serves 0. : [Hyeis, 0,°'] = 0 implies that [Usis(Af), R,]
= 0. The R;s of Eq. (H2) can therefore move inside the
square brackets:

Utteis (£) = (RHMT [R, Uneis (AT . (H4)

We Trotter approximate the short Heisenberg evolution as

Utteis (A1) = Uy U Uiy (H5)
The ordering of the directions is arbitrary.

We substitute into Eq. (H4) and rewrite the bracketed
factor, pursuing three goals. First, the U,, is not native to
our platform. We therefore simulate it with R_I UxRy. Sec-
ond, one R, must end up amidst the U, s. Two blocks of
U, , s, each containing an R, will consequently effect one
7 pulse. Composing these m pulses will effect dynamical
decoupling. Third, any other, stray R, s must be arranged
symmetrically on either side of the U,,s, as explained
below.

Let us replace the U, in Eq. (HS5) with R;U“Ry [86].
The R_I commutes across the U,,:

(H6)
(H7)

R.Uy Uz, U = R.Uyy (RIUeR,) U
= RRI U,y U R, Uy

We have eliminated the U_. Similarly eliminating the R,
will prove useful, so we invoke R, = R;F-Rny:

R.Upp UzUn = (RIR BRI Uyy UncR, Une
= (RIR,)Uyy UeeRy Upe.

(H8)
(H9)

We will benefit from complementing the R;R}r with a mir-
ror image (R;Rx)’r = RiRy on the right. We will implement
R.U,, U, U many times and instances of the left-hand
R;F-RJlE will cancel instances of the right-hand RIR}-. There-
fore, we insert 18V = R;RxRIRy into the right-hand side
of Eq. (H8):

R.Up U..Uy = (RIR,) Uy Uge R, Upe (R} R.RIR,). (H10)
=Uz;

Again, U, is not native to our platform. We therefore
commute the R, across the U, invoking RI UzR, = Uy,:
R.Uyp U.Uy = (RIR,) Uy U R Uy (RIR,).  (H11)
) )

=F

The final expression has the sought-after form. We sub-
stitute into Eq. (H5), then into Eq. (H4), and then cancel
rotations: Ugeis(f) ~ (RHVT(RIR,) (E1)VT(RIR)).
Suppose that Nr = 4. The E, s, containing four R,s in
total, implement two m pulses—one round of dynamical
decoupling. Furthermore, (R;f)4 = (—=DM18V 50

Uneis(4A1) ~ (RD*(RIR,) (E1)*(RIR,)
= (-DVRIR,) (EL)'(RIR)).

(H12)
(H13)

Now, let Nr > 4, as in the experiment. After one round
of dynamical decoupling, to mitigate the detuning error,
we mitigate rotation errors. We effect four time steps with
an alternative operator derived from Eq. (H3). Then, we
continue alternating.

Let us derive the alternative to E,. We shift the Rs of
Eq. (H3) inside the square brackets:

Unteis(®) = RN [R Ueis (AD]'T (H14)

~ RV [RIU, U, U] . (H15)
The final expression follows from Eq. (HS). The bracketed

factor must end up with the (R;Rx)[. . .](RIR_V) structure of
Eq. (H11), so that rotations cancel between instances of
Eq. (H11) and instances of the new bracketed factor. We
therefore ensure that ;R’;F-RJlE is on the left-hand side of the

020318-14



THERMALIZATION WITH NONCOMMUTING CHARGES. ..

PRX QUANTUM 4, 020318 (2023)

(a) (b) (c)
1.0 . . . . 1.0 12
| il | Jg=0
0.8 i 0.8 10 - - —
- i L] “\_h\o v
206 7ol {1 206 Ly Y !
@ | H] N, = 08 u | N5 Hz
T 04 I —=u® ] Toal VSN0 He
. I i ) * f—-4 2 | Jo=510radis
02} i H ozfb ! \ 1 I { @06 - = ot
j \ LY — Y J ] E V Ko
0.0~ > L S 0.0 LI — . 04 5Hz
-1.0 05 0.0 0.5 1.0 0.8 09 1.0 11 12 - Be =10 Hz
Detuning (kHz) Relative pulse length
0z2f
UP = (UyUnU)™; U= (RIR)(E)™(RIRY), U™ = RIRJ(E- )*(E. Y'1""®R]R, for mod( Ny, 8)=0
0.0 . . . .
E. = Uy UnRiUyy , E- = Uy Uk RIU,, , R... positive (negative) rotation around a=x,y,z 0 200 400 600 800 1000
Frequency (Hz)

FIG. 6. Dynamical decoupling. The simulation is performed with 12 ions, a power-law approximation to the coupling, Jy =
510 rad/s, @ = 1.02, and 10 ms of evolution. The fidelity compares the simulated Trotter-approximated state with the exact ideal
state: (Tr\/ +/ Pexact PTrotter o/ Pmdjz. (a) The introduction of 7 /2 rotations into the Trotter sequence guards against detuning errors. The
right-hand side (rhs) of Eq. (H5) defines the sequence U9, the rhs of Eq. (H22) defines UV, and the rhs of Eq. (H23) defines U120,
(b) Alternating the direction of the rotations guards against systematic rotation errors. (c) The response to oscillations of a time-varying
magnetic field B = Byyp cos(2mf)Z, wherein Bymp > 0 (15 ms evolution). The dynamically decoupled Trotter sequence Ut allows
the fidelity to drop. The drops occur when the frequency of the field, f, is an integer multiple of f; = %(47}01 /Nrotier) ~' = 300 Hz. We
can understand this behavior most simply when Jy = 0 (top curves): the qubits do not interact, so each qubit remains in a superposition,

the relative phase of which changes undesirably under B.

factor, then propagate extraneous rotations leftward:

R! Upy Uz Uy
L
=RIRIRy=R} 18N RIR,=R} (RRD)RIR,
2
= (RIR)(R!)* R, U, U, Uy
e’
=Up Ry

= (RIR)RI RIU,, R Uy, Uy
e e

(H16)

(H17)

(H18)
=U,R} =UuRy

= (RIR) RIU.: RIU R, Uy,

e e, e g, e

=Uyy R} =Up R} =Uz=Ry

= (RIR) Uy, RIUx RIU.. R,
e —

(H19)

(H20)
=UseR} =Uyy R
= (RIR) Uy, UnRI Uy, (RIR,).
e — e —

=E_

(H21)

By Eq. (HM), Uns(t) ~ R (RR)(E-)V(RIR)).
Analogously to Eq. (H13),

Uneis(4A1) ~ (=" (RIR)(E_)* (RIRy).  (H22)
We alternate instances of Eq. (H13) with instances of

Eq. (H22) to simulate long Heisenberg evolutions. Many
rotations cancel. If Ny equals an integer multiple of eight,

Unes() ~ RIR [(EO)'ED'] " RIR,.  (H23)

4. Extension from Heisenberg model to XY model

In Sec. 1II, we experimentally compare the Heisenberg
evolution with evolution under the XY model, in Eq. (7).
H,, generates the unitaries Uy, (f) := exp(—itHy). We can
more easily Trotterize Uy, (f) while mitigating errors than
Trotterize Upeis(7).

As before, we divvy up the evolution into steps.
Then, we Trotter approximate the steps and insert 18V =

[(RI)E]NT (R)":

Uy () = [Uny (ADTT & (Upy Ure)"™ (H24)
N
= [®)]" ®)" Wyv. 25
Due to the square, R? commutes with Uy, Uy,

RUy Uy = R R Uy Uye = R U RUy,  (H26)

e S—

=UxRy =UyyRx
= U,y R2Uy, = U,, U R (H27)

e’

=UpR2

Therefore, in Eq. (H25), we can pull the (RE)NT into the
parentheses:

N,
Uy = [(R)]" (R0 U™ (H28)
We could commute the R? into the center of the U,,s, to

improve the dynamical decoupling. However, Eq. (H28)
suffices; errors accumulate in only a couple of gates.
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FIG. 7. The measured fidelity of the state resulting from the Trotter approximation. The fidelity of the experimentally observed state
to the ideal state is averaged over ion pairs and plotted against time. The error bars indicate the standard deviation over the pairs. The
smaller subplots show the fidelities, at the start and end of the evolution, to the observed states of individual ion pairs. The two types
of markers represent two cases that we compare. First, we realize a 12-qubit system using a chain of only 12 ions (filled blue markers).
The filled gray dots show the corresponding theoretical prediction. Second, we realize a 12-qubit system using a 21-ion chain, by
hiding the extraneous ions from the interactions (empty orange markers). The open gray dots show the theoretical prediction for this
case. The measurements are carried out (a) for the Trotter-approximated Heisenberg Hamiltonian and (b) for the Trotter-approximated
XY Hamiltonian. The fidelity drops and revives at early times. This behavior results from the failure of the Trotter steps to conserve

the charges of the exact Hamiltonian, leading to periodic errors.

The operator F, := RXU,,U,, contains a m pulse.
Therefore, we need perform F, only twice before imple-

2 2
menting F_ := (Rl)z. Furthermore, [(Ri) ] = (—DV.

If Ny is a multiple of four, then Uy, (1) = [(F_)*(F,)?]"™*.

APPENDIX I: ASSESSMENT OF NOISE-ROBUST
TROTTER SEQUENCE

Appendix H describes the Trotter sequence that we engi-
neer to alleviate errors. Here, we demonstrate the effective-
ness of the sequence in numerical simulations and in the
experiment. Figure 6 shows the effects of the dynamical
decoupling in the parameter regime used experimentally.
Constant detuning errors of up to several hundred hertz
do not significantly reduce the fidelity of the time-evolved
state to the ideal state, as shown in Fig. 6(a): the fidelity
drops by only < 10%, despite detuning errors of up to
500 Hz. Similarly, systematic rotation errors of £10%
affect the fidelity little [Fig. 6(b)]: the fidelity drops by 4%.
If the detunings oscillate temporally [Fig. 6(c)], the robust-
ness of the dynamical decoupling depends heavily on the
oscillation frequency f. Recall that ;1 = 15 ms denotes
the temporal length of the experiment and that Nt denotes
the number of Trotter steps. Consider a single-qubit state
expressed as a combination of outer products of o, eigen-
states. If / is an integer multiple of f; = %(4tf /Np)~! =
300 Hz, the state of the qubit acquires a relative phase,
reducing the fidelity to the ideal state.

Figure 7 shows the experimentally observed two-qubit
fidelities (Tr\/\/pexmpexp\/pexact)z. At t = 0, the fidelity

is limited by imperfections in the state preparation. These
imperfections result from the inhomogeneous profiles of

the global rotations (different qubits erroneously rotate
by different amounts). Consequently, the initial fidelity is
0.995(4), when the Hamiltonian has the Heisenberg form
given in Eq. (3) [Fig. 7(a)]. Att > 0, the fidelity is reduced
both by Trotterization errors (gray line) and experimen-
tal imperfections. At the final time, f = #r, the fidelity is
0.97(1).

Additionally, we assess the quality of the hiding oper-
ation described in Appendix A. The ion chain always
contains 21 ions. However, if we wish to use fewer ions,
we hide the extra ions in an extra Zeeman sublevel. To
evaluate the effectiveness of this technique, we compare
two cases. First, we realize a 12-qubit system with a chain
of only 12 ions. Second, we realize a 12-qubit system
using a 21-ion chain. Both cases yield similar fidelities
in Fig. 7. However, the state-preparation errors of the two
cases differ, as the preparation requires additional (hiding)
operations in the second case.

The XY-model Trotterization [Fig. 7(b)] leads to bet-
ter fidelities than the Heisenberg-model Trotterization
[Fig. 7(a)]. The reason, we expect, is the greater simplic-
ity of the XY Trotterization (which requires fewer steps).
At early times, the fidelity of the XY-model Trotteriza-
tion drops, then revives. This effect is visible for two-qubit
subsystems. It results from the failure of the finite-length
Trotter steps to conserve the charges of the exact Hamil-
tonian. Numerical simulations (not depicted) show that the
fidelity of the total system drops at all times.
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