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Tracking the dynamics of physical systems in real time is a prime application of quantum computers.
Using a trapped-ion system with up to six qubits, we simulate the real-time dynamics of a lattice gauge
theory in 1 4+ 1 dimensions, i.e., the lattice Schwinger model, and demonstrate nonperturbative effects
such as pair creation for times much longer than previously accessible. We study the gate requirement of
two formulations of the model using the Suzuki-Trotter product formula, as well as the trade-off between
errors from the ordering of the Hamiltonian terms, the Trotter step size, and experimental imperfections.
To mitigate experimental errors, a recent symmetry-protection protocol for suppressing coherent errors and
a symmetry-inspired postselection scheme are applied. This work demonstrates the integrated theoretical,
algorithmic, and experimental approach that is essential for efficient simulation of lattice gauge theories

and other complex physical systems.
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I. INTRODUCTION

An exciting prospect for quantum computers is the sim-
ulation of complex physical systems [1,2]. Digital quan-
tum computers can simulate a wide range of physical
Hamiltonians, since one can often find efficient circuit
decompositions to approximate their dynamics. However,
the number of qubits and the achievable circuit depth in
experiments are limited. In particular, it is challenging
to simulate larger systems for longer times while main-
taining the fidelity of the simulations. To address this
challenge, there has been substantial theoretical research
on finding optimal simulation algorithms with improved
theoretical error bounds [3—10] and better empirical perfor-
mance [11,12], as well as efficient circuit decomposition
with resource analysis for a range of problems [12-28].
Furthermore, symmetry-protection schemes have emerged
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to suppress algorithmic and experimental errors [29-36],
along with noise-mitigation schemes for extrapolating to
the noiseless limit of observables [37—45]. As a result, it is
of great interest to study how well these recent algorithmic
advances, which mostly concern asymptotic regimes with
a large number of qubits and long evolution times, apply
in a current experiment.

The physical system we consider is a low-dimensional
lattice gauge theory. Gauge field theories are the underly-
ing formalism describing interactions among elementary
particles in the Standard Model and are prime candi-
dates for modeling physics beyond the Standard Model.
They further provide a powerful theoretical framework
for describing low-energy excitations in condensed-matter
systems. There has been tremendous progress in apply-
ing nonperturbative methods to solve lattice gauge the-
ories in various systems and coupling regimes [46-51].
However, evaluation of the real-time dynamics of gauge
field theories remains challenging in the strong-coupling
regime, where a notorious sign problem halts Monte
Carlo based classical simulations [52]. Both fermionic
and bosonic degrees of freedom in gauge theories, when
defined on a discretized spacetime, can be mapped to
spins and, in principle, efficiently simulated using quantum
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simulators. A simple Abelian low-dimensional gauge the-
ory is quantum electrodynamics in 1 4+ 1 dimensions, or
the Schwinger model [53]. It exhibits nontrivial dynamics
similar to those seen in quantum chromodynamics in 3 + 1
dimensions, i.e., the theory of the strong force in nature,
including particle-antiparticle pair creation, chiral symme-
try breaking, confinement, and a nontrivial #-vacuum [54,
55]. The Hamiltonian formulation of the lattice Schwinger
model, i.e., the Schwinger model defined in a discretized
space and with continuous time, has served as a test bed
for numerous computational techniques in recent years,
including quantum simulation and computation. In particu-
lar, there have been several theoretical proposals for analog
quantum simulation [56—62] and gate-based quantum algo-
rithms [22,24,63—70] of the Schwinger model, along with
experimental implementations on various quantum plat-
forms such as trapped ions [71,72], Rydberg atoms [60,
73], ultracold atoms [74,75], and superconducting qubits
[64,76].

Inspired by the first digital simulation of the Schwinger
model in Ref. [71], we revisit the simulation to answer the
following questions. (i) Are larger and longer simulations
of lattice gauge theories viable on present hardware? (ii)
Given recent progress in quantifying the theoretical and
empirical bounds on simulation algorithms, what are the
resource requirements of simulating the lattice Schwinger
model in the purely fermionic formulation with long-range
interactions versus the fermion-boson formulation with
only local interactions? (iii) What are the theoretical con-
siderations in decomposing the time-evolution operator
using product formulas, e.g., how does the Trotter error
depend on the ordering of terms in each Trotter step of the
evolution, what order of the product formula should one
use, and how small should the Trotter steps be, consid-
ering the anticipated size of the experimental error? (iv)
Can recent cost-efficient symmetry protection protocols
provide insights into the nature of experimental errors?

To address these questions, we realize experimentally
the time dynamics of the lattice Schwinger model in its
staggered formulation [77] and within its purely fermionic
representation, for two-, four-, and six-site theories. Along
with the experimental demonstration, different term order-
ings and product formulas are studied and the gate com-
plexity of the algorithm used here is compared with
another algorithm in the local formulation of the same
theory [22]. The symmetry protection of Ref. [29] is imple-
mented for the first time in experiment, in addition to a
simple symmetry-inspired postselection.

II. THEORY AND ALGORITHM
CONSIDERATIONS

In the staggered formulation of the lattice Schwinger
model introduced by Kogut and Susskind (KS) [77], the
two-component matter field at one spatial site is split into

two one-component fields, ¥, each occupying one site of
the staggered lattice. This staggering corresponds to plac-
ing electrons at odd sites and positrons at even sites. The
electric field, £, and the corresponding gauge-link vari-
able, U, are defined on the link connecting the two adjacent
staggered sites. The Hamiltonian in natural units is

N-1 N—-1
g — LNt g g £
HKs—Zag( 10, Y1 — He) + ;‘E
m N
i N VALY -
+2§( D" m, (1)

where N is the number of staggered sites, m is the mass
of the fermions, a denotes the lattice spacing, and g is
the coupling constant. The first term in the Hamiltonian
involves gauge-boson-assisted fermionic hopping between
nearest-neighbor sites. The second term is the energy
stored in the electric field. The last term represents the
rest mass of the fermions in the staggered formulation.
The theory exhibits a local gauge symmetry, which leads
to a Gauss’s law constraint on the allowed physical states
|#)phys- This constraint enforces the net electric field at
each site to be balanced by the electric charge present at the
site, i.e., Gy |9)gnys = 0 With Gy = Ey — Eny — Uil U +
{1 — (=1)"] for all n.

The matter-field operators in Eq. (1) can be mapped
to spin operators by the Jordan-Wigner transformation:
Vo = [1,-,(i67)6, and ¥y = [[,_,(—i6£)6F, with6E =
%(&f + i6Y). With open boundary conditions (OBCs), the
gauge links and the electric fields can be eliminated upon a
gauge transformation and the application of Gauss’s law
[78]. Without loss of generality, the electric field com-
ing into the lattice is set to zero, and the resulting spin
Hamiltonian reads

N-1
7 g 2 : AX X ~YAY
H=x (Jn Ont1 +Jn Un+1)
n=1

R 2 N 6711
+Z§[;(&,§+(—1)m)] +u;(—1)""7

=1
= H* + A# + H? + const. 2)

Here, the original Hamiltonian is rescaled by é, ie., H =

é:-j‘}ks, so that H in Eq. (2) is dimensionless with param-
1 m

eters X = — and p = =5. H* denotes the term propor-

tional to the coupling x, H% consists of (nearly) all-to-all

spin-spin interactions proportional to 626%, and H is the

sum of the terms proportional to 7. The constant terms

are ignored in the following as they do not affect the evolu-
tion. By convention, 67 |0) = |0),6% |1) = — |1), and the
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presence of a particle (antiparticle) is encoded as |1) (]0}))
at an odd (even) site. Therefore, for an N-site system, the
bare-vacuum state, i.e., the ground state of the theory in the
x = 0 limit, is |o) = (|01))®V/2.

The goal is to study the real-time dynamics of bare-
vacuum fluctuations and particle-antiparticle pair creation.
One can therefore perform a quench experiment where the
simulation is initiated in the bare-vacuum state, | (0)) =
|¥o), which is then evolved via the Hamiltonian in Eq. (2)
with x # 0. The survival probability of the bare-vacuum
state is

Poac®) = 1 O )P = |0 @) [y o) 3)

and the particle-number density is v(f) = #Zf:] v, ()
with

(=162 +1

va () = (Y (@) >

V(). G
In the limit of N — 00, the two quantities are related to
each other via v(f) = — ;,r log(Pyac) [53]. The local charge
density is defined as

+()

On(t) = %&(f)l % ¥ (®) )

= (VO)E, — E. 1Y (@), (6)

where the charge of the particle (antiparticle) is —1 (1).
The local charge density is related to the local particle-
number density by Q,(f) = (—1)"v,(£). As there is no
interaction in the Hamiltonian that changes the total net
charge of the system, ), O, is conserved. Therefore, the
model has a global symmetry operator S, = >, 67, which
is consistent with the symmetry of an XXZ Heisenberg
spin Hamiltonian.

To perform the unitary evolution Ui = e~ ith
H= Zk_l hy on a quantum computer, with noncommut-
ing Hamiltonian terms hk, the evolution can be broken into
r smaller time steps of size 8¢ = ¢/r. For each time step,

the unitary u (1) is approximated by a product formula,
which can then be implemented in terms of the available
native gates. For the first-order product formula,

K
S1(6) = e, (7

k=1
while for the second-order product formula,

1

K
S0 = [[e ¥ [T e ¥, ®)

k=1 k=K

where the second product is realized in reversed order.
Higher-order formulas Sp(cﬁt) can also be constructed
recursively for even integers p [79].

While it is generally difficult to obtain an exact esti-
mate for the Trotter error in the pth-order product formula,
progress in recent years has resulted in tighter error bounds
for them. For example, a nearly optimal bound is derived
in Ref. [3], expressed in terms of the nested commu-
tators between different ?xk terms. For the error of the
second-order formula,

||L?(3:) — &,(51) ||

ey T, K
EHZ hiys | hiy s Z hi,

k|=1 k2=k1+]

61)® =4
-+ ? Z Z hk3s

k=1 =k +1 ky=k1+1

K
Z hiy, hi, .
(9

The norms of nonvanishing nested commutators can
be further upper bounded using the triangle inequal-
ity |[[4,B]|l < 2 ||4]| lIB], resulting in closed-form, albeit
looser, error bounds. Based on this approach, an upper
bound for the pth-order formulas in simulating a two-body
Hamiltonian can be obtained:

”z}(ar) ~ 3,60 “ < iy AP (Bt (10)

where k, = (4 x Ssz_l)erlp!/Z is a constant, A is the
maximum strength of the sum of the interactions that
involve any particular site, and y = Z ||h;c|| Since y
only involves the first K — 1 terms of the Hamiltonian,
labeling the index k such that /g is the term with the largest
norm typically results in the smallest error bound.

Given a small 8¢, a higher-order formula results in a
smaller simulation error. However, since the gate count
of S}, (81) scales as O (5”/2), increasing p increases the
gate complexity of the simulation exponentially. The opti-
mal choice for p is a balance between the gate depth, the
evolution time t, and the error tolerance of the simulation.
Since the experimental error can dominate the Trotter error
at long evolution times, the first-order product formula,
which minimizes the gate count per Trotter step, turns out
to be a more suitable choice for the experiment in this
work.

A. Term ordering

Generally, the Hamiltonian terms in Eq. (2) do not com-
mute. Therefore, one needs to find the optimal ordering
in the application of the product formula to minimize
the Trotter error. There are two typical orderings of the
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terms in a nearest-neighbor Heisenberg spin model. The
odd-even ordering is defined as having the odd-leading
two-spin terms, e.g., 65, 65, With T =X,Y,Z and | <
k € Z, applied first, then applying the even-leading two-
spin terms, e.g., 6365, followed by the single-body
terms (if any). In the XYZ ordering, the terms involv-
ing 6% are applied first, followed by the terms involving
67Y, and finally those involving 6Z. It is known that the
odd-even ordering introduces less Trotter error than the
XYZ ordering [11]. Here, we investigate whether the odd-
even ordering is also a better choice for simulating the
Schwinger model, which includes both nearest-neighbor
and (nearly) all-to-all spin-spin interactions.

Since H* in the Hamiltonian in Eq. (2) includes only
nearest-neighbor interactions, one way to define an odd-
even-ordered product formula is to apply the odd-even
ordering to terms in A* only. If we define I;"jf o to be the

term in H* acting on sites n and m and, similarly, H*Z to

be the term in H% acting on sites n and m, this ordering
can be written as

S;)el (6t) — e—iﬁf};'ze—iﬁfffzz
N/2)—1 N2
x 1_[ —i8t A e 1_[ —i8t gy (11)
k=1 k=1

Alternatively, the odd-even ordering can be applied to both
H* and the nearest-neighbor terms in A%, followed by the
application of the non-nearest neighbor terms in % as
well as HZ:

N-1n-2
—idtH? 1—[ 1—[ et A%
n=1 m=1
/-1
x l_[ oA 1 gDty
k=1
N/2
x l_[ JStHZk 12ke rSIHZk 12k

S2(81) =

(12)

The two odd-even-ordered evolution operators are related
by a rotation around the Z axis:

N2 NJ2

Soel (l_[ e—!&(sz 1 2*)S°e2( l_[ e!&(HZk 1 Zk) (13}

As a result, if the state is initialized and measured in the Z
basis, one arrives at the same measurement outcome using
either scheme. Therefore, in the following we only con-

sider S f’el because it requires the implementation of fewer
single-qubit gates.

The symmetry operator S, commutes with 6X &,ﬁr] +
AYRY

6,6,,1 = 0,76,., + H.c., which is not broken up by the

— Exact & XYZ @ oel
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FIG. 1. The numerical simulation of the projection on the bare-

vacuum state Py, (upper panel) and the population of symmetry-
forbidden states Py (lower panel) when the system is initialized
in the bare-vacuum state for N = 6, u = 0.1, and x = 0.6. Differ-
ent term orderings for the Trotterized evolution are considered:
the odd-even ordering defined in Eq. (11) (blue dots) and the
XYZ ordering defined in Eq. (14) (red diamonds). The blue line
denotes the exact evolution.

odd-even ordering scheme. Therefore, this ordering does
not result in any leakage to the symmetry-forbidden sub-
space. This is unlike the XYZ ordering that implements

o—idtH? —istH*

SXYZ(51) =

N-—-1
(YY)
x l_[ e —idtH )y 1_[ e I‘s’Hk.Hl (14)
k=1

where H,E ‘hp1 and H,g 441 are the terms in the Hamiltonian
in Eq. (2) proportional to 67 oﬁr] and &, 0',3;], respec-
tively. The size of the leakage to the symmetry-forbidden
subspace for both schemes is verified numerically in Fig. 1.

B. Gate complexity

There are different approaches to digitally simulating
the Schwinger model. Reference [22] truncates the gauge-
boson degrees of freedom in the electric field basis, |E| <
A. The electric field Hilbert space at each link is then
encoded using log; (2A + 1) qubits. With OBCs and a zero
incoming electric field flux, the exact theory is recovered
for A = N /2. To simulate the model with N sites for time
t, this approach requires O(N + N log, N) qubits and, up
to logarithmic corrections, O (N*?£/%) two-qubit gates,
using the second-order Suzuki-Trotter formula. In con-
trast, our approach integrates out the gauge bosons, leaving
only the fermionic degree of freedom associated with the
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matter fields [71,78]. Therefore, it requires O(N log, N)
fewer qubits to simulate the same model. However, in
this approach, one trades the local gauge-matter interac-
tions for long-range matter-matter interactions that corre-
spond to a Coulomb force. Here, we investigate whether
this purely fermionic model increases the gate complex-
ity of the simulation compared with the local formulation
involving both fermions and bosons.

Given a fixed error tolerance, one can use Eq. (10) to
estimate the required number of Trotter steps in the purely
fermionic formulation for simulation time £, system size N,
and at fixed x and pu:

o(kylfptl+l{p) — o(N2+lfptl+l{p)' (15}

Here, . = O (N 2), which is determined by the interactions

in H#  and y = O (N), which results from summing over
only the interactions in A* [80]. Since each Trotter step
requires O (Nz) two-qubit gates, the gate complexity of
the pth-order product formula is O (N*+!/71+1/P)_ For the
second-order product formula (p = 2), the gate complexity
reduces to N°/2£/2, which is a factor of N? larger than the
scaling of Ref. [22].

The bound on the Trotter error derived above is an
upper bound and the required gate count may be much
smaller in practice. In Fig. 2, we plot the empirical value
of the number of two-qubit gates required for simulating
the time-evolution operator in the purely fermionic formu-
lation using the second-order formula for time f = N. The
empirical gate count is obtained through a binary search
for the minimum number of Trotter steps such that the dif-
ference between the Trotterized and the exact evolution is
at most € = 0.01. This value is compared to two bounds:
the commutator bound obtained from Eq. (10), follow-
ing the discussion above, and the exact commutator bound
derived from computing the norms of the nested commuta-
tors in Eq. (9) exactly. The gate complexity O (N 6‘2) from
the commutator bound agrees with our earlier estimate of
O (N°®) for this formulation of the model. However, Fig.
2 shows that this bound, obtained by applying the trian-
gle inequality on the norms of the nested commutators, is
rather loose. Instead, by computing Eq. (9) exactly, hence
invoking cancellations between the commutators, the gate
complexity reduces to O (N4“5), very close to the empir-
ical scaling of O (N*?). Notably, the empirical scaling is
nearly the same as the scaling of Ref. [22] for the fermion-
boson formulation. However, we note that one may also be
able to obtain tighter error bounds on the algorithm of Ref.
[22] empirically.

C. Symmetry protection

The digitization of a quantum evolution may intro-
duce errors that populate states forbidden by the sym-
metry of the target system. Reference [29] proposes a

10° ; ; : —
E 75 @ Commutator bound
f’j" 10 : @ Exact commutator bound
é 108 @ Empirical
Z" £
E 10°
S|
g 10t
Q 4
g ]
Z 10%¢
4 6 8 10 12
N

FIG. 2. The number of two-qubit gates required to simulate the
time evolution under the Hamiltonian in Eq. (2) on an N-site lat-
tice for time = N given an error tolerance € = (.01, and using
the second-order product formula in Eq. (8). The commutator
bound on the gate complexity (green dots) is estimated from the
error bound in Eq. (10). We also obtain a tighter estimate (orange
dots) by exactly computing the nested commutators in Eq. (9).
Finally, the empirical gate count (blue dots) is obtained through
a binary search for the minimum number of time steps ¢/t such
that the total error is at most €. The straight lines are linear fits
that result in the polynomial scaling given in the figure.

method to reduce this leakage when using product formu-
las and applies it to the fermion-boson formulation of the
Schwinger model. In this section, we discuss whether the
proposed method is effective at protecting the symmetry
of the purely fermionic formulation and in reducing the
Trotter error.

As mentioned earlier, the Schwinger-model Hamilto-
nian in Eq. (2) is invariant under a global rotation around
the Z axis of the qubits, i.e., [I;",S'z] = 0. Therefore, the
expectation value of S. is conserved if the evolution is
exact. However, due to Trotterization errors, (§z) may
deviate from its initial value during the simulation. To mit-
igate this error, one can insert rotations generated by the
symmetry, i.e., C(ar) = e~™5
[29]:

, in between the Trotter steps

t/5t t/5t

uw =[G — []CHeth@nCe).  (16)
k=1 k=1

By choosing suitable angles «y for different Trotter steps,
the errors from each step that do not commute with S,
are rotated by different amounts and can interfere destruc-
tively. This results in smaller leakage to the sector with the
global charges that differ from the initial state. Therefore,
the method mitigates errors in symmetry-violating Trot-
terization schemes, such as the XYZ ordering. Errors that
commute with S’Z remain intact under these rotations @(ak).
As the result, this method has no effect on symmetry-
preserving Trotterization schemes, such as the odd-even
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ordering. Additionally, since the symmetry operator 8. is
diagonal in the measurement basis for the observables con-
sidered here, one can simply mitigate symmetry-violating
errors by postselecting on measurement outcomes that pre-
serve (S.). We compare the two mitigation methods in the
following.

For simplicity, the angles a; in Eq. (16) can be cho-
sen such that oy = katy, where, for each ¢, o) is deter-
mined by numerically minimizing the leakage to the
symmetry-forbidden subspace after #/5¢ steps, as detailed
in Appendix A. As a result, the optimal value of «;
depends on the number of Trotter steps and the simula-
tion time. The top panel in Fig. 3 plots the leakage to
the symmetry-forbidden sector for the odd-even ordering
and the XYZ ordering before and after postselection, as
well as the XYZ ordering with symmetry protection but
without postselection. As expected, the odd-even ordering
results in no population in the symmetry-forbidden states
and the leakage seen in the XYZ ordering trivially goes
to zero after postselection. Importantly, the symmetry-
protected XYZ ordering leads to a strong suppression of
the leakage.

However, this improvement in preserving the symme-
try does not guarantee a smaller Trotter error. Given two
operators Egyy and gy, corresponding to the symmetry-
preserving and symmetry-violating errors in the simula-
tion, respectively, it is generally not true that ||c‘,‘53Jm || <
||5sym +Ssy—m||. In particular, depending on the observ-
able of interest, the effect of the two types of errors may
interfere destructively. Therefore, elimination of &m may
actually increase the error in the expectation value of the
observable. For example, as shown in the lower panel of
Fig. 3, the symmetry protection sometimes increases the
error in the population of the bare-vacuum state instead
of decreasing it. Overall, symmetry protection does not

® oel Sym XYZ & XYZ m XYZ Postselected
T )
0.2} AN
E A4
E * \'Q.
al 0.1 s e
= -4
(1] PSP Al [ bty gt R |
= 04}
g
g8 @
A * N )
| i CN
8g 0.2F 2 AR PR
] - L . P P . .
E’ ' 4 g . : ] .
. [ ]
0.0kl . L) [ A e
0 2 4 6 8 10

t

FIG. 3. The leakage to the symmetry-forbidden sector, P,
defined as the population in the states with a nonvanishing total
charge given a bare-vacuum initial state (upper panel), as well
as the error in the bare-vacuum population (lower panel) are
shown for the odd-even ordering (blue dots), the XYZ ordering
before (red diamonds) and after (green squares) postselection, as
well as the XYZ ordering with symmetry protection but with-
out postselection (yellow stars). The parameters used for the plot
are u = 0.1, x = 0.6, N = 4, and 6t = 1. The optimal angles for
the symmetry-protected simulation are provided in Appendix A.
Sym XYZ refers to symmetry-protected XYZ ordering.

improve the accuracy of the XYZ ordering scheme over
the odd-even ordering scheme. Notably, postselection is
more successful than the symmetry-protection scheme at
mitigating the Trotter error in Py,.

According to Ref. [29], the symmetry protection scheme
mitigates time-correlated experimental errors as well.
Since the errors in our experiment are expected to be

(¢/5)
)~ N R
1y RO e HeHH—H —m EEet
o) ~HzHHHH HH M- O— H o+ 5 =R
1) HH HHHHHO——— H K H— T = e
0y —zHHEHH_HH_Hi-0 T H i
m — O H 0 iy e = IR

p—i0tH" e—i6tH?? e—i0tH”

FIG. 4. The circuit for the Trotterized evolution according to the Hamiltonian in Eq. (2) for N = 6 lattice sites, with odd-even

ordering of the Trotter decomposition introduced in Eq. (11). The interaction term e

and Y;Y;; gates. The e~

it g implemented with nearest-neighbor X;X;

term is implemented with X;X; and R; rotations. The e~ term involves only Z; rotations, with the

angles ;1 = — (0 + 3)8t, o = (0 — 2)8t, p3 = —(p + 2)8t, pg = (. — 1)8¢, us = —(u + 1)8t, and g = pét. Qubits are initialized
in the bare-vacuum state |[010101), then evolved by repeating the circuit in the parentheses #/3¢ times, and measured individually in

the Z basis at the end.
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N =2 6=05

(a)
— Exact @ Trotter & Exp B Postselected
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; B g ;
| Bt H » B
o !. i '-. I
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y 5]

06F
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04t

0.2}

(b) 0 1 0 0.5

Charge Density

. 1
2
e I
21
0 5 10 15
FIG. 5. Experimental results for N = 2 and 8¢ = 0.5. (a) The

upper plot shows fluctuation in the bare-vacuum population, Py,
while the lower plot shows the particle-number density, v, as a
function of time, indicating the creation and annihilation of the
particle-antiparticle pairs. The dashed lines are a guide to the eye.
(b) The upper plot shows the local charge density O, as measured
in the experiment after postselection, while the lower plot shows
its deviation from theory as a function of time.

dominated by uncorrelated noise, it is interesting to inves-
tigate how well the scheme performs in the experimental
implementation. To isolate the effects of symmetry pro-
tection on experimental rather than Trotter errors, we
implement the odd-even ordering, which preserves the
symmetry. The results are presented at the end of Sec. III.

III. EXPERIMENT AND RESULTS

The experiment consists of a chain of up to nine 7' Yb+
ions held in a linear Paul trap, with up to six ions
used as qubits. The two qubit states are realized in the
hyperfine-split ground level, |0) = |ZSU2 F=0,mgr=0)
and |1) = |251;g F =1,mr =0). The qubits are initial-
ized to |0) by optical pumping, and read out on a

TABLE I. Gate counts for simulating each Trotter step of the
time evolution in the Schwinger model with the odd-even term
ordering in Eq. (11), along with the largest number of Trot-
ter steps #/8t implemented in the experiment for N =2,4,6
staggered sites.

N XiX; (x) Ri(6,¢) Zi(0) 1/8t
2 2 0 6 39
4 9 8 16 10
6 20 12 26 4

multichannel photodetector using state-dependent fluo-
rescence [81]. We use two counterpropagating Raman
beams to coherently manipulate the states of the qubits
[82]. One Raman beam is split into individual beams
to address each qubit separately. The native gates in
this setup are single-qubit Z rotations, Z;(0) = /2 &iz,
single-qubit rotations around the equatorial plane of the
Bloch sphere R;(8,¢) = e0/2 @ cosg+5/'sind)  and two-
qubit gates XX (x) = e_’ngx‘ffx, where ¢ is the angle of
the axis of rotation and 8 and x are the rotation angles. The
Z rotations are implemented as classical phase advances
and therefore are practically noise free. The single-qubit
gates R;(0, ¢) are realized by driving a qubit on resonance,
with the laser phase set to ¢ and the duration propor-
tional to 6. The two-qubit gates use the shared motional
modes of the ion chain to mediate interactions between
pairs of ions [83—85]. Carefully designed amplitude mod-
ulation of the laser pulse leaves the qubit states decoupled
from the motion at the end of the gate [86]. The individual
addressing beams allow any pair of ions to be entangled,
making the system a fully connected programmable quan-
tum computer. More details on the setup and gate fidelity
are presented in Ref. [82,87,88].

To simulate the evolution under the Hamiltonian in Eq.
(2), the product formula needs to be decomposed into the
native gates in the experiment. Specifically, to implement
the ¥;Y; (x) = e 1678 (orZiZi (x) = e_lxg"zgfz} gate, each
qubit is rotated around the Z (or Y) axis before and after
applying an X;.X; (x) gate. For the odd-even ordering, i.e.,
S9°! given in Eq. (11), the circuit can be broken down into
three parts: e *#* =P and ¢=H” Ap example of the
circuit for the Trotterized evolution with N = 6 is shown in
Fig. 4. The number of gates needed in each Trotter step for
the different values of N in the experiment are summarized
in Table I. While the number of single-qubit rotations can
be further reduced in the circuits, such an optimization is
not considered here, since they have much lower error rates
than the two-qubit gates.

The experiment starts by preparing the qubits in the vac-
uum state of the Hamiltonian in the limit of x = 0, |vac) =
[¥0), using R;(rr, 0) on alternate qubits. The model param-
eters are set to & = 0.1 and x = 0.6 to ensure nontrivial
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dynamics starting from the bare vacuum. We measure
all the qubits in the Z basis to obtain the state popula-
tions. The state preparation and measurement errors are
corrected by applying the inverse of an independently
measured state-transfer matrix. The observables of interest
are then calculated from the state populations using Eqgs.
(3)H5).

Algorithmic and experimental errors can, in principle,
produce measurement results that break the global charge
conservation of the system. This means that starting from
the bare-vacuum state, the probability amplitude for evolv-
ing to states with nonvanishing total charge may not be
negligible. Therefore, to improve the results, one can post-
select the measurements so that only outcomes in the
relevant symmetry sector are kept. Since the odd-even
ordering implemented in the experiment does not violate
the global charge conservation, these errors result entirely
from the experimental imperfections.

Figure 5(a) plots the bare-vacuum population Py, Eq.
(3), and the particle-number density v, Eq. (4), as a func-
tion of time for N =2 and &¢ = 0.5. For 8t = 0.5, the
theoretical Trotterized evolution (blue dots) has no signif-
icant deviation from the exact evolution (blue line). The
experimental results after postselection agree well with
the theory even after 39 Trotter steps corresponding to
t = 19.5. Postselection is shown to significantly mitigate
the experimental errors for Py,., especially at long evolu-
tion times. However, it does not appear as effective for the
particle-number density or the survival amplitude of other
initial states in general, as plotted in Appendix B. Figure
5(b) plots the local charge density Q,, Eq. (5), derived
from postselected measurement results and their deviation
from the theoretical expectation for the same set of param-
eters. The local-charge profile is consistent with the global
dynamics shown in Fig. 5(a) as the pair creation coincides
with the destruction of the bare vacuum.

Figure 6 plots the same observables as a function of
time for N =4 and 8¢ = 0.5. Compared with the N =2
case, each Trotter step for N = 4 requires seven extra two-
qubit gates (see Table I) and we only perform ten Trotter
steps for this case. Since the experimental error dominates
the Trotter error after a few Trotter steps for 8¢ = 0.5,
the Trotter step size is increased to §f = 1 in Fig. 7, dou-
bling the simulation time. Even though the Trotter error
is larger in Fig. 7 than in Fig. 6, the Trotterized evolution
still qualitatively follows the exact solution. In both cases,
the experimental data after postselection agree reasonably
well with the numerical simulation.

Next, we increase the number of staggered sites to N =
6, with the results displayed in Fig. 8. Since each Trotter
step now requires 20 two-qubit gates and 38 single-qubit
gates, only four Trotter steps can be run before decoher-
ence dampens the evolution. Nevertheless, the qualitative
behavior, including the first revival of the bare-vacuum
amplitude, can still be observed from the results.

N =4, 6=0.5

® Trotter

(a)

Exp M Postselected

— Exact

0.8

0.6

0.4

0.2

0.0
0.6

0.4

0.2

0.04

(b)

Charge Density

M GO DO e L3 b

t

FIG. 6. Experimental results for N = 4 and 6t = 0.5. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Plac(f), while the lower plot shows the particle-number density,
v(t). (b) The upper plot shows the local charge density Q,(f) as
measured in the experiment after postselection, while the lower
plot shows its deviation from theory.

Finally, we study the effect of active symmetry pro-
tection by inserting rotations generated by the symmetry
operator 3., as discussed in Sec. II. In the numerical study
of Sec. 1, a set of optimal angles is found to minimize
the leakage to the symmetry-forbidden subspace caused
by algorithmic error. Since such an optimal set cannot be
found a priori, a straightforward strategy is to use a ran-
dom angle at each Trotter step to average out the leakage
after many Trotter steps [29]. Since the effectiveness of the
scheme depends on the nature of the experimental error,
it is interesting to see if symmetry protection can improve
our experimental implementation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
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FIG. 7. Experimental results for N =4 and 6t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
P (2), while the lower plot shows the particle-number density,
v(f). (b) The upper plot shows the local charge density Q,(f) as
measured in the experiment after postselection, while the lower
plot shows its deviation from theory.

bare vacuum. The unitaries e_"“*SZ, with random angles
oy given in Appendix A, are inserted between Trotter
steps k and k£ + 1. While the population in states forbid-
den by the symmetry, denoted as Pgpy in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, postselection of symmetry-preserving measure-
ments appears more effective in mitigating the error in this
quantity than the symmetry protection as shown in the
lower panel of the figure. This indicates that the exper-
iment is dominated by noise that is not correlated in
time. Note that by construction, the symmetry-protection
scheme only mitigates time-correlated errors.

® Trotter & Exp M Postselected

— Exact

s =

=

——=
e

A
t
(b)
-1 0 1 0.0 0.5
— e t—]
Charge Density Error
1
2
- 3
4
5
6 . N
0 2 4 0 2 4
t t

FIG. 8. Experimental results for N =6 and &t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pyac(f), while the lower plot shows the particle-number den-
sity, v(#). (b) The left-hand plot shows the local charge density
(Q,(t) as measured in the experiment after postselection, while
the right-hand plot shows its deviation from theory. At t = 4, we
reach the gate-depth limit of the hardware.

IV. DISCUSSION AND CONCLUSIONS

We digitally simulate the time evolution of the lat-
tice Schwinger model with up to six qubits using the
purely fermionic formulation. For a four-qubit simula-
tion, we observe four oscillations of the particle density
and the simulated time is almost four times longer than
previously demonstrated using a Trotterized scheme [64,
71]. Given the long circuit depths required for dynam-
ical gauge-theory simulations, gate fidelity, rather than
qubit number, is the main limitation of our implemen-
tation. Efforts to overcome such a technical limitation
are well underway [89]. To mitigate the time-correlated
errors, we apply a symmetry-protection scheme [29] but
find negligible effects in suppressing the errors. This
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FIG. 9. The leakage to the symmetry-forbidden subspace
(upper panel) and deviation of the experimental results from the-
ory for the bare-vacuum population (lower panel) when different
schemes to mitigate errors are applied: no mitigation (orange tri-
angles), postselection (green squares), and symmetry protection
(blue stars). Note that by definition, the leakage to the symmetry-
forbidden subspace is zero after postselection. In both plots,
N =4 and 8t = 1.0, the system is initiated in the bare-vacuum
state and is evolved via the odd-even ordering scheme. Sym Exp
refers to the experimental results with symmetry protection.

symmetry-protection investigation indicates that the dom-
inant noise in experiment is incoherent and uncorrelated.
Incoherent errors can be mitigated by postselection of
the experimental measurements using symmetry consider-
ations. Better-motivated and further-tailored schemes for
mitigating incoherent errors are desired in future simula-
tions. Furthermore, it is found that the symmetry-violating
and symmetry-preserving errors can destructively con-
tribute to given quantities and removing only one of these
errors can decrease the overall accuracy. It is therefore
important to also develop and apply symmetry-preserving
error-suppression schemes in future experiments.

An avenue for improving the quality of the simulation is
reducing the gate depth, e.g., by performing gates in paral-
lel instead of sequentially. In our model, e~ consisting
of only nearest-neighbor interactions, can be applied in a
fixed circuit depth of 4 instead of 2N by performing all the
X5:Xp;,1 terms, then all the Xy;,1X);,o terms, in parallel.
e can be reduced to depth of N instead of N? if non
nearest-neighbor gates X;X;,,, for all i and fixed n, are per-
formed in parallel. With trapped ions, parallel operations
can be done either in multizone architectures [90,91] or in
linear chains with advanced control schemes [92].

Alternatively, the gate depth can be reduced by
using M-body Melmer-Serensen (MS) gates MS(x, M) =

e X TH Dt 66 [83—85]. This approach has been

implemented in Ref. [71] to reduce the number of MS
operations in the simulation of the Schwinger model from
O(©N?) to O(N). In general, a nontrivial optimization of
both frequency and amplitude modulation of the beams
may be required to implement an M-body gate with the
desired rotation angles, as demonstrated in Ref. [59]. Fur-
thermore, one should note that since an M-body MS gate
has a fidelity that is roughly comparable to that of M
2-body MS (X;X;) gates [93], the overall fidelity of the
simulation would likely be similar for both schemes.

When the fermion-boson formulation of the lattice
Schwinger model is concerned, a trapped-ion-specific
approach to reduce the gate count is to encode the gauge
degrees of freedom into the motion of the ions as explained
in Ref. [68]. Besides the standard set of gates, the proposed
hybrid digital-analog scheme involves both spin-phonon
and phonon-phonon gates. This approach leads to a reduc-
tion in both the number of qubits and the number of
entangling gates compared with a fully digital algorithm
involving the gauge bosons [22]. Future experimental
implementations will determine the realistic fidelity of the
operations involving dynamical phonons.

To make implementations of more complex gauge
theories possible, including non-Abelian and higher-
dimensional models, unifying physics insights, algorithm
optimization, hardware implementation, and postprocess-
ing is required, as demonstrated in this work. In this
context, it would be interesting to investigate whether more
resource-efficient encodings of such theories exist, if opti-
mal Trotter decompositions and term ordering schemes can
be found, to what degree these preserve local gauge sym-
metries, whether information regarding the initial state and
the symmetries can be incorporated to further tighten the
algorithmic error bounds [70,94-99], how to balance these
errors with experimental errors, and whether symmetry-
protection schemes are advantageous in suppressing algo-
rithmic and experimental errors. While progress along
these lines is already being made [23,24,27,30,32,36,
67,100-108], further technological advances in quantum
hardware are essential to enable advanced gauge-theory
simulations in the upcoming years.
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APPENDIX A: OPTIMAL AND RANDOM ANGLES
FOR SYMMETRY PROTECTION

In Fig. 3, we study how well the symmetry-protected
time evolution given in Eq. (16) suppresses the symmetry-
breaking Trotter errors for a simulation with the XYZ
ordering with £ = 0.1, x =0.6, N =4, and 8t = 1. As

TABLE II. The values of a; used for the symmetry-protected
XYZ ordering in Fig. 3 at different times ¢, together with the
corresponding leakage to the symmetry-forbidden subspace.

t o Py

1 0 0.0346
2 0.81847 0.0294
3 0.81847 0.0260
4 0.3183x 0.0006
5 0.88117 0.0128
6 023147 0.0018
7 0.43707 0.0201
8 0.18757 0.0011
9 0.84967 0.0055
10 0.98877 0.0000

mentioned in Sec. I1C, for the time evolution with a par-
ticular 7, the angle of rotation, ay, for the kth Trotter step
depends on « in the first Trotter step as ax = ka1, where
0 < a; < 2w. We choose ) to be the smallest angle with
which the leakage to the symmetry-broken subspace at
time £ is minimized.

Figure 10 displays a few examples of how the leakage
varies as a function of a; for selected times ¢. As shown
in the plot, there are several values of ¢; that minimize the
leakage and the number of minima tends to increase with
increasing f. The optimal value of «; is determined from
the smallest minimum found at each £ These values are
listed in Table I1.

Meanwhile, the angles a; for the symmetry-protected
evolution in the experiment in Fig. 9 are chosen at random
from a uniform distribution in the interval [0, 27 ]. These
angles are listed in Table II1.

APPENDIX B: STATE POPULATIONS

The population in the bare vacuum as a function of time
is displayed in Fig. 7 of the main text. For completeness,
we also plot in Fig. 11 the population of all allowed states
as a function of time for the case of N =4 and §¢ = 1.0.

TABLE III. The randomly chosen values of «; used in the experiment to study the effect of symmetry protection on experimental
error. The result is presented in Fig. 9.

t o ay a3 ay as Qg a7 og Qo g

1 0.9559x — — — — — — — — —

2 1.1461x  0.2987x — — — — — — — —

3 0.0150%  0.6927x 1.6279 — — — — — — —

4 0.5861x  0.03337  0.0787w  0.1613xn — — — — — —

5 1.7496n 1.7986r  0.4505x 1.4374  0.3222n — — — — —

6 1.72057  0.0706x 1.0666 1.5912n 1.0554r  0.8444n — — — —

7 024997  0.2990%  0.12127  0.6793x  0.9988r  0.9218x 1.8565m — — —

8 1.7974r  0.7531x  0.05487%  0.4236n 1.8081x 1.72797 042537  0.8807x — —

9 0.8880r  0.3908xn 1.7202n 1.7779x 1.1028x 1.7425x% 1.6552r  0.0604n  0.2346x —
10 0.7112x 1.1025% 1.3913r  0.5387n 1.7179n 1.0585r  0.2870m  0.8636m 1.6639% 1.5434x
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FIG. 11. The evolution of states characterized by the quantity

Py =| (\IJ|e_i‘H |[wo) |2 in the (a)«(f) symmetry-allowed and (g)
symmetry-forbidden subspace for N = 4 and §¢ = 1.0, starting
from the bare-vacuum state |y). Note that Pyjg; = Pyac, which
is also plotted in Fig. 7 of the main text. The effectiveness of post-
selection in mitigating errors is both quantity and time dependent
and, in some cases, it ceases to improve the agreement with
theory at larger times.

Additionally, the cumulative population in the symmetry-
forbidden sector, Psyy, is shown, demonstrating the rate

at which
rows.
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