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Abstract—Vocal strain can have a profound effect on a person’s
life and livelihood. However, methods to identify and quantify
vocal strain presumed to originate in the laryngeal muscles
severely lack. We aim to address this shortcoming. Using motion
capture with consumer RGBD cameras, we track skin deforma-
tion of perilaryngeal anterior neck regions in participants with
and without vocal strain. Neck movement variability differences
between the two groups provides insight into extrinsic laryngeal
vocal muscles that may underlie symptoms of vocal strain.

Index Terms—Vocal strain, motion capture, key-point tracking,
skin deformation, laryngeal muscle

I. INTRODUCTION

Vocal strain in the neck muscles that connect the jaw,

larynx, and sternum during voice productions occurs in 40

percent of occupational voice users and results in difficulties

speaking and loss of income [32], [36], [37]. Considering

25-35 percent of the US population is dependent on their

voice for their career, the high prevalence of vocal strain has

profound impact on both individual and societal levels [3], [5],

[9], [21]. Although vocal strain has significant consequences,

there are no well-vetted, validated physiologic metrics to

identify strain in the vocal muscles; there are also no objective

metrics to monitor treatment progress. This gap has resulted in

ineffective trial-and-error therapies, which require significantly

more voice therapy sessions, time off work, and increased

allocation of medical staff and resources. This project aims

to address these gaps.

Using motion capture (MoCap) technology, we developed

objective metrics for the study and identification of vocal

muscle strain thought to originate in the extrinsic laryngeal

muscles [22]. Currently, there are no motion capture systems

designed for tracking skin deformations on a small scale.

Optical motion capture systems are either marker-less or

marker-based systems. Marker-less systems typically capture

the entire body or the face. These systems are able to lever-

age a large number of features around joints and on faces

to track movement [2]. Our system tracks small-scale skin

deformations associated with neck movement using consumer

level RGBD cameras to record short sequences. Because of

the lack of features or textural differences on necks we mark

key-points with green stickers. The stickers enable a marker-

based motion capture that can be done quickly and easily.

Once recorded, the sequences can then be directly compared

against other sequences to study the neck movement.

II. RELATED WORKS

Although the presumption that the extrinsic laryngeal mus-

cles are involved in vocal strain is ubiquitous, there are

currently no objective metrics to identify musculoskeletal

pathophysiology of vocal strain. The majority of methods to

assess vocal strain involve acoustic vocal output. But these

methods do little to elucidate how movements in and around

the laryngeal muscles needed for voice and speech result in

aberrant acoustic vocal output. Methods that focus on the vocal

production process are needed.

MoCap has previously been used in the limb muscles to

study gait and locomotion and inform muscle overuse and

strain injuries in athletes [7], [10], [35]. However it has not

been applied to the vocal muscles.

The use of RGBD cameras has become wide-spread with the

introduction of consumer level cameras. These cameras enable

methods that once required expensive setups. Single-camera

and multi-camera methods for working with RGBD datasets

reach across many different fields and problems. These RGBD

cameras enable accessible motion capture in many forms.

Reconstruction of the human body for the creation of 3D

human avatars is one such method. Deriving from KinectFu-

sion [24], then DynamicFusion [25], many methods have been

developed to take RGBD video as input to recreate full body

human avatars [11], [42], [43]. These methods leverage both

the color and depth information to track a subject throughout

a sequence.

Similarly, the capture of exclusively the face and head has

been used to create retargetable talking heads [15], [19], [39].

These face tracking methods utilize RGBD cameras to track

the face with marker-less motion capture.

Motion capture has also seen applications such as operating

room assistance [6], [13], physical therapy and rehabilitation

[8], [18], [29], [33], and detecting of falls [20], [26], [38],

[44].

III. METHOD

The goal of the use of MoCap capabilities is to transform

the participant’s recording into a sequence that is comparable

with a whole collection of data. The recording is processed

by first converting RGBD images into RGB point clouds

and then extracting the points within the markers. These

points are clustered and tracked throughout the sequence and

relabelled for consistency giving a set of key-points for each
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Fig. 1. Overview of the data processing pipeline.

frame of the recording. The lengths of the edges between

key-points are then measured for each frame. To compare

different sequences directly we need to ensure they are aligned.

We align the sequences using dynamic time warping on the

audio waveforms. The aligned sequences are then directly

comparable.

A. Data Collection

A total of 13 subjects with and without vocal strain were

recruited for the study. Subjects with vocal strain (defined as

greater than 11 on the Voice Handicap Index-10 [31], greater

than 24 on Part 1 of the Vocal Fatigue index [23], and a clinical

diagnosis of muscle tension dysphonia) are recruited for the

experimental group. Subjects without vocal strain (less than

5 on the Voice Handicap Index-10, less than 24 on Part 1

of the Vocal Handicap Index, and no voice complaints over

the past 6 months) are also recruited for the control group.

16 green neon stickers and headset microphone are placed on

each subject prior to video and audio recordings. All subjects

complete four speech tasks: (1) a repetitive diadochokinetic

articulation rate task for 30 seconds on pataka, (2) standard

reading passage (Rainbow Passage), (3) vocal range task (pitch
glide from lowest to higher note on /a/), and (4) vocal intensity

task (Hey you! as loud as possible).

Data is recorded using a headset microphone and two

Intel Realsense D435 cameras. Cameras are placed in close

proximity to the subject and pointed at an upward slant towards

one half of the front of the subject’s neck. Each camera

captures approximately half of the front of the subject’s neck

with some overlap between views. The cameras record RGBD

images, with a resolution of 640x480, at 30 FPS. Cameras are

mounted on a moving frame and adjustable arms to ensure

sufficient viewpoints for a range of subjects. Subjects have 16

key-points on their neck area marked with green stickers as

shown in Fig. 2. The labelling of these key-points can also be

seen in Fig. 3. Several key-points have specific anchors such

as either clavicle (14, 15), the chin (2), and along either side

of the jaw (0, 1, 3, 4). These key-points are on rigid parts,

(a) (b)

Fig. 2. (a) Positioning of key-point markers on the neck. 0-1 = right jaw,
2 = chin, 3-4 = left jaw, 5, 7 = hyoid, 6 = base of tongue, 9 = thyroid
notch, 8,11 = right sternocleidomastoid, 12 = sternothyroid, 10, 13 = left
sternocleidomastoid, 14, 15 = clavicle, (b) Setup used for recording, cameras
are circled in red.

that is bones, of the neck area. The remaining key-points are

on soft-tissue (cartilagenous laryngeal framework and extrinsic

laryngeal muscle).

B. Key-point Extraction

Given a sequence of RGBD images {I1, I2, ..., In}v , for

each viewpoint v, we create a combined sequence of key-

points {K1,K2, ...,Kn}.

For each frame, Ii = [r, g, b, d], we back-project the depth

values to the camera’s coordinate space to obtain a point cloud

xi = (x, y, z)�:

xi(u) = Di(u)K
−1u, (1)

where u = (u, v)� is a pixel of the image Ivi , Di(u) is the

depth of the pixel, and K is the camera’s calibration matrix.

We then reduce the point cloud to include only the points

that are in the marked areas to get Pi. This is done with a

color threshold,

Pi = {xi(u)|Tlower ≤ Ci(xi(u)) ≤ Tupper}, (2)
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(a) (b) (c)

Fig. 3. Grouping of edges based on movement, (a) shows the edges with the most movement, (b) the edges with a moderate amount of movement, and (c)
the edges with light movement.

where Ci is the color of the points, and Tlower and Tupper are

the lower and upper thresholds, respectively.

The points in Pi are clustered with distance d. Clusters are

formed for points within distance d of each other. The value of

d is dependent on the subject as the distance between markers

varies; if this distance is smaller than d then two markers

can be clustered together. Averaging the points in each cluster

gives a set of key-points Ki.

Arbitrary labelling from clustering can differ for each

frame in the sequence, so key-points are tracked throughout

a sequence. Tracking is done by finding smallest pairwise

distances between Ki and Ki+1 and labels of Ki+1 are

updated to match labels of Ki.

Image noise and the color of subject’s clothing can cause

spurious key-points or clusters that are split. Additionally, the

automatic and arbitrary labelling contribute to key-point labels

that differ between views of the same sequence and between

sequences. To ensure a consistent labelling, remove spurious

key-points, and combine split clusters, the first frame of each

sequence is labelled manually and then propagated throughout

the entire sequence. Manual labelling can be done for frames

where tracking is lost, which usually happens because of quick

motions by the subject.

The key-points are extracted and labelled for each viewpoint

separately and need to be combined. Camera calibration done

during the data recording gives the transformation, T, between

cameras and can be used to combine the views. However, this

calibration has some significant and visible error. We reduce

this error by using the iterative closest point (ICP) algorithm

[4]. The entire sequence of key-points from each view are

matched and used to do this correction. The positioning of

the cameras discussed in section III-A is important here as

the overlap of certain key-points is crucial for the correction.

Key-points 2, 6, 9, 11, 14, 15 are the minimal needed overlap

for good correction to occur.

The updated transform, T′ is used to transform the clusters

of each view and combine them to get new key-points. Because

some clusters are only partially captured, we average the points

of each cluster from each view rather than their key-points to

prevent skewing the key-point heavily towards one view.

C. Measurement

Once the views are merged and labelling of key-points is

consistent between sequences, we produce measurements for

each of the sequences that are then comparable. We take a

subset of the edges produced by pairwise connections of each

key-point, as shown in Fig. 3. The lengths of these edges

are then normalized to the lengths of a canonical frame for

the sequence, giving a sequence of normalized edge length

changes for each edge. This canonical frame represents an at

rest frame for the subject.

Differences in the speed of speech, timings of breaths, and

other natural speech variations cause each sequence to be

of different lengths and misaligned and create a meaningless

direct comparison between sequences. To rectify these dif-

ferences, the sequences are aligned to a template sequence

using dynamic time warping on the audio waveform [34].

After audio alignment, we warp the measurement sequences

using linear interpolation. Specifically, using the timestamps

of the audio frames and image frames as an audio-to-image

alignment, we sample the measurements at each audio frame.

The sampling is done by linearly interpolating between the

measurements:

fresampled
i = (1− w) ∗ fj + w ∗ fj+1, (3)

where fj is the measurements at frame j, fresampled
i corre-

sponds to the measurements warped to the audio frame, i, and

w is the weight calculated as w = (taudioi − tfj )/(tfj+1
− tfj ).

Here taudioi is the audio frame’s timestamp and tfj is the

measurement’s timestamp.

The aligned sequences are directly comparable. We compare

sequences pairwise using the Euclidean distance of each

normalized edge length.

D. Implementation

The data collection system is implemented using the

Robotic Operating System (ROS) [28], Intel’s ROS Wrapper

for Intel RealSense Devices for the cameras [16], and ROS

audio capture package for the microphone [17]. The wrapper

handles aligning depth and color images from the RGBD

cameras. Because there are two cameras we utilize the the

ApproximateTime policy from the message filters package of
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(a) (b) (c)

Fig. 4. Direct distance comparison matrices, (a) Hey you!, (b) pataka, and (c) the rainbow passage. Each row and column is labelled by a subject ID, with
MC indicating a control and ME indicating an experimental.

ROS to synchronize the cameras in software [12]. The markers

used on the subject are 1/2-inch green circular stickers.

Calibration of camera transforms is done using ARPG’s

Vicalib [1]. We do a correction on this calibration using ICP

with PyTorch3D’s [30] implementation of Umeyama’s method

[41]. We implement this correction as an iterative approach but

in practice only one iteration is necessary. Additionally, while

calibration is done at recording time, the correction is robust

enough to not need this initial calibration.

The data processing system is written in Python using

PyTorch [27] for CUDA to speed up the processing. We

use a distance threshold default of 750 mm for point cloud

conversion to exclude background pixels. The default color

thresholding uses an HSV range of [40, 70, 70] to [70, 255,

255]. The standard key-point clustering distance used is 5 mm.

These are default values used for all subjects. Some subjects

required slight modification, for example if markers are placed

too close together, a smaller clustering distance would be

required.

To align the audio sequences the dtw-python package is

used for a dynamic time warping implementation [14]. We

use an open end and open beginning with an asymmetric step

pattern [40]. Before warping, audio is resampled from 16,000

Hz to 160 Hz. Resampling enables the warping algorithm to

run with a reasonable computation time and within memory

constraints.

IV. RESULTS AND EXPERIMENTS

The goal of the experiments performed is to differentiate

between the control and experimental subjects. In all experi-

ments, each sequence is first warped to a template sequence,

and then direct comparisons of the warped sequences are done

as described in Sec. III-C.

A. Direct Comparison by Distance

We first compare sequences of each task directly by taking

the Euclidean distance between two pairs. Following the

alignment of the sequences to a template, the movement of

each corresponding edge should be roughly similar.

Fig. 4 shows, specifically in the pataka sequences, that

the controls have a smaller distance between them than the

experimental sequences and the experimentals have greater

variance in distances among themselves. This does not hold

true in the other tasks.

Greater variance in distance between key-points and edges

in the experimental group compared to the control group

suggests extrinsic laryngeal muscles of vocalization move

differently (i.e., with greater variance) in those with vocal

strain.

B. Comparison by Variability

To gain further insight into how the subjects are moving,

we look at the variability in their movements. This is done

in two ways: variability of movement in each time frame and

variability of each edge across the entire sequence. For both

we use the standard deviation as a measure of variability.

The variability of movement in each time frame compares

the movements of each edge at each point in time. This

shows the range of movement of the participant across the

sequence. The controls exhibit less variance across each frame

as compared to the experimentals, shown for pataka in Fig. 5.

Similarly to the direct distance comparison, this pattern is

present for the pataka sequence but not the others.

Looking at the movement at each time frame gives one look

at how a participant moves across the entire sequence, but fails

to show some of the specifics about how they are moving. To

look at what is moving we can examine the variability of each

edge across the entire sequence. This gives a look at what

edges are moving and which edges are not in each sequence.

C. Edge Grouping and Comparisons

Using the results from the previous experiments, we can

group the edges based on how much they move during a

sequence. We group edges into four different groups, heavy

movement, moderate movement, light movement, and little to

no movement, these groups are shown in Fig. 3. We compare

the direct distance, as in Sec. IV-A and we compare the

variability of movement at each time frame as in Sec. IV-B.
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(a) (b)

Fig. 5. (a) Variance at each point in time for the pataka sequence. (b) Variance of edge movement in the light movement group for the pataka sequence.

In the variability of the edges at a point in time we see

no grouping in all tasks and groups except for pataka in the

light movement group. In this group and task, there is similar

grouping of experimentals and controls that is present in the

direct distance comparison and the variability comparison.
The reason for this separation can be seen in the grouping

of edges and the physiology underlying those groupings. As

shown in Fig. 3, high movement areas represented in (a)

consists of edges going down the center of the neck, from

the chin to either clavicle. The movement largely captures the

up and down movement of the chin and the larynx. Moderate

movement areas in Fig. 3(b) represent the jaw, suprahyoid

extrinsic laryngeal muscles, and accessory muscles (scalenes,

sternocleidomastoids). The light movement in Fig. 3(c) repre-

sents muscles that suspend the larynx as well as the accessory

neck muscles. Movement in Fig. 3(c) areas were observed

more consistently and prominently in the experimental group,

suggesting these areas are more active in subjects with vocal

strain.

V. CONCLUSION AND FUTURE WORK

These finds demonstrate the use of MoCap to identify

physiological areas that underlie symptoms of vocal strain. Our

data suggest neck movement patterns in patients with vocal

strain differ from those without vocal strain during specific

speech tasks (e.g., pataka). Specifically, greater variability of

edge movement throughout a repetitive speech sequence was

observed in the experimental group, with greater movement in

muscles that suspend the larynx and aid in upper body posture.

These findings suggest higher variability in this group, espe-

cially in specific muscle groups, could indicate the presence

of vocal strain.
Increased variability in the pataka task is likely due to the

prolonged, fast, and repetitive nature of the task that taxes

the muscles involved in speech production, creating instability

within the vocal system. Specifically, production of pataka

requires quick and precise movement changes from the middle

of the tongue (pa), to the tongue tip (ta), and back to the

tongue base (ka), over and over again across 30 seconds. These

quick tongue turnovers are not present in the rainbow passage
or brief pitch glide and Hey You! vocal intensity task.

In future research, we hope to refine and identify new

metrics to more precisely identify areas of vocal strain and

identify vocal strain within a subject. We aim to further study

specific edge and edge group movements, as well as movement

not captured by the edges, with a larger group of participants.

We will also determine inter- and intra-rater reliability across

5 additional subjects.
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E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[28] M. Quigley et al., “Ros: an open-source robot operating system,” in Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, May 2009.

[29] M. A. Rahman, A. M. Qamar, M. A. Ahmed, M. A. Rahman,
and S. Basalamah, “Multimedia interactive therapy environment
for children having physical disabilities,” in Proceedings of the
3rd ACM conference on International conference on multimedia
retrieval - ICMR '13. ACM Press, 2013. [Online]. Available:
https://doi.org/10.1145/2461466.2461522

[30] N. Ravi et al., “Accelerating 3d deep learning with pytorch3d,”
arXiv:2007.08501, 2020.

[31] C. A. Rosen, A. S. Lee, J. Osborne, T. Zullo, and T. Murry,
“Development and validation of the voice handicap index-10,” The
Laryngoscope, vol. 114, no. 9, pp. 1549–1556, Sep. 2004. [Online].
Available: https://doi.org/10.1097/00005537-200409000-00009

[32] A. Russell, J. Oates, and K. M. Greenwood, “Prevalence of voice
problems in teachers,” Journal of Voice, vol. 12, no. 4, pp. 467–479,
Jan. 1998. [Online]. Available: https://doi.org/10.1016/s0892-1997(98)
80056-8

[33] S. Saini, D. R. A. Rambli, S. Sulaiman, M. N. Zakaria, and
S. R. M. Shukri, “A low-cost game framework for a home-based stroke
rehabilitation system,” in 2012 International Conference on Computer
&; Information Science (ICCIS). IEEE, Jun. 2012. [Online]. Available:
https://doi.org/10.1109/iccisci.2012.6297212

[34] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[35] W. S. Selbie and M. J. Brown, “3D dynamic pose estimation from
marker-based optical data,” in Handbook of Human Motion. Cham:
Springer International Publishing, 2017, pp. 1–20.

[36] M. Sliwinska-Kowalska et al., “The prevalence and risk factors
for occupational voice disorders in teachers,” Folia Phoniatrica et
Logopaedica, vol. 58, no. 2, pp. 85–101, 2006. [Online]. Available:
https://doi.org/10.1159/000089610

[37] S. Smolander and K. Huttunen, “Voice problems experienced by finnish
comprehensive school teachers and realization of occupational health
care,” Logopedics Phoniatrics Vocology, vol. 31, no. 4, pp. 166–171, Jan.
2006. [Online]. Available: https://doi.org/10.1080/14015430600576097

[38] E. Stone and M. Skubic, “Passive, in-home gait measurement using
an inexpensive depth camera: Initial results,” in Proceedings of the
6th International Conference on Pervasive Computing Technologies for
Healthcare. IEEE, 2012. [Online]. Available: https://doi.org/10.4108/
icst.pervasivehealth.2012.248731
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