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Many-Body Quantum Chaos and Emergence of Ginibre Ensemble
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We show that non-Hermitian Ginibre random matrix behaviors emerge in spatially extended many-body
quantum chaotic systems in the space direction, just as Hermitian random matrix behaviors emerge in
chaotic systems in the time direction. Starting with translational invariant models, which can be associated
with dual transfer matrices with complex-valued spectra, we show that the linear ramp of the spectral form
factor necessitates that the dual spectra have nontrivial correlations, which in fact fall under the universality
class of the Ginibre ensemble, demonstrated by computing the level spacing distribution and the dissipative
spectral form factor. As a result of this connection, the exact spectral form factor for the Ginibre ensemble
can be used to universally describe the spectral form factor for translational invariant many-body quantum
chaotic systems in the scaling limit where 7 and L are large, while the ratio between L and Ly, the many-
body Thouless length is fixed. With appropriate variations of Ginibre models, we analytically demonstrate
that our claim generalizes to models without translational invariance as well. The emergence of the Ginibre
ensemble is a genuine consequence of the strongly interacting and spatially extended nature of the quantum
chaotic systems we consider, unlike the traditional emergence of Hermitian random matrix ensembles.
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Introduction.—The discovery of the connection between
quantum chaos and random matrix theory (RMT) is of great
importance in theoretical physics because RMT provides an
approach that eliminates dependence on the microscopic
details and captures the universal characteristics of an
ensemble of statistically similar chaotic systems, constrained
only by symmetries [1,2]. Historically, the spectral corre-
lation of the Gaussian ensembles was discovered in chaotic
mesoscopic systems for sufficiently small energy scales or,
equivalently, sufficiently late timescales [3,4]. Recently, with
the developments in random unitary circuits [5-18], par-
ticularly in the time periodic or Floquet circuits, analytic
calculations of random matrix behavior in spectral correla-
tions of spatially extended many-body quantum chaotic
systems has been achieved [19-27]. While Floquet circuits
have given access to the study of nontrivial spectral proper-
ties in extended many-body systems—Iike the onset of RMT
behavior [20,25,27-29], spectral Lyapunov exponents [26],
and novel scaling forms and limits [23,25]—translational-
invariant (TT) circuits give rise, via the so-called space-time
duality, to the non-Hermitian dual transfer matrix (Fig. 1,
red) with complex eigenvalues, the dual spectrum. The study
of many-body quantum systems using space-time duality
began in the study of the kicked Ising model at the self-dual
point [22,30-33] and concurrently in the transfer matrix
approach in Floquet circuits [20,25,26]. Subsequently, nu-
merous works have investigated the nonunitary “dynamics”
in the space direction [34—38]. The objective of this paper is
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FIG. 1. Regime diagram of spectral form factor K(z,L)

[Eq. (1)] for many body quantum chaotic systems with transla-
tional invariance in space and time, with bump, random matrix
ramp (RMT), and plateau regimes. For fixed ¢ and increasing
L (purple), the SFF exhibits an initial linear ramp behavior
(yellow) which necessarily requires nontrivial spectral statistics
of the dual spectra. Inset: Diagrammatical representation of
equality of the spectral form factor computed using the dual
transfer matrix [Eq. (1)], with unitary 2-gate (green), Floquet
operator W(L) (blue), dual transfer matrix V() (red).
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to provide evidence of the emergence of non-Hermitian
Ginibre (GinUE) RMT-behavior [39] in many-body quan-
tum chaotic (MBQC) systems in the thermodynamic and
scaling limit, in contrast to the emergence of standard
Gaussian Hermitian RMT ensembles in late time, as
illustrated below.

l Many-body quantum chaotic systems l

emerges in time / \ emerges in space

l Gaussian ensembles l I Ginibre ensembles l

Heuristics.—One of the simplest nontrivial and analyti-
cally tractable quantities to diagnose chaos is the spectral
form factor (SFF), defined as [2,19-23,25-29,31,41-55]

K(t.L) = ([Try V(1 L)]P) = (Trg V(5. DIP). - (1)

where W(t,L) = []’,_, W(¢, L) is a time evolution oper-
ator acting on Hilbert space H, and V(t,L) = [[5, V(t,))
is the corresponding dual operator (Fig. 1, red) performing
“evolution” in space on dual Hilbert space . ¢ and L
denote the numbers of repeated actions of W and V, and can
be treated as effective time and system size, respectively
[56]. For Floquet systems, one has W(#', L) = W(L), while
V(t, j) = V(r) for TI systems with transfer matrix V/(¢). We
can generally diagonalize V() with the eigenvalues {z;} =

{pje?i} with p;.¢; € R.

kL) = (S + S gl ). @

i#]

We are denoting as (...) the ensemble average over
statistically similar systems. In the absence of extra
symmetries, RMT predicts K(#,L) ~tL for TI Floquet
systems. This can be understood as the spectrum of W(L)
splits in L momentum sectors which emerges because of
TIL. If correlations between sectors vanish, the spectral form
factor results from the sum of the usual linear-in-f behavior
within each momentum sector [23]. For many-body sys-
tems, this RMT behavior emerges whenever ¢ > t1y,(L) or,
equivalently, L < Ly (¢), where t1y,(¢), L1, (L) are, respec-
tively, the many-body SFF Thouless time and length,
related by Ly[ttn(L)] = L. The Thouless time is a sys-
tem-dependent quantity which characterizes the timescale
for the onset of chaos in the two-point level correlation and
in general is expected to grow with system size L [23] (with
the relevant exception of the dual-unitary circuits
[22,31,36,41,57-59]). It is insightful to reinterpret these
considerations in terms of the spectrum of V(f). From

Eq. (2), we see that if phase correlations could be neglected,
K(t,L) = DL, with A(t) = max; Inp; for L > L,(1). We
label this regime as the “exponential bump” region in
Fig. 1. Thus, the existence of the “ramp” regime, character-
istic of RMT, for L < Lyy,(¢) implies that the off-diagonal
term in (2) necessarily display nontrivial correlation, such
that the exponential behavior of the diagonal term in (2)
could be compensated. We emphasize that this heuristic
argument applies to generic translational invariant MBQC
systems. The characterisation of the spectral statistics of
V(¢) will be the main objective of this Letter. As we show
below, such dual spectral statistics falls under the univer-
sality class of Ginibre ensemble, which can be seen as the
most generic rotation invariant Gaussian ensemble, once all
relevant symmetries have been taken into account (e.g.,
space-time translational invariance).

Models.—We consider three one-dimensional random
unitary circuits as models of MBQC, namely, the brick-wall
model, the random phase model, and the kicked Ising
model. All three models can be written as the operator
Wt L)=T[,_,W(.L)=][—,V(t.r) =V(t.L), where
W(7,L) and V(t,r) refer, respectively, to the time and
space transfer matrix shown in blue and red in Fig. 1, acting
on the Hilbert space with dimensions ¢" and ¢, respec-
tively, with ¢ being the on-site dimension [56]. The circuit
is composed of unitary two gates u(#, r) and one can define
the space-time dual of u via u¢d(7,r) = v (¢, r). The
precise definitions of the gates u(#,r) are given in the
Supplemental Material [60], and are not crucial for our
discussion as long as the models are chaotic and have no
conserved quantities. We define four setups resulting from
the combination of translational invariance in space and
time: (a) Temporally and spatially random unitary circuits,
where all u-s are drawn independently. In this case, spectral
correlations are trivial in both space and time directions,
with K(z,L) ~ 1 for all ¢, L [23]; (b) temporally periodic,
i.e., Floquet, and spatially random (Floquet) circuits, where
u(t',r) = u(t",r) forall #, " and r; (c) temporally random
and spatially TI random circuits, where u(#, r) = u(¢, ')
for all ¢, r and 7’; and (d) Floquet and spatially TI (TIF)
circuits, where u(#,r) = u(¢", ') for all 7, ¢, r and r'.

Dual spectral statistics.—We start by focusing on TI
(temporal random) models (case c), where the transfer
matrix V(¢) has a well-defined spectrum and exhibits no
additional symmetries since the model is temporarily
disordered. As the spectrum is complex, in order to analyze
its correlations, we resort to (a) level spacing distribution
and (b) a natural generalization of SFF, known as the
dissipative spectral form factor [47]. The SFF of a generic
complex spectrum is exponentially growing or decaying
due to the imaginary parts of the complex eigenvalues. To
circumvent this problem, dissipative SFF instead treats the
complex spectrum as a set of points in the plane and
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assesses the distribution of their Euclidean distances.
Indeed, for a non-Hermitian operator with spectrum
{20, = x, + iy, x,, ¥, € R}, the connected part is de-

fined as
R o 2
K:C(t’ S) = <'Znelx,,t+ly,,s > _ ‘<Znezx,,t+zy,,s> , (3)

where t and s are two generalized time variables. We
organize them into the complex time 7 = ¢ + is = |z]e",
and will abusively use the polar coordinate (|z,6) to
parameterize the arguments of /.. As a yardstick for the
generic behavior of /C., we consider the GinUE, sampled
by taking N-by-N random matrices with independent com-
plex Gaussian matrix element with variance 6> = v/N. In
other words, the probability density for a matrix M is
o exp[—N/(2v)TrMM?], and is thus rotational invariant.
Therefore, the GinUE is expected to capture the spectral
correlations of sufficiently generic, or “chaotic,” complex
non-Hermitian matrices, in a similar fashion to how the
Gaussian and circular unitary ensemble are the universality
class for unitary and Hermitian matrices, respectively
[47,61]. The dissipative SFF can be computed explicitly
for GinUE [47]. Keeping the leading contribution in N, /.

simplifies to
N L“[2
,9):—<l—e_W), (4)
v

which is rotational symmetric and shows a (dip-)ramp-
plateau behavior [62], analogous to the SFF for closed

Ke Gin (|7

quantum systems: At |t| < A~! ~ /N, it increases quad-
ratically ~|t|>/4 in large N until it plateaus at N at a time
comparable to the inverse of the mean level spacing A in
the complex plane. Remarkably, the quadratic ramp of
dissipative SFF for GinUE is drastically different from the
corresponding behavior for Gaussian unitary ensembles,
which is linear in time. The quadratic ramp is sensitive to
the variation of density of states across the complex plane,
and thus unfolding is required to uncover the true long-
range dual spectral correlations [60]. In Fig. 2(a), we show
for the TI random phase model, as a representative
example, a good collapse of C.(|z],0)/K.(|z| = .6)
against |z|A, approaching GinUE behavior (4) as the dual
system size ¢ increases, with a similar approach for other
models [60], demonstrating universality.

To provide further evidence of emergence of GinUE, we
probe the spectral correlation at the scale of mean level
spacing in the complex plane using the nearest-neighbor
spacing distribution in Fig. 2(b), and complex spacing ratio
[63] in [60], for the three different TI models. We find
signatures of level repulsion consistent with the corre-
sponding RMT universality classes (including the ones
with time reversal symmetry [60]), and with the dissipative
SFF results around the A~! region.

SFF of GinUE.—With the insight that dual-spectral
correlation falls under the universality class of GinUE, it
is natural to ask whether this information can be used to
understand the behavior of the SFF. As before, we start by
focusing on TI systems, where, in the absence of extra
symmetries, the correlation of the dual spectrum are
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FIG. 2. Universal correlations for representative many body random quantum circuits [60], showing approach to corresponding
quantities computed for the Ginibre ensemble (green). (a) Dissipative spectral form factor (3) of the dual spectra of the brick wall model,
for t =3, 4, 5, 6 from light to dark red. (b) Nearest neighbor spacing distribution of the dual spectra of the brick wall model (on site
dimension ¢ = 2, t = 6, purple), random phase model (¢ = 3, ¢ = 8, burgundy), and zero momentum sectors of translational invariant
Floquet brick wall model (¢ = 2, t = 7, red) and random phase model (¢ = 3, t = 10, gold). Kicked Ising model away from the self
dual point at J = 0.75J . (gray) shows the distribution corresponding to the symmetric Ginibre ensemble (pink curve obtained from
N = 2187) due to time reversal symmetry [60]. (c) Scaling collapse of the spectral form factor x;(x) for two models and kg;, (x), for the
Ginibre ensemble (8), against x = L/Ly, or L/L* with excellent agreement, where Ly, is Thouless length, and L* is the inverse mean
level spacing for Ginibre ensemble. (d) L/Lyy, (dots) and L* (dashed line) against time #, used for the collapse in the main panel. For
Ginibre, we define an effective time via N := ¢'. (e) Scaled spectral form factor Kyg(z, L)/L for translational invariant Floquet brick
wall model (¢ = 3, t = 2, 3, 4, red) and the numerical fit of Kyp_gin(#, L)/L (green) against L with darker colors for larger 7. We fit
Krip_gin(t, L) to Kpp(t, L) by tuning L} and L3, in Eq. (12), which are plotted against time ¢ as blue and red, respectively, in (f).
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captured by the standard GinUE, whose joint probability
distribution function of eigenvalues {z;} is known exactly
[64]. We model the SFF in (1), by replacing the transfer
matrix V() with V; drawn from the GinUE of size N, and
obtain [60]

Kgin(N. L) = (|Tr[Vg] )
ot ((L +N)! - —{fv’ﬁ:ﬁﬁ’,)
NEL DN = 1!

= N5+ (5)

In matching the predictions of (5) with many-body models,
we encode ¢ dependence in the matrix size N, whose
functional form will be specified later. In the limit of large
N at fixed large L, Kgin (N, L) = v“L[1 + O(L*/N?)]. The
crossover scale L%, = \/N is related to the inverse of mean
level spacing A in the complex plane. This suggests a
scaling limit where L and N are sent to infinity with x =
L /L%, fixed and one has

. 2
2 sinh (x—)
o Kgin 2
Kain(¥) = N 'L X2
x=L/Lf,

(6)

In fact, the above scaling form of GinUE shares similarities
with the scaling forms proposed for TI (temporal random)
systems in [23], given by

. Kri_mBoc
Kr-mpoc (X) = thl_f{loo TQ, (7)
x=L/Lyy(1)

for TI systems, where instead of L7, in GinUE, the system-
dependent many-body Thouless length Ly,(¢) is used to
define the scaling limit. Now, given that (i) the spectral
correlation dual spectra of many body chaotic systems falls
under the GinUE universality class; (ii) a linear ramp in L
naturally emerges from (5) for L < L}, coinciding with
the appearance of the linear-ramp in SFF of chaotic
systems; we conjecture that the scaling form of GinUE
describes the scaling form of TI chaotic systems once L7,
and Ly, (¢) are identified, i.e.,

KTI—MBQC(X) = Kgin(*) = Kr1-Gin (%), (8)

To test this claim, we simulate both sides of (8), for TT brick
wall model, random phase model, and GinUE in Fig. 2(c)
and find an excellent collapse. We note that the scaling limit
in (7) differs from the infinite-g result obtained for the
random phase model in [23] which disagreed with the
finite-¢ numerical simulations. The universality of x(x)
implies that the microscopic details are only reflected in the
function Ly, (), and not in the scaled function x(x), as
observed in [23]. Also, the validity of Eq. (8) indicates that
the effective size N of the equivalent GinUE matrix shall

not be fixed from the dual Hilbert space dimension (= g%'),
but rather from the emerging Thouless length, i.e., N =
L ~ Ly (1)? < ¢* [Fig. 2(d)].

Beyond translational invariance.—We now extend the
previous considerations to Floquet systems. We first con-
sider with spatial randomness (case b) and then we
incorporate TI (case d), and demonstrate the emergence
of GinUE-like behavior with and without TI. To incorpo-
rate time periodicity, we first observe that the transfer
matrix becomes invariant under time translations, and thus
its spectrum can be split in time momentum or frequency
sectors. In the inset of Fig. 2(b) and [60], we, respectively,
compute the dissipative SFF and spacing distribution for
the dual spectrum in each sector, and confirm the emer-
gence of Ginibre statistics. Time translation implies
V(t,r) = TV(t,r)T~!, where T shifts the dual system over
one period. For simplicity, we assume invariance under one
site translation, with T'|s = sys,...5,) = |s253...5,81), gen-
eralization to longer unit cells being straightforward. For
each configuration s, we define its associated period as the
minimal z = 1, ..., # such that 77|s) = |s). To formulate the
statistical properties of the ensemble, we restrict the Hilbert
space to the set of computational basis {|s)} translational
invariant with only period f. Indeed, the fraction of
configurations with maximal period goes to 1 for large ¢
(and/or obviously for large ¢g). Using N, to denote the
number of distinct orbits under the translation operation,
we formally have a dimension for the restricted dual Hilbert
space dim(7) = tN,,. Then, we model the transfer matrix
V(z,r) by a random matrix Vs with complex Gaussian
entries and covariance

1
(Velss Valhy) = N, Z5srf(p)5s/rﬂ o/ (T=7). (9)

where J(z —7') controls the correlation between matrix
elements. As pointed out in [65] via a semiclassical
expansion, the emergence of SFF linear ramp using
RMT K(t) = ¢ in single-particle chaotic Floquet systems
can be associated with the pairing between two periodic
orbits, which can happen in ¢ possible ways (¢ being the
discrete length of the orbit here). In extended chaotic
systems, the factor of ¢ corresponds to the possible values
of t=1,...,t for local pairing of orbits [20,45]. The
interaction between neighboring local degrees of freedom
forces similar pairings between local orbits, quantified here
by the function J(r—17). A simple calculation gives
Kp_gin(t.L) =Tt [V (t.L)]*) = XTI T (1= 7i40) =
S [ (w)]F [60], with J(w) the Fourier transform of J(z).
We thus see that the SFF behavior in the scaling limit
depends on J(w). For simplicity, we suppose J(z —7') =
6.0 + f(t)h(z — '), where f(t) decays to zero on the scale
of the Thouless time, and the function /(z — 7’) controls the
correlation between neighboring pairings. Within this
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formulation, the scaling limit depend on the details of the
Fourier transform /(). However, the exact calculation in
the random phase model at infinite ¢ [20,23,60] leads to
h(t—7')=1-6,, which implies h(w)=15,,— 1.
Numerical evidence supports the claim that in general
h(w # 0)/h(w = 0)—">*0. Under this assumption, one
recovers the emergent Potts model of SFF [60] and the
universal result from [20,23],

Llim Kegn—t=¢"—x—-1, (10)
Jt—=00
x=L/L§(t)

Kp_Gin(X) =

with L(¢) = [f(£)h(0)]~". Hence, we have for case b

Kp_gin(X) = KF—MBQC(X)- (11)

Translation invariant Floquet case—For TI Floquet
systems (case d), we model the transfer matrix with (9),
except that TL is imposed, i.e., V; (¢, r) = V(¢ ¥') forall r,
¥'. In practice, Eq. (9) implies that different frequency
sectors are statistically decoupled. We can thus evaluate
Ktir_gin for this model, using Eq. (5) within each sector
and replacing the variance v/N — J(w)/N,. Using the
results in Egs. (6), (10), one obtains for L # 0,

Kip_gin(t.L) = KGin (N, L) Kp_gin (£.L)

L L
~ LKTI_Gin (L_*> |:KF—Gin (E) ‘H] . (12)
I F

and sees that the emerging scaling form depends on the
ratio between the relevant length scales, namely, Lf and
L%;. For instance, if L, < Ly at large ¢, the appropriate
scaling limit has x = L/L%, fixed, giving the scaling form

TI K1ir_gi
K"(FIF)—MBQC (.X') = L1t1—>oo Tm = KTI-Gin ()C) (13)
x=L/L},

On the contrary, if Lj <« L7y at large ¢, the appropriate
scaling limit has x = L/Lj}; fixed leading to

K
F . TIF-MBQC
K(TII):—MBQC(x) = L%}Lnoo ———— —t = Kp_g(¥). (14)
x=L/Lg

To test this, in Fig. 2(e), we simulate the TI Floquet brick
wall model as a representative example, and show that an
excellent fit can be obtained using Eq. (12), with L and L7,
as fitting parameters in Fig. 2(f). While we cannot deter-
mine the large-¢ behavior of L}, L from the finite size data,
we can extrapolate that L, << L, for this model, and obtain
a consistent scaling collapse of (13) in [60].
Discussion.—The emergence of universal Ginibre be-
havior complements the known emergence of Gaussian
unitary ensemble in such systems, and opens up a new
avenue to characterize quantum chaos. We emphasize that

the emergence of GinUE is a many-body quantum phe-
nomenon: First, the construction of spacetime duality
requires spatial structure. Second, the crossover between
linear ramp to exponential behaviors around Ly, (or fry)
and the scaling collapse in the scaling limit is a manifes-
tation of many-body quantum effect—the (connected) SFF
of Gaussian and circular ensembles have no exponential
regime at all.
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