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Abstract

Fairness related to locations (i.e., “where”) is critical for the
use of machine learning in a variety of societal domains in-
volving spatial datasets (e.g., agriculture, disaster response,
urban planning). Spatial biases incurred by learning, if left
unattended, may cause or exacerbate unfair distribution of
resources, social division, spatial disparity, etc. The goal of
this work is to develop statistically-robust formulations and
model-agnostic learning strategies to understand and promote
spatial fairness. The problem is challenging as locations are
often from continuous spaces with no well-defined categories
(e.g., gender), and statistical conclusions from spatial data are
fragile to changes in spatial partitionings and scales. Exist-
ing studies in fairness-driven learning have generated valu-
able insights related to non-spatial factors including race,
gender, education level, etc., but research to mitigate loca-
tion related biases still remain in its infancy, leaving the main
challenges unaddressed. To bridge the gap, we first propose a
robust space-as-distribution (SPAD) representation of spatial
fairness to reduce statistical sensitivity related to partitioning
and scales in continuous space. Furthermore, we propose a
new SPAD-based stochastic strategy to efficiently optimize
over an extensive distribution of fairness criteria, and a bi-
level training framework to enforce fairness via adaptive ad-
justment of priorities among locations. Experiments and case
studies on real-world agricultural monitoring show that SPAD
can effectively reduce sensitivity in spatial fairness evaluation
and the proposed stochastic bi-level training framework can
greatly improve the fairness.

Introduction

The goal of spatial fairness, or fairness by “where”, is to re-
duce biases that has significant linkage to the locations or
geographical areas of data samples. Such biases, if left unat-
tended, may cause or exacerbate unfair distribution of re-
sources, social division, spatial disparity, and weaknesses in
resilience or sustainability (CNBC 2020).

In the following, we illustrate the societal importance of
spatial fairness using an example application context in agri-
culture. Food production is witnessing tremendous supply
stresses as a result of rapidly increasing population, climate
change, etc. The urgency of the problem has led to major
national and international efforts to monitor crops at large
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Figure 1: Spatial bias examples. (a) and (b) show F1-scores
of tomato classification by the same model (trained twice).

scales (e.g., NASA Harvest, G20’s GEO-GLAM global agri-
culture monitoring initiative), and these systems and alike
heavily rely on both satellite Earth-observation imagery and
learning methods (Kamilaris et al. 2018; Kussul et al. 2017).
More importantly, resulting products such as crop maps and
acreage estimates (Olofsson et al. 2014) are used to in-
form critical actions (e.g., distribution of subsidies (NASEM
2018; Bailey and Boryan 2010; Boryan et al. 2011)) to mit-
igate risks (e.g., natural disturbance incurred food shortage)
and support local farmers, which are necessary for contin-
ued sustainability and stability. However, current products
used to support these important decisions are largely subject
to unfairness across locations. For example, prediction ac-
curacy in one region can be easily compromised to pursue
better results at other places (e.g., Fig. 1). Such spatial bias
can be especially hurtful for a larger number of small holders
who represent the main production force behind minor crops
(CNBC 2020; USDA 2021; Waldner et al. 2019). Similarly,
they can lead to unfair damage estimations (e.g., decrease
in yield) due to floods, drought and hurricanes, which are
often used to calculate farm insurance. Broadly, spatial fair-
ness has important implications in decision-making across
many domains, including disaster management (e.g., floods,
wildfires), large-scale carbon monitoring which affects car-
bon tax, transportation (e.g., traffic and accident prediction,
delivery estimation, demand forecast), and many more.

The formulation and enforcement of spatial fairness in-
troduce several major challenges. First, unlike traditional
categorical-attribute-based fairness (e.g., race or gender-
based), spatial domain is a continuous space, which means
the “categories” are not well-defined or given-for-free. Sec-



ond, statistics (e.g., fairness scores based on variance) cal-
culated from spatial datasets are fragile or sensitive to both
the partition of space and scales, which is also known as the
modifiable areal unit problem (MAUP; detailed in Def. 2).
In other words, conclusions on “fair” or “unfair” can be eas-
ily altered by simple changes in spatial partitions or scales.
The lack of consideration on MAUP has led to major societal
concerns such as the recent debate on partisan gerrymander-
ing at the US Supreme Court (NPR 2019).

Despite the importance of spatial fairness for the use
of deep learning in societal applications, research on this
topic is still in its infancy and has barely been studied ex-
plicitly in the context of deep learning. Traditional line of
research on fairness and equity in space mainly focuses
on direct analysis over existing maps or their derivatives
(e.g., COVID-19 statistics, access to resources) (Karaye and
Horney 2020; Thebault-Spieker, Hecht, and Terveen 2018;
Thebault-Spieker, Terveen, and Hecht 2017), which does not
aim to address spatial fairness issues entangled with ma-
chine learning or deep learning techniques, i.e., improving
the techniques’ ability to preserve spatial fairness in train-
ing or prediction. Extensive learning-based fairness research
has been conducted, which is largely focused on pre-defined
categorical-attribute-based fairness (e.g., race and gender),
including regularization (Zafar et al. 2017; Yan and Howe
2019; Kamishima, Akaho, and Sakuma 2011; Serna et al.
2020), sensitive category de-correlation (Sweeney and Na-
jafian 2020; Zhang and Davidson 2021; Alasadi, Al Hilli,
and Singh 2019), data collection/filtering strategies (Jo and
Gebru 2020; Yang et al. 2020; Steed and Caliskan 2021),
and more (e.g., a recent survey (Mehrabi et al. 2021)). These
fairness-aware methods have been used for tasks related to
face detection (Serna et al. 2020; Alasadi, Al Hilli, and
Singh 2019), language processing (Sweeney and Najafian
2020; Cho et al. 2021), online bidding (Nasr and Tschantz
2020; Ilvento, Jagadeesan, and Chawla 2020), etc. However,
existing formulations and methods have yet to address the
new challenges brought by spatial fairness, where conclu-
sions can be easily flipped due to statistical sensitivity intro-
duced by MAUP. Finally, heterogeneity-aware learning (Xie
etal. 2021a,b) automatically captures differences in data dis-
tributions in space, but has not considered fairness.

We aim to tackle the challenges by exploring new for-
mulations and model-agnostic learning frameworks that are
spatially-explicit and statistically-robust. Specifically, our
contributions are:

* We propose a SPace-As-Distribution (SPAD) representa-
tion to formulate and evaluate spatial fairness in the con-
text of continuous space, which mitigates the statistical
sensitivity problems introduced by MAUP.

* We propose a SPAD-based stochastic strategy to effi-
ciently optimize over an extensive distribution of candi-
date criteria for spatial fairness, which are needed to har-
ness MAUP.

* We propose a bi-level player-referee training framework
to enhance spatial fairness enforcement via adaptive ad-
justments of training priorities among locations.

Experiments on real datasets show that the proposed

SPAD-based formulation and stochastic training can effec-
tively promote fairness with improved robustness against
MAUP-incurred sensitivity. The bi-level training also im-
proves the stability of the model and fairness results com-
pared to traditional regularization-based paradigms.

Key Concepts

Definition 1 Partition p vs. Partitioning P. In this paper, a
partitioning P splits an input space into m individual parti-
tions p;, i.e, P ={p1, ..., Diy «e, D }-

Definition 2 Modifiable Areal Unit Problem (MAUP).
MAUP states that statistical results and conclusions are sen-
sitive to the choice of space partitioning P and scale. A
change of scale (e.g., represented by the average area of
{pi|VYp; € P}) always infers a change of P but not vice
versa. MAUP is often considered as a dilemma as statisti-
cal results are expected to vary if different aggregations or
groupings of locations are used.

Definition 3 Fairness measure My;,. A statistic used to
evaluate the fairness across a learning model’s performance
across several mutually-exclusive groups of individuals. For
example, M4, can be variance of accuracy across groups.
In this paper, groups are defined by partitions p € P.

Within the scope of this work, we consider partitionings
‘P that follow a s1 X sg pattern (i.e., s; rows by s5 columns).
Fig. 2 shows an illustrative example of the effect of MAUP
on spatial fairness evaluation. Fig. 2 (al) and (b1) show two
example spatial distributions of prediction results (green:
correct; red: wrong): (al) has a large bias where the left side
has 100% accuracy and the right side has 0%, and (b1) has
a reasonably even distribution of each. However, as shown
in Fig. 2 (a2-3) and (b2-3), different partitionings or scales
can lead to completely opposite conclusions, making fair-
ness scores fragile in the spatial context.
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Figure 2: Illustrative examples showing sensitivity to both
space-partitioning and scale.

Formulation and Method

In this section, we first propose a novel space-as-distribution
(SPAD) formulation to mitigate MAUP-incurred statisti-
cal sensitivity for fairness evaluation. Then, we propose a
SPAD-based stochastic strategy as well as a bi-level train-
ing framework to enforce spatial fairness for an input deep
network F selected by users.
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Figure 3: Distributional representation by SPAD.

Space as a Distribution of Partitionings

As grouping of locations is naturally needed for fairness
evaluation using common performance metrics (e.g., preci-
sion, recall, accuracy), in the scope of this work we focus
on scenarios where space-partitionings P are used to gener-
ate location groups; in other words, each partition p € P is
analogical to a gender, race, etc. in related fairness studies.
However, due to the MAUP dilemma (Def. 2), conclusions
drawn from most — if not all — of common statistical mea-
sures are fragile to the variability in space-partitionings and
scales. If this issue is ignored, then one may unintentionally
or intentionally introduce additional bias (e.g., partisan ger-
rymandering (NPR 2019)).

Thus, instead of relying on fragile scores calculated
from a fixed partitioning or scale, we propose a SPace-As-
Distribution (SPAD) representation to define spatial fair-
ness. The idea is to go beyond a single partitioning or
scale by treating space-partitionings at different scales {P}
as outcomes of a generative process governed by a sta-
tistical distribution. As mentioned in key concepts, in this
work we consider partitionings that follow a pattern of s;
rows by so columns. So, in this case, an example gener-
ative process may follow a joint two-dimensional distribu-
tion Prob(sy, s2) where s1, s2 € Z7, 51 < rowmag, S2 <
cOlpqz (e.g., 10). By default, one may assume a uniform dis-
tribution where Prob(s1,52) = (rowmaz * Colmaz) " (for
equal-size partitioning), but this scheme also allows users to
flexibly impose a different distribution or prior, which may
be dynamically adjusted based on intermediate results.

With the SPAD representation, spatial fairness becomes
a distribution of scores, which can more holistically re-
flect fairness situations across a diverse set of partitions and
scales. As an example, Fig. 3 (al) and (b1) show the same set
of partitioning samples (different patterns and scales) over-
laid on top of distributions A and B in Fig. 2, respectively.
The variance of accuracy across partitions for all 6 partition-
ing samples are aggregated in (a2) and (b2), where lower
variance means fairer results. As we can see, with the dis-
tributional extension, the majority of scores reflect our ex-
pected results on the fairness evaluation for distributions A
and B, and the partitioning samples leading to unexpected
results become outliers (highlighted by red arrows).

Once a distribution of scores is obtained from the SPAD

representation, summary statistics can be conveniently used
for fairness evaluation based on application preferences
(e.g., mean). Finally, with SPAD, the formal formulation of
spatial-fairness-aware learning is defined as follows:

rr(lain/ Prob(T) - Myeir(Fe, Mr, Pr)dr (1
r

where F is an input deep network with parameters ®; I" pa-
rameterizes a space-partitioning P (e.g., number of rows and
columns for s; X sp-partitionings) that are related to its prob-
ability Prob(-) as specified by a statistical distribution (e.g.,
uniform or user-defined); M is a metric used to evaluate
the performance of a model F (e.g., Fl-score); and My, is
a fairness measure (loss) that is defined as:

d(Mr(Fe,p), Ep) 5
7] @

Myair(Fo, Mp,P) =
pEP

where p is a partition in P (Def. 1), d(-, -) is a distance mea-
sure (e.g., squared or absolute distance), M (Fe,p) is the
score (e.g., F1-score) of Fg on p’s training data, |P| is the
number of partitions in P, and Ep is another key variable,
which represents the mean (expected) performance at each
local partition p € P. If Mr(Fe,p) has a large deviation
from the mean (weighted or unweighted), the model Fg is
potentially unfair across partitions. Finally, E'p here is cal-
culated from a based model Fg,,, where parameters © are
trained without any consideration of spatial fairness:

Mz (Feo,,
pEP

The benefit of using Fg, to set the mean is that, ideally,
we want to maintain the same level of overall model perfor-
mance (e.g., Fl-score without considering spatial fairness)
while improving spatial fairness. Thus, this choice automat-
ically takes the overall model performance into considera-
tion as the objective function (Eq. (1)) will increase if Fg’s
overall performance diverges too far from it (e.g., a model
that yields a O Fl-scores on all partitions — which is fair but
poor — will not be considered as a good candidate).

SPAD-based Stochastic Training

A direct way to incorporate the distributional SPAD repre-
sentation into the training process — either through loss func-
tions or the bi-level method to be discussed in the next sec-
tion — is to aggregate results from all the partitionings {P}
for each iteration or epoch. However, this is computationally
expensive and sometimes prohibitive. For example, the num-
ber of possible partitionings can be exponential to data size
(e.g., the number of sample locations) when general parti-
tioning schemes are considered (e.g., arbitrary, hierarchical,
or s; X s partitionings with unequal-size cells). Even for
equal-size s; X sy partitionings, there can be easily over hun-
dreds of candidates when large s; and s, values (e.g., 10, 40,
or more) are used for large-scale applications.

Thus, we propose a stochastic training strategy for SPAD
to mitigate the cumbersome aggregation. Considering SPAD
as a statistical generative process G, in each iteration or
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Figure 4: SPAD-based stochastic training strategy.

epoch, we randomly sample a partitioning from G and use
it to evaluate fairness-related loss (Def. 3). For example, for
equal-size s; X sq partitionings, each time the generator may
randomly sample (s1, S2) from a joint discrete distribution
(Fig. 4). In this way, the probability of each partitioning (Eq.
(1)) is automatically taken into consideration during opti-
mization over epochs. In addition, in scenarios where the
difficulty of achieving fairness varies for different partition-
ings, the SPAD-based stochastic strategy may accelerate the
overall convergence. It may first help a subset of partition-
ings reach good fairness scores faster without the averaging
effect, which may in turn help related partitionings to move
out local minima traps. In practice, we have three further
recommendations for implementation:

* Unconstrained initial training: Ideally, we wish to main-
tain a high overall performance (e.g., F1-scores) while im-
proving fairness across locations. However, it can be pre-
mature to try to find a balance between the two objectives
when the model still has a very poor overall performance
(e.g., untrained). Hence, we keep fairness-related losses or
constraints on-hold at the beginning, and optimize param-
eters by pure prediction errors till stable.

* Epoch as a minimum unit: Deep network training of-
ten involves mini-batches (i.e., a middle-ground between
stochastic and batch gradient descent). As a result, the
combined randomness of mini-batches and SPAD-based
stochastic strategy may make the training unstable. Thus,
using epoch as a minimum unit for changing partitioning
samples can help reduce the superposed randomness.

* Increasing frequency: Extending the last point, denote k
as the number of continuous epochs to train before a parti-
tioning sample is changed. At the beginning of training, a
biased model without any fairness consideration may need
more epochs to make meaningful improvements, which
means a larger k£ (e.g., 10) is preferred. In contrast, to-
wards the end of the training, a large &k can be undesirable
as it may cause the model to overfit to a single partitioning
at the finish. Thus, we recommend a decreasing & (finally
k = 1) during training.

Bi-level Fairness Enforcement

A traditional way to incorporate fairness loss (e.g., Eq. (2))
is to add it as a term in the loss function, e.g., £L = Lpreq +

A - Myq4r, where Lpq is the prediction loss (e.g., cross-
entropy or dice loss) and A is a scaling factor or weight. This
regularization-based formulation has three limitations when
used for spatial-fairness enforcement: (1) Since deep learn-
ing training often uses mini-batches due to data size, it is dif-
ficult for each mini-batch to contain representative samples
from all partitions {p; | Vp; € P} when calculating M.
(2) To reflect true fairness over partitions, metrics M r used
in M4, in Eq. (2) are ideally exact functions such as preci-
sion, recall or F1-scores. However, since many of the func-
tions are not differentiable as a loss function (e.g., with the
use of arg max to extract predicted classes), approximations
are often needed (e.g., threshold-based, soft-version), which
introduce extra errors. Additionally, as such approximations
are used to further derive fairness indicators (e.g., Mx), the
uncertainty created by the errors can be quickly accumulated
and amplified; and (3) The regularization term Mg;, re-
quires another scaling factor A, the choice of which directly
impacts final output and varies from problem to problem.

To mitigate these concerns, we propose a bi-level training
strategy that disentangles the two types of losses with differ-
ent purposes (i.e., Lyreq and Mq;,). Specifically, there are
two levels of decision-making in-and-between epochs:

* Partitioning-level (P): Before each epoch, a referee eval-
uates the spatial fairness using Eq. (2) with exact metrics
M (e.g., Fl-score); no approximation is needed as back-
propagation is not part of the referee. The evaluation is
performed on all partitions p; € P, guaranteeing the rep-
resentativeness. Note that the model is evaluatable for the
very first epoch because the fairness-driven training starts
from a base model, as discussed in the previous section
and explanations for Eq. (2). Based on an individual par-
tition p;’s deviation d(Mx(Fe,p;i), Er) (a summand in
M ¢44°s numerator in Eq. (2)), we assign its learning rate
n; for this epoch as:

/ /
N = M * Ninit “)
Nmaz — Mmin
1; = max(—(Mz(Fe,pi) — Ep),0) (5)
where 7;,,;; is the learning rate used to train the base
model, 7, = axgmin,y {n} |1} > 0. Vi}, and 1, =
arg max,, {n; | Vi}.
The intuition is that, if a partition’s fairness measure is
lower than the expectation E,, its learning rate 7; will be
increased (relatively to other partitions’) so that its predic-
tion loss will have higher impact during parameter updates
in this epoch. In contrast, if a partition’s performance is
the same or higher than the expectation, its 7); will be set
to 0 to prioritize other lower-performing partitions. Posi-
tive learning rates after the update are normalized back to
the range [0, 7);,i¢] to keep the gradients more stable. This
bi-level design also relieves the need for an extra scaling
factor to combine the prediction and fairness losses.

* Partition-level (p): Using learning rates {7} assigned by
the referee, we perform regular training with the predic-
tion loss L£,,¢q, iterating over data in all individual parti-
tions p; € P in mini-batches.



Dataset and Implementation Details

Dataset: Accurate mapping of crops is critical for estimat-
ing crop areas and yield, which are often used for distribut-
ing subsidies and providing farm insurance over space. Our
input X for crop and land cover classification is the multi-
spectral remote sensing data from Sentinel-2 in Central Val-
ley, California, and the study region has a size of 4096 x4096
(~6711 km? at 20m resolution). We use the multi-spectral
data captured in August, 2018 for the mapping, and each lo-
cation has reflectance values from 10 spectral bands, which
are used as input features. The label y is from the USDA
Crop Data Layer (CDL) (CDL 2017). In our tests, we ran-
domly select 20%, 20%, and 60% locations for training, val-
idation and testing, respectively.

Implementation details: As mentioned in scope, we con-
sider s1 X sg partitionings. In experiments, to allow compar-
isons with non-stochastic-based SPAD methods (computa-
tionally expensive), we set the maximum values for s; and
so to 5, which leads to 24 different equal-size partitionings
(the 1 x 1 partitioning is excluded).

We use an 8-layer deep neural network (DNN) as a base
model to test the proposed SPAD method; SPAD does not as-
sume specific network architectures. The DNN model takes
inputs of multi-spectral data at each location and outputs the
land cover label. In our experiment, we first train an initial
DNN model for 300 epochs (converged) without consider-
ing the fairness, using Adam (ov = 0.001) as the optimizer.
From this base model, we further implement different can-
didate approaches to improve fairness (variants with no base
model are also considered). Based on the strategy discussed
in stochastic training, at the beginning of fairness training,
we keep each sampled partitioning for 10 epochs before
moving onto the next, and iterate over 48 different samples
(i.e., can be interpreted as two full enumerations over all 24
partitioning candidates). In the middle stage, we keep each
partitioning for 5 epochs, and iterate over 96 samples (i.e.,
similar to four full enumerations). Finally, each epoch will
sample a new partitioning, which continues for 240 samples.
Overall there are 50 expected epochs for each partitioning.

Both weighted and unweighted F-1 scores are considered
as the performance metric M r in Egs. (2) and (3).

Experiments
Our experiments aim to answer the following questions: !
* Q1. Does the SPAD representation improve spatial fair-
ness over different space-partitionings?

* Q2. Does the bi-level training strategy improve over
regularization-based approaches?

* Q3. Is the SPAD-based stochastic training able to maintain
or improve fairness with smaller computational load?

* Q4. Can the proposed approach help reach a fairer so-
lution while maintaining a similar level of overall/global
performance? Does training from an unconstrained base
model (no fairness consideration) help reach this goal?

! Additional results and code are included in the supplementary file.

The results to these questions can serve as an initial base
for spatial-fairness driven learning. Based on the questions,
our candidate methods are:

* Base: The base deep learning model (8-layer DNN) with-
out consideration of spatial fairness.

* Single: Spatial fairness is evaluated and improved using a
single space-partitioning P. Specifically, our experiment
includes Single-(1,4) and Single-(4,1), which use 1 x 4
and 4 x 1 partitionings, respectively.

* REG: Spatial fairness is enforced using the SPAD repre-
sentation by adding a regularization term to the loss func-
tion. As F1-score is not differentiable, we use standard ap-
proximation via the threshold-based approach, which am-
plifies softmax predictions ¢ over a threshold ~y to 1 to sup-
presses others to 0 using 1 —ReLU(1 — A-ReLU(y— 7)),
where A is a sufficiently large number (A = 10000 in our
tests; more details in the supplementary file). The scaling
factor )\ for the regularizer is set to 5.

* SPAD: The proposed approach using the SPAD represen-
tation with the stochastic and bi-level training strategies.

* SPAD-GD: SPAD without the stochastic strategy, which
aggregates over gradients from all 24 partitionings before
making parameter updates in each round.

* SPAD-no-base: SPAD that starts training without using
an unconstrained base model (explained in the stochastic
training section). Since here we do not have a ready-to-
use expected performance (Ep in Eq. (3)) from the base
model, we randomly initiate E» and dynamically update
it with the new learned parameters in each epoch.

* SPAD-10-eps: In the stochastic training, this version
keeps using each sampled partitioning for k¥ = 10 epochs,
without decreasing k to 1 near the end, which may make
the model biased towards the last sample (explained in the
stochastic training section).

Comparison to the regularization-based method

We compare the fairness achieved by SPAD, the base DNN
model (without considering fairness) and the REG method
in Fig. 5. For each partitioning P (x-axis), we report the
mean of the absolute distances between F1-scores achieved
on each partition p and the average performance over all par-
titions {p € P}; both weighted and unweighted F-1 scores
are considered. In Tables 1 and 2, we summarize the overall
performance (global F1-scores), the sum of mean absolute
distance S(d)mean and the sum of maximum absolute dis-
tance S(d)max across all partitionings using weighted and
unweighted F-1, respectively.

Fig. 5 shows that both SPAD and REG achieve lower
mean absolute distances over all space partitionings com-
pared to the base model, confirming the effectiveness of the
SPAD representation in improving the fairness (Q1). Com-
paring SPAD and REG, we can see that SPAD consistently
outperforms REG in the experiments (Q2), which shows that
the bi-level design is more effective in enforcing spatial fair-
ness than regularization terms by improving sample repre-
sentativeness, allowing the use of exact metrics (i.e., no need
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Figure 5: Fairness comparison amongst SPAD, REG and the base model over all the partitionings.

Table 1: Global classification performance and sums of
mean/max absolute distances over all partitionings using
weighted F1 score as the performance metric (results with
a substantially reduced global F1-score is denoted with *).

[ Method | Weighted F1 | S(d)mean S(d)max |
[BaseDNN___ | 0572 | 1319 379 |
REG 0566 | 1310 3821 |
Single-(1,4) 0.576 1.356 3.666
Single-(4,1) 0.542 1.355 3.712
SPAD-GD 0.573 1.275 3.571
SPAD-10-eps 0.573 1.186 3.421
SPAD-no-base 0.507* 1.589* 4.595*
[SPAD [ 0553 | 1094 3185 |

Table 2: Global classification performance and sums of
mean/max absolute distances over all partitionings using
unweighted F1 score as the performance metric (results with
a substantially reduced global F1-score is denoted with *).

[ Method | Unweighted F1 | S(d)mean S (d)max |

[Base DNN | 0.377 [ 0906  1.808 |

[ REG 1 0.381 [ 0799  1.808 |
Single-(1,4) 0.362 0627 1392
Single-(4,1) 0.368 0.685 1.517
SPAD-GD 0.372 0602  1.384
SPAD-10-eps 0.361 0582  1.393
SPAD-no-base 0.318* 0.469* 0.981*

[ SPAD 1 0.374 [ 0549 1337 |

to use approximations of F1-scores for differentiability pur-
poses), and eliminating the need for an extra scaling factor
for the regularizer which may add extra sensitivity.

From the first columns of Tables 1 and 2, we can see that
SPAD is able to maintain a similar overall/global classifica-
tion performance compared to the base DNN, which does
not have any fairness consideration. Meanwhile, the second
and third columns in the tables show that our method can
significantly reduce the sums of mean and max absolute dis-
tance over all partitionings. This confirms that SPAD can
effectively promote the fairness without compromising the
classification performance (Q4).

Comparison to partitioning-specific SPAD

Next, we aim to verify that SPAD can achieve better fair-
ness over majority of the partitionings compared to non-
SPAD-based variants that only only optimizes fairness over
a specific spatial partitioning. Fig. 6 shows the fairness
performance of partition-specific methods Single-(1,4) and
Single-(4,1). The overall trend is that SPAD achieves bet-
ter spatial fairness in most partitionings by modeling space-
partitionings as a distribution (Q1). In addition, we can
also observe that Single-(4,1) obtains a better fairness re-
sult for the given partitioning (4,1), and similarly Single-
(1,4) performs better for (1,4). However, their fairness im-
provements are limited for other partitionings. This con-
forms to the expectation that partitioning-specific methods
are able to reach further improvements on a given P, but
cannot generalize well to the others. Tables 1 and 2 (rows
3-4) show the weighted and unweighted F1-scores achieved
by Single-(1,4) and Single-(4,1). The numbers confirm that
the methods also have similar global F1-scores since our de-
sign takes the overall performance into account (Egs. (2) and
(3)). However, they produce larger values of S(d)mean and
S(d)max (max-absolute-distance figures are in supplemen-
tary file), which again confirms the benefits for SPAD.

Interestingly, in both the experiments with weighted and
unweigted F1-scores (Fig. 6), SPAD can often get very close
to the fairness scores achieved by partitioning-specific meth-
ods on their sole-input P (except for (4,1) in the unweighted
case). This shows there are potential dependency relation-
ships between partitionings. We also explored a variant that
uses only finer or finest-scale partitionings. One issue we
observed is that the method faces difficulty in convergence,
leading to both poorer results on fine and coarse scales. This
is potentially due to the fact that fairness enforcement at
finer-scale naturally leads to stricter criteria. We will exam-
ine more effective methods to leverage such potential depen-
dency among partitionings in future work.

Validation of stochastic training strategies

Finally, we validate the effectiveness of the SPAD-based
stochastic training strategy (Q3). We first compare to the
SPAD-GD approach, which aggregates gradients from all
partitionings in each epoch. Compared to our SPAD-based
stochastic approach, the aggregation in SPAD-GD leads to
a heavier computational load and requires longer time for
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Figure 6: Fairness comparison amongst SPAD, Single-(1,4), Single-(4,1), and the base model over all the partitionings.
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Figure 7: Fairness comparison amongst different optimization methods.

training (i.e., 2.5 hours vs. 9.5 hours using NVIDIA Tesla
K80 GPU over two runs). Here we maintain the same num-
ber of parameter updates for the two methods, and the only
difference is that each SPAD update is made by gradients
from a sampled partitioning whereas each SPAD-GD up-
date uses average gradients from all partitionings. Fig. 7
shows their performance comparison. We can see that the
two methods have about the same performance for the un-
weighted scenario (lower part of Fig. 7), which is expected.
Interestingly, SPAD outperforms SPAD-GD in the weighted
scenario (upper part of Fig. 7). One reason is that the added
randomness from the stochastic sampling in SPAD may al-
low a better chance for the training to move out of local
minima traps without the averaging effects, especially when
fairness is harder to achieve at the beginning for some par-
titionings. We also compare to SPAD-10-eps which uses 10
epochs for each sampled partitioning till the end of train-
ing. According to Fig. 7, SPAD-10-eps has decreased over-
all fairness results compared to SPAD. The reason is that
SPAD-10-eps, without reducing the epoch number per parti-
tioning, tends to overfit to the last sample partitioning, lead-
ing to poorer performance on the rest.

As a stable initial model state is helpful for fairness train-
ing, SPAD and other candidate methods start training from a
base model (discussed in implementation details). Here we
compare SPAD with SPAD-no-base, which enforces fairness
right at the start of training. According to its results in Ta-
bles 1 and 2 and fairness results in Fig. 7, the method has a
substantially reduced global F1-score compared to all other

methods (e.g., by 14%), making its fairness results not as in-
teresting (i.e., fair but poor). This shows that the base model
is beneficial in improving fairness while maintaining good
global performance. In addition, since SPAD-no-base starts
focusing on fairness when weights are still pre-mature, its
performance tends to be unstable for fairness as well (e.g.,
may be lower-ranked in terms of both the global F1 score
and fairness scores as shown in Table 1).

Conclusions and Future Work

Understanding and controlling location-related bias are crit-
ical for fair resource distribution in many important soci-
etal domains including agriculture, disaster management,
etc. We proposed a new formulation of spatial-fairness
driven learning using the SPAD representation, which har-
nesses statistical sensitivities in fairness evaluations caused
by MAUP. We also proposed SPAD-based stochastic and bi-
level training strategies to enforce spatial fairness in learn-
ing. Experiment results on real-world agriculture monitoring
data confirmed that the proposed approach is effective in im-
proving spatial fairness while maintaining a similar level of
overall performance. Code, additional details and results are
included in the supplementary document.

In future work, we will explore new sampling strategies to
improve the computational efficiency of the approach, and
the use of the approach for other related scenarios such as
regression and dynamic spatio-temporal tasks. We will also
expand the experiments using data from more domains (e.g.,
carbon monitoring) and more base architectures.



Acknowledgments

Yiqun Xie and Weiye Chen are supported in part by NSF
awards 2105133 and 2126474, Google’s Al for Social Good
Impact Scholars program, and the DRI award at the Uni-
versity of Maryland; Erhu He and Xiaowei Jia are sup-
ported in part by USGS award G21AC10207, Pitt Mo-
mentum Funds award, and CRC at the University of Pitts-
burgh; Sergii Skakun is supported in part by NASA LCLUC
Award 8ONSSC21K0314; Han Bao is supported in part by
the ISSSF grant from the University of Iowa, and SAFER-
SIM funded by US-DOT award 69A3551747131; and Zhe
Jiang is supported in part by NSF awards I1S-1850546, I1S-
2008973, CNS-1951974 and OAC-2152085.

References

Alasadi, J.; Al Hilli, A.; and Singh, V. K. 2019. Toward
fairness in face matching algorithms. In Proceedings of the
1st International Workshop on Fairness, Accountability, and
Transparency in MultiMedia, 19-25.

Bailey, J. T.; and Boryan, C. G. 2010. Remote sensing ap-
plications in agriculture at the USDA National Agricultural
Statistics Service. Technical report, Research and Develop-
ment Division, USDA, NASS, Fairfax, VA.

Boryan, C.; Yang, Z.; Mueller, R.; and Craig, M. 2011. Mon-
itoring US agriculture: the US department of agriculture, na-
tional agricultural statistics service, cropland data layer pro-
gram. Geocarto International, 26(5): 341-358.

CDL. 2017. Cropland Data Layer - USDA NASS. https:
/lgeography.wr.usgs.gov/science/croplands/pubs2017.html.

Cho, W. L; Kim, J.; Yang, J.; and Kim, N. S. 2021. To-
wards Cross-Lingual Generalization of Translation Gender
Bias. In Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, 449-457.

CNBC. 2020. As small U.S. farms face cri-
sis, Trump’s trade aid flowed to corporations.
Https://www.cnbc.com/2020/09/02/as-small-us-farms-

face-crisis-trumps-trade-aid-flowed-to-corporations.html.

Ilvento, C.; Jagadeesan, M.; and Chawla, S. 2020. Multi-
category fairness in sponsored search auctions. In Proceed-
ings of the 2020 Conference on Fairness, Accountability,
and Transparency, 348-358.

Jo, E. S.; and Gebru, T. 2020. Lessons from archives: Strate-
gies for collecting sociocultural data in machine learning. In
Proceedings of the 2020 Conference on Fairness, Account-
ability, and Transparency, 306-316.

Kamilaris, A.; et al. 2018. Deep learning in agriculture: A
survey. Computers and electronics in agriculture, 147: 70—
90.

Kamishima, T.; Akaho, S.; and Sakuma, J. 2011. Fairness-
aware learning through regularization approach. In 20171
IEEE 11th International Conference on Data Mining Work-
shops, 643-650. IEEE.

Karaye, I. M.; and Horney, J. A. 2020. The impact of social
vulnerability on COVID-19 in the US: an analysis of spa-
tially varying relationships. American journal of preventive
medicine, 59(3): 317-325.

Kussul, N.; Lavreniuk, M.; Skakun, S.; and Shelestov, A.
2017. Deep learning classification of land cover and crop
types using remote sensing data. [EEE Geoscience and Re-
mote Sensing Letters, 14(5): 778-782.

Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; and
Galstyan, A. 2021. A survey on bias and fairness in machine
learning. ACM Computing Surveys (CSUR), 54(6): 1-35.
NASEM. 2018. Improving crop estimates by integrating
multiple data sources. National Academies Press.

Nasr, M.; and Tschantz, M. C. 2020. Bidding strategies
with gender nondiscrimination constraints for online ad auc-
tions. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 337-347.

NPR. 2019. Supreme Court Rules Partisan Gerry-
mandering Is Beyond The Reach Of Federal Courts.
Https://www.npr.org/2019/06/27/731847977/supreme-
court-rules-partisan-gerrymandering-is-beyond-the-reach-
of-federal-court.

Olofsson, P.; Foody, G. M.; Herold, M.; Stehman, S. V,;
Woodcock, C. E.; and Wulder, M. A. 2014. Good practices
for estimating area and assessing accuracy of land change.
Remote Sensing of Environment, 148: 42-57.

Serna, I.; Morales, A.; Fierrez, J.; Cebrian, M.; Obradovich,
N.; and Rahwan, I. 2020. Sensitiveloss: Improving accuracy
and fairness of face representations with discrimination-
aware deep learning. arXiv preprint arXiv:2004.11246.

Steed, R.; and Caliskan, A. 2021. Image representations
learned with unsupervised pre-training contain human-like
biases. In Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, 701-713.

Sweeney, C.; and Najafian, M. 2020. Reducing sentiment
polarity for demographic attributes in word embeddings us-
ing adversarial learning. In Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, 359—

368.

Thebault-Spieker, J.; Hecht, B.; and Terveen, L. 2018. Geo-
graphic Biases are’Born, not Made’ Exploring Contributors’
Spatiotemporal Behavior in OpenStreetMap. In Proceedings
of the 2018 ACM Conference on Supporting Groupwork, 71—
82.

Thebault-Spieker, J.; Terveen, L.; and Hecht, B. 2017. To-
ward a geographic understanding of the sharing economy:
Systemic biases in UberX and TaskRabbit. ACM Transac-
tions on Computer-Human Interaction, 24(3): 1-40.

USDA. 2021. Economic Research Service Farm Resources
Regions. https://www.ers.usda.gov/webdocs/publications/
42298/32489_aib-760_002.pdf.

Waldner, F.; Chen, Y.; Lawes, R.; and Hochman, Z. 2019.
Needle in a haystack: Mapping rare and infrequent crops us-
ing satellite imagery and data balancing methods. Remote
Sensing of Environment, 233: 111375.

Xie, Y.; He, E.; Jia, X.; Bao, H.; Zhou, X.; Ghosh, R.; and
Ravirathinam, P. 2021a. A statistically-guided deep network
transformation and moderation framework for data with spa-
tial heterogeneity. In 2021 IEEE International Conference
on Data Mining (ICDM), 767-776. IEEE.



Xie, Y.; Jia, X.; Bao, H.; Zhou, X.; Yu, J.; Ghosh, R.; and
Ravirathinam, P. 2021b. Spatial-Net: A Self-Adaptive and
Model-Agnostic Deep Learning Framework for Spatially
Heterogeneous Datasets. In Proceedings of the 29th Interna-
tional Conference on Advances in Geographic Information
Systems, 313-323.

Yan, A.; and Howe, B. 2019. Fairst: Equitable spatial and
temporal demand prediction for new mobility systems. In
Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Sys-
tems, 552-555.

Yang, K.; Qinami, K.; Fei-Fei, L.; Deng, J.; and Rus-
sakovsky, O. 2020. Towards fairer datasets: Filtering and
balancing the distribution of the people subtree in the ima-
genet hierarchy. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, 547-558.

Zafar, M. B.; Valera, 1.; Gomez Rodriguez, M.; and Gum-
madi, K. P. 2017. Fairness beyond disparate treatment &
disparate impact: Learning classification without disparate
mistreatment. In Proceedings of the 26th international con-
ference on world wide web, 1171-1180.

Zhang, H.; and Davidson, I. 2021. Towards Fair Deep
Anomaly Detection. In Proceedings of the 2021 ACM

Conference on Fairness, Accountability, and Transparency,
138-148.



