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The representation of a 3D shape is a key element for capturing the overall structure as well as the local
details. In this paper, we propose to predict a mesh representation of the Medial Axis Transform (called
medial mesh) as an intermediate representation with our IMMAT framework, to reconstruct the 3D
shape from a single view image. Because the MAT contains the skeleton topology and local thickness
information, it not only enhances the ability to reconstruct topologically complex shapes but also better
preserves the local details with its thickness control. The framework consists of three modules. The
Image2Sphere module predicts the medial spheres inside the shape surface and the Topology Prediction
module predicts the topological relationship (skeleton) between the predicted spheres. Then the MAT
Smoothing module smooths the predicted MAT and fine-tunes the coordinates and radii of the spheres
by graph convolution. The final 3D surface can be reconstructed by converting the predicted MAT to an
implicit surface through CSG operation and then extracting the boundary surface through Marching
Cubes. Experimental results show that our method outperforms the state-of-the-art methods both
quantitatively and qualitatively on the reconstruction task.
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1. Introduction

Inferring a 3D shape from a single view image has received
much attention in recent years but is still a very challenging prob-
lem in various tasks of computer vision and computer graphics.
With the availability of large-scale 3D shape datasets, such as
ShapeNet [1], deep learning based approaches can generate 3D
shapes with representations of volume [2-6], point clouds [7,8],
or triangular mesh [9] as the output of neural networks.

Geometry and topology are two important features of a 3D
shape and shapes are often visually different from each other
due to the difference in geometry and topology. Point clouds and
voxels only express the geometry and have poor ability to learn
the topology of 3D shapes.

Triangular mesh expresses geometry and topology at the same
time. However, it is difficult to learn surface mesh from a sin-
gle view image by convolutional neural networks. The meth-
ods based on template mesh deformation [9,10] have achieved
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promising results, but they can only reconstruct shapes of very
limited topologies that are often not complex enough. Eliminating
invalid triangular faces which cause the incorrect topology can
break through the topological constraint of given templates, but it
will destroy the closure of a mesh and cause boundary distortion.

The skeleton-based method [10] has been proposed to capture
the underlying topological structure of the target object. It is ef-
fective for reconstructing topologically complex shapes. However,
the predicted skeleton points only provide an initial topology,
which lacks geometric information to directly reconstruct the
surface mesh. To learn better geometric structures, the skeleton
points need to be transferred into voxels and meshes. This trans-
fer inherits the disadvantage of mesh deformation, which may
lead to self-intersection of the mesh or even destroy the initial
topology. The whole pipeline does not consider the thickness of
the shape and leads to an uneven surface in the generated mesh
that seriously affects the visual effect.

Inspired by the skeleton-based method, we propose to con-
struct the Medial Axis Transform (MAT) [11] of a 3D shape from a
single view image. Different from skeleton points which are point
clouds on the skeleton, MAT has more outstanding characteris-
tics:

(1) MAT uses medial spheres located on the skeleton with radii
to represent the geometry. The radius is the distance from the
center of the sphere on the skeleton to the surface of the shape,
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which represents the local thickness and can be used for surface
reconstruction.

(2) MAT has connection relationships among medial spheres to
represent the topology information of the shape. The connections
represent the skeleton structures and can flexibly reconstruct
various complex shapes. An edge between two spheres expresses
the curve structure, and a face among three spheres expresses the
surface structure.

(3) A MAT can directly recover a manifold and watertight
triangular mesh by Marching Cubes [12]. Therefore, only the
MAT representation is operated throughout the whole pipeline,
without the need to transfer to voxel and mesh representations
like the skeleton-based method [10].

In this paper, we propose IMMAT to predict MAT to directly
learn the medial spheres and skeleton topology of a 3D shape
from a single view image. Different from the Point2Skeleton [13]
which learns a MAT from point clouds (the input and output are
in the same 3D space), our task to solve the gap between 2D and
3D is more challenging. In our framework, we divide the MAT
prediction into three stages and propose the corresponding deep
network modules. Firstly, the Image2Sphere module predicts a set
of discrete spheres with different radii from a single view image.
Then the Topology Prediction module predicts the topological
relationships between these spheres to construct the topology
of MAT. We further use the MAT Smoothing module to smooth
the spheres of MAT and improve the quality of the reconstructed
surface mesh. Fig. 1 shows an overview and several basic shapes
from different geometries and topologies. We will release the
code and MAT datasets to the public for further research. The
main contributions of this paper include:

e We introduce MAT as the underlying representation for
shape reconstruction from a single view image and propose
a novel framework for MAT prediction. We have created a
MAT dataset that will be open source and used for deep
learning research.

e We propose the Image2Sphere module, the first learning-
based method for predicting medial spheres from a single
view image, to simultaneously predict the spatial distribu-
tion and volume information of 3D shapes.

e We propose a deep learning based method to predict the
topology relationships of 3D spheres and achieve high-
quality reconstruction results with the generated MAT.

2. Related work

Mesh-based deformation methods learn the vertices’ positions
and deform an initial mesh (e.g., an ellipsoid) to achieve similarity
in the overall shape [14,15]. But it is not capable of generating
shapes of arbitrary topology from a genus-0 mesh. Deformation
from a similar template mesh [16] further enhances similarity in
overall shape and local details. But because it does not change
the topology of the source template, these methods can only
reconstruct surfaces with fixed topology. Topology modification
method [17] prunes the redundant edges/faces of the triangle
mesh, enabling the evolution of topology and improving the local
details. However, the rough pruning operations could potentially
destroy the watertight property of the generated mesh. PSG [8]
generates point clouds from a single view image.

The skeleton-based method [10] splits the shape reconstruc-
tion task into three stages. First, some meso-skeleton points are
predicted and converted into a volumetric representation. After
refinement, a base mesh similar to the target is extracted. Fi-
nally, a mesh deformation network is used to produce geometric
details.
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Fig. 1. Our proposed approach can generate a closed watertight surface mesh
from a single view RGB image, by precisely predicting the geometry (medial
spheres) and complex topology (edges and faces) with a MAT representation. At
the bottom box, we show some examples of reconstructed meshes in different
geometries and typologies of MAT, which reflects our ability to generate complex
shapes. The first row shows six different typologies of four spheres with
corresponding geometries (sphere centers and radii) in the second row. The
following two rows indicate the impact of changing geometries by updating the
locations of sphere centers or sizes of radii. The meshes at each column have
the same topology but different geometries.

In addition to explicit representations, implicit representations
have become popular in recent studies. Occupancy Network [18]
learns a continuous occupancy function as the representation
of a 3D shape with neural networks. DeepSDF [19], DISN [20]
predict signed distance functions of 3D points near the 3D surface.
SIFs [21] represents a 3D shape by combining a set of shape
elements (structured implicit functions). The element is a scaled
axis-aligned anisotropic 3D Gaussian, and the whole 3D shape
is represented as the sum of these shape elements. DSIFs [22]
provide local geometry details by adding deep neural networks
as deep implicit functions (DIFs). LDIF [23] performs well on local
shape details of 3D reconstruction.

There are some recent works on exploiting MAT [24] as an
underlying representation for shape analysis. MAT-Net [25] val-
idates the performance of MAT representation in the 3D shape
classification task. P2MAT-NET [26] learns the pattern of sparse
point clouds and transforms them into spheres and then recon-
structs the connectivity of spheres with a post-processing manner
to approximate MAT. Point2Skeleton [13] proposes an unsuper-
vised method to learn the MAT representation from point clouds,
which can be used for shape reconstruction or segmentation of
point clouds.

3. The method

The overall goal of this work is to reconstruct a surface O from
an image I of a single object by predicting MAT of the shape from
L

We follow the definition of MAT in Q-MAT [27]. The MAT M
of a 3D shape is composed of spheres S, edges E, and faces F, as
shown in Fig. 1. We define M = (S, E, F), each sphere s is denoted
as a 4D vector s = (c, r) with the center ¢ and radius r of the
sphere. e; = {i,j} is the edge defined by linear interpolation
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Fig. 2. The overall pipeline of the Image2Sphere module.

of two medial spheres (1 — t)s; + ts;, t e [0, 1]. Similarly, a
medial face (also called medial slab), fz = {i,j, k}, is a convex
combination of three medial spheres a;s; 4 a,s;+ass, with a; > 0
and a; +a, +az = 1.

MAT preserves the topology and volume information of the
object and can be represented with any resolution (number of
spheres), which balances the complexity and the fineness of the
reconstructed mesh.

Our method consists of three modules: Image2Sphere, Topol-
ogy Prediction, and MAT Smoothing. In Image2Sphere, we learn
the initial spheres from the global feature of an input image,
which achieves certain similarities in appearance. Then we use
local image features to refine the coordinates of the initial spheres
and predict their new radii. In Topology Prediction, two local
adjacency matrices are predicted from N refined spheres and
their N x K neighbor spheres. For each sphere s;, we first use
K-Nearest Neighbors (K-NN) to query K neighbor spheres, then
a convolutional neural network is trained to obtain local features
from K spheres, and finally the fully connected layers are used
to predict an edge probability matrix ME; and a face probability
matrix MF;. ME; is a 1 x K vector that denotes the probability
of edges between s; and its K neighbors. MF; is a 1 x K x K
matrix, with each entry MF; j x representing the probability of face
between s; and its two neighbors s; and s. Finally, the edges
and faces with higher probability together with the predicted
spheres from the Image2Sphere form a predicted MAT. Ideally,
the connected spheres should have similar coordinates and radii
distribution. With the predicted spheres and topologies, the MAT
smoothing module finetunes the spheres’ centers and radii to
smooth the surface and curve structures.

3.1. Image2Sphere

The Image2Sphere module is proposed to predict a precise
distribution of spheres from the input color image. Note that the
sphere centers are located on the skeleton, not on the surface.
It includes two sub-networks: generating initial spheres using
global image features and generating refined spheres using local
image features, as shown in Fig. 2. We firstly use ResNet18 to
encode the image into a global feature vector, then decode it
into centers of spheres with multi-layer perceptrons (MLPs). To
get more accurate sphere predictions, a small displacement is
applied to the centers. This displacement is decoded using MLPs
by concatenating the global image features and the centers. For
radius prediction, the global image features are also decoded into
an N x 1 vector that contains the radius of each sphere. As a

result of this stage, initial spheres, including the initial centers
and the initial radii, are predicted and can be used to reconstruct
a simple shape. However, the initial spheres might not be able to
capture the fine details of the shape. For example, as shown in
the top part of Fig. 2, the predicted initial spheres could not fit
well at the back of the chair. Therefore, local features extracted
from the input image are introduced to optimize the predicted
spheres. Similar to Pixel2Mesh [14], we use camera parameters
of the image to project the centers of initial spheres onto the
2D image and extract the corresponding pixel features from the
image feature maps. Then we combine pixel features with centers
of initial spheres as the input of a graph convolution network
(GCN) [28-31] to refine these centers. The pixel features together
with the refined centers are then used to compute the new radii.
Since there are no connections between the predicted centers up
till now, the graph of GCN is represented as an identity matrix.

In the sphere prediction, Chamfer Distance (CD) and Earth
Mover’s Distance (EMD) are introduced to constrain the sphere
centers [14], and Radius (R) loss is used for learning the radii
of spheres. CD loss is employed to measure the mismatch be-
tween the predicted centers Cp and the target centers C; of the
ground truth spheres. EMD loss measures the mismatch between
the distributions of sphere centers in the ground truth and the
predicted domain. Similar to CD loss, R loss is proposed under
the assumption that spheres that are close to each other are more
likely to have similar radii, that is,

Lr=2 — 1) +Z

peCp qeCe

J— rq s

(1)

where rp, is the radius of the medial sphere with center p. p’
denotes p’s closest center of target spheres, and its radius is ry.
Accordingly, q' is the closest predicted center of q.

In the first stage, we consider all of the three losses, i.e.,

Linit = Achd + )\ZLemd + )\3Lr- (2)

Considering the performance and time consumption of recon-
struction, we predict a sparse set of 256 spheres for our MAT
representation. Ideally, the spheres should lie on the medial curve
and sheets and any outliers of the sparse spheres will cause
bumpy and unsmooth structures in the reconstructed mesh after
topology prediction. To reduce the outliers, we also predict a
dense set of 2048 sphere centers to represent the finely sampled
medial curves and sheets, without using the radii.

In general, this module predicts multi-resolution sphere sets.
Sparse medial spheres are used to guide the topology prediction,
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Fig. 3. The overall pipeline of the topology prediction module.

while dense centers will provide richer information for better
topology prediction. We will introduce how the dense set is used
for refining the topology in the Topology Prediction module.

3.2. Topology Prediction

The topology of a medial mesh is represented by a two-
dimensional edge adjacency matrix and a three-dimensional face
adjacency matrix. Each element of the adjacency matrices is
either 1 or O indicating whether there is an edge between two
spheres or a face among three spheres. Under this context, edge/
face prediction can be regarded as a binary classification task.

However, the full adjacency matrices are sparse, resulting in
an unbalanced distribution of 0 and 1, which makes it impossible
to achieve a meaningful binary classification.

The topology is related to the euclidean distance of medial
spheres, i.e., spheres that are close to each other are more likely to
be connected. Therefore, for edge prediction, we only predict the
probabilities of medial edges for each sphere and its K nearest
neighbors, alleviating the imbalance of the classification labels.
For face prediction, we predict the probability of a medial face
for each sphere when the other two spheres of the face belong to
its K nearest neighbors.

The core idea is to split the global topology into N local
topologies, one for each sphere as illustrated as the red sphere in
Fig. 3. It is observed that features extracted from sparse spheres
are not enough to predict the precise topology. Therefore, the
dense centers predicted in the Image2Sphere stage together with
the sparse spheres are used to leverage the neighborhoods at
multiple scales for achieving both detail capture and prediction
robustness. As shown in Fig. 3, two local features extracted from
two distinct resolutions (sparse as 256 and dense as 2048 in our
experiment) are concatenated to predict the probability of edges
and faces. Edges and faces with probability larger than a user-
defined threshold € where 0 < € < 1 are selected to construct
the topology of the shape.

The loss function of the topology prediction module is the sum
of the cross-entropy loss of two binary classifiers,

Ly =~ ) Yelog(p(e)) = D yrlog(p(f). (3)

ecME feMF

where ME and MF are probability matrices of edges and faces,
respectively. ye and yf are the label value (0 or 1) of edge or face
and p(-) is the corresponding softmax probability. In this way,
three types of medial primitives can be predicted: medial spheres,
medial edges, and medial faces.

3.3. MAT smoothing

After topology prediction, the MAT of the object is obtained
and is sufficient to reconstruct its surface mesh. However, such
mesh may have an uneven surface second column in Fig. 8 due
to the inconsistent distribution of coordinates and radii between
connected spheres. Our MAT smoothing module is designed to
solve this problem with two stages: smoothing and refinement.
Following Eq. (4), for a sphere s, we compute the centroid of
all its connected spheres C(s), with |C(-)| being the number of
connected spheres. We use a specified smoothing weight t €
[0, 1] to balance the performance of smoothness. The smoothing
operation is quite related to [32,33]. The smaller t is, a stronger
smoothing effect is achieved:

(1_t) /
RS (4)

€O =

Ssmooth = £ S +

Even though the smoothing operation makes a better visual
effect with a smoother surface, it can also shrink the shape by its
nature. To maintain the distribution of the coordinates and radii
of the medial spheres after smoothing, we train a MAT refinement
network that has a similar network structure with the previously
mentioned sphere refinement network in Section 3.1, but with
three differences: (1) The input is the smoothed spheres, not
their initial centers. (2) The output is the displacements of the
coordinates and radii instead of new spheres. (3) The topological
relationship is used to support the graph convolution network
here, while in the sphere refinement network of Section 3.1 there
is no connection between spheres.

3.4. Surface reconstruction from medial mesh

The enveloping surface of each medial primitive can be con-
structed from the union of simpler objects. Since a medial edge
is a linear interpolation of two end spheres, its volume is a union
of one cone and two spheres. Similarly, the volume of a medial
face is a union of three spheres, three cones, and one triangular
prism. These characteristics inspire us to use Constructive Solid
Geometry (CSG) [34] for surface reconstruction from a medial
mesh. We use the VDB data structure [35,36], a compact volu-
metric data structure, to achieve high-quality CSG operation of
medial primitives. After converting existing medial primitives to
implicit level sets, the VDB data structure can perform nearly real-
time union operations on these level sets. Finally, the resulting
volume is converted to a triangle mesh through the Marching
Cubes algorithm [37].
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Fig. 4. Qualitative results on mesh reconstruction. (a) AtlasNet; (b) Pixel2Mesh; (c) TMNet; (d) SkeletonBridge; (e) DISN; (f) OccNet; (g) BSP-Net; (h) Ours; (i) Ground
Truth. For the models with holes which are difficult to reconstruct, our method can predict much better results.

4. Experiments

Dataset We evaluate our approach on ShapeNet [1] dataset. To
the best of our knowledge, computing medial axis transform of-
ten needs roughly uniformly distributed, manifold, and closed tri-
angular mesh. But in ShapeNet, lots of meshes are non-manifold
or have other problems. Consequently, Q-MAT [27] cannot com-
pute medial axis transform of all the shapes in ShapeNet. We
finally generated MATs of 47.5% of the full set and named the
generated dataset as ShapeNet-MAT. The dataset includes 17,507
samples in 13 categories and the samples are randomly split into
two subsets, 80% of samples are used for training and the remain-
ing for testing. Each sample has 24 images with different views
provided by [2]. For a fair comparison, all compared methods are
re-trained on the same samples.

Implementation details

All networks are trained separately. The Image2Sphere pre-
dicts 256 sparse spheres and 2048 dense centers. We use a
learning rate of 1e~* for the sphere prediction of Image2Sphere.
In the first N; training epochs, the sub-network using the global
feature is trained and then fix their parameters. In the next N,
epochs, the sub-network using local features is trained.

In the Topology Prediction network, we select 8 neighbors
from sparse spheres and 64 neighbors from dense centers for
each sphere in the sparse set. We train the Topology Prediction
module using a learning rate of 1e~3. The smoothing weight ¢
is 0.5. The networks are trained individually for each category.
We use OpenVDB [36] for implementation of surface reconstruc-
tion from MAT. For IoU computation, the resolution of voxel
is 32 x 32 x 32. Before triangle mesh generation, we predict
topology again and fill the surface holes [13].

4.1. Comparisons with state-of-the-arts

In this section, qualitative and quantitative comparisons with
several state-of-the-art methods for mesh reconstruction, in-
cluding AtlasNet [15], Pixel2Mesh [14], TMNet [17], Skeleton-
Bridge [10], DISN [20], OccNet [38], BSP-Net [39] are conducted
to demonstrate the effectiveness of our MAT-based reconstruc-
tion. All methods are trained/tested on the same samples and
use their corresponding supervision data representation. In our
method, the supervision data is MAT spheres, edges and faces.
For AtlasNet, Pixel2Mesh, TMNet, triangular meshes are used for
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Fig. 5. Qualitative results of topology generation methods by connecting vertices
to form edges and faces.

supervision. SkeletonBridge uses three representations: skeleton
points, voxel, and triangular mesh. BSP-Net, DISN, and OccNet
also use their corresponding supervisory data. In local image
feature capture, ground truth camera parameters are used for all
methods.

Qualitative results The qualitative results are shown in Fig. 4. The
results show that mesh deformation based methods, i.e., Atlas-
Net [15], Pixel2Mesh [14], and TMNet [17] can only reconstruct
mesh with a similar overall shape but fail to reconstruct topo-
logically complex shapes. Although TMNet eliminates incorrect
faces, it is still constrained by the topology of the initial spherical
mesh, as illustrated by the chair and bench cases in the first
two rows. SkeletonBridge [ 10] directly predicts skeleton points of
the 3D shape, which makes it possible to generate topologically
complex shapes. However, the fine details of the object still
cannot be fully captured, such as the chair back and airplane
propellers. Implicit methods [20,38] are capable to reconstruct
smooth meshes, but there is a gap in thickness between the shape
and the ground truth, as shown in Fig. 7. BSP-Net [39] directly
extracts a polygon mesh via convex decomposition and recovers
sharp geometric details. However, there are many overlapping
faces inside its mesh, and the surface lacks smoothness. Our
method has achieved better performances as demonstrated by
the similar overall shape as well as the exquisite local details.
Besides, with the conversion of MAT to VDB implicit surface
representation, our generated surface meshes are guaranteed to
be manifold and watertight, without any self-intersection.
Quantitative results We adopt the widely used Chamfer Dis-
tance (CD) loss, Earth Mover’s Distance (EMD) loss, F-score [14],
Intersection over Union (IoU) of the voxels as comparison metrics.
After aligning the prediction results with ground truth, 10,000
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Quantitative results on mesh reconstruction. The Chamfer Distance, IoU, Earth Mover's Distance, and F-score are used. The best results are boldfaced, and the second
best results are underlined.

CcD | Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean
AtlasNet 132 454 5.50 3.65 5.99 14.22 2.66 3.85 1.42 3.51 1.21 10.29 2.81 4.69
P2M 2.78 6.17 6.40 475 4.44 10.28 5.47 4.62 2.02 5.28 1.85 18.56 9.74 6.34
TMNet 2.09 5.56 4.06 2.65 3.68 10.32 4.97 421 1.70 6.16 1.05 13.01 2.62 4.78
Skeleton 1.44 4.14 3.81 233 3.50 8.22 3.19 4.03 291 4.16 1.96 12.21 3.76 4.28
DISN 2.08 5.88 5.56 2.81 5.34 13.89 247 2.98 1.30 5.25 1.29 16.26 418 5.33
OccNet 1.48 5.35 4.36 2.47 5.14 9.51 423 522 191 6.85 0.96 16.58 5.71 5.37
BSP-Net 1.41 4.79 4.59 291 4.75 10.74 472 4.85 1.69 6.48 1.36 14.93 433 5.20
Ours 1.24 3.66 3.25 1.61 3.23 6.47 2.95 345 1.36 425 0.93 11.56 4.12 3.70
IoU 1 Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean
AtlasNet 0.546 0.429 0.388 0.443 0.458 0.326 0.440 0.405 0.558 0.445 0.652 0.290 0.467 0.450
P2M 0.302 0.417 0.398 0.524 0.482 0.354 0.435 0.408 0.545 0.416 0.610 0.252 0.279 0.417
TMNet 0.493 0.360 0.405 0.492 0.495 0.358 0.411 0.437 0.555 0.439 0.667 0.270 0.455 0.449
Skeleton 0.504 0.448 0.400 0.533 0.489 0.377 0.450 0.411 0.445 0.443 0.605 0.279 0.394 0.444
DISN 0.501 0.435 0.379 0.524 0.533 0.305 0.461 0.444 0.581 0.423 0.655 0.259 0.391 0.453
OccNet 0.591 0.477 0.434 0.521 0.541 0.303 0.454 0.431 0.524 0.417 0.671 0.254 0.379 0.461
BSP-Net 0.555 0.469 0.394 0.485 0.475 0.315 0.393 0.392 0.550 0.412 0.597 0.246 0.389 0.436
Ours 0.558 0.511 0.446 0.612 0.510 0.387 0.434 0.415 0.540 0.448 0.675 0.257 0.388 0.475
EMD | Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean
AtlasNet 2.38 341 4.18 3.37 3.93 5.69 2.89 3.00 2.14 2.88 2.01 4.20 291 3.31
P2M 2.99 4.11 474 4.19 3.35 591 441 3.26 2.63 3.66 2.20 6.68 5.39 4.12
TMNet 2.75 3.50 4.03 3.39 3.15 5.98 3.50 2.62 2.18 2.99 1.49 4.14 2.36 3.24
Skeleton 2.52 4.12 3.79 3.95 3.32 6.23 3.67 3.15 355 3.21 2.59 5.42 373 3.79
DISN 2.75 3.13 3.61 3.21 2.98 6.46 2.56 243 2.11 3.02 1.71 441 2.95 3.18
OccNet 2.03 297 3.18 3.01 2.90 5.01 3.27 291 2.30 3.09 152 4.70 3.24 3.09
BSP-Net 2.21 3.27 391 3.53 3.04 6.30 3.81 3.16 2.83 3.11 1.96 4.88 3.08 3.46
Ours 213 2.80 3.05 2,53 2.79 4.93 2.88 2.55 213 2.76 1.56 4.28 2.96 2.87
F-score 1 Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean
AtlasNet 94.07 77.61 72.03 82.29 78.78 60.15 84.11 78.63 92.29 83.86 93.96 60.13 78.52 79.73
P2M 86.85 73.55 64.02 80.12 83.24 66.05 73.61 72.55 86.95 74.31 88.02 48.83 53.44 73.20
TMNet 91.64 72.81 78.90 86.05 87.23 67.71 71.58 80.35 90.99 77.48 95.05 55.56 82.29 79.82
Skeleton 93.29 79.57 78.62 89.22 83.73 68.79 80.43 77.89 79.84 79.82 87.43 57.07 73.06 79.14
DISN 92.26 79.44 73.46 87.65 82.39 68.81 86.44 82.43 93.13 79.98 93.29 53.74 71.88 80.38
OccNet 93.69 83.09 80.47 88.45 82.91 68.54 80.29 75.96 88.82 75.43 95.78 53.28 66.53 79.48
BSP-Net 91.78 80.29 77.10 84.35 84.22 68.09 80.22 76.33 91.10 76.99 93.59 51.60 73.70 79.18
Ours 94.96 84.42 83.70 92.40 87.33 74.32 83.20 79.97 92.41 81.81 96.12 56.18 72.95 83.06

Fig. 6. Test results on real images.

points are uniformly sampled from each triangle mesh. The met-
rics are calculated on the sampled points and the vertices of
ground truth meshes. Since the training and testing samples are
less than the full dataset, all methods have a certain decline in
quantitative than using the full dataset, but because all meth-
ods use the same samples, the performance difference between
methods remains. For example, OccNet and DISN are better than
Pixel2Mesh quantitatively.

Table 1 shows our approach outperforms the state-of-the-art
methods in all metrics over most categories. It is noticed that all
of the mesh-based methods take meshes as supervision informa-
tion in the training process, which aims to directly minimize the
losses calculated on meshes.

Our method learns the medial spheres and topological re-
lations without using the surface meshes as supervision infor-
mation, but still achieves better (or comparable) results on the
reconstruction error of reconstructed meshes.

Topology prediction
Given sparse medial spheres, we compare the topology gen-
eration with alternative methods: Ball pivoting [40], Delaunay

triangulation (deleting overlong edges using a threshold), and K
Nearest Neighbor (KNN) (connecting the K nearest neighbors of
each sphere and extracting the formed faces). Fig. 5 shows that
the alternative methods cannot generate the complex topology
correctly (especially linear structures). Our Topology Prediction
module predicts the delicate back and legs of the chair.

Testing on real image

We test our model on real images from the Pix3d [41] dataset.
Although our model is only trained on the ShapeNet dataset, it
generalizes well to real-world objects (Fig. 6). Our method has
the ability to reconstruct the hole structure of 3D shapes.

Comparison of Shape Diameter Function (SDF)

We apply Shape Diameter Function (SDF) [42] to measure the
local thickness of reconstructed meshes.

We first compute the SDF value for each face of mesh and
sample M (10 K in our experiments) points in total on these faces.
The SDF value 7 of each point corresponds to the face from which
it is sampled. A larger SDF value indicates thicker volume below
the surface point.

We propose the average thickness error to measure the dif-
ference of the local thickness between the predicted mesh and
the ground truth. To the best of our knowledge, none of the
traditional quantitative metrics could reflect the thickness error
of the local shape. For a point p on the ground truth mesh surface,
we find the nearest point p’ from the predicted mesh surface as
its corresponding point.

The absolute value of difference between the thickness values
of p and p’ is |np — ny|. Similar to the R loss, we calculate the
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The two rows are the predicted spheres and the corresponding mesh recon-
structed after topology prediction. Although the spheres learned from global
and local features can learn the geometric characteristics of the object, there is
still a certain gap with the ground truth. After smoothing and learning by the
topological information, the spheres have been significantly optimized on the
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Fig. 9. Influence of edge/face probability threshold z./z; on mesh reconstruction.

w/o dense

w/ dense

edge lost

Fig. 10. Reconstruction results with and without dense centers in topology
prediction.

curve and plane.

Table 3

Quantitative comparisons on high-genus samples.
Method cD IoU
AtlasNet 4.753 0.435
P2M 5519 0.451
TMNet 3.904 0.436
SkeletonBridge 3.317 0.465
DISN 4.175 0.489
OccNet 3.936 0.496
BSP-Net 4.064 0.459
Ours 2.902 0.515

Table 2

Quantitative comparison on average thickness error.
Category Skeleton DISN OccNet Ours
Plane 1.811 1.867 1.796 1.607
Chair 1.874 1.674 1.619 1.492
Firearm 1.638 1.008 1.095 0.985
Table 1618 1.235 1.285 1.226
Mean 1.774 1.516 1.503 1.361

thickness error in both directions, i.e.,

1
ne—m(;mp—np/w;mq—nqw), 5)

where q and q' are the point on the ground truth mesh and its
nearest point on the predicted mesh, respectively.

The computation of SDF needs closed and manifold mesh with
correct normal information, but it could not be guaranteed that
the predicted meshes of the mesh-based methods we compare
have these attributes. We compare 4573 samples of which the
SDFs are successfully computed. The qualitative and quantitative
results show our results have a closer thickness to the ground
truth than other methods. Table 2 shows the average thickness
errors (lower is better) of the reconstructed meshes and the
ground truth.
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Table 4
Quantitative comparisons of the three stages.
Stage CD (Sphere) R (Sphere) CD (Mesh)
Initial 129.28 226.75 5.06
B Refined 124.63 196.87 4.38
Smoothed 124.38 191.64 3.70
!

l
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Fig. 12. MAT topology-guided parts segmentation results.

-

Our result is closer to the ground truth on thickness than the
compared methods. The visual comparison of SDF in Fig. 7 also
gives the same conclusion.

High genus shape comparison

To show the effectiveness of our method on topologically
complex shapes, we compare the results of higher-genus samples
on 5 categories (bench, chair, firearm, plane, table), containing a
total of 29,520 samples, with average genera of 11.4 per sample.
As shown in Table 3, our results still perform well.

4.2. Ablation study and application

Effect of each stage on sphere prediction

The initial spheres decoded from the global image features
only achieve the similarity of the overall shape, so we improve
it with sphere refinement and MAT Smoothing. Table 4 and Fig. 8
show the effect of each stage quantitatively and visually.

The sphere refinement in Image2Sphere module generates
complex local shape details and the MAT Smoothing module

produces clearer boundaries of the shape and more consistent
radii of neighboring spheres. In the smooth operation, we use the
weight t = 0.5 for Eq. (4). We calculate the ratio of diagonal of
the bounding box between current spheres and real data, and the
average value in 13 categories is 0.946. Through the following
refinement, this ratio is restored to 0.984, indicating that MAT
Smoothing not only smooths the surface but also keeps the size
of the shape.

Thresholds of topology prediction

In the topology prediction, the probability threshold deter-
mines the edges/faces prediction and thus affects the mesh re-
construction results. In Fig. 9, we visualize the reconstruction
results of different thresholds and explore the selection strategy.
Low edge/face thresholds (z./7s) result in local redundancy of
the mesh, while high thresholds may lead to incomplete local
shape. We select the balanced thresholds (. = 0.2, 77 = 0.3)
for topology prediction.

Dense centers effect in Topology Prediction

As shown in Fig. 10, although using 256 spheres for topology
prediction alone can predict most of the edges and faces correctly,
it may lead to incorrect local predictions, such as redundancy or
loss of local connections.

Application on topology-guided segmentation

MAT'’s topology is the abstraction of the 3D shape. Although
our task is shape reconstruction, we find that with the guid-
ance of the predicted topology of MAT, the overall shape can
be easily segmented into multiple parts. Fig. 12 visualizes the
segmentation results on meshes. It can be seen that the surface
structure and curve structure can be clearly distinguished on the
reconstructed mesh.

With the help of the predicted topology, we can decompose
the shape into multiple parts without labeling and deep learning.
As shown in Fig. 11, the topology-guided segmentation consists
of three steps:
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(2) Parts Clustering. We use DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) to cluster curve spheres
and surface spheres. For the curve spheres, we cluster them
based on 3D spatial coordinates. For surface spheres, we compute
the average normal of the faces those the sphere is located in
as its normal (absolute value) and cluster them by using the
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coordinates and normals, to distinguish the connected surfaces
with different normals, such as the back and base of a chair.

(3) Mesh Correspondence. After splitting the parts of MAT
spheres, we segment the triangle faces by finding their nearest
spheres. Finally, we split the triangular mesh into many parts.

Although our method generates overall shape from a single
view image, the triangular mesh can easily be segmented into
parts based on MAT segmentation. Due to the DBSCAN needs not
specifying the number of cluster centers, the parts number of the
shape is adaptive.

More samples in all stages

To show the effect of each stage, the output results of all
stages are shown in Fig. 13 including sphere prediction, topology
prediction, MAT smoothing, and mesh reconstruction.

We also show the thickness information (shape diameter func-
tion) of reconstruction results in different categories, which is not
considered by other methods. It can be seen that our method
can gradually generate fine spheres on a skeleton, and reasonably
predict the topological relationship of the spheres. Finally, con-
struct a complete MAT representation and reconstruct a complex
surface mesh. We also show the local thickness that is affected
by the radius through shape diameter function.

Network architectures Fig. 14 shows the architecture of initial
sphere prediction. The input image is encoded to a global vector
by ResNet18. Then the global feature vector is input to three
sub-networks. Two networks encode the feature and decode it
into initial centers and radii, and then the feature vector is input
to the displacement learning module to learn the displacements
for the initial centers. The displacement learning module fol-
lows 3DN [16]. The architecture of sphere refinement network
(Fig. 16) follows Pixel2Mesh. We make the following changes
in implementation: (1) The input of deformation is 256 center
coordinates. (2) The input graph is an identity matrix for graph
convolution and graph decoder. (3) The output of the last layer
is the refined radii of 256 x 1. (4) The R loss is added to the
loss function. In Image2Sphere, the initial sphere prediction uses
a batch size of 24, and the refinement network uses a batch size
of 1. The learning rate is 1e~. In the topology prediction network
(Fig. 15), we group 8 neighbor spheres from sparse spheres and
64 neighbor centers from dense centers for each sparse sphere.
We only predict the topology of sparse spheres.

5. Conclusion and future work

We introduce IMMAT, the first supervised method to learn
MAT from a single view image to reconstruct surface mesh. The
predicted MAT contains both geometry (spheres) and topology
(edges and faces) information, which helps us generate a complex
surface mesh that is manifold and watertight. Different from the
skeleton points, MAT is a “complete” shape descriptor that can
be directly used to reconstruct the surface.

Compared with the state-of-the-art methods, meshes gener-
ated by IMMAT exhibit superior visual quality and have more ac-
curate local thickness information. All the results show that pre-
dicting the MAT inside the shape to recover surface mesh is wor-
thy of further exploration. It has no topological constraints and
can generate complex shapes. With the help of predicted MAT, we
can easily segment the parts of the reconstructed mesh without
any supervision, which other representations may not accom-
plish. There are two research directions worth exploring in the fu-
ture: exploring the applications of MAT in non-rigid shape recon-
struction from single view images, and self-supervised learning of
MAT by differentiable rendering.
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