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a b s t r a c t

The representation of a 3D shape is a key element for capturing the overall structure as well as the local
details. In this paper, we propose to predict a mesh representation of the Medial Axis Transform (called
medial mesh) as an intermediate representation with our IMMAT framework, to reconstruct the 3D
shape from a single view image. Because the MAT contains the skeleton topology and local thickness
information, it not only enhances the ability to reconstruct topologically complex shapes but also better
preserves the local details with its thickness control. The framework consists of three modules. The
Image2Sphere module predicts the medial spheres inside the shape surface and the Topology Prediction
module predicts the topological relationship (skeleton) between the predicted spheres. Then the MAT
Smoothing module smooths the predicted MAT and fine-tunes the coordinates and radii of the spheres
by graph convolution. The final 3D surface can be reconstructed by converting the predicted MAT to an
implicit surface through CSG operation and then extracting the boundary surface through Marching
Cubes. Experimental results show that our method outperforms the state-of-the-art methods both
quantitatively and qualitatively on the reconstruction task.

© 2022 Elsevier Ltd. All rights reserved.
p
l
i
b
w

t
f
t
w
s
p
f
l
t
t
t

s
s
c
t

t
c

1. Introduction

Inferring a 3D shape from a single view image has received
uch attention in recent years but is still a very challenging prob-

em in various tasks of computer vision and computer graphics.
ith the availability of large-scale 3D shape datasets, such as

hapeNet [1], deep learning based approaches can generate 3D
hapes with representations of volume [2–6], point clouds [7,8],
r triangular mesh [9] as the output of neural networks.
Geometry and topology are two important features of a 3D

hape and shapes are often visually different from each other
ue to the difference in geometry and topology. Point clouds and
oxels only express the geometry and have poor ability to learn
he topology of 3D shapes.

Triangular mesh expresses geometry and topology at the same
ime. However, it is difficult to learn surface mesh from a sin-
le view image by convolutional neural networks. The meth-
ds based on template mesh deformation [9,10] have achieved
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romising results, but they can only reconstruct shapes of very
imited topologies that are often not complex enough. Eliminating
nvalid triangular faces which cause the incorrect topology can
reak through the topological constraint of given templates, but it
ill destroy the closure of a mesh and cause boundary distortion.
The skeleton-based method [10] has been proposed to capture

he underlying topological structure of the target object. It is ef-
ective for reconstructing topologically complex shapes. However,
he predicted skeleton points only provide an initial topology,
hich lacks geometric information to directly reconstruct the
urface mesh. To learn better geometric structures, the skeleton
oints need to be transferred into voxels and meshes. This trans-
er inherits the disadvantage of mesh deformation, which may
ead to self-intersection of the mesh or even destroy the initial
opology. The whole pipeline does not consider the thickness of
he shape and leads to an uneven surface in the generated mesh
hat seriously affects the visual effect.

Inspired by the skeleton-based method, we propose to con-
truct the Medial Axis Transform (MAT) [11] of a 3D shape from a
ingle view image. Different from skeleton points which are point
louds on the skeleton, MAT has more outstanding characteris-
ics:

(1) MAT uses medial spheres located on the skeleton with radii
o represent the geometry. The radius is the distance from the
enter of the sphere on the skeleton to the surface of the shape,
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hich represents the local thickness and can be used for surface
econstruction.

(2) MAT has connection relationships among medial spheres to
epresent the topology information of the shape. The connections
epresent the skeleton structures and can flexibly reconstruct
arious complex shapes. An edge between two spheres expresses
he curve structure, and a face among three spheres expresses the
urface structure.
(3) A MAT can directly recover a manifold and watertight

riangular mesh by Marching Cubes [12]. Therefore, only the
AT representation is operated throughout the whole pipeline,
ithout the need to transfer to voxel and mesh representations

ike the skeleton-based method [10].
In this paper, we propose IMMAT to predict MAT to directly

earn the medial spheres and skeleton topology of a 3D shape
rom a single view image. Different from the Point2Skeleton [13]
hich learns a MAT from point clouds (the input and output are

n the same 3D space), our task to solve the gap between 2D and
D is more challenging. In our framework, we divide the MAT
rediction into three stages and propose the corresponding deep
etwork modules. Firstly, the Image2Sphere module predicts a set
f discrete spheres with different radii from a single view image.
hen the Topology Prediction module predicts the topological
elationships between these spheres to construct the topology
f MAT. We further use the MAT Smoothing module to smooth
he spheres of MAT and improve the quality of the reconstructed
urface mesh. Fig. 1 shows an overview and several basic shapes
rom different geometries and topologies. We will release the
ode and MAT datasets to the public for further research. The
ain contributions of this paper include:

• We introduce MAT as the underlying representation for
shape reconstruction from a single view image and propose
a novel framework for MAT prediction. We have created a
MAT dataset that will be open source and used for deep
learning research.

• We propose the Image2Sphere module, the first learning-
based method for predicting medial spheres from a single
view image, to simultaneously predict the spatial distribu-
tion and volume information of 3D shapes.

• We propose a deep learning based method to predict the
topology relationships of 3D spheres and achieve high-
quality reconstruction results with the generated MAT.

. Related work

Mesh-based deformation methods learn the vertices’ positions
nd deform an initial mesh (e.g., an ellipsoid) to achieve similarity
n the overall shape [14,15]. But it is not capable of generating
hapes of arbitrary topology from a genus-0 mesh. Deformation
rom a similar template mesh [16] further enhances similarity in
verall shape and local details. But because it does not change
he topology of the source template, these methods can only
econstruct surfaces with fixed topology. Topology modification
ethod [17] prunes the redundant edges/faces of the triangle
esh, enabling the evolution of topology and improving the local
etails. However, the rough pruning operations could potentially
estroy the watertight property of the generated mesh. PSG [8]
enerates point clouds from a single view image.
The skeleton-based method [10] splits the shape reconstruc-

ion task into three stages. First, some meso-skeleton points are
redicted and converted into a volumetric representation. After
efinement, a base mesh similar to the target is extracted. Fi-
ally, a mesh deformation network is used to produce geometric
etails.
2

Fig. 1. Our proposed approach can generate a closed watertight surface mesh
from a single view RGB image, by precisely predicting the geometry (medial
spheres) and complex topology (edges and faces) with a MAT representation. At
the bottom box, we show some examples of reconstructed meshes in different
geometries and typologies of MAT, which reflects our ability to generate complex
shapes. The first row shows six different typologies of four spheres with
corresponding geometries (sphere centers and radii) in the second row. The
following two rows indicate the impact of changing geometries by updating the
locations of sphere centers or sizes of radii. The meshes at each column have
the same topology but different geometries.

In addition to explicit representations, implicit representations
have become popular in recent studies. Occupancy Network [18]
learns a continuous occupancy function as the representation
of a 3D shape with neural networks. DeepSDF [19], DISN [20]
predict signed distance functions of 3D points near the 3D surface.
SIFs [21] represents a 3D shape by combining a set of shape
elements (structured implicit functions). The element is a scaled
axis-aligned anisotropic 3D Gaussian, and the whole 3D shape
is represented as the sum of these shape elements. DSIFs [22]
provide local geometry details by adding deep neural networks
as deep implicit functions (DIFs). LDIF [23] performs well on local
shape details of 3D reconstruction.

There are some recent works on exploiting MAT [24] as an
underlying representation for shape analysis. MAT-Net [25] val-
idates the performance of MAT representation in the 3D shape
classification task. P2MAT-NET [26] learns the pattern of sparse
point clouds and transforms them into spheres and then recon-
structs the connectivity of spheres with a post-processing manner
to approximate MAT. Point2Skeleton [13] proposes an unsuper-
vised method to learn the MAT representation from point clouds,
which can be used for shape reconstruction or segmentation of
point clouds.

3. The method

The overall goal of this work is to reconstruct a surface O from
n image I of a single object by predicting MAT of the shape from
.

We follow the definition of MAT in Q-MAT [27]. The MAT M
f a 3D shape is composed of spheres S, edges E, and faces F, as
hown in Fig. 1. We define M = (S, E, F), each sphere s is denoted
s a 4D vector s = (c, r) with the center c and radius r of the
phere. e = {i, j} is the edge defined by linear interpolation
ij
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Fig. 2. The overall pipeline of the Image2Sphere module.
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f two medial spheres (1 − t)si + tsj, t ∈ [0, 1]. Similarly, a
medial face (also called medial slab), fijk = {i, j, k}, is a convex
combination of three medial spheres a1si+a2sj+a3sk with ai ≥ 0
nd a1 + a2 + a3 = 1.
MAT preserves the topology and volume information of the

bject and can be represented with any resolution (number of
pheres), which balances the complexity and the fineness of the
econstructed mesh.

Our method consists of three modules: Image2Sphere, Topol-
gy Prediction, and MAT Smoothing. In Image2Sphere, we learn
he initial spheres from the global feature of an input image,
hich achieves certain similarities in appearance. Then we use

ocal image features to refine the coordinates of the initial spheres
nd predict their new radii. In Topology Prediction, two local
djacency matrices are predicted from N refined spheres and
heir N × K neighbor spheres. For each sphere si, we first use
-Nearest Neighbors (K -NN) to query K neighbor spheres, then
convolutional neural network is trained to obtain local features
rom K spheres, and finally the fully connected layers are used
to predict an edge probability matrix MEi and a face probability
atrix MFi. MEi is a 1 × K vector that denotes the probability
f edges between si and its K neighbors. MFi is a 1 × K × K
atrix, with each entryMFi,j,k representing the probability of face
etween si and its two neighbors sj and sk. Finally, the edges
nd faces with higher probability together with the predicted
pheres from the Image2Sphere form a predicted MAT. Ideally,
he connected spheres should have similar coordinates and radii
istribution. With the predicted spheres and topologies, the MAT
moothing module finetunes the spheres’ centers and radii to
mooth the surface and curve structures.

.1. Image2Sphere

The Image2Sphere module is proposed to predict a precise
istribution of spheres from the input color image. Note that the
phere centers are located on the skeleton, not on the surface.
t includes two sub-networks: generating initial spheres using
lobal image features and generating refined spheres using local
mage features, as shown in Fig. 2. We firstly use ResNet18 to
ncode the image into a global feature vector, then decode it
nto centers of spheres with multi-layer perceptrons (MLPs). To
et more accurate sphere predictions, a small displacement is
pplied to the centers. This displacement is decoded using MLPs
y concatenating the global image features and the centers. For
adius prediction, the global image features are also decoded into
n N × 1 vector that contains the radius of each sphere. As a
3

esult of this stage, initial spheres, including the initial centers
nd the initial radii, are predicted and can be used to reconstruct
simple shape. However, the initial spheres might not be able to
apture the fine details of the shape. For example, as shown in
he top part of Fig. 2, the predicted initial spheres could not fit
ell at the back of the chair. Therefore, local features extracted

rom the input image are introduced to optimize the predicted
pheres. Similar to Pixel2Mesh [14], we use camera parameters
f the image to project the centers of initial spheres onto the
D image and extract the corresponding pixel features from the
mage feature maps. Then we combine pixel features with centers
f initial spheres as the input of a graph convolution network
GCN) [28–31] to refine these centers. The pixel features together
ith the refined centers are then used to compute the new radii.
ince there are no connections between the predicted centers up
ill now, the graph of GCN is represented as an identity matrix.

In the sphere prediction, Chamfer Distance (CD) and Earth
over’s Distance (EMD) are introduced to constrain the sphere
enters [14], and Radius (R) loss is used for learning the radii
f spheres. CD loss is employed to measure the mismatch be-
ween the predicted centers Cp and the target centers Ct of the
round truth spheres. EMD loss measures the mismatch between
he distributions of sphere centers in the ground truth and the
redicted domain. Similar to CD loss, R loss is proposed under
he assumption that spheres that are close to each other are more
ikely to have similar radii, that is,

r =
∑
p∈Cp

(rp − rp′ )2 +
∑
q∈Ct

(rq − rq′ )2, (1)

here rp is the radius of the medial sphere with center p. p′
enotes p’s closest center of target spheres, and its radius is rp′ .
ccordingly, q′ is the closest predicted center of q.
In the first stage, we consider all of the three losses, i.e.,

init = λ1Lcd + λ2Lemd + λ3Lr . (2)

Considering the performance and time consumption of recon-
truction, we predict a sparse set of 256 spheres for our MAT
epresentation. Ideally, the spheres should lie on the medial curve
nd sheets and any outliers of the sparse spheres will cause
umpy and unsmooth structures in the reconstructed mesh after
opology prediction. To reduce the outliers, we also predict a
ense set of 2048 sphere centers to represent the finely sampled
edial curves and sheets, without using the radii.
In general, this module predicts multi-resolution sphere sets.

parse medial spheres are used to guide the topology prediction,
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Fig. 3. The overall pipeline of the topology prediction module.
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hile dense centers will provide richer information for better
opology prediction. We will introduce how the dense set is used
or refining the topology in the Topology Prediction module.

.2. Topology Prediction

The topology of a medial mesh is represented by a two-
imensional edge adjacency matrix and a three-dimensional face
djacency matrix. Each element of the adjacency matrices is
ither 1 or 0 indicating whether there is an edge between two
pheres or a face among three spheres. Under this context, edge/
ace prediction can be regarded as a binary classification task.

However, the full adjacency matrices are sparse, resulting in
n unbalanced distribution of 0 and 1, which makes it impossible
o achieve a meaningful binary classification.

The topology is related to the euclidean distance of medial
pheres, i.e., spheres that are close to each other are more likely to
e connected. Therefore, for edge prediction, we only predict the
robabilities of medial edges for each sphere and its K nearest
eighbors, alleviating the imbalance of the classification labels.
or face prediction, we predict the probability of a medial face
or each sphere when the other two spheres of the face belong to
ts K nearest neighbors.

The core idea is to split the global topology into N local
topologies, one for each sphere as illustrated as the red sphere in
Fig. 3. It is observed that features extracted from sparse spheres
are not enough to predict the precise topology. Therefore, the
dense centers predicted in the Image2Sphere stage together with
the sparse spheres are used to leverage the neighborhoods at
multiple scales for achieving both detail capture and prediction
robustness. As shown in Fig. 3, two local features extracted from
two distinct resolutions (sparse as 256 and dense as 2048 in our
experiment) are concatenated to predict the probability of edges
and faces. Edges and faces with probability larger than a user-
defined threshold ϵ where 0 ≤ ϵ ≤ 1 are selected to construct
the topology of the shape.

The loss function of the topology prediction module is the sum
of the cross-entropy loss of two binary classifiers,

Ltp = −

∑
e∈ME

ye log(p(e))−
∑
f∈MF

yf log(p(f)), (3)

where ME and MF are probability matrices of edges and faces,
respectively. ye and yf are the label value (0 or 1) of edge or face
and p(·) is the corresponding softmax probability. In this way,
three types of medial primitives can be predicted: medial spheres,
medial edges, and medial faces.
4

3.3. MAT smoothing

After topology prediction, the MAT of the object is obtained
and is sufficient to reconstruct its surface mesh. However, such
mesh may have an uneven surface second column in Fig. 8 due
o the inconsistent distribution of coordinates and radii between
onnected spheres. Our MAT smoothing module is designed to
olve this problem with two stages: smoothing and refinement.
ollowing Eq. (4), for a sphere s, we compute the centroid of
ll its connected spheres C(s), with |C(·)| being the number of
onnected spheres. We use a specified smoothing weight t ∈

0, 1] to balance the performance of smoothness. The smoothing
peration is quite related to [32,33]. The smaller t is, a stronger
moothing effect is achieved:

smooth = t · s+
(1− t)
|C(s)|

∑
s′∈C(s)

s′. (4)

Even though the smoothing operation makes a better visual
effect with a smoother surface, it can also shrink the shape by its
nature. To maintain the distribution of the coordinates and radii
of the medial spheres after smoothing, we train a MAT refinement
network that has a similar network structure with the previously
mentioned sphere refinement network in Section 3.1, but with
three differences: (1) The input is the smoothed spheres, not
their initial centers. (2) The output is the displacements of the
coordinates and radii instead of new spheres. (3) The topological
relationship is used to support the graph convolution network
here, while in the sphere refinement network of Section 3.1 there
is no connection between spheres.

3.4. Surface reconstruction from medial mesh

The enveloping surface of each medial primitive can be con-
structed from the union of simpler objects. Since a medial edge
is a linear interpolation of two end spheres, its volume is a union
of one cone and two spheres. Similarly, the volume of a medial
face is a union of three spheres, three cones, and one triangular
prism. These characteristics inspire us to use Constructive Solid
Geometry (CSG) [34] for surface reconstruction from a medial
mesh. We use the VDB data structure [35,36], a compact volu-
metric data structure, to achieve high-quality CSG operation of
medial primitives. After converting existing medial primitives to
implicit level sets, the VDB data structure can perform nearly real-
time union operations on these level sets. Finally, the resulting
volume is converted to a triangle mesh through the Marching
Cubes algorithm [37].
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Fig. 4. Qualitative results on mesh reconstruction. (a) AtlasNet; (b) Pixel2Mesh; (c) TMNet; (d) SkeletonBridge; (e) DISN; (f) OccNet; (g) BSP-Net; (h) Ours; (i) Ground
ruth. For the models with holes which are difficult to reconstruct, our method can predict much better results.
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. Experiments

ataset We evaluate our approach on ShapeNet [1] dataset. To
he best of our knowledge, computing medial axis transform of-
en needs roughly uniformly distributed, manifold, and closed tri-
ngular mesh. But in ShapeNet, lots of meshes are non-manifold
r have other problems. Consequently, Q-MAT [27] cannot com-
ute medial axis transform of all the shapes in ShapeNet. We
inally generated MATs of 47.5% of the full set and named the
enerated dataset as ShapeNet-MAT. The dataset includes 17,507
amples in 13 categories and the samples are randomly split into
wo subsets, 80% of samples are used for training and the remain-
ng for testing. Each sample has 24 images with different views
rovided by [2]. For a fair comparison, all compared methods are
e-trained on the same samples.

mplementation details
All networks are trained separately. The Image2Sphere pre-

icts 256 sparse spheres and 2048 dense centers. We use a
earning rate of 1e−4 for the sphere prediction of Image2Sphere.
n the first N1 training epochs, the sub-network using the global
eature is trained and then fix their parameters. In the next N2
pochs, the sub-network using local features is trained.
In the Topology Prediction network, we select 8 neighbors

rom sparse spheres and 64 neighbors from dense centers for
ach sphere in the sparse set. We train the Topology Prediction
odule using a learning rate of 1e−3. The smoothing weight t

s 0.5. The networks are trained individually for each category.
e use OpenVDB [36] for implementation of surface reconstruc-

ion from MAT. For IoU computation, the resolution of voxel
s 32 × 32 × 32. Before triangle mesh generation, we predict
opology again and fill the surface holes [13].

.1. Comparisons with state-of-the-arts

In this section, qualitative and quantitative comparisons with
everal state-of-the-art methods for mesh reconstruction, in-
luding AtlasNet [15], Pixel2Mesh [14], TMNet [17], Skeleton-
ridge [10], DISN [20], OccNet [38], BSP-Net [39] are conducted
o demonstrate the effectiveness of our MAT-based reconstruc-
ion. All methods are trained/tested on the same samples and
se their corresponding supervision data representation. In our
ethod, the supervision data is MAT spheres, edges and faces.
or AtlasNet, Pixel2Mesh, TMNet, triangular meshes are used for
 A

5

Fig. 5. Qualitative results of topology generation methods by connecting vertices
to form edges and faces.

supervision. SkeletonBridge uses three representations: skeleton
points, voxel, and triangular mesh. BSP-Net, DISN, and OccNet
also use their corresponding supervisory data. In local image
feature capture, ground truth camera parameters are used for all
methods.

Qualitative results The qualitative results are shown in Fig. 4. The
results show that mesh deformation based methods, i.e., Atlas-
Net [15], Pixel2Mesh [14], and TMNet [17] can only reconstruct
mesh with a similar overall shape but fail to reconstruct topo-
logically complex shapes. Although TMNet eliminates incorrect
faces, it is still constrained by the topology of the initial spherical
mesh, as illustrated by the chair and bench cases in the first
two rows. SkeletonBridge [10] directly predicts skeleton points of
the 3D shape, which makes it possible to generate topologically
complex shapes. However, the fine details of the object still
cannot be fully captured, such as the chair back and airplane
propellers. Implicit methods [20,38] are capable to reconstruct
smooth meshes, but there is a gap in thickness between the shape
and the ground truth, as shown in Fig. 7. BSP-Net [39] directly
extracts a polygon mesh via convex decomposition and recovers
sharp geometric details. However, there are many overlapping
faces inside its mesh, and the surface lacks smoothness. Our
method has achieved better performances as demonstrated by
the similar overall shape as well as the exquisite local details.
Besides, with the conversion of MAT to VDB implicit surface
representation, our generated surface meshes are guaranteed to
be manifold and watertight, without any self-intersection.

Quantitative results We adopt the widely used Chamfer Dis-
ance (CD) loss, Earth Mover’s Distance (EMD) loss, F-score [14],
ntersection over Union (IoU) of the voxels as comparison metrics.

fter aligning the prediction results with ground truth, 10,000
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b

Table 1
Quantitative results on mesh reconstruction. The Chamfer Distance, IoU, Earth Mover’s Distance, and F-score are used. The best results are boldfaced, and the second
est results are underlined.
CD ↓ Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean

AtlasNet 1.32 4.54 5.50 3.65 5.99 14.22 2.66 3.85 1.42 3.51 1.21 10.29 2.81 4.69
P2M 2.78 6.17 6.40 4.75 4.44 10.28 5.47 4.62 2.02 5.28 1.85 18.56 9.74 6.34
TMNet 2.09 5.56 4.06 2.65 3.68 10.32 4.97 4.21 1.70 6.16 1.05 13.01 2.62 4.78
Skeleton 1.44 4.14 3.81 2.33 3.50 8.22 3.19 4.03 2.91 4.16 1.96 12.21 3.76 4.28
DISN 2.08 5.88 5.56 2.81 5.34 13.89 2.47 2.98 1.30 5.25 1.29 16.26 4.18 5.33
OccNet 1.48 5.35 4.36 2.47 5.14 9.51 4.23 5.22 1.91 6.85 0.96 16.58 5.71 5.37
BSP-Net 1.41 4.79 4.59 2.91 4.75 10.74 4.72 4.85 1.69 6.48 1.36 14.93 4.33 5.20
Ours 1.24 3.66 3.25 1.61 3.23 6.47 2.95 3.45 1.36 4.25 0.93 11.56 4.12 3.70
IoU ↑ Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean

AtlasNet 0.546 0.429 0.388 0.443 0.458 0.326 0.440 0.405 0.558 0.445 0.652 0.290 0.467 0.450
P2M 0.302 0.417 0.398 0.524 0.482 0.354 0.435 0.408 0.545 0.416 0.610 0.252 0.279 0.417
TMNet 0.493 0.360 0.405 0.492 0.495 0.358 0.411 0.437 0.555 0.439 0.667 0.270 0.455 0.449
Skeleton 0.504 0.448 0.400 0.533 0.489 0.377 0.450 0.411 0.445 0.443 0.605 0.279 0.394 0.444
DISN 0.501 0.435 0.379 0.524 0.533 0.305 0.461 0.444 0.581 0.423 0.655 0.259 0.391 0.453
OccNet 0.591 0.477 0.434 0.521 0.541 0.303 0.454 0.431 0.524 0.417 0.671 0.254 0.379 0.461
BSP-Net 0.555 0.469 0.394 0.485 0.475 0.315 0.393 0.392 0.550 0.412 0.597 0.246 0.389 0.436
Ours 0.558 0.511 0.446 0.612 0.510 0.387 0.434 0.415 0.540 0.448 0.675 0.257 0.388 0.475
EMD ↓ Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean

AtlasNet 2.38 3.41 4.18 3.37 3.93 5.69 2.89 3.00 2.14 2.88 2.01 4.20 2.91 3.31
P2M 2.99 4.11 4.74 4.19 3.35 5.91 4.41 3.26 2.63 3.66 2.20 6.68 5.39 4.12
TMNet 2.75 3.50 4.03 3.39 3.15 5.98 3.50 2.62 2.18 2.99 1.49 4.14 2.36 3.24
Skeleton 2.52 4.12 3.79 3.95 3.32 6.23 3.67 3.15 3.55 3.21 2.59 5.42 3.73 3.79
DISN 2.75 3.13 3.61 3.21 2.98 6.46 2.56 2.43 2.11 3.02 1.71 4.41 2.95 3.18
OccNet 2.03 2.97 3.18 3.01 2.90 5.01 3.27 2.91 2.30 3.09 1.52 4.70 3.24 3.09
BSP-Net 2.21 3.27 3.91 3.53 3.04 6.30 3.81 3.16 2.83 3.11 1.96 4.88 3.08 3.46
Ours 2.13 2.80 3.05 2.53 2.79 4.93 2.88 2.55 2.13 2.76 1.56 4.28 2.96 2.87
F-score ↑ Plane Bench Chair Rifle Table Lamp Boat Couch Car Display Phone Speaker Cabinet Mean

AtlasNet 94.07 77.61 72.03 82.29 78.78 60.15 84.11 78.63 92.29 83.86 93.96 60.13 78.52 79.73
P2M 86.85 73.55 64.02 80.12 83.24 66.05 73.61 72.55 86.95 74.31 88.02 48.83 53.44 73.20
TMNet 91.64 72.81 78.90 86.05 87.23 67.71 71.58 80.35 90.99 77.48 95.05 55.56 82.29 79.82
Skeleton 93.29 79.57 78.62 89.22 83.73 68.79 80.43 77.89 79.84 79.82 87.43 57.07 73.06 79.14
DISN 92.26 79.44 73.46 87.65 82.39 68.81 86.44 82.43 93.13 79.98 93.29 53.74 71.88 80.38
OccNet 93.69 83.09 80.47 88.45 82.91 68.54 80.29 75.96 88.82 75.43 95.78 53.28 66.53 79.48
BSP-Net 91.78 80.29 77.10 84.35 84.22 68.09 80.22 76.33 91.10 76.99 93.59 51.60 73.70 79.18
Ours 94.96 84.42 83.70 92.40 87.33 74.32 83.20 79.97 92.41 81.81 96.12 56.18 72.95 83.06
T
i
t

f
t
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Fig. 6. Test results on real images.

points are uniformly sampled from each triangle mesh. The met-
rics are calculated on the sampled points and the vertices of
ground truth meshes. Since the training and testing samples are
less than the full dataset, all methods have a certain decline in
quantitative than using the full dataset, but because all meth-
ods use the same samples, the performance difference between
methods remains. For example, OccNet and DISN are better than
Pixel2Mesh quantitatively.

Table 1 shows our approach outperforms the state-of-the-art
methods in all metrics over most categories. It is noticed that all
of the mesh-based methods take meshes as supervision informa-
tion in the training process, which aims to directly minimize the
losses calculated on meshes.

Our method learns the medial spheres and topological re-
lations without using the surface meshes as supervision infor-
mation, but still achieves better (or comparable) results on the
reconstruction error of reconstructed meshes.

Topology prediction
Given sparse medial spheres, we compare the topology gen-
eration with alternative methods: Ball pivoting [40], Delaunay o

6

triangulation (deleting overlong edges using a threshold), and K
Nearest Neighbor (KNN) (connecting the K nearest neighbors of
each sphere and extracting the formed faces). Fig. 5 shows that
the alternative methods cannot generate the complex topology
correctly (especially linear structures). Our Topology Prediction
module predicts the delicate back and legs of the chair.

Testing on real image
We test our model on real images from the Pix3d [41] dataset.

Although our model is only trained on the ShapeNet dataset, it
generalizes well to real-world objects (Fig. 6). Our method has
the ability to reconstruct the hole structure of 3D shapes.

Comparison of Shape Diameter Function (SDF)
We apply Shape Diameter Function (SDF) [42] to measure the

local thickness of reconstructed meshes.
We first compute the SDF value for each face of mesh and

sample M (10 K in our experiments) points in total on these faces.
he SDF value η of each point corresponds to the face from which
t is sampled. A larger SDF value indicates thicker volume below
he surface point.

We propose the average thickness error to measure the dif-
erence of the local thickness between the predicted mesh and
he ground truth. To the best of our knowledge, none of the
raditional quantitative metrics could reflect the thickness error
f the local shape. For a point p on the ground truth mesh surface,
e find the nearest point p′ from the predicted mesh surface as

ts corresponding point.
The absolute value of difference between the thickness values

′
′
f p and p is |ηp − ηp |. Similar to the R loss, we calculate the
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Fig. 7. Comparison on Shape Diameter Function. The color of the point indicates
ts thickness. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 8. Visual comparisons on spheres and reconstructed meshes of all stages.
The two rows are the predicted spheres and the corresponding mesh recon-
structed after topology prediction. Although the spheres learned from global
and local features can learn the geometric characteristics of the object, there is
still a certain gap with the ground truth. After smoothing and learning by the
topological information, the spheres have been significantly optimized on the
curve and plane.

Table 2
Quantitative comparison on average thickness error.
Category Skeleton DISN OccNet Ours

Plane 1.811 1.867 1.796 1.607
Chair 1.874 1.674 1.619 1.492
Firearm 1.638 1.008 1.095 0.985
Table 1.618 1.235 1.285 1.226
Mean 1.774 1.516 1.503 1.361

thickness error in both directions, i.e.,

e =
1
2M

(
∑
p

|ηp − ηp′ | +
∑
q

|ηq − ηq′ |), (5)

where q and q′ are the point on the ground truth mesh and its
nearest point on the predicted mesh, respectively.
7

Fig. 9. Influence of edge/face probability threshold τe/τf on mesh reconstruction.

Fig. 10. Reconstruction results with and without dense centers in topology
prediction.

Table 3
Quantitative comparisons on high-genus samples.
Method CD IoU

AtlasNet 4.753 0.435
P2M 5.519 0.451
TMNet 3.904 0.436
SkeletonBridge 3.317 0.465
DISN 4.175 0.489
OccNet 3.936 0.496
BSP-Net 4.064 0.459
Ours 2.902 0.515

The computation of SDF needs closed and manifold mesh with
correct normal information, but it could not be guaranteed that
the predicted meshes of the mesh-based methods we compare
have these attributes. We compare 4573 samples of which the
SDFs are successfully computed. The qualitative and quantitative
results show our results have a closer thickness to the ground
truth than other methods. Table 2 shows the average thickness
errors (lower is better) of the reconstructed meshes and the
ground truth.
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Fig. 11. Topology-guided segmentation on predicted MAT and predicted triangular mesh.
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Fig. 12. MAT topology-guided parts segmentation results.

Our result is closer to the ground truth on thickness than the
ompared methods. The visual comparison of SDF in Fig. 7 also
gives the same conclusion.

High genus shape comparison
To show the effectiveness of our method on topologically

complex shapes, we compare the results of higher-genus samples
on 5 categories (bench, chair, firearm, plane, table), containing a
total of 29,520 samples, with average genera of 11.4 per sample.
As shown in Table 3, our results still perform well.

4.2. Ablation study and application

Effect of each stage on sphere prediction
The initial spheres decoded from the global image features

only achieve the similarity of the overall shape, so we improve
it with sphere refinement and MAT Smoothing. Table 4 and Fig. 8
show the effect of each stage quantitatively and visually.

The sphere refinement in Image2Sphere module generates
complex local shape details and the MAT Smoothing module
8

Table 4
Quantitative comparisons of the three stages.
Stage CD (Sphere) R (Sphere) CD (Mesh)

Initial 129.28 226.75 5.06
Refined 124.63 196.87 4.38
Smoothed 124.38 191.64 3.70

produces clearer boundaries of the shape and more consistent
radii of neighboring spheres. In the smooth operation, we use the
weight t = 0.5 for Eq. (4). We calculate the ratio of diagonal of
the bounding box between current spheres and real data, and the
average value in 13 categories is 0.946. Through the following
refinement, this ratio is restored to 0.984, indicating that MAT
Smoothing not only smooths the surface but also keeps the size
of the shape.

Thresholds of topology prediction
In the topology prediction, the probability threshold deter-

mines the edges/faces prediction and thus affects the mesh re-
construction results. In Fig. 9, we visualize the reconstruction
results of different thresholds and explore the selection strategy.
Low edge/face thresholds (τe/τf ) result in local redundancy of
the mesh, while high thresholds may lead to incomplete local
shape. We select the balanced thresholds (τe = 0.2, τf = 0.3)
or topology prediction.

ense centers effect in Topology Prediction
As shown in Fig. 10, although using 256 spheres for topology

rediction alone can predict most of the edges and faces correctly,
t may lead to incorrect local predictions, such as redundancy or
oss of local connections.

pplication on topology-guided segmentation
MAT’s topology is the abstraction of the 3D shape. Although

ur task is shape reconstruction, we find that with the guid-
nce of the predicted topology of MAT, the overall shape can
e easily segmented into multiple parts. Fig. 12 visualizes the
egmentation results on meshes. It can be seen that the surface
tructure and curve structure can be clearly distinguished on the
econstructed mesh.

With the help of the predicted topology, we can decompose
he shape into multiple parts without labeling and deep learning.
s shown in Fig. 11, the topology-guided segmentation consists
f three steps:
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f
w

Fig. 13. Visualization results of all stage outputs.
(1) Semantic Split. Intuitively, a sphere on a surface has more
aces than a sphere on a curve. According to the number of faces,

e can split the spheres into two semantics: curve or surface.

9

The sphere with the number of prediction faces greater than
the threshold K is be seen as on the surface, otherwise on the

curve.
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Fig. 14. Initial sphere prediction architecture.

Fig. 15. Topology prediction architecture.

(2) Parts Clustering. We use DBSCAN (Density-Based Spatial
lustering of Applications with Noise) to cluster curve spheres
nd surface spheres. For the curve spheres, we cluster them
ased on 3D spatial coordinates. For surface spheres, we compute
he average normal of the faces those the sphere is located in
s its normal (absolute value) and cluster them by using the
10
coordinates and normals, to distinguish the connected surfaces
with different normals, such as the back and base of a chair.

(3) Mesh Correspondence. After splitting the parts of MAT
spheres, we segment the triangle faces by finding their nearest
spheres. Finally, we split the triangular mesh into many parts.

Although our method generates overall shape from a single
view image, the triangular mesh can easily be segmented into
parts based on MAT segmentation. Due to the DBSCAN needs not
specifying the number of cluster centers, the parts number of the
shape is adaptive.

More samples in all stages
To show the effect of each stage, the output results of all

stages are shown in Fig. 13 including sphere prediction, topology
prediction, MAT smoothing, and mesh reconstruction.

We also show the thickness information (shape diameter func-
tion) of reconstruction results in different categories, which is not
considered by other methods. It can be seen that our method
can gradually generate fine spheres on a skeleton, and reasonably
predict the topological relationship of the spheres. Finally, con-
struct a complete MAT representation and reconstruct a complex
surface mesh. We also show the local thickness that is affected
by the radius through shape diameter function.

Network architectures Fig. 14 shows the architecture of initial
sphere prediction. The input image is encoded to a global vector
by ResNet18. Then the global feature vector is input to three
sub-networks. Two networks encode the feature and decode it
into initial centers and radii, and then the feature vector is input
to the displacement learning module to learn the displacements
for the initial centers. The displacement learning module fol-
lows 3DN [16]. The architecture of sphere refinement network
(Fig. 16) follows Pixel2Mesh. We make the following changes
in implementation: (1) The input of deformation is 256 center
coordinates. (2) The input graph is an identity matrix for graph
convolution and graph decoder. (3) The output of the last layer
is the refined radii of 256 × 1. (4) The R loss is added to the
loss function. In Image2Sphere, the initial sphere prediction uses
a batch size of 24, and the refinement network uses a batch size
of 1. The learning rate is 1e−4. In the topology prediction network
(Fig. 15), we group 8 neighbor spheres from sparse spheres and
64 neighbor centers from dense centers for each sparse sphere.
We only predict the topology of sparse spheres.

5. Conclusion and future work

We introduce IMMAT, the first supervised method to learn
MAT from a single view image to reconstruct surface mesh. The
predicted MAT contains both geometry (spheres) and topology
(edges and faces) information, which helps us generate a complex
surface mesh that is manifold and watertight. Different from the
skeleton points, MAT is a ‘‘complete’’ shape descriptor that can
be directly used to reconstruct the surface.

Compared with the state-of-the-art methods, meshes gener-
ated by IMMAT exhibit superior visual quality and have more ac-
curate local thickness information. All the results show that pre-
dicting the MAT inside the shape to recover surface mesh is wor-
thy of further exploration. It has no topological constraints and
can generate complex shapes. With the help of predicted MAT, we
can easily segment the parts of the reconstructed mesh without
any supervision, which other representations may not accom-
plish. There are two research directions worth exploring in the fu-
ture: exploring the applications of MAT in non-rigid shape recon-
struction from single view images, and self-supervised learning of
MAT by differentiable rendering.
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Fig. 16. Sphere refinement network.
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