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Abstract. Recent research works have focused on generating human
models and garments from their 2D images. However, state-of-the-art
researches focus either on only a single layer of the garment on a human
model or on generating multiple garment layers without any guarantee
of the intersection-free geometric relationship between them. In reality,
people wear multiple layers of garments in their daily life, where an inner
layer of garment could be partially covered by an outer one. In this paper,
we try to address this multi-layer modeling problem and propose the
Layered-Garment Net (LGN) that is capable of generating intersection-
free multiple layers of garments defined by implicit function fields over
the body surface, given the person’s near front-view image. With a spe-
cial design of garment indication fields (GIF), we can enforce an implicit
covering relationship between the signed distance fields (SDF) of differ-
ent layers to avoid self-intersections among different garment surfaces
and the human body. Experiments demonstrate the strength of our pro-
posed LGN framework in generating multi-layer garments as compared
to state-of-the-art methods. To the best of our knowledge, LGN is the
first research work to generate intersection-free multiple layers of gar-
ments on the human body from a single image.

Keywords: Image-based reconstruction · Multi-layered garments ·
Neural implicit functions · Intersection-free

1 Introduction

Extracting 3D garments from visual data such as images enables the generation
of digital wardrobe datasets for the clothing and fashion industry, and is useful in
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Virtual Try-On applications. With the limitation on certain classes of garments,
it is already possible to generate explicit upper and lower garment meshes from
a single image or multi-view images [1,2], to introduce different styles to the
garments, such as length, along with varying poses and shapes [3–5], and to
transfer the garments from one subject to another [1].

However, to the best of our knowledge, none of the existing approaches have
the capability of generating multiple intersection-free layers of clothing on a
base human model where an inner layer of garment could be partially covered
by an outer one without any intersection or protrusion. This does not conform
to reality because people wear multiple layers of garments in their daily life. The
existing techniques either generate a single layer of upper-body cloth (e.g., T-
shirt, jacket, etc.) and a single layer of lower-body cloth (e.g., pants, shorts, etc.)
without any overlap in their covering regions [1,2], or generate multiple garment
layers, but without any guarantee on their intersection-free geometry [5].

The fundamental challenge here is to ensure intersection-free between mul-
tiple garment layers when they overlap. Existing approaches to garment repre-
sentation are based on explicit models, by using either displacement fields over
SMPL surface (SMPL+D) [1,6] or skinned meshes on top of SMPL [2]. However,
with explicit mesh representations, it is very difficult to ensure intersection-free
between multiple garment layers. SMPLicit [5] is an implicit approach that gen-
erated multiple layers of garments but does not handle intersections among mul-
tiple layers. In this paper, we propose to use a set of implicit functions – signed
distance fields (SDF), to represent different layers of garments. The benefit is
that the intersection-free condition can be easily enforced by requiring the SDF
of the inner layer to be greater than the SDF of the outer one. We call this the
Implicit Covering Relationship (Sect. 3.1) for modeling multi-layer garments.

There are two challenges associated with the such implicit representation of
garments as well as the enforcement of implicit covering relationship: (1) Most of
the garments are open surfaces with boundaries, while SDF can represent closed
surfaces only. (2) The implicit covering relationship should only be enforced in
those regions where two layers overlap, but how can we define such overlapping
regions? In this paper, we solve these two challenges by proposing an implicit
function called Garment Indication Field (GIF, Sect. 3.2) which successfully
identifies those regions where the garment has “holes” – the open regions where
the garment does not cover. With such garment indication fields, we not only can
enforce the implicit covering relationships between layers but also can extract
the open meshes of garments by trimming the closed marching cubes surfaces.

We propose a Layered-Garment Net (LGN), which consists of a parallel SDF
subsystem and GIF subsystem, that can take an image of the person as input,
and output the corresponding SDF and GIF for each garment layer. Specifically,
based on the projection of the query point in image space, we obtain its local
image features from the encoded features given by a fully convolutional encoder.
Using the local image features and other spatial features of the query point,
we train different decoder networks for different layers of garments to predict
their SDF and GIF, respectively. The network is trained end-to-end, utilizing
a covering inconsistency loss given by GIFs and SDFs of different layers, along
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with other loss functions to regress the predictions to the ground-truth values.
The contributions of this paper can be summarized as follows:

– We present a Layered-Garment Net, the first method that can model and
generate multiple intersection-free layers of garments and the human body,
from a single image.

– We enforce an implicit covering relationship among different layers of gar-
ments by using multiple signed distance fields to represent different layers,
which guarantees that multiple layers of garments are intersection-free on
their overlapping regions.

– We design garment indication fields that can be used to identify the open
regions where the garments do not cover, which can be used to identify the
overlapping regions between different layers of garments, as well as to extract
open meshes of garments out of the closed surfaces defined by SDF.

2 Related Works

In this section, we will review the recent works in two areas of research that are
related to our work. We consider Full Human Body Reconstruction where
the focus is on generating a good quality clothed human model and Individual
Garment Surface Reconstruction where the focus is on obtaining individual
garments for a human model.

Full Human Body Reconstruction. Many recent works generated explicit rep-
resentations of human body mesh using parametric models for naked human
models to handle varying geometry [7–9]. This allows them to modify the shape
and pose of the generated model according to shape parameters β and pose
parameters θ. The underlying idea is to obtain the parameters β and θ that
closely defines the target human body, and apply linear blend skinning using the
blend shapes and blending weights to generate the final human body geometry.
Bogo et al. [10] obtained these parameters and fitted a human body model from
single unconstrained images. Many deep learning-based methods [11,12] have
since then come up, that estimate the shape and pose parameters of a human
model. Smith et al. [13] employed the use of silhouettes from different viewpoints
to generate the human body. Subsequently, some research works [14,15] also
used semantic segmentation of human parts to ensure more accurate parameter
estimation. However, the above-mentioned works only generate naked human
models and do not reconstruct clothed human models.

To address this issue, several recent research works have focused on the dis-
placements of a naked body. Alldieck et al. [6] used frames at some continuous
interval from a video of a subject rotating in front of the camera to ensure accurate
parameter estimation from different viewpoints and used SMPL+D for clothed
human body reconstruction. Such SMPL+D representation uses a displacement
vector for the vertices of the naked human body model to represent clothing details
and was later used for single image reconstruction [16]. Tex2Shape [17] was able
to obtain better displacement details by predicting the displacement map for a
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model that aligns with the texture map of the model. Several recent works [18]
generate explicit dynamic human models. However, since all the above methods
are only based on a naked human body model, they cannot generate a human
body wearing complex garments like skirts, dresses, long hair, etc. To address these
issues, some research works [19,20] used a volumetric representation of the human
body with voxelized grids. Ma et al. [21] obtain the point clouds of clothed humans
with varying garment topology. Some recent works [22,23] also focus on generative
approaches for 3D clothed human reconstruction.

There have been some recent works focusing on the implicit clothed body
surface representation. Mescheder et al. [24] used the occupancy field to deter-
mine if a point is inside or outside a surface of any object from the ShapeNet [25]
dataset, and then used a classifier to generate a surface dividing the 3D space
into inside/outside occupancy values. They calculated occupancy values for each
point of the voxel grid and used marching cubes [26] to generate the surface. They
do not have to store voxel grid representation or any other mesh information for
all the data instances. Different from the occupancy field, Chibane et al. [27]
predicted an unsigned distance field using a neural network, and projected the
points back to the surface to generate a point cloud-based surface using the gra-
dient of the distance field at that point, and could be used to further generate a
complete mesh surface. Several recent works [28–30] predicted a Signed Distance
Field and used marching cubes [26] to generate a mesh surface. This ensures more
accurate geometry because of the implicit field’s dependence on distance. Based
on the above works on implicit fields, PIFu [31], PIFuHD [32], StereoPIFu [33],
GeoPIFu [34], PaMIR [35] take a 2D image or depth data of human as input, and
after extracting the local encoded image features for a point, they predict the
occupancy field of the dressed body. MetaAvatar [36] represent cloth-specific neu-
ral SDFs for clothed human body reconstruction. Other recent works [37–39] aim
to dynamically handle the reconstruction of animatable clothed human models
via implicit representation. Several other works [5,40–42] also use implicit fields
for 3D human reconstruction. Bhatnagar et al. [43] combine use base explicitly
defined SMPL model to implicitly register scans and point clouds. The method
identifies the region between garment and body, however, it does not reconstruct
different garment layers. Handling individual garment regions like Garment Indi-
cation Field is more complicated. Scanimate [42] reconstructs a dynamic human
model and utilizes an implicit field for fine-tuning their reconstruction. Instead
of supervision, they utilize Implicit Geometric Regularization [44] to reconstruct
surfaces using implicit SDF in a semi-supervised approach.

Individual Garment Surface Reconstruction. Instead of simply generating a
human body model with displacements, Multi-Garment Net (MGN) [1] generates
an explicit representation of parametric garment models with SMPL+D. Using
single or multiple images, it predicts different upper and lower garments that
are parameterized for varying shapes and poses. However, MGN cannot produce
garments that do not comply with naked human models, like skirts and dresses.
TailorNet [3] uses the wardrobe dataset from MGN and applies different style
transforms like sleeve-length to obtain different styles of garments. DeepCloth [4]
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enable deep-learning based styling of garments. SIZER [45] provides a dataset
enabling resizing of the garment on the human body. Deep Fashion3D [46] gen-
erates a wardrobe dataset, consisting of complex garment shapes like skirts and
dresses. BCNet [2] uses a deformable mesh on top of SMPL to represent garments
and proposes a skinning weights generating network for the garments to support
garments with different topologies. SMPLicit [5] obtains shape and style features
for each garment layer from the image and uses these parameters to obtain mul-
tiple layers of garments, and uses a distance threshold to reconstruct overlapping
garment layers. However, they do not guarantee intersection-free reconstruction.
GarmentNets [47] reconstructs dynamic garments utilizing Generalized Winding
Number [48] for occupancy and correct trimming of openings in garment meshes.
Their approach, however, does not provide a garment’s indicator field.

To the best of our knowledge, none of the existing works can generate over-
lapping intersection-free multiple layers of garments where an inner layer could
be partially covered by an outer one. All existing works on individual garment
generation [1–3,46] use explicit mesh representation, making them difficult to
ensure intersection-free between different layers. SMPLicit [5] does not guarantee
intersection-free reconstruction among different layers, especially in overlapping
regions. In this paper, we resort to implicit representation and model the mul-
tiple layers of garments with signed distance fields (SDF) which makes it easy
to enforce the implicit covering relationship among different layers of garment
surfaces with the help of a carefully designed implicit garment indication field
(GIF). The combination of these two implicit functions, SDF and GIF, makes
the modeling and learning of multi-layer intersection-free garments possible.

3 The Method

Given a near-front-facing image of a posed human, we aim to generate the differ-
ent intersection-free garment surface layers. The reconstructed surfaces should
follow a covering relationship between each other and the body. Our proposed
Layered-Garment Net (LGN) can generate implicit functions of Signed Distance
Field (SDF) and Garment Indication Field (GIF) for different layers of garments
over varying shapes and poses. An overview of our approach is given in Fig. 1.

3.1 Implicit Covering Relationship

For two layers of garments i and j, let layer i be partially covered by layer j. If
a point p belongs to their overlapping regions, the SDF values si(p) and sj(p)
for the two layers should follow the covering relationship:

sj(p) < si(p). (1)

This is illustrated in Fig. 2(left). The inequality does not hold for all the points
in 3D space but only holds for the overlapping region between the two layers.
We are only interested in the points near the surface of the garment layer. Let us
consider an example where layer i is a pant and layer j is a shirt. The inequality
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Fig. 1. Given an input image, our method first obtains PGN [49] segmentation and
incomplete masks for each garment from segmentation. Then the complete masks of
garments are generated by Pix2Pix-HD Garment Mask generator. Similarly the indica-
tor masks for garments are generated by Pix2Pix-HD Indicator Mask generator. Using
the masked input image, the front and back normals are obtained using Pix2Pix-HD
Normal Subnetwork. Then an Encoder and Decoders of LGN network use masked
images and normals and predicts SDF value si(p) of layer i for any point p in 3D
space. LGN-GIF further uses Indicator Masks indi to obtain GIF value hi(p) of layer i
for any point p in 3D space. Finally, LGN is fine-tuned with the covering loss in Eq. (2)
to avoid intersection among different layers.

Eq. (1) should not be satisfied in the leg region of the human body, otherwise,
this would result in the generation of a shirt layer on top of the pant layer in
the leg region, where the shirt originally does not exist. This problem is shown
in Fig. 2(right). Hence, we need an indicator function for both layers, and only
ensure that the implicit covering relationship Eq. (1) holds on points that are
related to both layers i and j. We call this indicator function for layer i the
Garment Indication Field (GIF), and denote it as hi(p) (Sec 3.2).

To ensure the network’s SDF predictions follow the Implicit Covering Rela-
tionship inequality for relevant points p, we can define the covering loss for all
layers of surfaces for our network as follows:

Lcov(p) =
N∑

j=1

∑

i∈C(j)

hj(p)∗hi(p)∗ [max(sj(p)−si(p), 0)+λ(sj(p)−si(p))2], (2)

where C(j) is the set of layers partially covered by layer j. The multiplication
with hj(p) and hi(p) guarantees that the covering loss only applies to the points
in the overlapping region between two layers. The last term regularizes the dif-
ference between the two SDFs. We choose λ = 0.2 in all our experiments.
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Fig. 2. (Left) For a point p associated with two layers of surfaces i and j, where layer i
is partially covered by layer j, it should satisfy si(p) > sj(p) in their overlapping region
where hi(p) > 0 and hj(p) > 0. For other regions, this relationship may not satisfy.
(Right) Garment Indication Fields (GIF) of an inner layer pant and an outer layer
shirt are used to constrain the covering relationship only in their overlapping region.
Without GIF, the outer layer would completely cover the inner layer since si(p) > sj(p)
would be enforced everywhere.

3.2 Garment Indication Field

For a garment and a query point p, we use its generalized winding number [48],
denoted as W (p), to distinguish the open regions from the regions concerned
with garment surfaces. Since all the garments are open surfaces, W (p) is equal
to 0.5 at the opening regions. W (p) > 0.5 for a point inside the surface, and
keeps increasing as the point gets farther inside. Similarly, W (p) < 0.5 for a
point outside the surface, and keeps decreasing as it goes further away from
the open regions. In far-off regions and outside the surfaces, W (p) ≤ 0. Using
different field functions as a function of winding number, we can have different
observations as shown in Fig. 3.

Observation 1: o(p) = W (p)−0.5 gives the occupancy field for a garment. This
has been shown in Fig. 3(b). We call o(p) the winding occupancy. This helps us
in obtaining the sign of SDF for a non-watertight mesh. Since all garments, in
particular, are non-watertight open mesh, for any query point p in 3D space,
the distance d(p) to its nearest surface point is essentially an unsigned distance
because there is no inside/outside for the open surface. Thus we use o(p) to
obtain a watertight surface mesh with marching cubes first, then compute a
ground-truth SDF s′(p) for the watertight garment surface.

Observation 2: h′(p) = W (p) ∗ (W (p) − wh) gives an indication field of the
garment opening region, where 0.5 < wh < 1. As previously discussed, W (p) is
greater than 0.5 inside the opening region and the surface mesh, and it keeps on
increasing inside the mesh. Similarly, W (p) is less than 0.5 outside the opening
region and keeps decreasing away from the region outside the mesh. In this
paper, we choose wh = 0.75 for all garments. For any point that is inside the
mesh and away from the garment opening region, W (p) > 0.75, so h′(p) is
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Fig. 3. For a given garment mesh (non-watertight), we show the cross-section views
of the following fields: (a) Generalized Winding Number W , (b) Winding Occupancy
W − 0.5, (d) “Hole” Region Indication W ∗ (W − 0.75), and (e) Garment Indication
Field W ∗ (W − 0.75) − δ. Transition from (c) to (d) allows concise bound for GIF,
which will not intersect with nearby body surfaces.

positive. Similarly, if it is outside the mesh and away from the garment opening
region, W (p) < 0, so h′(p) is positive too. However, for any point that is located
close to the 0.5-level isosurface, 0 < W (p) < 0.75, so h′(p) is negative. In this
way, h′(p) indicates the open region of the garment. This can be observed from
Fig. 3(c).

Furthermore, it also follows that h′(p) − δ, for some δ → 0+ gives a bound
region of the garment closer to the mesh. This has been shown in Fig. 3(d). We
observe that, for δ = 0.01, we get a good quality bound for this indication field.
Thus we define the following function as Garment Indication Field (GIF) for the
garment surface:

ĥ(p) = (sign[W (p) ∗ (W (p) − 0.75) − δ] + 1) ∗ 0.5. (3)

Here ĥ(p) = 1 means the point is in the region close to the garment surface,
otherwise ĥ(p) = 0. Such ground-truth GIF values will be used for enforcing the
covering relationship in Eq. (2).

3.3 Layered-Garment Net

Given an input image I of a person, we first obtain the garment segmentation
P on the image using Part-Grouping Network [49]. It is possible to obtain dif-
ferent garment masks gi for garment layer i using the corresponding pixel color.
However, the mask gi may not be complete because of overlap with outer layers.
Hence, we train a Garment Mask generator, that takes the incomplete mask gi
and PGN segmentation P as input, and outputs a corrected garment mask g′

i.
Like PiFU-HD [32], we follow a similar pipeline, however, with no requirement

for a Fine-Level network, but only a Coarse network for each garment layer. We
also use semi-supervised Implicit Geometric Regularization (IGR) [44] for fine-
tuning SDF prediction on the surface. For layer i, we use mask g′

i on input image
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I and using a Normal Subnetwork masked with g′
i, we obtain front and back

normals [32]. Let’s call the concatenation of masked input image and masked
front and back normals for layer i as Ni.

LGN consists of a common SDF Encoder for all layers, that gives feature
encoding for Ni as Fi. For a given point p in 3D space, we obtain a local pixel
feature by orthogonal projection π(p) of p on Fi, and barycentric interpolation.
For the point p, we also obtain spatial features like depth. Using the spatial
features and local pixel-aligned features, the layer’s SDF Decoder Si(.) predicts
SDF si(p).

Similarly, to identify if point p lies in the garment region, we also obtain
Indicator Mask indi of layer i from PGN P and incomplete mask gi by training
an Indicator Mask generator. Then we train a common GIF Encoder that gives
encoding F ′

i and the layer’s GIF Decoder Hi(.) to obtain GIF value for layer i
as hi(p).

Mask generators for each garment follow the same architecture as front and
back Normal Subnetworks in [32], i.e. Pix2PixHD network [50]. We have a com-
mon SDF Encoder and front and back Normal Subnetworks among all garment
layers and body layers. A common GIF Encoder is defined for all garment lay-
ers. However, we separately define SDF Decoders, GIF Decoders, Garment Mask
generators, and Indicator Mask generators for each garment - shirt, pant, coat,
skirt, dress.

si(p) = Si(Fi(π(p)), φ(p)), hi(p) = Hi(F ′
i (π(p)), φ(p)), (4)

where the spatial feature φ(p) here is depth.
The L1 loss for the generated SDF is formulated as the following L1 norm:

Lsdf (p) =
N∑

i=0

|si(p) − ŝi(p)|, (5)

where ŝi(p) is the ground-truth SDF value for point p from layer i, and N is the
number of garment layers.

Similarly, the L1 loss for the predicted GIF is formulated as follows:

Lgif (p) =
N∑

i=1

|hi(p) − ĥi(p)|, (6)

where ĥi(p) is the ground-truth GIF for the garment layer i and query point p.
We fine-tune network parameters for SDF prediction using Implicit Geomet-

ric Regularization (IGR) [44]. Loss for IGR is given as follows:

Ligr(p) = τ(p)	X (p) + λ(||∇psi(p)|| − 1)2,
	X (p) = |si(p)| + ||∇psi(p) − np||,

(7)

where si(p) is the SDF value at p, τ(p) is an indicator of a point on surface X
and np is the surface normal at point p.
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3.4 Training and Inference

We first pre-train the Garment Mask generator and Indicator Mask generators
on PGN segmentation and incomplete mask as inputs for each garment category
- shirt, pant, coat, skirt, dress. To train the network, we sample 20, 480 points
on the surface of each layer. We add normal perturbation N (0, σ = 5cm) on
these points to generate the near-surface samples. We then add random points
in 3D space using a ratio of 1 : 16 for the randomly sampled points w.r.t. the
near-surface samples. These sampled points are used to optimize the SDF predic-
tion of all garment layers and covering loss between each layer of the garment.
We similarly sample points from the 0.5 level iso-surface of the ground-truth
Garment Indication Fields (GIFs) of each layer garment layer and add normal
perturbation N (0, σ = 5cm) on these points to generate garment indications.
We add random points in 3D space using a ratio of 1 : 16 for the randomly sam-
pled points w.r.t. the garment indicating samples. For GIFs, we add additional
points along the edges of ground truth mesh to obtain accurate trimming.

Given an input image I, we first obtain PGN segmentation image P which
contains different garments in the image. For each garment, we obtain their
incomplete masks gi. Using P and gi for each layer, we obtain garment masks g′

i

and indi. We leave out the indicator mask prediction for the body layer since it is
not required to obtain GIF for the body. It is assumed that the GIF value for the
body layer is 1 at any point. For all the near-surface sampled points, we calculate
the ground-truth SDF values ŝi for each layer i as explained in Sect. 3.2. The
encoder and decoder are warmed-up by training with the loss Lsdf and Ligr as
defined in Eq. (5) and Eq. (7). We also calculate ground-truth GIF values ĥi for
each layer i > 0 with the loss Lgif as defined in Eq. (3). Using the predicted hi

values and the predicted si values for all the sampled points, the network is fine-
tuned with the covering loss as defined in Eq. (2). This ensures that the output
SDF values follow the covering relationship inequality as defined in Eq. (1). For
all the garments indicating sampled points, we calculate their ground-truth GIF
values for each layer of the garment. Using the ground-truth GIF values for each
layer, the GIF value prediction is optimized.

During the inference, after obtaining the SDF values for each layer, we use
marching cubes to obtain its triangle mesh. Then, we apply a trivial post-
processing step using predictions, to update SDF values. For a given point p
where GIF of both layers i and j overlap: if sj > si − ε, sj = si − ε where ε
is a very small number. Experimentally, we use ε to be 1e − 3. Finally, all the
triangular meshes obtained for each layer are trimmed by the predicted GIF
values on the vertices of the mesh. To trim the garment opening regions, the tri-
angles which have different signs of GIF values for its three vertices are selected,
and the triangle is trimmed by linearly interpolating GIF values over each edge.
Thus, we finally obtain multiple layers of garments along with the reconstructed
Layer-0 body that follows the covering relationship.

For both training and inference, we rely on covering the relationship manually
specified with the input image. Different garment layers are then obtained from
the output of LGN by satisfying the covering relationship.
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4 Experiments

4.1 Dataset and Implementation Details

Dataset Preparation. Our multi-layer garment dataset is constructed from
140 purchased rigged human models from AXYZ [51]. For each rigged model,
we first perform SMPL [7] fitting to obtain its body shape and pose parameters.
We generate eight images from different views for each human model and run
semantic segmentation on each image with Part Grouping Network (PGN) [49].
Using the fitted SMPL, we obtain those segmentations on the SMPL surface
and map them to the UV texture space of SMPL. This enables us to perform
texture stitching [52] to generate the segmentation texture map. By projecting
the texture segmentation onto the 3D human model, we obtain the segmentation
of different 3D garment meshes, followed by minor manual corrections on some
garment boundaries. Our processed garments include the categories of Shirt,
Coat, Dress, Pant (long and short), and Skirt, while Shirt/Coat/Dress all contain
three subcategories of no-sleeve, short-sleeve, and long-sleeve. Detailed statistics
of the processed garments are provided in the supplementary document.

Table 1. Comparison results (in cm) for A per-garment Point-to-Surface on (i) Digital
Wardrobe [1], (ii) SIZER [45], and B Full body reconstruction on BUFF Dataset [53]

A(i)

Model P2S

BCNet 9.75

SMPLicit 9.12

Ours 9.09

A(ii)

Model P2S

BCNet 3.84

SMPLicit 6.01

Ours 4.04

B

Model Chamfer P2S

PiFU-HD 1.22 1.19

BCNet 1.93 1.96

Ours 2.75 2.6

Using different garments, we synthesize around 12, 000 different combinations
of multi-layer garments on top of a layer-0 SMPL body, in 7 different poses. When
combining different garment types, we follow the assumption that the length
of sleeves for the inner layer should NOT be shorter than that of the outer
layer. Otherwise, the sleeves of the inner layer are covered by the outer garment
and there is no visual clue to tell its length. We then use this combination
of generated garment models with a layer-0 body to train our LGN. We use
the synthesized combinations of multi-layer garments as the training set. The
geometries of garments are corrected to make sure no intersections exist and the
different layers of garment follow the covering relationship. For testing, we use
BUFF [53] and Digital Wardrobe [1] datasets. The dataset preparation details
are discussed in the supplementary document.

Implementation Details. The base architecture of our LGN is similar to that
of PIFu [31] and PIFu-HD [32] since they also predict implicit fields aligned
with image features. For SDF Subsystem, we first obtain garment masks from
PGN segmentation of input image using Garment Mask Generators and obtain
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masked front and back normals using Normal Subnetworks, which are Pix2Pix-
HD [50] networks. We use 4 stacks of Stacked Hourglass Network (HGN) [54] to
encode the image features from the concatenation of normals and image. From
spatial features from points and local encoded features by performing bi-linear
interpolation of projected points on image feature space, different Multi-layer
Perceptron (MLP) decoder layers predict SDF values for each layer of the gar-
ment, with layer 0 being the human body. Similarly, for GIF Subsystem, Indica-
tor Mask Generators obtain GIF masks. 4 stacked-HGN encodes image features
from the concatenation of PGN segmentation and indicator mask. Then, GIF
is predicted using GIF Decoders. To optimize the network, we first pre-train
Mask Generators. Then we individually train SDF Subsystem and GIF Subsys-
tems. Thereafter, we use the covering loss to fine-tune SDF prediction to avoid
the intersection, and GIF to ensure appropriate trimming of the open region on
garment surfaces, and a consistent multi-layer covering relationship. We eval-
uate our methods and test with various state-of-the-art approaches on mainly
two areas - 3D Clothed Human Reconstruction and Individual Garment Recon-
struction. The quantitative comparison of 3D Clothed Human Reconstruction of
our method with BCNet [2], PiFU-HD [32] and SMPLicit [5] are shown in the
supplementary document. We omit comparison with MGN [1], Octopus [52] and
PiFU [31] because of the availability of better reconstruction methods.

4.2 Quantitative Comparisons

We compare our methods with the state-of-the-art (Table 1) approaches on three
publicly available datasets: Digital Wardrobe Dataset [1], SIZER Dataset [45]
and BUFF Dataset [53]. We use Digital Wardrobe Dataset and SIZER Dataset
to compare individual garment reconstructions, and BUFF Dataset [53] to com-
pare full human body reconstruction. It is to be noted that since the datasets
mentioned consist of only 2 layers of garments – upper and lower, we cannot
make a comparison with them on multi-layer garment reconstruction. Please
also note, we do not use BCNet [2] data set to have a fair comparison with
BCNet. Also, we are unable to compare our results with DeepFashion3D [46]
data set because the dataset only consists of garments and no human body.

Method Im1 Im2 Im3 Im4 Im5
SMPLicit 12.9 32.7 1.67 21.3 18.3

Ours 0.34 0 0 0.16 0

Fig. 4. Penetration depths (in cm). Fig. 5. Cover loss finetuning
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Individual Garment Reconstruction. To compare our method with the
state-of-the-art garment reconstruction approaches [2,5], we select 96 models
from Digital Wardrobe Dataset [1] and 97 models from SIZER Dataset [45]. We
use segmented Upper and Lower garments available with Dataset for comparison.
We calculate the Mean P2S Error per garment between reconstructed garments
and their ground-truth counterpart and observe the performance of our approach
with other approaches in Table 1 A(i)&(ii). Our model outperforms state-of-the-
arts on Digital Wardrobe Dataset [1]. For SIZER [45], BCNet performs better
due to assuming reconstruction of 2 layer garments only, since segmentation for
3 layer of garments does not exist in the data set.

In Fig. 4, we calculate the Maximum Penetration Depth between different
reconstructed garment layers and make a comparison with SMPLicit [5]. It can
be seen that our work outperforms the state-of-the-art in this case.

Fig. 6. From left to right, qualitative comparison of full-body reconstruction on 3D
clothed human from ground truth (left), and results from BCNet [2], SMPLicit [5],
PIFu-HD [32] and Ours (LGN).

Full Human Body Reconstruction. We show in Table 1 B the comparison of
our method with the state-of-the-arts on full human body reconstruction, on 26
models consisting of different subjects and clothes from BUFF Dataset [53]. We
calculate Chamfer distance and Point-to-surface (P2S) error between ground-
truth human models and reconstructed full body surface. We do not compare
with SMPLicit, because they have no method for full body reconstruction. Please
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Fig. 7. Comparison between the reconstruction results of ours, BCNet [2] and
SMPLicit [5]. Our reconstruction achieves intersection-free between different layers
by satisfying the implicit covering relationship, while BCNet cannot reconstruct multi-
layered garment structure, and the result from SMPLicit does not have such guarantee
and has clear intersections between different layers.

note that we encounter lower results in this case than state-of-the-arts because
we do not focus on accurate naked body (layer 0) reconstruction.

4.3 Qualitative Results

We compare the reconstruction quality of garment surfaces on the human body
in Fig. 6. We can observe that our method (LGN) reconstructs a more detailed
3D human body than state-of-the-art explicit model reconstruction methods like
BCNet, showing the effectiveness of implicit model reconstruction in compari-
son explicit approach. Also, SMPLicit generates a very coarse structure and loses
many finer details for the clothes on the human body. Since we can generate indi-
vidual implicit garment surfaces, we can retain finer details, especially between
different layers. Since our networks are fine-tuned with IGR Loss, we reconstruct
garments of similar quality to PIFu-HD without using fine-level networks.

In Fig. 7, we further show different challenges faced in the reconstruction of dif-
ferent garment surfaces. In the top row, we show the effect of covering relationship
on multiple layers of garment reconstruction, specifically for the Shirt and Pant
layers. From the given image, we expect the Pant layer to cover the Shirt layer
without intersections. However, BCNet generates Shirt covering Pants, according
to their pre-defined template. On the other hand, SMPLicit completely misses cov-
ering relation. In the bottom row, we show the reconstruction of the Coat layer
above the Shirt layer as in the image. We expect two layers of garment reconstruc-
tion for the upper body. However, since BCNet is based on an explicit reconstruc-
tion of garments based on a displacement map on the SMPL body, it cannot recon-
struct two-layer geometry for the upper body. Since SMPLicit does not guaran-
tee intersection-free reconstruction, we find intersections between Shirt and Coat
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layer. Since the results of our LGN satisfy the covering relationship in Eq. (1), we
get the expected output of garments in both cases.

In Fig. 5, we show how Covering Loss affects the reconstruction output. With-
out covering loss finetuning, inner layers intersect with outer layers.

5 Conclusion, Limitation, and Future Work

We introduce a novel deep learning-based approach that reconstructs multiple
non-intersecting layers of garment surfaces from an image. Our approach enforces
the implicit covering relationship between different garment layers and the human
body and identifies overlapping regions of different garment layers, as well as
extract open (non-watertight) meshes. To the best of our knowledge, Layered-
Garment Net (LGN) is the first approach that can handle the intersection-free
reconstruction of multiple layers of garments from a single image.

Our approach currently does not handle color information, since obtaining
good texture for multiple reconstructed layers is difficult. Other neural implicit
functions (e.g. Neural Radiance Fields) can address this issue. Our approach does
not handle more challenging geometries consisting of manifold garment surfaces
and details like pockets, hoodies, collars, etc., and some challenging poses, like
limbs close to the body, etc. Also, since the naked human body model was not the
focus of this work, the current approach does not handle the detailed full-body
reconstruction. These issues can be a major improvement for future work.
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