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Fig. 1. A gallery of our feature-preserving 3D medial axis results (in violet) from inputs of CAD meshes (in transparency) with sharp features.

We propose a novel framework for computing the medial axis transform of
3D shapes while preserving theirmedial features via restricted power diagram
(RPD). Medial features, including external features such as the sharp edges
and corners of the input mesh surface and internal features such as the seams
and junctions of medial axis, are important shape descriptors both topo-
logically and geometrically. However, existing medial axis approximation
methods fail to capture and preserve them due to the fundamentally under-
sampling in the vicinity of medial features, and the difficulty to build their
correct connections. In this paper we use the RPD of medial spheres and its
affiliated structures to help solve these challenges. The dual structure of RPD
provides the connectivity of medial spheres. The surfacic restricted power
cell (RPC) of each medial sphere provides the tangential surface regions that
these spheres have contact with. The connected components (CC) of surfacic
RPC give us the classification of each sphere, to be on a medial sheet, a seam,
or a junction. They allow us to detect insufficient sphere sampling around
medial features and develop necessary conditions to preserve them. Using
this RPD-based framework, we are able to construct high quality medial
meshes with features preserved. Compared with existing sampling-based or
voxel-based methods, our method is the first one that can preserve not only
external features but also internal features of medial axes.
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1 INTRODUCTION
The medial axis [Blum et al. 1967] is a fundamental geometric struc-
ture and has been widely used in approximating, simplifying, and
analyzing shapes. The medial axis M of a 3D shape S is simply
defined as the set of centers of maximally-inscribed spheres touch-
ing two or more points on the surface 𝜕S. Topologically, the medial
axisM is homotopy equivalent to S. Geometrically, the medial axis
M captures the protrusions and components of S. The medial axis
transform (MAT) is the combination of the medial axis and the radius
function defines on it. We represent MAT using a simplicial complex
called medial mesh M𝑠 and approximate the input 3D shape S by
the union of enveloping volumes of the medial primitives (medial
cones and medial slabs, see Sec. 3.1) of the medial mesh.
We have observed that medial features play a significant role in

guaranteeing many topological and geometric properties of medial
axis. External features such as sharp edges and corners of the input
3D shape, which are common to CAD models, represent the non-
smoothness of the surface (see Fig. 2 (f) lines in black). It follows from
the definition that the medial axis passes through the points where
the surface is locally convex and non-smooth. Internal features, on
the other hand, defines the inner topological structure of seams
and junctions (see Fig. 2 (f) lines in red) so that medial axis has a
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Fig. 2. Approximations of medial axis of (a) a dodecahedron model com-
putedwith similar number of medial spheres (#𝑠), using (b) a sampling-based
method Power Crust (PC) [Amenta et al. 2001a], (c) another sampling-based
method Scale Axis Transform (SAT) [Miklos et al. 2010], (d) a voxel-based
method Voxel Core (VC) [Yan et al. 2018], and (e) our method. The ground
truth medial axis (f) highlights external features in black and internal fea-
tures in red.

natural decomposition into multiple manifold sheets. Applications
such as hexahedral mesh generation of CAD models [Quadros et al.
2004] [Sampl 2000] relies on internal features as a starting point
to perform solid meshing. As a result, the medial features, both
external and internal, constitute the foundation of medial axis as
skeletal shape descriptors [Tagliasacchi et al. 2016].

However, all existing medial axis approximation methods that are
designed to handle large input 3D meshes (e.g., tens of thousands
of triangle faces as shown in all models of Fig. 1) fail to preserve
external features. For CAD models that commonly contain external
features like convex sharp edges and corners, the approximated
medial axis usually stops before touching these features, as shown
in examples of Fig. 2 (b)(c)(d), in which cases the structures of medial
axis are not complete. For all methods depending on inner Voronoi
balls of surface samples, no matter how dense the surface sampling
points are, the density condition designed based on their local feature
size (LFS) [Amenta et al. 2001a] can never be achieved at convex
sharp edges and corners. This is because their LFS converges to
zero near the external features, causing their sampling density to
converge to infinity. Even though weak feature size (WFS) [Chazal
and Lieutier 2005a] was proposed to bypass the issue of vanishing
LFS for non-smooth shapes, there is no practical method yet to
preserve those external features in the resulting medial axis.
Furthermore, internal medial features are even more difficult to

capture since they are hidden information of the input shape, as
shown in Fig. 2. The essential reason of this failure is because of the
under-sampling of medial spheres on internal features (red lines in
Fig. 2 (f)). Existing solutions tend to increase surface sampling rate
(or decrease voxel size) globally in order to maintain the internal
features. This eventually results in a large amount of non-feature
medial spheres being sampled without any guarantee to capture the
topologically-important internal features.

In order to generate a medial mesh with feature preservation, we
need to answer the following three questions: (1) How to sample
and update feature spheres to guarantee their tangential properties?
For example, spheres on medial seam are tangential to three points
on the surface, while spheres on medial junction are tangential to
four. (2) How to identify insufficient sampling on medial features,

for both internal and external ones? (3) How to connect all medial
spheres with correct topology and geometry? These open questions
varies for these two types of medial features:

• External features can be trivially identified on the input mesh
surface using the dihedral angle of two incident polygonal
faces. We can sample zero-radius medial spheres on those con-
vex external features. However, there are still threemajor chal-
lenges: (a) How to create the connectivity between these zero-
radius feature spheres and their nearby non-feature spheres
is still an open question. (b) The connectivity of neighboring
feature spheres on external sharp edges could be broken by
the “invasion” of nearby non-feature medial spheres. (c) Mul-
tiple convex and concave sharp edges could meet at a corner,
where neighboring edges could form small angles, causing
a “corner cap” that connects feature spheres at neighboring
sharp edges.

• Internal features, on the other hand, are difficult to identify
in the first place. It it known that with more surface samples
used to construct inner Voronoi balls, the internal features
are more likely to be well-captured. However, there is no
indication to tell whether the sphere sampling on internal
feature is sufficient or not, especially at the vicinity of external
features in CAD models where the sampling is typically not
dense enough.

In this paper, we present the first framework for computing an
approximated MAT that preserves both external and internal medial
features for an input 3D mesh surface while ensuring the approxi-
mation accuracy. Our method is based on a novel insight that the
surface restricted power diagram (RPD) can provide us auxiliary
knowledge about the surface regions which medial spheres have
tangential contacts with. This gives us the ability to classify medial
spheres based on their contacts to the boundary surface (see details
in Sec. 3.3), and sample or update spheres to their ideal position by
solving a quadratic energy optimization problem (as answers for
question (1) above). We further develop the necessary conditions
to preserve both external and internal features based on the infor-
mation of restricted power cells (RPCs) of these feature spheres with
their neighbors (as answers for question (2) above). The restricted
regular triangulation (RRT, as dual of RPD) implies the connectivity
[Amenta et al. 2001b] of discrete medial spheres to form a mesh
approximation of the medial axis (as partial answers for question (3)
above). In our experiments as shown in the Supplementary Material,
we do encounter some models whose generated medial meshes are
not topology preserving. We leave to our future work a theoretically-
sound answer to question (3) with topology preservation (see Sec. 7).
Fig. 1 shows a gallery of our feature-preserving medial meshes
computed from input CAD meshes with sharp features.

The contributions of this paper can be summarized as follows:
• First, we formulate an energy optimization framework (in
Sec. 4.2) for all medial spheres of different types, to update
their positions and radii as close as possible to ground truth,
based on the tangential information derived from their surface
RPCs.

• Second, we present a complete RPD-based framework (in
Sec. 4.3) for computing 3D medial mesh while preserving
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medial features for any input 3D mesh surfaces. We show
that the medial mesh derived from RRT (as dual of RPD) could
be refined with our geometry-guided thinning algorithm (in
Sec. 4.4), in order to keep the thinness property of the medial
axis.

• Third, we propose three feature preservation strategies (in
Sec. 5) for preserving external edge features, external corner
features, and internal features, under the guidance of sur-
face RPCs. Our method not only preserve external features
that none of existing methods can work, but also requires
fewer medial sphere samples to generate high quality internal
features compared with existing methods.

2 RELATED WORKS
In this section, we shall review the representative approaches for
MAT computation. For more extensive discussion on medial axes
and other medial representations, we refer readers to those survey
articles [Siddiqi and Pizer 2008; Tagliasacchi et al. 2016].

Computing 3D exact MAT of polyhedra with feature preservation
was explored by earlier algorithms [Culver et al. 2004; Milenkovic
1993; Sherbrooke et al. 1996] using seam tracing. Due to the com-
plexity of these exact computation algorithms, they mainly aim for
computing medial axes of a simple class of shapes, e.g., polyhedra
composed of up to about 20 faces, which is impractical for more
complicated models. Note that all the models shown in this paper
have over tens of thousands of faces. Thus a significant branch of
later researches resort to compute an approximated MAT (instead of
exact computation) in order for them to be suitable for real-world
applications [Amenta et al. 2001a,b; Chazal and Lieutier 2005b; Dey
and Zhao 2002, 2004; Miklos et al. 2010; Pizer et al. 2003; Saha et al.
2016; Sobiecki et al. 2014].

As medial axis is notorious for its sensitivity to boundary pertur-
bations, a closely related problem is MAT simplification to identify
significant and stable parts of the medial axis, and we refer reader
to recent excellent works [Dou et al. 2022; Faraj et al. 2013; Li et al.
2015; Pan et al. 2019; Yan et al. 2016]. While all existing MAT simpli-
fication methods are designed for smooth shapes, we believe there
could be new MAT simplification methods for non-smooth shapes
in the future, by following our feature preservation framework of
this paper. It is worth noting that many MAT simplification methods
require an initial approximation of MAT in order to prune the noisy
branches of the medial axis. The method presented in this paper
can provide an initial feature-preserved MAT for any future MAT
simplification methods for CAD models.

For 2D smooth shape, it has been proved that the subset of Voronoi
diagram of boundary samples provides a structure topologically
and geometrically converging to the medial axis [Brandt and Al-
gazi 1992]. Unfortunately, this approximation does not hold for 3D
smooth shapes due to the existence of “slivers” which are tetra-
hedra with small volume in Delaunay triangulation of boundary
samples. This leads to their Voronoi vertices (centers of circumscrib-
ing spheres for sliver tetrahedra) very close to boundary but far
away from the medial axis [Amenta et al. 2001b].

Angle-based filtering methods are approaches to filter the Voronoi
diagram of obtained boundary samples or other derivative structures

to approximate the medial axis. Amenta et al. [2001a] proposed
“poles” of Voronoi diagram and show that the power shape converges
to the medial axis as the sampling density increases. Several other
methods [Brandt andAlgazi 1992; Dey and Zhao 2002, 2004] consider
a subset of Voronoi diagram of boundary samples that satisfy an
angle criteria given a user-specified threshold. These methods are
known to be difficult to preserve the topology of the input shape as
the filtered subset tends to have many holes and isolated elements.
𝜆-medial axis methods [Chazal and Lieutier 2005b; Pizer et al.

2003] use the radius of the closest medial sphere as filtering criteria
and discard a medial sphere if its radius is smaller than a given
threshold 𝜆. As a result, the medial axis consists of medial spheres
such that the smallest enclosing sphere of the nearest boundary
sample set has a radius equals or larger than 𝜆.
Voxel-based methods belong to an completely different category

that approximate the medial axis of voxel shape by selecting a subset
of voxels that share similar properties as medial axis [Saha et al.
2016; Sobiecki et al. 2014]. The state-of-the-art method Voxel Core
[Yan et al. 2018] can well approximate the medial axis of any smooth
shape while guaranteeing the topological correctness of the gener-
ated medial axis, given a voxelization of the shape at sufficiently
high resolution. A common drawback of these methods is that they
require fine voxel resolutions hence have high computational cost
in order to achieve a comparable geometric accuracy as sampling-
based methods. Voxel Core requires an additional 𝜆-pruning which
shrinks the medial axis while removing ill-posed structure. This
pruning operation makes the medial mesh incomplete especially
for non-smooth regions like sharp edges or corners.
None of the above MAT approximation methods, however, con-

sider handling 3D shapes with non-smooth regions such as sharp
edges and corners (as we call them external features), and none of
them consider preserving the internal features of medial axis. To
the best of our knowledge, only Dey et al. proposed a remedial
method CAD_MEDIAL [Dey et al. 2003] which extends their previ-
ous method MEDIAL [Dey and Zhao 2002] to complete the structure
of medial axis with external features. But the sampling condition
proposed in CAD_MEDIAL near sharp edges is too impractical to be
achieved, leading to failures to preserve external features in many
shapes. Comparing with these methods, our method for approximat-
ing the medial axis is the first one that preserves not only external
features but also internal features of the medial axis.

3 PRELIMINARIES

3.1 Medial Axis and Medial Mesh
Given a closed, oriented, and bounded shapeS ∈ R3, themedial axis
M is defined as the locus of centers of spheres that are tangent to
two or more points on the boundary of S, or 𝜕S, without containing
any other boundary points in its interior.
The medial axis transform (MAT) is formed by the medial axis

M together with its radius function. To approximate the MAT of a
3D shape S, we use a non-manifold medial mesh M𝑠 consisting of
triangles and edges. Each vertex ofM𝑠 represents a medial sphere
m = (𝜽 , 𝑟 ), where 𝜽 ∈ R3 is the sphere center and 𝑟 ∈ R is its radius.
MAT can be used to reconstruct the surface through the union of
enveloping volumes of its medial primitives [Li et al. 2015]. For
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Fig. 3. Examples of different classes of medial spheres in the context of their connected components (CCs) of restricted power cell (RPC). For a medial sphere,
the subscript of its class type represents the number of CCs of its RPC, and the superscript represents the number of surface normals for the contact points in
each CC. Note that we use the simplified notations here by removing all appearance of “1” from the superscript, i.e.,𝑇 1,1,1

3 is simply written as𝑇3.

example, the enveloping volume of an edge of the medial mesh is
called amedial cone, which is the linear interpolation of two spheres
𝑒𝑖 𝑗 = 𝑡m𝑖 + (1−𝑡)m𝑗 , 𝑡 ∈ [0, 1]. The enveloping volume of a triangle
face 𝑓𝑖 𝑗𝑘 of the medial mesh is called a medial slab that is the linear
interpolation of three spheres m𝑖 , m𝑗 , and m𝑘 .

In this paper, we assume the boundary surface 𝜕S is provided as
a watertight and manifold 3D triangular mesh, with those sharp
feature edges and corners pre-labeled on the mesh. We do not have
any other assumption about these sharp features, e.g., how small a
dihedral angle is allowed to be on a sharp edge, etc. In fact, the case
when multiple sharp edges (convex and/or concave) meet at a corner
is particularly challenging, e.g., two adjacent sharp edges forming a
small angle around a corner. Our feature preservation strategy is
designed to handle all these challenging cases as discussed in Sec. 5.

3.2 Restricted Power Diagram (RPD)
The Voronoi diagram of a set of generators {𝜽 𝑖 }𝑛𝑖=1 is a partition of
the domain Ω ⊂ R𝑑 into a set of cells. Each cell Ω𝑣𝑜𝑟

𝑖
consists of the

points x ∈ Ω closest to a particular generator 𝜽 𝑖 :

Ω𝑣𝑜𝑟
𝑖 : {x ∈ Ω | | |x − 𝜽 𝑖 | | ≤ | |x − 𝜽 𝑗 | |, 𝑗 ≠ 𝑖}. (1)

The vertices of these cells are called Voronoi vertices. The Voronoi
ball in R3 centered at a Voronoi vertex has at least 4 generators on
its boundary, and no generator in its interior [Amenta et al. 2001a].

Power diagram [Aurenhammer 1987] is a generalization of Voronoi
diagram by weighting the given generators, and coincides with
Voronoi diagram in the special case that all points have equal
weights. Given a set of weighted generators {m𝑖 = (𝜽 𝑖 , 𝑟𝑖 )}𝑛𝑖=1,
a power cell Ω𝑝𝑜𝑤

𝑖
is defined as:

Ω
𝑝𝑜𝑤

𝑖
: {x ∈ Ω |𝑑𝑝𝑜𝑤 (x,m𝑖 ) ≤ 𝑑𝑝𝑜𝑤 (x,m𝑗 ), 𝑗 ≠ 𝑖}, (2)

where 𝑑𝑝𝑜𝑤 (x,m𝑖 ) = | |x − 𝜽 𝑖 | |2 − 𝑟2
𝑖
is the power distance between

any point x and the weighted generator (𝜽 𝑖 , 𝑟𝑖 ).
A power diagram restricted within a bounded shape S ⊂ R𝑛 is

called a restricted power diagram (RPD) R, where all power cells

overlap with the shape S. The RPD consists of a set of restricted
power cells (RPC) {𝜔𝑖 }𝑛𝑖=1. Each cell𝜔𝑖 is the restriction of the power
cell Ω𝑝𝑜𝑤

𝑖
of the weighted generator (𝜽 𝑖 , 𝑟𝑖 ) within S:

𝜔𝑖 = Ω
𝑝𝑜𝑤

𝑖
∩ S. (3)

The surface RPC is the restriction of the power cell within the
boundary surface of the shape, denoted as:

𝜕𝜔𝑖 = Ω
𝑝𝑜𝑤

𝑖
∩ 𝜕S. (4)

Robust and exact computation of surface RPD on a surface repre-
sented as triangle mesh is a non-trivial task. Our implementation
extends Yan et al.’s algorithm [2009] to compute them robustly and
exactly, by replacing the metric from Euclidean to power distance.

3.3 Classification of Medial Spheres
For a medial sphere m𝑖 = (𝜽 𝑖 , 𝑟𝑖 ) that is tangent to the boundary
surface at two or more points, its surface RPC 𝜕𝜔𝑖 corresponds to an
RPD constructed on the surface with respect to m𝑖 , which consists
of a set of Connected Components (CCs) of surface regions, each of
which contains one or more tangential surface points. For a smooth
object, the medial spheres are organized into a small amount of
classes [Giblin and Kimia 2004]. Since we are targeting for non-
smooth surfaces, we count the number of surface normals of those
tangential points. We use our own notation 𝑇𝑛1,...,𝑛𝑘

𝑘
for the classifi-

cation of a medial sphere m𝑖 . Here the subscript 𝑘 represents the
number of CCs of its RPC, and the superscript 𝑛1, ..., 𝑛𝑘 represents
the number of surface normals for the tangential points in each CC.

For example, medial spheres of type𝑇 1,1
2 lie on 2-manifold sheets,

which are tangent to 𝜕S at exactly two distinct CCs and each CC
contains only one tangential point (with its corresponding normal).
Since this is the most ordinary case, to simplify the notations we
remove all appearances of 1 from the superscript, i.e, 𝑇 1,1

2 will be
simply denoted as 𝑇2. For most 3D shapes, the majority of medial
spheres lies on type 𝑇2 of sheets; the intersection of three or more
local sheets forms a seam of 𝑇3 spheres; and seams of type 𝑇3 could
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(a) Input Mesh (b) Initial Medial Spheres (c) Updated Medial Spheres (e) Refined Medial Mesh(d) Initial Medial Mesh

Fig. 4. The pipeline of our algorithm. Given a closed manifold 3D mesh surface (a) with sharp edges and corners pre-detected (marked in black lines), the
initial medial spheres (b) are generated including zero-radius spheres (shown as red points) placed on convex sharp features and inner Voronoi balls (shown as
blue spheres) of surface samples, as described in Sec. 4.1. Inner Voronoi balls protrudes from the surface are then updated and pushed to be tangential to the
surface (c), as described in Sec. 4.2. An initial medial mesh (d) is then constructed based on RRT, and internal features (shown as red lines) are selected using a
seam tracing algorithm, as described in Sec. 4.3. A refined medial mesh (d) with higher quality can be obtained from feature preservation strategies and a
thinning process, as described in Sec. 4.4.

intersect at a junction sphere of type 𝑇4. Fig. 3 gives examples of
these different classes.
In this paper we are handling non-smooth surfaces that could

contain sharp edges and corners (either convex or concave). The
tangential surface contact point on these sharp features does not
have a unique and unambiguous normal. We define a convex sharp
edge and concave sharp edge of input mesh 𝜕S as an edge subtending
a dihedral angle less than 𝜋 − 𝜙 and more than 𝜋 + 𝜙 respectively
[Abdelkader et al. 2020], where 𝜙 < 𝜋

2 is an angle threshold used
to bound the approximation error. Note that 𝜙 is a user-defined
variable and users can also mark sharp features manually. A vertex
of 𝜕S located on more than two sharp edges is defined as a corner.

• On a convex sharp feature, the medial spheres are of zero
radii. The RPC of such zero-radius sphere have only one
CC, but there could be two or three unambiguous normals
associated with such feature point: sharp edges have two
normals and sharp corners have at least three. Thus we denote
such zero-radius medial spheres as𝑇 2

1 (on a convex edge) and
𝑇𝑢
1 (𝑢 ≥ 3, on a corner). Note that a corner could be formed
by a combination of both convex and concave sharp edges
(Sec. 5.2 discusses these different cases and the mechanism
to preserve the corner). For a corner that is formed by purely
concave feature edges, there is nomedial axis passing through
it, thus the mechanism to handle the medial spheres adjacent
to it is the same as the other concave features mentioned
below.

• On a concave sharp feature, the medial spheres tangential to
such features are not zero-radius. In fact, the normal direction
of such tangential surface contacts are ambiguous (Sec. 4.1
gives detailed information of such medial spheres). Thus we
use superscript 𝑐 for annotating a CC that contains a tangen-
tial contact point on any concave external feature. See the
examples of 𝑇𝑐

2 and 𝑇𝑐
3 in Fig. 3. Note that a medial sphere

could be tangential to more than one concave feature edges
on different CCs. Here we do not make distinct notations for
them, as their sphere computation mechanism is similar to
the case of single concave edge (see Sec. 4.2 for the details).

The CC containing an infinite number of tangential contact points
will be annotated with superscript ∞, e.g, for a cylinder shape, the
CC of a medial sphere could contain the whole circular region that
has an infinite number of tangential contact points with the sphere.

In practice, since our input surface is represented as a triangle mesh,
the number of tangential points for such a sphere is finite. Thus the
superscript∞ is only for notational purpose. See the examples of
𝑇∞
1 and 𝑇∞

2 in Fig. 3. They could be identified whenever a CC has
more than one tangential point with diverse normals.
The external features of MAT include those convex sharp edges

and their associated corners, and the internal features ofMAT include
those internal spheres located on seams (e.g., types of 𝑇3 and 𝑇𝑐

3 )
as well as junctions (e.g., types of 𝑇4, 𝑇𝑐

4 , and 𝑇∞
2 ). Note that the

examples of classes given in Fig. 3 are not meant to be complete.
For example, there could be a corner denoted as 𝑇 6

1 formed by
three convex edges and three concave edges, and there could be a
junction sphere 𝑇𝑐

4 that is tangential to two concave sharp edges
and two other regular CCs, just to name a few. But notation-wise, all
medial spheres can be represented with our CC-based classification.
With this classification, the following sections discuss how we can
compute these medial spheres based on such CC information, and
how we can connect them to form a medial mesh while preserving
both external and internal features of MAT.

4 THE COMPUTATIONAL PIPELINE
Our medial mesh computational pipeline consists of four major
steps. Given a closed, manifold triangular mesh with sharp features
pre-detected, the first step (Sec. 4.1) is to initialize the medial spheres.
This includes placing sphere candidates on both non-feature and
feature regions. The sphere candidates on non-feature regions are in-
ner Voronoi balls generated with Delaunay Triangulation of surface
samples. Special attention needs to be paid on initializing spheres
tangential to concave sharp edges. The second step (Sec. 4.2) up-
dates those inner sphere candidates as close as possible to their
ground-truth positions and radii using our sphere updating strategy.
Then in the third step (Sec. 4.3) we construct an initial medial mesh
from these updated sphere candidates using the restricted regular
triangulation (RRT) which is dual to RPD. Initial internal features
could be detected through our seam tracing algorithm. In the fourth
step (Sec. 4.4), the initial medial mesh is further refined through
our internal feature preservation strategy and a thinning process
to pursue the thinness property of medial mesh. Fig. 4 shows an
illustration of our computational pipeline.
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4.1 Medial Sphere Initialization
Non-feature Spheres: Our method starts with the generation of

inner sphere candidates in those non-feature regions. A well-known
technique is to use Voronoi balls (see Sec. 3.2) inside the shape S
generated from some sampling points 𝑃 on the boundary surface
𝜕S, and use the fast winding number [Barill et al. 2018] to keep
only those inner Voronoi balls. Our assumption about the density
of sample set 𝑃 around smooth regions follows Amenta et al.’s work
[2001a]. We use the local feature size function 𝐿𝐹𝑆 (x) : 𝜕S → R
defined as the minimum Euclidean distance from a sample x ∈ 𝜕S
to the medial axisM. A sample set 𝑃 is an r-sample if any sample
x ∈ 𝑃 has a neighboring sample within its 𝑟𝐿𝐹𝑆 (x) distance. Similar
to existing Voronoi-based algorithms [Amenta et al. 2001a; Dey and
Zhao 2002], we require 𝑟 ≤ 0.6 for sufficiently approximating 𝜕S so
that the generated Voronoi diagram can capture key information
about shapes. Since the LFS around the convex sharp edges and
corners are converging to zero, we stop the surface sampling that
are within an 𝜂 distance to these convex external features, where
𝜂 is a distance threshold to avoid the density explosion to infinity
around these external features.

Zero-radius Feature Spheres: To avoid dealing with infinity den-
sity around convex sharp features, we apply an adaptive medial
re-sampling strategy. We first sample zero-radius medial spheres
on those pre-detected convex sharp edges and corners, with the
initial density same as its nearby surface samples that are 𝜂-distance
away. After all those non-feature medial spheres are updated in
the second step (Sec. 4.2), we might insert new zero-radius spheres
to preserve the external feature. Specifically, for every non-feature
medial sphere m𝑥 whose RPC is neighbor to those of zero-radius
spheres on external features, we recursively check and add new
zero-radius feature sphere if m𝑥 breaks the connection of external
features. Please refer to Sec. 5.1 in more detail. Note that in this first
step we only add zero-radius feature spheres using the initial density,
while adaptive sphere insertion is recalled once the neighboring
non-feature medial spheres are updated in the second step. Similarly,
simply sampling zero-radius medial spheres on sharp corners is not
enough for keeping the connectivity of medial axis. To preserve
corner feature, we analyze the structure around corners and sample
new medial spheres nearby to complete the medial structure. Please
refer to Sec. 5.2 for detailed explanation.

Spheres Tangential to Concave Sharp Features: Even though con-
cave sharp edges are not external features, a sharp change of surface
normals around them leads to a smooth transition on medial axis
(see Fig. 5 (b)), which requires dense samples of medial spheres
around them. Since all concave sharp edges are pre-detected, we
can sample dense medial spheres using sphere-shrinking algorithm
[Ma et al. 2012]. We briefly introduce the algorithm as shown in
Fig. 5 (a). For each pin-point p with corresponding normal np, a
sphere m0 with large radius 𝑟0 and center 𝜽 0 = p − 𝑟0np is initial-
ized. This large sphere is then iteratively shrunk to approximate the
medial sphere with two tangent points. For each iteration 𝑡 + 1, a
new spherem𝑡+1 is found by performing a nearest point query from
𝜽 𝑡 to the surface 𝜕S excluding point p. The resulting nearest point
q𝑡+1 together with p is then used to compute the new sphere m𝑡+1.
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Fig. 5. Left: The sphere-shrinking algorithm [Ma et al. 2012] on concave
regions in 2D. Right: Medial sphere initialization around concave region
in 2D. For every pin-point p sampled on concave sharp edge, we sample
new normal np between two normals n𝐴 and n𝐵 of planes adjacent to
the concave edge, and initialize medial spheres using the sphere-shrinking
algorithm. The denser the sampled pairs of {p, np}, the smoother the final
medial mesh around the concave edge we can get.

The iteration stops when the spherem𝑡+1 is tangential on these two
points and there is no other surface points closer to the sphere cen-
ter. Our sampling strategy on concave sharp edges works as follows
(see Fig. 5 (b) for a 2D illustration): for each pre-detected concave
edge l, we sample pin-points p densely on l and sample multiple
normals np in between two normals n𝐴 and n𝐵 of adjacent planes
of the concave edge l. For each pair of (p, np), we initialize a sphere
that is large enough and then apply sphere-shrinking algorithm.
The sphere-shrinking algorithm is guaranteed to converge [Ma et al.
2012] and it typically converges within a couple of iterations. It
perfectly fits medial spheres with two tangential points, which are
of types 𝑇2 or 𝑇𝑐

2 on sheets of the medial axis.
After the sphere initialization, however, inner Voronoi balls initial-

ized for smooth regions are circumscribed over the surface sampling
points in nature, making themselves often protrude the surface 𝜕S.
Moreover, Voronoi-based generation in R3 is notorious for contain-
ing a large amount of Voronoi balls called spikes that are very close
to the surface and far from the medial axis [Amenta et al. 2001a].
Even though medial spheres sampled on pre-detected concave edges
are already at their ideal position using the sphere-shrinking algo-
rithm, the internal features of MAT such as seams and junctions
may not be fully represented. This is because the sphere-shrinking
algorithm cannot sample spheres tangential to more than two sur-
face points. Thus in the next step, these initial Voronoi spheres will
be updated, and spikes will be removed.

4.2 Medial Sphere Update
Given the initial medial spheres estimated from inner Voronoi balls,
we apply local operations to update their positions and radii as close
as possible to the ground truth. Ideally we expect all medial spheres
to be tangent to at least two points on surface 𝜕Swithout protrusion.
For inner Voronoi balls initialized with two tangent points, i.e.,

type 𝑇2 or 𝑇𝑐
2 on medial sheets, we use sphere-shrinking algorithm

[Ma et al. 2012] as described above to update them. Although this
algorithm is highly efficient, it cannot handle spheres with more
than two tangent points, i.e., 𝑇3 and 𝑇𝑐

3 on medial seams, or 𝑇4 and
𝑇𝑐
4 on medial junctions. The problem is more challenging than the
case of two tangent points, because it is very difficult to find an exact
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pin-point on either the seam or junction to determine the sphere.
In this paper we formulate the updating algorithm for spheres with
any number of tangent points as a continuous optimization problem,
and name it as multi-tangent sphere optimization algorithm.
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Fig. 6. Illustration of energy terms for our multi-tangent sphere optimiza-
tion. Left: Energy term 𝐸𝑘 as the sum of 𝐸𝑘𝑎 and 𝐸𝑘𝑏 when the tangential
point p𝑘 is on a plane PL𝑘 . Right: energy term 𝐸𝑘 when the tangential point
p𝑘 is on a concave sharp edge l𝑘 .

Our multi-tangent sphere optimization is inspired by the property
of surface RPC. Each 𝐶𝐶 of sphere m defines at least one tangent
plane or tangent concave edge of m with their tangential points
p𝑘 and normals n𝑘 , where 𝑘 is the index of all tangential points
belonging to m. In this problem, not only the sphere m = (𝜽 , 𝑟 )
needs to be solved, but also the exact positions and normals (p𝑘 ,
n𝑘 ) of all tangential points are unknown. We define the following
quadratic energy for our multi-tangent sphere optimization:

𝐸 (𝜽 , 𝑟 , {p𝑘 , n𝑘 }𝑁𝑘=1) =
𝑁∑︁
𝑘=1

𝐸𝑘 ,

𝐸𝑘 = | |𝜽 + 𝑟n𝑘 − p𝑘 | |2 .

(5)

Here 𝑁 is the total number of tangential points for this sphere,
and 𝐸𝑘 is the energy term defined using the tangent pair (p𝑘 , n𝑘 ).
Note that tangential point p𝑘 can be either on a plane (Fig. 6 (a)) or
on a concave sharp edge (Fig. 6 (b)). We define 𝐸𝑘 as the squared
Euclidean distance from p𝑘 to the expected point of tangency on
sphere. This energy is zero when the sphere is exactly tangential to
the surface at point p𝑘 .

As shown in Fig. 6 (a), we can split the energy term 𝐸𝑘 as the sum
of two sub-terms 𝐸𝑘𝑎 and 𝐸𝑘𝑏 :

𝐸𝑘𝑏 = | | (p𝑘 − 𝜽 )⊤n𝑘 − 𝑟 | |2,
𝐸𝑘𝑎 = 𝐸𝑘 − 𝐸𝑘𝑏 .

(6)

Intuitively 𝐸𝑘𝑏 is the squared distance from sphere m to plane PL𝑘
along the direction of normal n𝑘 , and 𝐸𝑘𝑎 is the squared distance
on the plane. We modify the energy in Eq. (5) by incorporating two
weights 𝜆𝑎 and 𝜆𝑏 to balance the significance of these two sub-terms:

𝐸 (𝜽 , 𝑟 , {p𝑘 , n𝑘 }𝑁𝑘=1) =
𝑁∑︁
𝑘=1

𝜆𝑎𝐸𝑘𝑎 + 𝜆𝑏𝐸𝑘𝑏 . (7)

Inspired by the classic iterative closest point (ICP) algorithm [Chen
and Medioni 1992], giving a higher weight 𝜆𝑏 to the tangential
squared distance 𝐸𝑘𝑏 could potentially speed up the convergence of
optimization. We use 𝜆𝑎 = 0.01 and 𝜆𝑏 = 1 in all of our experiments.
If p𝑘 is on a smooth surface region (Fig. 6 (a)), then its normal

n𝑘 is fully determined by its position. If p𝑘 is on a concave sharp
edge l𝑘 (Fig. 6 (b)), then n𝑘 can be any direction in between two

normals n𝐴 and n𝐵 of adjacent planes of the concave edge. These
two normals give us a bound of possible directions that the medial
sphere can be tangent to.
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Fig. 7. Iterative two-stage optimization for medial spheres. (a) The sphere-
updating stage which locks the aggregated tangent pairs (p𝑘 , n𝑘 ), 𝑘 = 1...𝑁
and update the medial sphere (𝜽 , 𝑟 ) ; (b) The tangent-updating stage that
fix the previously updated medial sphere then update each tangent pair.
Both stages optimize the same energy function in Eq. (7).

Table 1

3 12

0 5.71742595E-01 1.79431183E+00

1 7.29382883E-04 1.92241167E-04

2 6.26192703E-06 2.11483017E-04

3 7.7836695E-07 9.46653383E-05

4 1.80073678E-07 4.365653E-05

5 5.08225017E-08 1.95961958E-05

6 4.53247933E-09 8.85862583E-06

7 2.81787167E-09 3.83484962E-06

8 6.68089E-10 1.6109544E-06

9 9.51281667E-10 6.75113692E-07
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Fig. 8. Convergence of the sphere updating optimization of Eq. (7) through
iterations (in log scale for better illustration). The error is measured as the
squared distance from the sphere to the surface. We show the average errors
collected from all models shown in Fig. 17 aggregated in two sphere types:
𝑇𝑁 and𝑇𝑐

𝑁
, where 𝑁 > 2. Note that𝑇2 and𝑇𝑐

2 are not collected since we
use sphere-shrinking algorithm [Ma et al. 2012] in Sec. 4.1

.

Since both the sphere m = (𝜽 , 𝑟 ) and the tangent pairs (p𝑘 , n𝑘 ),
𝑘 = 1...𝑁 are to be determined, we design our multi-tangent sphere
optimization algorithm as an iterative two-stage optimization pro-
cess. For each new iteration 𝑡 + 1, we decompose the optimization
into a sphere-updating stage and a tangent-updating stage:

• During the sphere-updating stage (Fig. 7 (a)), we fix all tangent
pairs (p𝑡

𝑘
, n𝑡

𝑘
), 𝑘 = 1...𝑁 from the previous iteration 𝑡 , and

update the sphere (𝜽 𝑡+1, 𝑟𝑡+1) by minimizing the energy in
Eq. (7). Since the energy is a quadratic function of 𝜽 𝑡+1 and
𝑟𝑡+1, they can be solved by a simple linear equation.

• During the tangent-updating stage (Fig. 7 (b)), we lock the
sphere (𝜽 𝑡+1, 𝑟𝑡+1) from the first stage and update all tangent
pairs (p𝑡+1

𝑘
,n𝑡+1
𝑘

), 𝑘 = 1...𝑁 . If p𝑡
𝑘
is on a plane PL𝑘 of the

surface, we search the K-ring neighboring surface triangles
around p𝑡

𝑘
(K = 2 in our experiments), and find a point

within these triangles that minimizes the quadratic energy
𝐸 as the new tangent point. As each triangle has a fixed
normal, searching inside a triangle is equivalent to solving a
linear system of barycentric coordinates. If p𝑡

𝑘
is on a concave

sharp edge l𝑘 , the optimal tangent point p𝑡+1
𝑘

is simply the
projection of the sphere center 𝜽 𝑡+1 onto the concave sharp
edge, and the optimal normal n𝑡+1

𝑘
is the normalized direction
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of p𝑡+1
𝑘

− 𝜽 𝑡+1. Note that n𝑡+1
𝑘

will be clamped to boundary
normal once out of range of n𝐴 and n𝐵 .

Since both stages decrease the quadratic energy 𝐸 in Eq. (7), the
optimization is converging through iterations. We visualize the
convergence of our iterative optimization scheme in Fig. 8. Note
that the iteration process does not require a re-calculation of RPD.
All inner Voronoi balls will be updated iteratively until their energy
functions 𝐸 are smaller than a threshold 𝜖 (10−4 in our experiment).
A converging energy larger than 𝜖 indicates that such a sphere does
not exist to be tangential to the set of given planes and/or concave
edges, and it will be removed consequently. This energy-checking
will become very useful in our sphere-insertion operations, e.g., for
external corner preservation described in Sec. 5.2.

It is worth noting that spheres of type𝑇1 are
normally spikes, because they only touch one
side of the surface and has only one tangent
point and normal (see the right inset figure).
Even though our method is not specifically de-
signed for pruning spikes, a by-product of our
computed RPC is to robustly detect this type
of medial spheres and remove them.

4.3 Medial Mesh Initialization
After the sphere update, there are some non-feature spheres that
break the connectivity of nearby external features (details in Sec. 5.1).
We will re-sample zero-radius feature spheres in those cases. Once
all spheres (including zero-radius spheres and update inner Voronoi
balls) are at their ideal positions (Fig. 4 (c)), we build their connec-
tivity to form a structured medial mesh. Our topological connection
method is inspired by the power shape [Amenta et al. 2001b] which is
a subset of the regular triangulation (RT) dual to the power diagram
(PD). To construct the medial meshM𝑠 , we compute the restricted
regular triangulation (RRT), by selecting a subset of simplices in RT,
whose dual elements in PD have non-empty intersections with the
input shape S. Specifically, we check the RT simplicies in the order
of tetrahedra, triangles, and edges:

• The dual of an RT tetrahedron is a vertex in PD. If this dual
vertex is inside the shape S, then we keep this tetrahedron
together with all of its triangles and edges in the medial mesh.

• If the dual vertex of the RT tetrahedron is outside the shape,
then we check all of its four triangles. The dual of an RT
triangle is an edge segment in PD. If this dual edge segment
has any intersection with the shape S, then we keep this
triangle together with all of its edges in the medial mesh.

• If the dual edge segment of the RT triangle is outside the
shape, then we check all of its three edges. The dual of an
RT edge is a polygonal face in PD. If there is any intersection
between the dual polygonal face with the shape S, then we
keep this RT edge in the medial mesh.

Note that in this process we only need to compute RT as dual of
PD and compute its restriction to the shape S by checking the
intersection between its dual edge segment or polygon with input
surface 𝜕S. In this way we do not need to compute the volumetric
RPD which requires a tetrahedralization of the input shape S and
the cutting of those tetrahedra with PD. It is worth mentioning that,

similar to power shape [Amenta et al. 2001b], our initial medial mesh
M𝑠 generally contains some flat but solid tetrahedra. However, the
medial axis of a three-dimensional shape S should be a collection of
two-dimensional sheets, i.e., they should be thin without any solids.
All these tetrahedra in the initial medial mesh will be pruned in our
thinning process in the fourth step (Sec. 4.4).
Once the initial medial mesh is constructed, we can trace the

internal features using a seam tracing algorithm similar to Culver et
al.’s method [2004]. We first classify initial medial spheres based on
their CCs and tangent points, and identify those medial spheres on
seams (i.e., type𝑇3 or𝑇𝑐

3 ). Our seam tracing algorithm starts from any
seam sphere and expand to its adjacent feature spheres. The detailed
seam tracing algorithm is provided as Alg. 1 in Supplementary
Material. In this way we can detect an initial set of internal features
(Fig. 4 (c) red lines) which should be further refined in the next step.

4.4 Medial Mesh Refinement
The initialized and updated spheres in the first two steps cannot
guarantee there are sufficient spheres sampled on the internal fea-
tures, such as seams and junctions. This deficiency usually happens
in local regions where an ill-posed connection is caused by two
medial spheres that lie on two different medial sheets (see Fig. 9).
We first detect these connections under the help of their RPCs, then
sample new internal feature spheres using the tangential surface
contact points aggregated from two ill-connected spheres. Sec. 5.3
explains this refinement in detail.

Fig. 9. Left: Ill-posed connection (blue line) of two𝑇2 spheres on two different
medial sheets. Middle: A new feature sphere of type𝑇3 is inserted to preserve
the internal feature. Right: The internal feature (red line) preserved after
our refinement strategy.

The initial medial mesh still contains some flat but solid tetrahe-
drons as mentioned above. We adapt the thinning algorithm pro-
posed by Liu et al. [2010] that prunes simple pairs of simplices in the
medial mesh. A simple pair (𝑥 , 𝑦) is a pair of simplices such that 𝑦 is
on the boundary of 𝑥 and there is no other cell in the complex with
𝑦 on its boundary. Fig. 11 (a) shows a single tetrahedron 𝑡 in medial
mesh as an example, where the tet-face pair (𝑡 , 𝑓 ) is a simple pair,
but the face-edge pair (𝑓 , 𝑒) is not. It is shown by Ju et al. [2007]
that removing a simple pair does not change the topology even
when multiple simple pairs are removed together. This thinning is
a pure topological operation that can help us remove tetrahedra
from the medial mesh. However, to remove a simple tet-face pair,
there could be multiple potential choices. The different order of such
removal operation will result in different geometry of the medial
mesh, even though their topologies are equivalent. When deciding
which simple pair to remove given multiple choices, we shall intro-
duce a quantitative measure for ranking those tetrahedral faces, so
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that the faces that are less important are prioritized over others to
be removed first.
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Fig. 10. Illustration of restricted power segment (RPS). (a) Given a medial
face of three medial spheres m𝑖 , m𝑗 and m𝑤 , and (b) their restricted power
cells (RPCs), its RPS is shown as the green dotted segment 𝛾𝑖 𝑗𝑤 .

Consider a medial face 𝑓𝑖 𝑗𝑤 connecting three medial spheres m𝑖 ,
m𝑗 and m𝑤 (see Fig. 10). Since 𝑓𝑖 𝑗𝑤 is a triangle of RT, its dual Γ𝑖 𝑗𝑤
is a line segment of PD. We define the intersection of Γ𝑖 𝑗𝑤 with the
shape S as the restricted power segment (RPS) 𝛾𝑖 𝑗𝑤 :

𝛾𝑖 𝑗𝑤 = Γ𝑖 𝑗𝑤 ∩ S. (8)

It is worth mentioning that the endpoints of an RPS can be either
on the surface 𝜕S or inside S. This is because its endpoint could be a
dual vertex of an RT tetrahedron, which could be potentially inside
S (as mentioned in Sec. 4.3).

For medial face 𝑓𝑖 𝑗𝑤 , its dual RPS 𝛾𝑖 𝑗𝑤 must be perpendicular to
the triangle face created by three medial sphere centers (𝜽 𝑖 , 𝜽 𝑗 , 𝜽𝑤 ).
For a local region of medial mesh that is “thin”, the length of 𝛾𝑖 𝑗𝑤
approximates the local thickness of shape, see Fig. 10 the segment in
green. Therefore, we defines the importance factor 𝛼𝑖 𝑗𝑤 of a given
medial face 𝑓𝑖 𝑗𝑤 as the ratio of the length of 𝛾𝑖 𝑗𝑤 over the average
diameter of three medial spheres.

For a local medial mesh region that has a flat tetrahedron, every
triangle 𝑓𝑖 𝑗𝑤 of the tetrahedron has a dual RPS.We rank these medial
triangles by their importance factors 𝛼𝑖 𝑗𝑤 in ascending order. Fig. 11
(b) shows a 2D example where there is a medial triangle (instead of
a tetrahedron in 3D) in the neighborhood of a concave sharp feature.
The 2D medial triangle (m𝐴 , m𝐵 , m𝐶 ) exists when the undesirable
edge (𝜽𝐴 , 𝜽𝐶 ) exists, which means its dual RPS 𝛾𝐴𝐶 exists. In fact,
𝛾𝐴𝐶 degenerates to a point 𝑝 near the concave sharp feature, making
its importance factor 𝛼𝐴𝐶 to be close to zero. The reason for this
degeneracy is because all three spheres pass through the concave
sharp feature, making the two RPC of spheres m𝐴 and m𝐶 to be
adjacent at the concave point 𝑝 . The other two RPS 𝛾𝐴𝐵 and 𝛾𝐵𝐶
are shown as green and red dotted segments, respectively. Their
importance factors 𝛼𝐴𝐵 and 𝛼𝐵𝐶 are both close to one. Apparently
medial edges 𝜽𝐴𝜽𝐵 and 𝜽𝐵𝜽𝐶 are more important than edge 𝜽𝐴𝜽𝐶
after ranking their dual RPS with their importance factors.
Our geometry-guided thinning algorithm starts from raking all

triangles of any tetrahedron in the medial mesh using their im-
portance factors. Then we remove tet-face simple pairs with least
importance in each iteration until all tetrahedra are pruned. After
removing all tet-face simple pairs, we continue pruning those face-
edge simple pairs that belong to the original tetrahedra. To avoid
over-pruning for models whose medial mesh boundaries are not
external features, we use a target important factor 𝜎 as a stop sign

p
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θBfe
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t

Fig. 11. Illustration of some tetrahedron in 3D medial mesh as a 3-
dimensional cell of (a), and in 2D as a 2-dimensional cell of (b).

so that the face-edge pair will be not deleted when the importance
factor of the current face is beyond this target. Note that 𝜎 will only
impact the pruning of face-edge pairs but not tet-face pairs, the
choice of 𝜎 is discussed in Sec. 6.4. This pruning operation results in
a 3D medial mesh that is “thin” with no three dimensional cells, and
at the same time, maintains high-quality geometry of the medial
mesh. We provide the detailed algorithm as Alg. 2 in Supplementary
Material, and an ablation study result in Sec. 6.4.

5 FEATURE PRESERVATION
The medial feature spheres sampled during initialization (Sec. 4.1)
are not guaranteed to preserve external features after the update
of non-feature medial spheres (Sec. 4.2). Also the initial internal
features traced in the initial medial mesh (Sec. 4.3) require further
refinement (Sec. 4.4). The connection of two neighboring feature
spheres are likely to be destroyed by some non-feature spheres
nearby, which results in a fracture of medial features, either external
or internal. This is caused mainly by one reason: the feature spheres
are not sampled sufficiently in a local region so that the RPC of
non-feature spheres may “invade” the neighboring RPCs of two
feature spheres. Our solution for this issue is to detect the local
regions which lack feature spheres, and then add new spheres on
them. We will discuss the details of our preservation strategy for
both external and internal features.

5.1 Preserving External Edge Features
During the generation of initial medial mesh, we sample zero-radius
spheres on convex sharp edges to avoid handling infinite sampling
density on the input surface. The local external feature could be
destroyed if an RPC of any non-feature sphere “invades” the RPCs of
two neighboring feature spheres on sharp edge (see Fig. 12 left). This
is due to the deficiency of feature spheres on external edge features.
Therefore, our adaptive re-sampling strategy for maintaining the
external features of convex sharp edges is to detect such cases of
non-feature spheres then recursively adding new feature spheres
until all external edge features are preserved.

We observe that the relationship between RPCs of three spheres
can help us find those non-feature spheres that destroy the con-
nectivity of two neighboring zero-radius medial spheres on convex
sharp edges. See Fig. 12 for illustrations. For any non-feature medial
spherem𝑥 = (𝜽𝑥 , 𝑟𝑥 ) whose RPC is neighboring to the RPCs of two
zero-radius medial spheres m𝑎 = (𝜽𝑎, 0) and m𝑏 = (𝜽𝑏 , 0), where
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Fig. 12. Illustration of how the RPC of a non-feature sphere m𝑥 “invades”
the RPCs of two neighboring feature spheres m𝑎 and m𝑏 on a sharp edge
(bottom left), which could destroy the connectivity of m𝑎m𝑏 in the medial
mesh (top left). We should add a new feature sphere m𝑐 (right) and then
recursively check if the sampling is enough.

𝜽𝑎𝜽𝑏 is a feature edge to be preserved. The medial spherem𝑥 breaks
the connectivity of 𝜽𝑎𝜽𝑏 if the following inequation is true:

𝜽⊤𝑥 𝜽𝑥 − (𝜽𝑎 + 𝜽𝑏 )⊤𝜽𝑥 + 𝜽⊤𝑎 𝜽𝑏 ≤ 𝑟2𝑥 . (9)

The detailed proof is given in the Supplementary Material Sec. 2.
For every non-feature sphere m𝑥 , we

search for its K-nearest external edge features
m𝑎𝑘m𝑏𝑘 (𝑘 = 1...K) and check if m𝑥 destroy
the connectivity of them. If it breaks, we add a
new feature sphere m𝑐𝑘 in the middle of edge
m𝑎𝑘m𝑏𝑘 and recursively check edges m𝑎𝑘m𝑐𝑘

andm𝑏𝑘m𝑐𝑘 . This recursion will be infinite only whenm𝑥 protrudes
from the convex sharp edge (see the right inset figure) and any new
feature sphere m𝑐𝑘 could be contained inside m𝑥 . Therefore in this
case the medial sphere m𝑥 should be removed. However, this is
unlikely to happen since all non-feature spheres have been updated
to their ideal position in the second step, so they would not protrude
from the convex sharp edges.

5.2 Preserving External Corner Features

ma1

ma2

ma3

mc
PL1

PL2

PL3 l3l1

l2

ma1

ma2

ma3

mc

Fig. 13. Left: A convex corner formed by three convex edges l𝑖 and three
incident planes PL𝑖 (𝑖=1,2,3). Middle: The structure of the “corner cap” where
any two neighboring external feature spheres m𝑎𝑖 and m𝑎 𝑗

are connected,
created a medial face of △(m𝑐m𝑎𝑖m𝑎 𝑗

). Right: The surface RPC of these
four external feature spheres.

An external corner is typically formed by three or more sharp
edges, including either convex edges or concave edges. As shown
in Fig. 13, zero-radius medial spheres sampled on one sharp convex
edge may get entangled with the ones on neighboring sharp convex
edges, which may result in a “corner cap” in the resulting medial

mesh. Since each sharp edge l𝑘 is formed by two adjacent planes
PL𝑘1 and PL𝑘2 , it must define a sheet of medial axis passing through
this sharp edge, with medial spheres tangent to its two adjacent
planes. Three sheets potentially intersect and form a seam. For
example in Fig. 14 𝐼 , any convex edge l𝑘 forms a sheet 𝑠𝑘 on medial
axis, and three sheets join at a seam 𝑒123.
One possible solution to remove the “cap” around corners is to

directly sample new medial spheres on potential seams using our
internal feature preservation strategy described in Sec. 5.3. However,
such addition of new spheres on seams might break the connectivity
of sharp edges nearby (Sec. 5.1), which would require adding more
samples on sharp edges in order to preserve them. This would cause
an infinite loop and the sphere sampling density could run into
infinity, as two sharp edges are approaching closer to a corner. To
solve this challenge, we select a small region within distance 𝛿 from
the given corner m𝑐 , and propose a corner preservation strategy
to approximate medial mesh structures in this small region around
the corner. Our corner preservation scheme works by recursively
tracing sheets of medial axis, starting from those convex sharp edges,
until we found their intersecting seams. It consists of the following
three steps.
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Fig. 14. Some examples of corners incident to convex and/or concave sharp
edges. For each example, we show their valid seams represented as tangent
collections symbolically. Row 𝐼 : 𝑒123 = (PL1, PL2, PL3 ) . Row 𝐼 𝐼 : (1) 𝑒125 =
(PL4, PL1, PL2 ) ; (2) 𝑒345 = (PL2, PL3, PL4 ) . Row 𝐼 𝐼 𝐼 : 𝑒123 = (PL2, l4, PL1 ) .
Row 𝐼𝑉 : (1) 𝑒125 = (PL6, PL1, PL2 ) ; (2) 𝑒345 = (PL3, PL4, PL5 ) .

5.2.1 Enumerating Initial Set of Sheets. We first sort neighboring
sharp edges l𝑘 (𝑘 = 1...𝑁 ), both convex and concave, together
with their adjacent planes PL𝑘 in a counter-clockwise order. In this
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way we can enumerate an initial set of potential sheets using the
tangent planes incident to all convex sharp edges. Note that concave
sharp edges will not contribute any new sheet as they only create
smooth transitioning conic sections on existing sheets, and spheres
tangential to only one concave edge are of type 𝑇𝑐

1 as spikes.
Take Fig. 14 𝐼 𝐼 𝐼 as an example. Corner m𝑐 is where three convex

edges (l1, l2 and l3 in green) and one concave edge (l4 in red) con-
verge. Also m𝑐 has four incident planes PL𝑘 , 𝑘 ∈ {1...4}, where PL3
and PL4 are shared by a concave edge l4. There are three possible
sheets 𝑠𝑘 traced from convex edges l𝑘 , 𝑘 = 1, 2, 3. For example, sheet
𝑠1 is formed by a set of medial spheres tangential to two tangent
planes PL4 and PL1 adjacent to convex edge l1. So we can have
symbolic representations for these sheets: 𝑠1 = (PL4, PL1), 𝑠2 = (PL1,
PL2), and 𝑠3 = (PL2, PL3).

5.2.2 Finding Seams and New Sheets Recursively. If two neighboring
sheets in counter-clockwise order intersect, we will be able to find
a medial sphere on the intersecting seam through their aggregated
set of tangent planes and/or concave edges. In addition, we can find
out another new sheet that intersects with them on the same seam.
In the example of Fig. 14 𝐼 𝐼 𝐼 , we can find their potential intersecting
seams as follows:

(1) Checking potential intersection between 𝑠1 and 𝑠2:
(a) Using tangent collection (PL4, PL1, PL2) or
(b) Using tangent collection (l4, PL1, PL2);

(2) Checking potential intersection between 𝑠3 and 𝑠1:
(c) Using tangent collection (PL1, PL2, PL3) or
(d) Using tangent collection (PL1, PL2, l4).

Here (b) and (d) defines the same seam symbolically so we canmerge
them as 𝑒123. Each tangent collection of three elements (tangent
planes and/or concave edges) imply a potential medial sphere on the
seam of medial axis. We can obtain the sphere m𝑥𝑖 by minimizing
the energy of Eq. (7) as described in Sec. 4.2. If the optimized energy
is larger than threshold 𝜖 , it means there does not exist a sphere
that can be tangential to these tangent collections. The example in
𝐼 𝐼 𝐼 only have one valid seam sphere based on collections (b) and (d),
while the other two collections (a) and (c) cannot lead to any medial
sphere based on their optimized energies. Once a seam sphere is
computed on collection (b), based on the tangent information we can
obtain a new sheet (l4, PL2) that is intersecting with both 𝑠1 and 𝑠2
on the same seam. In this case the new sheet is exactly 𝑠3=(PL2, PL3)
because the concave edge l4 and tangent plane PL3 are adjacent, so
it will not be included further.

This process is implemented as a circular queue of potential sheets
ordered counter-clockwise. Every time we pop out a sheet, we check
its intersection with the next sheet in the queue. If two of them
forms a seam, we sample a new medial sphere with two sheets’ info
recorded, and push the new sheet candidate (if unique) into the
queue. Otherwise, we push it back into the queue and pop out the
next sheet to check. This process continues until the queue is empty.

5.2.3 Connect the Spheres on Sheets and Seams to form a Medial
Mesh around the Corner. Once all seams are found with their medial
spheres sampled, our third step is to construct an approximated
medial mesh around the corner. For each convex sharp edge, we
sample a zero-radius medial sphere at distance 𝛿 from the corner.

For example, in Fig. 14 𝐼𝑉 we sample m𝑎1 , m𝑎2 , m𝑎3 , and m𝑎4 on
convex edges l1, l2, l4, and l5, respectively. For each sheet found
in the above process, we connect its two medial spheres with the
corner to form a medial triangle, e.g., , m𝑥1 , m𝑥2 and the corner m𝑐

form a triangle for the sheet 𝑠5; m𝑥1 , m𝑎1 and the corner m𝑐 form a
triangle for the sheet 𝑠1, etc.
In this way all sheets around the corner can be constructed as

medial triangles, with all seams represented as edges between neigh-
boring triangles. In Sec. 6.5 we show our experiment results on
shapes with different corner cases. Note that a corner could be just
the tip of a cone shape without any neighboring sharp edges (see
Fig. 22 (e)), in which case our medial mesh computed with RRT
in Sec. 4.3 can already preserve it as long as there is a zero-radius
medial sphere sampled on the tip.

5.3 Preserving Internal Features

Fig. 15. The local region near two medial spheres m𝑖 and m𝑗 that are on
two different medial sheets. There is a lack of feature spheres in this local
region, causing m𝑖 and m𝑗 to be connected (top). A new feature sphere m𝑥

is added to preserve the internal feature of medial axis (bottom).

Internal feature preservation requires sufficient sampling of inter-
nal feature spheres. Therefore, our initial internal features detected
from the initial medial mesh need to be refined after detecting the re-
gions that lack feature spheres. We have observed that the deficiency
of internal feature spheres normally occurs when two connected
non-feature medial spheres belong to different medial sheets. Based
on this observation, we propose an internal sphere insertion strat-
egy that is able to directly insert medial spheres without relying on
additional surface samples (for computing Voronoi balls).
Suppose two medial spheres m𝑖 and m𝑗 are connected in the

medial mesh. We are expecting every CC of m𝑖 must be adjacent to
one corresponding CC of m𝑗 , which means sphere m𝑖 and m𝑗 are
on the same medial sheet. Otherwise they should not be connected
since they are on different medial sheets. A deficiency of feature
spheres is detected in this local region if m𝑖 and m𝑗 belong to two
different medial sheets on the medial mesh. In this case, a new
feature sphere m𝑥 will be inserted using the aggregated connected
components ofm𝑖 andm𝑗 . Fig. 15 shows an illustration of such case.
Two𝑇2 medial spheresm𝑖 andm𝑗 are connected so that the internal
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feature (black solid line) cannot be preserved as expected. Only one
CC of m𝑖 is adjacent to one CC of m𝑗 , and their another CCs are on
different surface regions and not adjacent to each other (see Fig. 15
right column). This indicates that m𝑖 and m𝑗 are on two different
medial sheets, and there is a deficiency of feature spheres in this
local region. Using the aggregated CCs of these two medial spheres,
we can insert a new medial spherem𝑥 of type𝑇3 that has tangential
contacts with the surface at three points using the same method in
Sec. 4.2.

6 EXPERIMENTS
We implement our algorithm in C++, using CGAL for triangulation
calculation, and Eigen for linear algebra routines. The exact calcula-
tion of restricted power diagrams extends the Voronoi package in
Geogram1. We run our experiments on a computer with a 3.60GHz
Intel(R) Core(TM) i7-9700K CPU and 32 GB memory. All models
used in this paper are from the ABC dataset [Koch et al. 2019] and
their sizes are normalized to the [0, 10] range.

Evaluation Metrics. We use the two-sided Hausdorff distance er-
ror, denoted as 𝜖 , to assess the surface reconstruction accuracy using
the generated medial meshes. 𝜖1 is the one-sided Hausdorff distance
from the original surface to the surface reconstructed from MAT,
and 𝜖2 is the distance in reverse side. We also directly evaluate the
difference between the approximated medial mesh and the ground-
truth medial axis for some input surfaces. The 𝜖1𝑚𝑎 is the one-sided
Hausdorff distance from the ground-truth medial axis to the ap-
proximated medial mesh, and 𝜖2𝑚𝑎 is the distance in reverse side.
Note that we manually generate the ground-truth medial axis for
some simple shapes, such as those in Fig. 2, Fig. 16, and Fig. 21.
For sampling-based methods, we also show #𝑣 as the number of
surface samples used. We show #𝑠 as the number of medial spheres
for the medial meshes generated from each method. All Hausdorff
distances are evaluated as percentages of the distances over the
diagonal lengths of the models’ bounding boxes.
We show a set of qualitative results on various 3D CAD models

in Fig. 17 with their running time statistics summarized in Table 1.
More detailed views of those computed medial mesh and their ex-
tracted medial features are shown in the supplementary video. The
shape reconstruction errors of those models listed in Fig. 17, mea-
sured by the Hausdorff distance error, are given in Table 2.

6.1 Comparison with the CAD_MEDIALMethod
To our best knowledge, CAD_MEDIAL [Dey et al. 2003] is the only
method that works on preserving external features of medial axis so
far. However, their sampling condition near sharp edges is extremely
strict and very hard to be achieved if the sharp edge is not a straight
line. Fig. 16 shows the visual comparison of the medial mesh quality
of ours and CAD_MEDIAL with different numbers of surface sam-
ples used on a CAD model. It also shows the Hausdorff distances
w.r.t. its ground truth medial axis. It can be seen that increasing the
number of surface samples for CAD_MEDIALwould make their gen-
erated medial mesh more complete, however, the sampling density

1Geogram: http://alice.loria.fr/software/geogram/doc/html/index.html

Input Mesh Ground Truth

CAD_MEDIAL #v: 3k,   #s: 12k
ϵ1ma = 2.993%
ϵ2ma = 3.064%

#v: 6k,   #s: 22k
ϵ1ma = 2.049%
ϵ2ma = 1.932%

#v: 17k,   #s: 55k
ϵ1ma = 0.561%
ϵ2ma = 0.374%

#v: 3k,   #s: 2k
 ϵ1ma = 0.046%

ϵ2ma = 0.113%

CAD_MEDIAL

CAD_MEDIAL Ours

Fig. 16. Comparison with CAD_MEDIAL [Dey et al. 2003] on a CAD model
with ground truth medial axis.

Table 1. Statistics of our running time in seconds. #𝑣∗ is the number of
vertices of original model, #𝑣 is the number of surface samples used to
generate initial Voronoi balls, #𝑓 is the number of triangle faces in the input
mesh, #𝑠 is the number of generated medial spheres, and #𝑡 is the number
of active tetrahedrons before thinning process in Sec. 4.4. Note that the
running time of calculating surface RPD relates to #𝑣, #𝑓 , and #𝑠 using
the clipping algorithm [Yan et al. 2009]. And the running time of thinning
process in S4 relates to #𝑡 . S1 is the running time of calculating initial medial
sphere centers (Sec. 4.1). S2 is the running time of updating medial spheres
(Sec. 4.2). S3 is the running time of calculating initial medial mesh (Sec. 4.3).
S4 the running times for refining medial mesh (Sec. 4.4). The model’s ID#
corresponds to those shown in Fig. 1 and Fig. 17.

Model #𝑣∗ #𝑣 #𝑓 #𝑠 #𝑡 S1 S2 S3 S4 Total
020 21k 5k 41k 11k 4k 2.8 1.4 4.9 6.8 15.9
068 7k 2k 14k 5k 773 0.8 0.3 1.2 4.6 8.9
077 19k 5k 38k 11k 17k 2.5 2.1 4.7 50.3 59.6
125 5k 5k 10k 6k 4k 0.7 0.5 1.1 7.6 9.9
128 25k 5k 51k 31 28k 3.8 9.8 12.6 84.5 110.7
129 21k 4k 42k 18k 11k 2.8 2.6 6.4 16.5 23.1
152 41k 9k 82k 39k 37k 6.3 4.8 27.1 118.6 156.8
168 22k 4k 44k 11k 9k 2.8 1.0 5.5 14.5 23.8
287 22k 5k 45k 12k 12k 2.9 1.7 6.5 23.2 34.3
329 5k 2k 9k 6k 507 0.7 0.3 1.5 4.2 6.7
801 17k 4k 34k 9k 4k 2.0 0.9 4.3 6.3 13.5
802 11k 3k 21k 6k 5k 1.3 0.7 2.5 6.7 11.2

around sharp edges needs fine tuning and very likely to generate in-
complete structures. In contrast, our method does not require strict
sampling condition around those non-smooth surface regions and
produces more accurate approximation of convex external features
with smaller Hausdorff distances.

6.2 Comparison with Sampling-based Methods
We compare our method with Power Crust (PC) [Amenta et al.
2001a] regarding the generated medial mesh (Fig. 21), the surface
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Fig. 17. From left to right are the input surface meshes, the surfaces reconstructed from our medial meshes, the generated medial meshes, and the extracted
medial features. For the medial features, the black curves are the external features and the red curves are the internal features. For reconstructed surfaces,
their reconstruction errors are given in Table 2.

reconstruction from MAT (Fig. 18), and the feature preservation
quality (Fig. 19). Similar to other sampling-based methods, the qual-
ity of medial mesh generated using PC would improve when the
surface sampling density increases. However, their method cannot
preserve any medial feature and the generated medial mesh is not
thin with large number of flat tetrahedrons.
We also experiment with the SAT method [Miklos et al. 2010]

using two values of the sampling distance parameter: 𝛿 = 0.03 and
𝛿 = 0.01, and setting the scale parameter to 𝑠 = 1.0. The smaller 𝛿
yields a good reconstruction precision. However, it favors a dense
representation with a large number of medial spheres. The qual-
itative and quantitative comparison results are shown in Fig. 18.

SAT cannot preserve external features of input mesh surface in
their MA results as the medial structure is not complete around
convex sharp edges of input surfaces. Even though SAT generates
promising result when preserving internal features on some models,
it requires large amount of medial spheres (i.e., 256k and 127k in
Fig. 19 with 𝛿 = 0.01) comparing to our method (i.e., 15k and 8k
in Fig. 19). When the number of medial spheres is not adequate
even with same sampling parameter (i.e., 7k and 57k in Fig. 18 with
𝛿 = 0.01), SAT generates ill-posed faces around internal features. In
addition, SAT also routinely produce topological errors, as shown
by the Euler characteristic in Fig. 19.
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Table 2. Quantitative comparison on shape reconstruction error among PC
[Amenta et al. 2001a], SAT [Miklos et al. 2010], VC [Yan et al. 2018] and ours.
#𝑠 is the number of generated medial spheres, 𝜖 is the two-sided Hausdorff
distance between original surface and reconstruction (maximum of 𝜖1 and
𝜖2 described in Sec. 6), and 𝐸 is the Euler characteristic.We also show ground
truth Euler characteristic as “GT 𝐸”. For CAD models, our method always
gives the best reconstruction results with correct Euler characteristics, and
with smaller amount of medial spheres generated.

Model PC SAT VC Ours
(GT 𝐸) #𝑠 𝜖 𝐸 #𝑠 𝜖 𝐸 #𝑠 𝜖 𝐸 #𝑠 𝜖 𝐸

020 (-1) 35k 0.733 78k 137k 0.715 97 34k 1.319 -1 11k 0.400 -1
068 (-3) 11k 0.577 20k 85k 0.572 44 77k 0.722 -3 5k 0.550 -3
077 ( 1) 32k 2.508 86k 235k 1.492 140 72k 2.822 1 11k 1.381 1
125 (-2) 7k 0.708 8k 51k 0.406 31 10k 0.501 -2 6k 0.198 -2
128 (-2) 33k 0.709 61k 294k 0.721 355 126k 0.845 -2 31k 0.695 -2
129 (-3) 31k 0.866 58k 231k 0.676 192 56k 1.033 -3 18k 0.640 -3
152 (-7) 53k 1.490 96k 455k 1.476 364 111k 1.220 -7 39k 0.787 -7
168 (-1) 39k 1.383 98k 263k 0.810 235 86k 1.716 -1 11k 0.632 -1
287 (-3) 38k 1.842 93k 272k 0.828 113 150k 7.902 -3 12k 0.681 -3
329 (-2) 37k 1.737 65k 57k 1.199 65 29k 0.634 -2 6k 0.468 -2
801 (-8) 27k 1.113 55k 202k 0.706 41 61k 1.591 -8 9k 0.405 -8
802 (-3) 16k 1.240 39k 128k 0.950 24 17k 2.195 -3 6k 0.465 -3

In contrast, our method preserves better external features and
comparable (if not better) internal features, which leads to better
surface reconstructions from the generated medial meshes. It is
worth mentioning that, our method does not require large amount
of medial spheres, since the design of our framework allows us to
directly sample feature spheres without increasing the number of
non-feature medial spheres as most of sampling-based and voxel-
based methods do. In addition, the Euler characteristic shows the
topological correctness and thinness of our generated medial mesh.

6.3 Comparison with the Voxel Core Method
We compare the reconstruction quality with the Voxel Core (VC)
method [Yan et al. 2018] by setting two voxel sizes: (1) 2563 with a
default pruning parameter 𝜆 = 0.04; (2) 5123 with pruning parameter
𝜆 = 0.01 (the default parameter 0.04 prunes excessively so that the
medial mesh can not be properly maintained), as shown in Fig. 18.
We also show a comparison of two VC results w/o and w/ pruning
in Fig. 20.

The medial mesh generated from VC has the following two prob-
lems regarding external features. First, the more VC shrinks, the
reconstructed shape is more rounded (Fig. 18). If VC shrinks less,
redundant structures (Fig. 20 (a)) remain in the resulting medial
mesh. Secondly, the boundary curves on VC’s medial mesh have
good correspondence with the external feature only when the sharp
edges of input shape are parallel to the voxels’ boundaries. For ex-
ternal features of curves, VC produces zig-zag structures around
the feature curves (Fig. 20 (b)). Similar as SAT, VC requires more
number of medial spheres (usually ≥ 2 times more) than ours in
order to generate smooth medial structure around internal features
(Fig. 20). Our method, on the contrary, preserves the complete me-
dial structure with a lower reconstruction error and a fewer number
of medial spheres (Fig. 20 (c)).

6.4 Ablation Study on Thinning Algorithm
One important property of medial axis is its thinness, i.e., it contains
no three-dimensional cells. In this subsection, we give an in-depth
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Fig. 18. Qualitative comparison of themedialmesh and quantitative compar-
ison of the reconstructed mesh among our method and two sampling-based
methods: PC [Amenta et al. 2001a] and SAT [Miklos et al. 2010], and a
voxel-based method VC [Yan et al. 2018].

analysis of the rational of the RPS-based sorting in our geometry-
guided thinning algorithm.

The plain thinning algorithm [Ju et al. 2007] prunes tetrahedrons
by removing tet-face pairs randomly as long as they are simple
pairs (i.e., the face is on the boundary of only one tetrahedron). We
found this operation routinely produce open “pockets” (triangles
forming open cavities) even though the topology is correct. This
is because the choice of simple pairs does not consider the geome-
try information as some faces are more important than others in a
single tetrahedron. An example is shown in Fig. 23. The plain thin-
ning algorithm creates unwanted open “pockets” (Fig. 23 (b)) while
our geometry-aware thinning algorithms produces geometrically-
accurate medial meshes (Fig. 23 (a)).
The target importance factor 𝜎 (in Sec. 4.4) is a parameter that

controls the simplicity of the output medial mesh. All tet-faces pairs
will be removed no matter what value 𝜎 is, and 𝜎 plays as a stop
sign for removing face-edge pairs. We show the effect of different
values of the parameter 𝜎 in Fig. 24. For medial mesh with sharp
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Euler = 28
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Fig. 19. Comparing the feature preserving ability of our method with two
sampling-based methods: PC [Amenta et al. 2001a] and SAT [Miklos et al.
2010], also a voxel-based method VC [Yan et al. 2018].

edges as closed boundaries, a larger value of 𝜎 results in a cleaner
medial mesh. We use 𝜎 = 0.3 for all models in Table. 2. For medial
meshes whose boundaries are not closed sharp edges, however, the
default value of 𝜎 = 0.3 would remove face-edge pairs that are not
suppose to be deleted. To prevent undesired deletion, we use 𝜎 = 0.1
for models whose medial mesh does not ends at sharp features,
which includes models in Fig. 26 and models marked ★ in Tab.1 of
Supplementary Material.

6.5 More Results
Results on Various Corner Features. We show five example results

of our generated medial mesh of various corners in Fig. 22. The first
three models (a), (b) and (c) contain saddles incident to both convex
and concave edges. The fourth model (d) is a wedge with small
angles. The fifth model (e) is a discretized cone with a corner at the
tip. Since all of existing methods are known to have difficulties on
preserving external corner features, we do not show their results as
comparison.

Results on Non-feature Shapes. We show a visual and quantitative
comparison of our method with PC [Amenta et al. 2001a], SAT
[Miklos et al. 2010] and VC [Yan et al. 2018] on two smooth shapes
in Fig. 26. We found that PC, SAT and our method normally give
similar reconstruction accuracy while VC has higher errors since it
shrank the generatedmedial mesh during pruning. Similar to models
with features, our method generates fewer medial spheres (i.e., PC
20𝑘 , SAT 119𝑘 , and ours 8𝑘 for the bear model) and maintains the
thinness property of medial axis while PC and SAT cannot.

VC 256^3 (full)
#s = 103k

VC 256^3 ( )
#s = 61k

λ = 0.04 Ours
#s = 9k

VC 256^3 (full)
#s = 124k

VC 256^3 ( )
#s = 56k

λ = 0.02 Ours
#s = 18k

(a) (b) (c)

Fig. 20. Comparing medial mesh results of our method (c) with VC [Yan
et al. 2018] w/o (a) and w/ (b) 𝜆-pruning.

Input Mesh Ground Truth

OursSAT VC





#s = 955

ϵ1ma = 0.112%
ϵ2ma = 0.065%

 = 61k




#s
ϵ1ma = 3.305%
ϵ2ma = 1.275%

 = 23k




#s
ϵ1ma = 2.688%
ϵ2ma = 1.661%

 = 11k




#s
ϵ1ma = 5.057%
ϵ2ma = 5.134%

PC

Fig. 21. Quantitative comparisonwith PC [Amenta et al. 2001a], SAT [Miklos
et al. 2010], and VC [Yan et al. 2018] on themedialmesh, with their Hausdorff
distances measured w.r.t. the ground-truth medial axis.

We also show a gallery of more results from ABC dataset [Koch
et al. 2019] under the 10k/test/2048 folder (see Fig. 25). Please refer
to the Supplementary Material for detailed description regarding
the selection (Sec. 1) and statistics (Tab. 1).

7 LIMITATIONS AND FUTURE WORK
It should be noted that our current approach does not guarantee
topological preservation for the generated medial mesh w.r.t. the in-
put model, as evidenced from Tab. 1 of Supplementary Material that
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Input Mesh

(b)

(c)

(d)

(e)

Medial Mesh Medial Mesh

(a)

Fig. 22. Examples of corner preservation in our medial mesh: (a) a corner
adjacent to four convex edges and two concave edges, forming a saddle;
(b) a corner adjacent to four convex edges and three concave edges (two of
them are adjacent); (c) a corner adjacent to three convex edges and three
concave edges, forming a monkey saddle; (d) a corner adjacent to three
sharp edges at small angles, forming a wedge; and (e) a corner at the tip of
a discretized cone.

(a) (b)

Fig. 23. Comparison of two different thinning strategies on the model of
Fig. 22 (a): (a) medial faces sorted by our importance factor 𝛼𝑖 𝑗𝑤 (details
in Sec. 4.4 and algorithm provided in Alg. 2 of Supplementary Material;
(b) medial faces sorted randomly. We can see that plain thinning strategy
(b) creates many open “pockets”, while our geometry-guided thinning (a)
produces an accurate medial mesh.

there are still 19/73 models having incorrect Euler characteristics.
We need to investigate the necessary and sufficient conditions for

Fig. 24. Thinning results using different target importance factor 𝜎 . Default
value 𝜎 = 0.3 (b) over-pruned the medial mesh which results in holes and
detached components, while a smaller value of 𝜎 = 0.1 (a) prevents the
over-pruning.

topological equivalence under the RPD framework, and come up
with some delicate mechanism to preserve the topology of the gen-
erated medial mesh. We will leave these topological investigations
as our future work.

In addition to the topological preservation issue mentioned above,
in this paper we only give experimental evidences but not theoretical
proof of correctness for the proposed algorithms, which include: (1)
the capability of RPC-based refinement in guaranteeing the topologi-
cal correctness of internal features; (2) the topological correctness of
corner feature preservation; (3) the geometric relationship between
different choices of sphere connections (i.e., medial triangles) and
their RPS used in our geometry-guided thinning algorithm. More
rigorous theoretical guarantees and limitations are needed to be
explored in the future.

In addition, the preservation of external features can be effectively
evaluated using reconstruction error, however, the same is not obvi-
ous for internal features. Moderate errors can be well hidden by the
neighboring medial spheres when it comes to shape reconstruction.
In our future work, we will consider evaluating the internal features
on top of many hex-meshing applications which explicitly rely on
internal features to perform solid-meshing of CAD models [Sampl
2000] [Quadros et al. 2004].

8 CONCLUSION
In this paper, we present a novel RPD-based framework for com-
puting the medial axis transform of 3D shapes with preservation
of both external and internal medial features. The method is based
on the observation that the surface RPC of each medial sphere in-
dicates the set of connected components (CCs) that the sphere has
tangential contacts with. Each sphere’s CCs can not only be used to
update the spheres to their ground truth position and radius, but
also tell the information about whether this sphere is on a medial
sheet, a seam, or a junction. Such information can be further used
to check if the internal or external features are broken in the gener-
ated medial mesh, and guide the sphere sampling to preserve those
features. Experimental evidences show that our method generates
medial meshes with high quality in preserving medial features, both
externally and internally. In the future, we believe our RPD-based
framework, as a general tool for encoding shapes with features,
has potential to be applied to various applications such as shape
segmentation [Lin et al. 2022], shape recognition [Hu et al. 2019],
and shape deformation [Lan et al. 2020], etc.
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Fig. 25. A gallery of our results using models from ABC dataset under the 10k/test/2048 folder. The selection and statistics details are given in the Supplementary
Material in Sec. 1 and Tab. 1.
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