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Abstract

Despite their satisfactory performance, most existing listwise Learning-To-Rank (LTR) mod-

els do not consider the crucial issue of robustness. A data set can be contaminated in vari-

ous ways, including human error in labeling or annotation, distributional data shift, and

malicious adversaries who wish to degrade the algorithm’s performance. It has been shown

that Distributionally Robust Optimization (DRO) is resilient against various types of noise

and perturbations. To fill this gap, we introduce a new listwise LTR model called Distribution-

ally Robust Multi-output Regression Ranking (DRMRR). Different from existing methods,

the scoring function of DRMRR was designed as a multivariate mapping from a feature vec-

tor to a vector of deviation scores, which captures local context information and cross-docu-

ment interactions. In this way, we are able to incorporate the LTR metrics into our model.

DRMRR uses a Wasserstein DRO framework to minimize a multi-output loss function under

the most adverse distributions in the neighborhood of the empirical data distribution defined

by a Wasserstein ball. We present a compact and computationally solvable reformulation of

the min-max formulation of DRMRR. Our experiments were conducted on two real-world

applications: medical document retrieval and drug response prediction, showing that

DRMRR notably outperforms state-of-the-art LTR models. We also conducted an extensive

analysis to examine the resilience of DRMRR against various types of noise: Gaussian

noise, adversarial perturbations, and label poisoning. Accordingly, DRMRR is not only able

to achieve significantly better performance than other baselines, but it can maintain a rela-

tively stable performance as more noise is added to the data.

Introduction

There exist many real-world applications such as recommendation systems, document

retrieval, machine translation, and computational biology where the correct ordering of

instances is of equal or greater importance than minimizing regression or classification errors

[1]. Learning-to-rank (LTR) refers to a group of algorithms that apply machine learning tech-

niques to tackle these ranking problems. Generally speaking, LTR methods learn a scoring

function that maps an instance-query feature vector to a relevance score (i.e., multi-level
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rating/label) that is then used to rank instances for a given query. Ideally, the resulting ranked

list should maximize a ranking metric [2–4]. We considered two medical applications of LTR,

namely medical document retrieval and drug response prediction. Healthcare applications com-

monly face various challenges including: (i) susceptibilities in data collection due to instru-

ment and environmental noise or data entry errors; (ii) ambiguous or improper data

annotation; (iii) lack of large-scale data for training and testing of algorithms; (iv) imbalanced

data sets; (v) missing data; (vi) divergence of training and testing data distributions (e.g., data

is recorded by different hospitals using different procedures); and, more importantly, (vii) the

threat of adversarial attacks [5–7]. Consequently, robustness is critical for the wider adoption

and deployment of algorithms into healthcare systems [7].

In this work, and without loss of generality, we take document retrieval as an example to

explain the concepts and formulations. The main goal of document retrieval is to rank a set of

documents by their relevance to a query. A slightly different example in computational biology

is drug response prediction. For instance, prescribing the right therapeutic option for each

cancer patient is an intricate task since the efficacy of cancer medications varies among

patients. Nevertheless, the biological differences among cancers can be used to design genomic

predictors of drug responses from large panels of cancer cell lines [8]. In drug response predic-

tion, large-scale screenings of cancer cell lines against libraries of pharmacological compounds

are used to predict precise and individualized medications [8].

Existing LTR approaches fall into three categories, namely pointwise, pairwise, and listwise

[9]. The pointwise approach formulates ranking as a classification or regression problem—

most early LTR algorithms such as linear regression ranking [9] or RankNet [10] take a very

similar approach. In the pairwise approach, a classification method is employed to classify the

preference order within document pairs. Representative pairwise ranking algorithms include

RankBoost [11], RankNet [10], and ordinal regression [9]. Both approaches are misaligned

with the ranking utilities such as Normalized Discounted Cumulative Gain (NDCG) and do

not straightforwardly model the ranking problem. The listwise models can overcome this

drawback by taking the entire list of retrieved documents from a query as instances and train a

ranking function through the minimization of a listwise loss function. Experimental results

show that the listwise approaches generally outperform the pointwise and pairwise algorithms

[12]. The literature offers a variety of approaches from deriving a smooth approximation to

ranking utilities (e.g., ApproxNDCG [13] and SoftRank [14]), to constructing differentiable

surrogate loss functions (e.g., ListMLE [15], LambdaMART [16], and ListNet [12]). Specifi-

cally, ListNet and ListMLE try to learn the best document permutation based on permutation

probabilities via the Plackett-Luce model while SoftRank and ApproxNDCG use ranking met-

rics or positions to tune their loss functions. On the other hand, LambdaMART employs heu-

ristics to compute the gradients of an unknown loss function directly.

Most existing studies on LTR achieve impressive performance but often neglect the impor-

tance of robustness [9]. Systematic noise can become part of a data set in many ways and

deceive LTR models to rank an item at an incorrect position with high confidence. While

Empirical Risk Minimization (ERM) has been effective to optimize loss, ERM often does not

yield models that are robust to adversarially crafted samples [17]. Distributionally Robust Opti-
mization (DRO) is a modeling paradigm for data-driven decision-making under uncertainty.

It has been successful in handling problems with corrupted training data through hedging

against the most adverse distribution within a Wasserstein ball [18]. Recently, DRO has been

an active area of research owing to its robustness to adversarial examples, rigorous out-of-sam-

ple and asymptotic consistency guarantees, and excellent empirical performance [19].

In the present work, we seek to infuse robustness into LTR problems through the DRO

framework. Equipped with this perspective, we make the following contributions. Unlike
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other LTR frameworks, our algorithm approaches listwise ranking in a novel way and employs

ranking metrics (i.e., NDCG) in its output. In particular, we use the notion of position devia-
tion to define a vector of relevance scores instead of a scalar. We then adopt the DRO frame-

work to minimize a worst-case expected multi-output loss function over a probabilistic

ambiguity set that is defined by the Wasserstein metric. To the best of our knowledge, ours is

the first study that utilizes a multi-output Wasserstein DRO framework to robustify LTR prob-

lems. We present an equivalent convex reformulation of the DRO problem, which is shown to

be tighter than earlier work [18]. In experiments, our approach yields state-of-the-art results in

two challenging applications of LTR, namely medical document retrieval and drug response

prediction. More importantly, we evaluate our model to verify its robustness against various

types of attacks including adversarial attacks and label attacks, showing that our model main-

tains a consistently good performance under various attack scenarios.

Notational conventions

We use boldfaced lowercase letters to denote vectors, ordinary lowercase letters to denote sca-

lars, boldfaced uppercase letters to denote matrices, and calligraphic capital letters to denote

sets. All vectors are column vectors. For space saving reasons, we write x to denote the column

vector (x1, . . ., xdim(x)), where dim(x) is the dimension of x. We use prime to denote the trans-

pose, N for the set {1, . . ., N} for any integer N, k � kp for the ℓp norm with p � 1, and IK for the

K-dimensional identity matrix. For a matrix A 2 Rm�n
, we use kAkp to denote its induced ℓp

norm, defined as kAkp≜supx6¼0kAxkp=kxkp.

Preliminaries

Learning-to-rank

In a ranking problem, the data consists of a set of triples (query, document, relevance score). A

feature vector is used to represent a query-document pair. The relevance score indicates the

degree of relevance of this document to its corresponding query. Given a ranking data set

fðXq; θq
Þg

T
q¼1

, q 2 T indexes a query, and Xq and θq represent the list of retrieved documents

and corresponding relevance scores, respectively. The q-th query contains nq documents and

Xq 2 Rnq�p has rows ðxq1; � � � ; xqnqÞ, each of which is a p-dimensional document feature vector.

The vector θq
¼ ðy

q
1
; � � � ; y

q
nq

Þ 2 Rnq
þ contains the corresponding ground-truth relevance

scores, where a higher y
q
d 2 R indicates that the document with features xqd is more relevant. In

the learning-to-rank framework, denoting by x and θ the random variables that represent the

document feature vector and relevance score, respectively, the goal is to learn a scoring func-

tion f that best predicts the relevance score:

min
f

Lðf Þ≜EP∗ ½‘ðy; f ðxÞÞ�; ð1Þ

where ‘ : R� R ! R is a loss function, f : Rp
! R predicts the relevance score of each docu-

ment, and P∗ is the underlying true probability distribution of (x, θ). Given that P∗ is

unknown, most existing LTR algorithms solve (1) through estimating the expected loss by its

empirical substitute (2):

L̂ðf Þ≜
1

P
qnq

XT

q¼1

Xnq

d¼1

‘ y
q
d; f ðx

q
dÞ

� �
: ð2Þ

For a test query Xt 2 Rnt�p
consisting of nt documents, the final predicted ranking list π̂ is
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simply obtained by ranking the rows in Xt based on their inferred ranking scores

θ̂ t ¼ ðf ðxt
1
Þ; . . . ; f ðxtntÞÞ. Eq (2) is restrictive in the sense that: (i) it does not take into account

the inter-dependency of scores between documents, and (ii) the empirical estimate is very sen-

sitive to data perturbations.

Distributionally Robust Optimization

Distributionally Robust optimization (DRO) hedges against a set of probability distributions

instead of just the empirical distribution. DRO minimizes a worst-case loss over a probabilistic

ambiguity set:

min
f

max
Q2O

EQ½‘ðy; f ðxÞÞ�;

where the ambiguity set O can be defined through moment constraints [20], or as a ball of dis-

tributions using some probabilistic distance function such as the Wasserstein distance [21, 22].

The Wasserstein DRO model has been extensively studied in the machine learning commu-

nity; see, for example, [23, 24] for robustified regression models, [19] for adversarial training

in neural networks, and [25] for distributionally robust logistic regression. These works, [18,

26, 27] provided a comprehensive analysis of the Wasserstein-based distributionally robust sta-

tistical learning framework.

Problem formulation

Next, we introduce our DRO formulation of the LTR problem. Different from the existing

works where a univariate relevance score y
q
d 2 R is used for each document xqd 2 Rp, we define

a Ground Truth Deviation vector θq
d 2 RK

to characterize different levels of importance for the

document xqd in the q-th query. Here, K is a constant to be defined later (cf. end of the next sec-

tion). We also derive an equivalent reformulation of the DRO problem.

Ground Truth Deviation

As a popular evaluation criterion in information retrieval, Normalized Discounted Cumulative

Gain (NDCG) can deal with cases that have more than two degrees of relevancy for documents

[28]. Let D(s) = 1/log(1 + s) be a discount function, G(s) = s, a monotonically increasing gain

function, and Zn ¼ fðx1; y1Þ; :::; ðxn; ynÞg a set of documents ordered according to their

ground-truth rank, with xi and yi being a document feature vector and a relevance score,

respectively. Assume ~Zn is a (predicted) ranked list for Zn; then the Discounted Cumulative
Gain (DCG) of ~Zn is defined as Fð ~ZnÞ ¼

Pn
r¼1

Gðypr
ÞDðrÞ, where πr is the index of the docu-

ment ranked at position r of ~Zn. The reason for introducing the discount function is that the

user cares less about documents ranked lower [29]. NDCG normalizes DCG by the Ideal DCG

(IDCG), FIðZnÞ, which is the DCG score of the ideal ranking result [30] and can be computed

by FNð ~Z nÞ ¼ Fð ~ZnÞ=FIðZnÞ 2 ½0; 1�. Considering the q-th query (Xq, yq) that contains nq
documents, we define a Ground Truth Deviation (GTD) vector for document d as follows:

θq
d ¼ xIðξD � ξFÞ; ð3Þ

where � is the Hadamard product (a.k.a. the element-wise product). The vector θq
d is com-

prised of the following three components.

NDCG deviation score (ξF). To compute this vector, first, the elements of yq ¼

ðyq1; . . . ; yqnqÞ are sorted in descending order of their ground truth individual relevance scores,
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and the document feature vectors Xq ¼ ðxq1; . . . ; xqnqÞ are also sorted correspondingly. We

denote them by �yq and �Xq, respectively. The NDCG score for �Xq is equal to 1. If we switch two

documents in �Xq, the NDCG will decrease or in some cases may stay the same (i.e., if their rele-

vance scores are equal). For document d in query q, we define the NDCG deviation score vec-

tor as ξF ¼ ðld1; . . . ; ldnq
Þ where λdi is the NDCG score of �Xq when we switch the position of

document d with the document that is in i-th position of �Xq and can be formulated as follows:

ldi ¼ 1 þ

yd � ypi

logð1 þ iÞ
þ

ypi
� yd

logð1 þ p�1
d Þ

FI :

Here, p�1
d is the position of the document d in �Xq, πi is the index of the document ranked at

the i-th position of �Xq, and FI is the IDCG. The details about the derivation can be found in

the S1 Appendix. We can perceive the i-th element of the GTD vector as a score that indicates

the degree of congruence between a document and the i-th rank.

Position deviation score (ξD). This vector is defined to further push the relevant docu-

ments to the top of the ranking list and penalize documents based on their position in the

ranking list. The position deviation score works in conjunction with ξF. We define it as ξD ¼

ðrd1; . . . ; rdnq
Þ where ρdi can be calculated by

rdi ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jcosh min bhdi;
b

2
hdi

� �� �

j

s ;

where hdi ¼ p�1
d � i. As can be seen in Fig 1, α specifies the GTD’s maximum score and β regu-

lates the magnitude of the penalty for a position deviation. Here, we use the red dashed curve

for positive deviations (i.e., when a document ranked higher than its optimal position) and the

black curve for negative deviations. This would induce our model to tolerate a positive devia-

tion more than a negative one. Consequently, the model pushes the relevant documents to the

top of the ranking list.

Fig 1. GTD graphs. (a) Position deviation score where α = 10 and β = 2. (b) Document importance score for various maximum possible relevance

scores.

https://doi.org/10.1371/journal.pone.0283574.g001
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Document importance score (ξI). It is defined to place greater emphasis on highly rele-

vant documents and can be computed as

xI ¼
logðŷyd þ 1Þ

logðŷ2 þ 1Þ
;

where ŷ is the maximum possible value for relevance scores. Fig 1 presents ξI for different val-

ues of ŷ.

Ultimately, instead of a relevance score for each document, we have a GTD vector. The

GTD vector characterizes different levels of importance for a document in a query where the

first element is the first level of importance, the second element is the second level of impor-

tance, and so on. Since each query may have a different number of documents, we just con-

sider the first K elements of ξF and ξD in our model, corresponding to K levels of importance.

In this way, all GTD vectors are of the same length. We prefer to use a low value for K since it

forces the model to focus on the most relevant documents. In case a large K needs to be used

and K > nq, we can simply repeat the last element of ξF and ξD to pad our ξF vector.

In a nutshell, the NDCG deviation score (ξF) captures the relative position of a document in

a query. On the other hand, the position deviation score (ξD) and the document importance
score (ξI) work in conjunction to push the relevant documents to the top of the list. We used

an asymmetric bell-shaped function for the position deviation score to give a maximum score

to correctly ranked documents. By using a “steeper left fall,” we give a lower score to a negative

position deviation (i.e., when a document ranked lower than it should) compared to a positive

one. Moreover, α and β enable us to control the maximum score and the magnitude of the

penalty for a position deviation, respectively. In the S1 Appendix, we present an ablation study

to gauge their effect on performance. We also provid an example of GTD vector calculation.

Distributionally Robust Multi-output Regression

Consider a setting where there are K levels of importance with features and importance scores

distributed according to x 2 Rp
and θ 2 RK

, respectively. We restrict our attention to linear

function classes by assuming f(x) = B0x where B 2 Rp�K . The matrix B characterizes the

dependency structure of the different levels of importance. Nonlinearity can be introduced by

applying a transformation (e.g., kernel function) on the feature x. The Distributionally Robust

Multi-output Regression Ranking (DRMRR) formulation minimizes the worst-case expected

loss as follows:

min
B

max
Q2O

EQ½‘ðθ � B0xÞ�; ð4Þ

where ‘ : RK ! R is a Lipschitz continuous loss function on the metric spaces ðD; k � krÞ and

ðC; j � jÞ, where D, C are the domain and co-domain of ℓ(�), respectively. In (4),Q 2 O≜fQ 2

PðSÞ : W1ðQ; P̂NÞ � εg is the probability distribution of (x, θ), where PðSÞ is the space of all

probability distributions supported on S and S is the uncertainty set of (x, θ), ε is a positive

constant (i.e., Wasserstein ball radius), P̂N is the empirical distribution that assigns an equal

probability to all N training samples, with N ¼
PT

j¼1
nj, where T is the number of queries, and

W1ðQ; P̂NÞ is the order-1 Wasserstein distance betweenQ and P̂N defined as

W1ðQ; P̂NÞ≜ min
P2PðS�SÞ

Z

S�S
dðz1 � z2ÞPðdz1; dz2Þ

� �

:

In the distance, δ(z1 − z2)≜ kz1 − z2kr with zi = (xi, θi), i = 1, 2, drawn fromQ and P̂N ,
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respectively, and P specifies the joint distribution of z1 and z2 with marginalsQ and P̂N . Note

that the same norm is used to define the Wasserstein metric and the domain space of ℓ(�). In

the following theorem we propose an equivalent reformulation of (4) by using duality for the

inner maximization problem.

Theorem 0.1. Suppose our dataset consists of T queries fðXq; Θq
Þg

T
q¼1

and each query q con-
tains nq documents, q 2 T, where Xq 2 Rnq�p is the document feature matrix with rows xqd 2 Rp,

d 2 nq, and Θq
2 Rnq�K is the GTD matrix with rows θq

d 2 RK
. Define a loss function ‘ð�Þ≜k � kr.

If the Wasserstein metric is induced by k � kr, the DRMRR problem (4) can be equivalently refor-
mulated as:

min
B

1
PT

e¼1
ne

XT

q¼1

Xnq

d¼1

ky
q
d � B0xqdkr þ εk~B 0ks; ð5Þ

where r, s � 1; 1/r + 1/s = 1; ~B ¼ ð�B0; IKÞ.

The proof can be found in S1 Appendix. Thm. 0.1 establishes a connection between

distributional robustness and regularization, which has also been studied by, e.g., [22, 25,

26]. However, most of the existing studies focused on a univariate output. By contrast, our

work adapts the DRO framework to a multi-output setting, which is more suitable for the

ranking problem. Recently, [18] studied a multi-output regression problem under the

Wasserstein DRO framework. However, our results in Theorem 0.1 present a tighter

reformulation than theirs (Eq. (6.2) in [18]. In the case where the Wasserstein metric is

induced by the ℓ2 norm (r = 2), Eq (5) yields a regularizer which is the spectral norm (larg-

est singular value) of ~B 0, while [18] derived a regularizer in the Frobenius norm which is

looser.

Score calculation

Suppose we are given a test query Xt ¼ ðxt
1
0; . . . ; xtnt 0Þ 2 Rnt�p; we can estimate the GTD

matrix as Θ̂t ¼ ðB0xt
1
; . . . ;B0xtntÞ 2 Rnt�K . In the matrix Θ̂t, columns correspond different

ranks and rows refers to different documents. Algorithm 1 demonstrates the procedure of

ranking using the output of the DRMRR algorithm where RK(j) is the remainder of dividing j
by K. In the S1 Appendix, we present an intuitive toy example to illustrate this algorithm

better.

Algorithm 1: Scoring Procedure for DRMRR

Input: Θ̂t

Output: Sorted list
Let δ = 1;
for j = 1 to nt
Find the maximum of δ-th column of Θ̂t;
Assign the corresponding row/document to rank j;
Remove the corresponding row/document;
if RK(j) = 0 then
δ = 1;

else
δ = δ + 1;

end if
end for
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Experimental results

Experiment setup

Data sets. We conducted experiments on two publicly available benchmark datasets:

OHSUMED(https://www.microsoft.com/en-us/research/project/letor-learning-rank-

information-retrieval/), and Drug Response Prediction (DRP)(https://modac.cancer.gov/

assetDetails?dme_data_id=NCI-DME-MS01-8088592). As a subset of the MEDLINE data-

base (a database on medical publications), the OHSUMED corpus [31] consists of about 0.3

million records from 270 medical journals from 1987 to 1991. A query set with 106 queries

on the OHSUMED corpus has been extensively used in previous works, in which each query

is represented by 45 features [2]. There are in total 16,140 query document pairs with rele-

vance judgments. LETOR [2] defined three ratings 0, 1, 2, corresponding to “irrelevant,”

“partially relevant,” and “definitely relevant,” respectively. In addition to OHSUMED, we

trained and evaluated our method using the cell line data and drug sensitivity data from the

Cancer Cell Line Encyclopedia (CCLE) [32] and the Cancer Therapeutics Response Portal
(CTRP v2) [33]. A total of 332 cell lines (i.e., queries) and 50 drug responses were used. The

“Act Area” (the area above the fitted dose-response curve) was used to quantify drug sensi-

tivity where a lower response value indicates higher drug sensitivity. After several pre-pro-

cessing steps, cell lines are represented by 251 numeric features (i.e., genes) and drug

sensitivities are labeled with graded relevance from 0 to 2 (i.e., “insensitive,” “sensitive,” and

“highly sensitive,” respectively) with larger labels indicating a higher sensitivity. Further

details of the data pre-processing steps can be found in S1 Appendix. Moreover, all code

written in support of this publication is publicly available on a GitHub repository(https://

github.com/noc-lab/DRMRR-Distributionally-robust-learning-to-rank-under-the-

Wasserstein-metric). Please note that we targeted biomedical applications with limited data.

Since the number of drug-cell line pairs is much less than the number of features, most

approaches “overfit.” Similarly, OHSUMED challenges ranking models due to its small sam-

ple size.

Evaluation metrics. We evaluated model performance using two metrics: NDCG@k and

AP@k. NDCG@k is the top-k version of NDCG, where the discount function is D(s) = 0 for s
> k. Precision at position k (P@k) is the fraction of relevant documents in the top-k. Suppose

we have binary relevance for the documents in a q-query; we define P@k as P@k ¼

1

k

Pk
j¼1

1ðypj
¼ 1Þ where 1ð�Þ is the indicator function. We define Average Precision at position

k as AP@k ¼ 1

m

Pk
j¼1

P@j � 1ðypj
¼ 1Þ, where m is the total number of relevant documents in

the top-k of the ranking list. AP is a highly localized performance measure and captures the

quality of rankings for applications where only the first few results matter. The main difference

between AP and NDCG is that NDCG differentiates between “partially relevant” and “defi-

nitely relevant” documents while AP treats them equally. Given a set of testing queries and a

performance metric, we are interested in the mean metric which is simply the mean of the per-

formance metric for all queries. From now on, we use NDCG@k and AP@k to denote mean

NDCG@k and mean AP@k, respectively.

Competing methods. Although the list of published LTR algorithms is endless, Lambda-

MARTMAP [16], LambdaMARTNDCG [16], and XE-MARTNDCG [4] have been demonstrated

repeatedly to outperfrom other algorithms including RankNet [10], Coordinate Ascent [34],

ListNet [12], Random Forests [35], BoltzRank [36], ListMLE [15], Position-Aware ListMLE

[37], RankBoost [11], AdaRank [38], SoftRank [14], ApproxNDCG [13], ApproxAP [13], and

several direct optimization methods [39, 40]. Moreover, multiple comparative studies [41–43]

reported that tree-based models exhibit top performance in drug response prediction.
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Thus, we rely on prior research [4, 41, 44] and do not include the weaker methods in our

experiments. It is important to note that the author of XE-MARTNDCG proposed this model as

a robust alternative to LambdaMART-based models. We also compared DRMRR against the

state-of-the-art transformer-based neural ranking model [45] with different loss functions.

However, since the performance of the aforementioned tree-based baselines was by far better

than the latter (especially on our main application, namely DRP), we defer the presentation of

the performance of the latter methods to the S1 Appendix.

Experimental settings and hyper-parameter optimization. In our experiments, we

used the standard supervised LTR framework [9]. Authors of LETOR [2] partitioned the

OHSUMED data set into five parts for five-fold cross-validation where three parts were used

for training, one part for validation (i.e., tuning the hyperparameters of the learning algo-

rithms), and the remaining part for evaluating the performance of the learned model. Simi-

larly, we partitioned the drug response data set into five folds and conducted five-fold cross-

validation to train, validate, and evaluate the ranking algorithms. In all experiments, the aver-

age on the test set over the 5 folds was reported. Algorithm parameters were tuned on the vali-

dation sets. We optimized the algorithm parameters to maximize NDCG@5 and NDCG@10.

The details of the parameter-tuning procedure and the optimal parameters for each algorithm

can be found in the S1 Appendix.

Overall comparison

We compared the performance of DRMRR on OHSUMED, and DRP data sets with baseline

methods introduced in the previous sections. The results are in Table 1. The values inside the

parentheses denote the Standard Deviation (SD) of the corresponding metrics. Bold numbers

indicate the best performance among all methods for each metric. DRMRR consistently out-

performs all baseline methods across all metrics. In our experiment on OHSUMED data,

LambdaMARTNDCG demonstrated a reasonably good overall performance and it is the sec-

ond-best method. However, XE-MARTNDCG was the second-best method in our experiment

on the DRP data. The difference between the best and the second-best methods for the DRP

data set is greater than what we obtained for OHSUMED. Due to the limited number of sam-

ples available and the specific structure of the DRP data, the performance of the baseline meth-

ods diminished significantly. On the other hand, DRMRR was able to maintain its high

performance. To sum up, the proposed method is not only able to push the most relevant

documents (or sensitive drugs) to the top of the ranking list, but it can put them in the right

order. Furthermore, as we discuss in the Supplement, our model is more efficient (low model

complexity) and generalizes better (typically, the generalization error increases with model

complexity).

Table 1. Performance comparison of ranking methods.

Algorithms NDCG@5 NDCG@10 AP@5 AP@10

OHSUMED LambdaMARTMAP 45.18% (5.07%) 43.65% (3.55%) 67.94% (7.26%) 64.12% (5.83%)

LambdaMARTNDCG 46.17% (5.91%) 44.40% (5.00%) 68.53% (8.40%) 65.25% (6.47%)

XE-MARTNDCG 44.31% (6.58%) 44.79% (5.65%) 65.25% (8.08%) 62.41% (6.76%)

DRMRR 47.79% (6.58%) 45.36% (4.84%) 70.84% (7.35%) 65.31% (7.35%)

DRP LambdaMARTMAP 58.11% (1.90%) 63.39% (2.17%) 83.27% (1.57%) 77.25% (1.07%)

LambdaMARTNDCG 58.73% (2.54%) 62.87% (2.83%) 83.07% (1.99%) 76.95% (1.19%)

XE-MARTNDCG 59.37% (1.92%) 63.51% (2.18%) 83.70% (1.28%) 77.43% (1.34%)

DRMRR 68.40% (1.74%) 71.27% (1.78%) 85.03% (1.10%) 81.03% (1.00%)

https://doi.org/10.1371/journal.pone.0283574.t001
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Robustness comparison

In this section, we empirically study the behavior of DRMRR in the presence of noise. While

our overall performance analysis suggested that DRMRR should be the most “well-behaved” of

the four, that analysis was performed on the clean data. The robustness of a ranking model to

noise is crucial in practice, especially in the healthcare domain. We put this hypothesis to test

through four types of experiments. We conducted all experiments on the OHSUMED data set

since it is a popular and standard LTR data set. In all experiments, the values are the average of

5 folds.

Gaussian noise attack. We added Gaussian noise to the test documents to deliberately

corrupt them; therefore, depreciating their predictability. Gaussian noise was added to 75% of

the test queries randomly. Experiments were conducted using various means and a fixed stan-

dard deviation of 0.001. We used the perturbed test data to evaluate the trained models (i.e., all

algorithms were tested on the same perturbed test data). Fig 2 demonstrates the performance

of the algorithms on the perturbed test data. Two observations are in order: (i) DRMRR out-

performed the baseline models at different levels of noise; and (ii) DRMRR demonstrated a rel-

atively stable performance.

Universal adversarial perturbation attack. We built an adversarial model to introduce

perturbations that break the neighborhood relationships by altering the input slightly. To that

Fig 2. The impact of Gaussian noise on the performance of ranking models.

https://doi.org/10.1371/journal.pone.0283574.g002
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end, a pointwise linear regression ranking model was trained as the adversarial model on the

clean training set. Then, 75% of the test queries were perturbed using the coefficient of the

adversarial model and the Fast Gradient Sign Method (FGSM) method:

��xd
q ¼ xdq þ s � sgnðrxdq

Jðxdq; y
d
qÞÞ, where ��xd

q is the perturbed feature vector, σ controls the magni-

tude of the perturbations, and J is the cost function of the adversarial model [46].

All algorithms that we trained in the “Overall Comparison” section were evaluated on the

same perturbed test data. In this case, the adversary had no knowledge of the ranking models;

however, it was trained on the same training data. Fig 3 shows the performance of the algo-

rithms on the perturbed test data. As we increase the level of perturbations (i.e., σ), we can see

that DRMRR is less sensitive to adversarial perturbations in comparison with the competing

methods. It demonstrated a stable performance across all metrics. Among the baselines,

XE-MARTNDCG that performed well in terms of NDCG@5, demonstrated poor performance

in terms of AP@5.

Black-box adversarial attack. The black-box adversarial attack restricts the attacker’s

knowledge only to the deployed model [47]. The setting of black-box attacks is closer to the

real-world scenario; therefore, this is the most practical experiment to measure the robustness

of our algorithm. Please refer to [47] for more information on the black-box adversarial

attacks. Since the adversary has no access to the model’s weights and parameters, the adversary

Fig 3. The impact of universal adversarial perturbation on the performance of ranking models.

https://doi.org/10.1371/journal.pone.0283574.g003
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can choose to train a parallel model called a substitute model to imitate the original model.

Here, we use a four layers fully connected network as our substitute models (see the S1 Appen-

dix for more details). To construct the substitute models, the training data were independently

fed to each model and the output was observed. Then, for each algorithm, a Neural Network

(NN) ranking model was trained as an adversarial substitute model using the training feature

vectors and the observed output of that specific algorithm. Subsequently, 75% of the test que-

ries were perturbed using the FGSM method and the parameters of the substitute model corre-

sponding to each algorithm. We trained four substitute models corresponding to each ranking

algorithm. We used the specific perturbed test data to evaluate the best trained models (i.e.,

each model has a different perturbed test set). Fig 4 demonstrates the performance of the algo-

rithms on the perturbed test data. The values are the average of 5 folds. We can see that both

figures show the same trend—increasing the level of perturbations (i.e., σ) leads to significant

differences between DRMRR and the baselines methods. The competing methods were greatly

affected by this type of noise, whereas their performance was modest in the simpler experi-

ments, namely universal adversarial attack and Gaussian attack. We conclude that DRMRR is

robust to adversarial perturbations, an important property that leads to good generalization

ability.

Fig 4. The impact of black-box adversarial perturbation on the performance of ranking models.

https://doi.org/10.1371/journal.pone.0283574.g004
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Label attack. In practice, the vagueness of query intent, insufficient domain knowledge,

and ambiguous definition of relevance levels make it hard for human judges to assign proper

relevance labels to some documents. Practically speaking, the probability of judgment errors in

various relevance degrees is not equal. Even if human annotators misjudge a document, they

are more probable to label it closer to its ground-truth label. Inspired by [48], we define the

non-uniform error probabilities in Table 2 where entries of this table correspond to the proba-

bility that a document with ground-truth label yqi is prone to be labeled as yqj . We randomly

changed the labels of the training data using the probabilities in Table 2. Then, each model was

trained on the noisy training data. Clean test data were used to evaluate each model. We con-

ducted two sets of experiments, namely low label noise (i.e., e = 0.85) and high label noise (i.e.,

e = 0.7). Table 3 reports the performance of the algorithms on the clean test data. The values in

these figures are the average of 5 folds. For the low noise scenario, the differences between the

average AP@5 and NDCG@5 of the baseline models and DRMRR were 2.53% and 1.59%,

respectively. Notably, the gaps were even larger for the high noise scenario (AP@5 = 3.08%,

NDCG@5=1.68%). Since noise in human-labeled data is an inevitable issue, we can argue that

the baseline models are susceptible and degrade more severely as more noise is added to the

training set.

Discussion and conclusion

This paper went beyond conventional listwise learning-to-rank approaches and introduced a

distributionally robust learning-to-rank framework with multiple outputs, referred to as

DRMRR. Unlike existing methods, the scoring function in DRMRR was designed as a multi-

variate mapping from a feature vector to a vector of deviation scores (a.k.a. GTD vector). The

GTD vector captures local context information and cross-document interactions. Moreover,

we formulated DRMRR as a min-max problem where one minimizes a worst-case expected

loss over a probabilistic ambiguity set. The ambiguity set was defined as a ball of distributions

using the Wasserstein metric. Notably, we presented a compact and computationally solvable

equivalent reformulation of the min-max formulation of DRMRR. We compared DRMRR

with the baseline models in terms of: (a) the overall performance on two real-world applica-

tions and (b) the robustness to various types and degrees of noise. In medical document

Table 2. The error probability table.

Pðyqi !yqj Þ yqj
0 1 2

yqi 0 e 2

3
ð1 � eÞ 1

3
ð1 � eÞ

1 1

2
ð1 � eÞ e 1

2
ð1 � eÞ

2 1

3
ð1 � eÞ 2

3
ð1 � eÞ e

https://doi.org/10.1371/journal.pone.0283574.t002

Table 3. The impact of label noise on the performance of ranking models.

AP@5 NDCG@5 AP@10 NDCG@10

High Low High Low High Low High Low

DRMRR 70.25% 69.30% 48.43% 47.76% 66.59% 65.18% 46.67% 45.44%

LambdaMARTMAP 67.97% 67.87% 47.16% 45.87% 65.06% 63.23% 46.27% 44.92%

LambdaMARTNDCG 67.82% 66.79% 46.89% 46.46% 64.51% 63.38% 45.30% 44.58%

XE-MARTNDCG 65.70% 65.65% 46.19% 46.18% 63.71% 63.50% 45.80% 44.81%

https://doi.org/10.1371/journal.pone.0283574.t003
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retrieval, DRMRR outperformed state-of-the-art LTR models and established its capability in

differentiating relevant documents from irrelevant ones. In drug response prediction, our

results indicated that DRMRR leads to substantially improved performance when compared to

the competing methods across all performance metrics. Thus, DRMRR can infer robust pre-

dictors of drug responses from patient genomic or proteomic profiles which can lead to select-

ing a highly effective personalized treatment. In our robustness evaluations, we conducted a

comprehensive analysis to assess the resilience of DRMRR against various types of noise and

perturbations. Experimental results demonstrated that DRMRR is effective against: (i) Gauss-

ian noise; (ii) universal adversarial perturbations by a substitute model with no knowledge of

the victim model; (iii) black-box adversarial perturbations by a substitute model with access

only to the deployed victim model; and (iv) probabilistic perturbation of relevance labels.

Interestingly, the performance of DRMRR was consistently better than the baseline methods

for all levels of noise. More importantly, DRMRR showed no significant change in its perfor-

mance with the increase in the noise intensity. Two attributes of DRMRR did help to enhance

its performance and robustness: (i) efficiently capturing the contextual information and inter-

relationship between documents/drugs via the GTD vector; and (ii) the distributional robust-

ness by hedging against a family of plausible distributions, including the true distribution with

high confidence.

Even though DRMRR demonstrated promising performance, it also suffers from some lim-

itations that can be addressed in future work. DRMRR solves a convex problem which can be

done very efficiently with 1st-order gradient methods. Its computational complexity is compa-

rable to the training of leaf nodes in tree models (or the last layer of a neural network model),

where a simple regression model is being trained. However, listwise ranking models can get

relatively complex compared to pointwise or pairwise approaches and DRMRR is not an

exception. One possible direction is to reformulate the problem to speed up the solutions to

the DRO problem considered in this paper. As for the DRP application, an interesting future

direction is to incorporate the toxicity of drugs in our predictions. Since the biological dissimi-

larities among patients affect the side effects of medications, patients may have various side

effects. Hence, we can improve our predictions by considering the side effects and toxicity of

drugs.
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