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Abstract

Despite their satisfactory performance, most existing listwise Learning-To-Rank (LTR) mod-
els do not consider the crucial issue of robustness. A data set can be contaminated in vari-
ous ways, including human error in labeling or annotation, distributional data shift, and
malicious adversaries who wish to degrade the algorithm’s performance. It has been shown
that Distributionally Robust Optimization (DRO) is resilient against various types of noise
and perturbations. To fill this gap, we introduce a new listwise LTR model called Distribution-
ally Robust Multi-output Regression Ranking (DRMRR). Different from existing methods,
the scoring function of DRMRR was designed as a multivariate mapping from a feature vec-
tor to a vector of deviation scores, which captures local context information and cross-docu-
ment interactions. In this way, we are able to incorporate the LTR metrics into our model.
DRMRR uses a Wasserstein DRO framework to minimize a multi-output loss function under
the most adverse distributions in the neighborhood of the empirical data distribution defined
by a Wasserstein ball. We present a compact and computationally solvable reformulation of
the min-max formulation of DRMRR. Our experiments were conducted on two real-world
applications: medical document retrieval and drug response prediction, showing that
DRMRR notably outperforms state-of-the-art LTR models. We also conducted an extensive
analysis to examine the resilience of DRMRR against various types of noise: Gaussian
noise, adversarial perturbations, and label poisoning. Accordingly, DRMRR is not only able
to achieve significantly better performance than other baselines, but it can maintain a rela-
tively stable performance as more noise is added to the data.

Introduction

There exist many real-world applications such as recommendation systems, document
retrieval, machine translation, and computational biology where the correct ordering of
instances is of equal or greater importance than minimizing regression or classification errors
[1]. Learning-to-rank (LTR) refers to a group of algorithms that apply machine learning tech-
niques to tackle these ranking problems. Generally speaking, LTR methods learn a scoring
function that maps an instance-query feature vector to a relevance score (i.e., multi-level
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rating/label) that is then used to rank instances for a given query. Ideally, the resulting ranked
list should maximize a ranking metric [2-4]. We considered two medical applications of LTR,
namely medical document retrieval and drug response prediction. Healthcare applications com-
monly face various challenges including: (i) susceptibilities in data collection due to instru-
ment and environmental noise or data entry errors; (ii) ambiguous or improper data
annotation; (iif) lack of large-scale data for training and testing of algorithms; (iv) imbalanced
data sets; (v) missing data; (vi) divergence of training and testing data distributions (e.g., data
is recorded by different hospitals using different procedures); and, more importantly, (vii) the
threat of adversarial attacks [5-7]. Consequently, robustness is critical for the wider adoption
and deployment of algorithms into healthcare systems [7].

In this work, and without loss of generality, we take document retrieval as an example to
explain the concepts and formulations. The main goal of document retrieval is to rank a set of
documents by their relevance to a query. A slightly different example in computational biology
is drug response prediction. For instance, prescribing the right therapeutic option for each
cancer patient is an intricate task since the efficacy of cancer medications varies among
patients. Nevertheless, the biological differences among cancers can be used to design genomic
predictors of drug responses from large panels of cancer cell lines [8]. In drug response predic-
tion, large-scale screenings of cancer cell lines against libraries of pharmacological compounds
are used to predict precise and individualized medications [8].

Existing LTR approaches fall into three categories, namely pointwise, pairwise, and listwise
[9]. The pointwise approach formulates ranking as a classification or regression problem—
most early LTR algorithms such as linear regression ranking [9] or RankNet [10] take a very
similar approach. In the pairwise approach, a classification method is employed to classify the
preference order within document pairs. Representative pairwise ranking algorithms include
RankBoost [11], RankNet [10], and ordinal regression [9]. Both approaches are misaligned
with the ranking utilities such as Normalized Discounted Cumulative Gain (NDCG) and do
not straightforwardly model the ranking problem. The listwise models can overcome this
drawback by taking the entire list of retrieved documents from a query as instances and train a
ranking function through the minimization of a listwise loss function. Experimental results
show that the listwise approaches generally outperform the pointwise and pairwise algorithms
[12]. The literature offers a variety of approaches from deriving a smooth approximation to
ranking utilities (e.g., ApproxNDCG [13] and SoftRank [14]), to constructing differentiable
surrogate loss functions (e.g., ListMLE [15], LambdaMART [16], and ListNet [12]). Specifi-
cally, ListNet and ListMLE try to learn the best document permutation based on permutation
probabilities via the Plackett-Luce model while SoftRank and ApproxNDCG use ranking met-
rics or positions to tune their loss functions. On the other hand, LambdaMART employs heu-
ristics to compute the gradients of an unknown loss function directly.

Most existing studies on LTR achieve impressive performance but often neglect the impor-
tance of robustness [9]. Systematic noise can become part of a data set in many ways and
deceive LTR models to rank an item at an incorrect position with high confidence. While
Empirical Risk Minimization (ERM) has been effective to optimize loss, ERM often does not
yield models that are robust to adversarially crafted samples [17]. Distributionally Robust Opti-
mization (DRO) is a modeling paradigm for data-driven decision-making under uncertainty.
It has been successful in handling problems with corrupted training data through hedging
against the most adverse distribution within a Wasserstein ball [18]. Recently, DRO has been
an active area of research owing to its robustness to adversarial examples, rigorous out-of-sam-
ple and asymptotic consistency guarantees, and excellent empirical performance [19].

In the present work, we seek to infuse robustness into LTR problems through the DRO
framework. Equipped with this perspective, we make the following contributions. Unlike
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other LTR frameworks, our algorithm approaches listwise ranking in a novel way and employs
ranking metrics (i.e., NDCG) in its output. In particular, we use the notion of position devia-
tion to define a vector of relevance scores instead of a scalar. We then adopt the DRO frame-
work to minimize a worst-case expected multi-output loss function over a probabilistic
ambiguity set that is defined by the Wasserstein metric. To the best of our knowledge, ours is
the first study that utilizes a multi-output Wasserstein DRO framework to robustify LTR prob-
lems. We present an equivalent convex reformulation of the DRO problem, which is shown to
be tighter than earlier work [18]. In experiments, our approach yields state-of-the-art results in
two challenging applications of LTR, namely medical document retrieval and drug response
prediction. More importantly, we evaluate our model to verify its robustness against various
types of attacks including adversarial attacks and label attacks, showing that our model main-
tains a consistently good performance under various attack scenarios.

Notational conventions

We use boldfaced lowercase letters to denote vectors, ordinary lowercase letters to denote sca-
lars, boldfaced uppercase letters to denote matrices, and calligraphic capital letters to denote
sets. All vectors are column vectors. For space saving reasons, we write x to denote the column
vector (X1, . . ., Xdim(x))» Where dim(x) is the dimension of x. We use prime to denote the trans-
pose, N for the set {1, . .., N} for any integer N, || - ||, for the £, norm with p > 1, and I for the
K-dimensional identity matrix. For a matrix A € R""", we use ||A||, to denote its induced ¢,
norm, defined as [|A || £sup,_, [|Ax|,/[x]|,.

Preliminaries
Learning-to-rank

In a ranking problem, the data consists of a set of triples (query, document, relevance score). A
feature vector is used to represent a query-document pair. The relevance score indicates the
degree of relevance of this document to its corresponding query. Given a ranking data set
{(x7,0% }qT:l, q € Tindexes a query, and X? and 6 represent the list of retrieved documents
and corresponding relevance scores, respectively. The g-th query contains #, documents and
X? € R"? has rows (x!,-- -, xzq), each of which is a p-dimensional document feature vector.

The vector 87 = (07, ---,0? ) € R'? contains the corresponding ground-truth relevance
q

scores, where a higher 0% € R indicates that the document with features x} is more relevant. In
the learning-to-rank framework, denoting by x and 0 the random variables that represent the
document feature vector and relevance score, respectively, the goal is to learn a scoring func-
tion fthat best predicts the relevance score:

min £(1)£E7 [£(0, () 1)

where £ : R x R — R isaloss function, f : R” — R predicts the relevance score of each docu-
ment, and P is the underlying true probability distribution of (x, 6). Given that P is
unknown, most existing LTR algorithms solve (1) through estimating the expected loss by its
empirical substitute (2):

2<f>éZLZqu<Gz,f<xz>>. @)

PLL

For a test query X' € R™** consisting of n; documents, the final predicted ranking list 7 is
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simply obtained by ranking the rows in X' based on their inferred ranking scores
0 = (f (x});--..f(x],)). Eq (2) is restrictive in the sense that: (i) it does not take into account

the inter-dependency of scores between documents, and (i) the empirical estimate is very sen-
sitive to data perturbations.

Distributionally Robust Optimization

Distributionally Robust optimization (DRO) hedges against a set of probability distributions
instead of just the empirical distribution. DRO minimizes a worst-case loss over a probabilistic
ambiguity set:
: Q

min max E7[¢(6, f(x))],
where the ambiguity set € can be defined through moment constraints [20], or as a ball of dis-
tributions using some probabilistic distance function such as the Wasserstein distance [21, 22].
The Wasserstein DRO model has been extensively studied in the machine learning commu-
nity; see, for example, [23, 24] for robustified regression models, [19] for adversarial training
in neural networks, and [25] for distributionally robust logistic regression. These works, [18,
26, 27] provided a comprehensive analysis of the Wasserstein-based distributionally robust sta-
tistical learning framework.

Problem formulation

Next, we introduce our DRO formulation of the LTR problem. Different from the existing
works where a univariate relevance score 07 € R is used for each document x! € R?, we define
a Ground Truth Deviation vector 6% € R" to characterize different levels of importance for the
document xJ in the g-th query. Here, K is a constant to be defined later (cf. end of the next sec-
tion). We also derive an equivalent reformulation of the DRO problem.

Ground Truth Deviation

As a popular evaluation criterion in information retrieval, Normalized Discounted Cumulative
Gain (NDCG) can deal with cases that have more than two degrees of relevancy for documents
[28]. Let D(s) = 1/log(1 + s) be a discount function, G(s) = s, a monotonically increasing gain
function, and Z, = {(x,,5,), ---, (X,,,) } a set of documents ordered according to their
ground-truth rank, with x; and y; being a document feature vector and a relevance score,
respectively. Assume Z, is a (predicted) ranked list for Z,; then the Discounted Cumulative
Gain (DCG) of Z,, is defined as ®(Z,) = S" G(y,,)D(r), where 7, is the index of the docu-

ment ranked at position r of Z,. The reason for introducing the discount function is that the
user cares less about documents ranked lower [29]. NDCG normalizes DCG by the Ideal DCG
(IDCG), ®'(Z,), which is the DCG score of the ideal ranking result [30] and can be computed
by ®V(Z,) = ®(Z,)/D'(Z,) € [0, 1]. Considering the g-th query (X%, y?) that contains ny
documents, we define a Ground Truth Deviation (GTD) vector for document d as follows:

0 = ¢1(Ep08,), (3)

where o is the Hadamard product (a.k.a. the element-wise product). The vector @ is com-
prised of the following three components.
NDCG deviation score (£g,). To compute this vector, first, the elements of y? =

1, ..., 1) aresorted in descending order of their ground truth individual relevance scores,
1
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and the document feature vectors X? = (x{,...,x? ) are also sorted correspondingly. We
q

denote them by y? and X, respectively. The NDCG score for X1 is equal to 1. If we switch two
documents in X, the NDCG will decrease or in some cases may stay the same (i.e., if their rele-
vance scores are equal). For document d in query ¢, we define the NDCG deviation score vec-
toras&y = (Ay, ..., A d"q) where ), is the NDCG score of X when we switch the position of

document d with the document that is in i-th position of X7 and can be formulated as follows:

yd_yn[ yni_yd
hy =14 o8 +1) q,leg(l +r)

Here, 7' is the position of the document d in X, 7; is the index of the document ranked at
the i-th position of X%, and @' is the IDCG. The details about the derivation can be found in
the S1 Appendix. We can perceive the i-th element of the GTD vector as a score that indicates
the degree of congruence between a document and the i-th rank.

Position deviation score ({p). This vector is defined to further push the relevant docu-
ments to the top of the ranking list and penalize documents based on their position in the
ranking list. The position deviation score works in conjunction with &;,. We defineitas &, =

(D5 -- ,pdnq) where p; can be calculated by

. o
\/|cosh (min (ﬁhd,»7 g hdi> > |

where h;; = m;' — i. As can be seen in Fig 1, o specifies the GTD’s maximum score and f3 regu-

lates the magnitude of the penalty for a position deviation. Here, we use the red dashed curve
for positive deviations (i.e., when a document ranked higher than its optimal position) and the
black curve for negative deviations. This would induce our model to tolerate a positive devia-
tion more than a negative one. Consequently, the model pushes the relevant documents to the
top of the ranking list.

Document Importance Score Position Deviation Score

cird ey 10 -

5
N
ol
— =2
—-- =3 d
—— =4
]
g=>5 ol
i i i i ; ; i i i ; i ; i
p ] 3 4 -8 -6 -4 -2 0 2 4 6 8
Yd hai

Fig 1. GTD graphs. (a) Position deviation score where o = 10 and 3 = 2. (b) Document importance score for various maximum possible relevance

https://doi.org/10.1371/journal.pone.0283574.9001
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Document importance score (§;). It is defined to place greater emphasis on highly rele-
vant documents and can be computed as

¢ = log0yat1)
"o log(2+ 1)
where 7 is the maximum possible value for relevance scores. Fig 1 presents &; for different val-

ues of y.

Ultimately, instead of a relevance score for each document, we have a GTD vector. The
GTD vector characterizes different levels of importance for a document in a query where the
first element is the first level of importance, the second element is the second level of impor-
tance, and so on. Since each query may have a different number of documents, we just con-
sider the first K elements of &g, and &p, in our model, corresponding to K levels of importance.
In this way, all GTD vectors are of the same length. We prefer to use a low value for K since it
forces the model to focus on the most relevant documents. In case a large K needs to be used
and K > n,, we can simply repeat the last element of &, and §); to pad our &g, vector.

In a nutshell, the NDCG deviation score (£g) captures the relative position of a document in
a query. On the other hand, the position deviation score (§p) and the document importance
score (&;) work in conjunction to push the relevant documents to the top of the list. We used
an asymmetric bell-shaped function for the position deviation score to give a maximum score
to correctly ranked documents. By using a “steeper left fall,” we give a lower score to a negative
position deviation (i.e., when a document ranked lower than it should) compared to a positive
one. Moreover, @ and f3 enable us to control the maximum score and the magnitude of the
penalty for a position deviation, respectively. In the S1 Appendix, we present an ablation study
to gauge their effect on performance. We also provid an example of GTD vector calculation.

Distributionally Robust Multi-output Regression

Consider a setting where there are K levels of importance with features and importance scores
distributed according to x € R” and @ € R, respectively. We restrict our attention to linear
function classes by assuming f(x) = B'x where B € R”**. The matrix B characterizes the
dependency structure of the different levels of importance. Nonlinearity can be introduced by
applying a transformation (e.g., kernel function) on the feature x. The Distributionally Robust
Multi-output Regression Ranking (DRMRR) formulation minimizes the worst-case expected
loss as follows:

. Q Y
min IEE%(IE [¢(6 — B'x)], (4)
where £ : R® — R is a Lipschitz continuous loss function on the metric spaces (D, || - ||,) and

(C,| - |), where D, C are the domain and co-domain of £(-), respectively. In (4), Q € Q2{Q €
P(S) : W,(Q,P,) < &} is the probability distribution of (x, 8), where P(S) is the space of all
probability distributions supported on S and S is the uncertainty set of (x, ), € is a positive
constant (i.e., Wasserstein ball radius), P, is the empirical distribution that assigns an equal

probability to all N training samples, with N = Z].Tzl n;, where T is the number of queries, and

W,(Q,P,) is the order-1 Wasserstein distance between Q and P, defined as

MEP(SXS)

W@ b2 min { [ o -z, a) .

In the distance, 8(z; — 2,) £ ||z, - z,]|, with z; = (x;, 0;), i = 1, 2, drawn from Q and I@’N,
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respectively, and I specifies the joint distribution of z, and z, with marginals Q and P,,. Note
that the same norm is used to define the Wasserstein metric and the domain space of £(-). In
the following theorem we propose an equivalent reformulation of (4) by using duality for the
inner maximization problem.

Theorem 0.1. Suppose our dataset consists of T queries { (X?, @’1)}::1 and each query q con-
tains ny documents, q € T, where X* € R"’? is the document feature matrix with rows x;; € R,
d € ng and © € R"** is the GTD matrix with rows 6, € R*. Define a loss function ((-) || - ||..
If the Wasserstein metric is induced by || - ||,» the DRMRR problem (4) can be equivalently refor-
mulated as:

, 1 K& ) _
S > lI05 —Bxi|, + B, (5)

e=1 n, q=1 d=1

wherer,s > 1;1/r + 1/s= 1;B = (=B, I,,).

The proof can be found in SI Appendix. Thm. 0.1 establishes a connection between
distributional robustness and regularization, which has also been studied by, e.g., [22, 25,
26]. However, most of the existing studies focused on a univariate output. By contrast, our
work adapts the DRO framework to a multi-output setting, which is more suitable for the
ranking problem. Recently, [18] studied a multi-output regression problem under the
Wasserstein DRO framework. However, our results in Theorem 0.1 present a tighter
reformulation than theirs (Eq. (6.2) in [18]. In the case where the Wasserstein metric is
induced by the £, norm (r = 2), Eq (5) yields a regularizer which is the spectral norm (larg-
est singular value) of B’, while [18] derived a regularizer in the Frobenius norm which is

looser.

Score calculation

Suppose we are given a test query X' = (x/,...,x, /) € R""”; we can estimate the GTD
matrix as @' = (Bx|,.. ., BIX;[) € R"*¥, In the matrix @', columns correspond different

ranks and rows refers to different documents. Algorithm 1 demonstrates the procedure of
ranking using the output of the DRMRR algorithm where R(j) is the remainder of dividing j
by K. In the S1 Appendix, we present an intuitive toy example to illustrate this algorithm
better.

Algorithm 1: Scoring Procedure for DRMRR

Input: O
Output: Sorted list
Let 6 = 1;

for j =1 to n,
Find the maximum of 6-th column of @‘;
Assign the corresponding row/document to rank 7j;
Remove the corresponding row/document;
if Rx(j) = 0 then
o =1;
else
6=056+1;
end if
end for
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Experimental results
Experiment setup

Data sets. We conducted experiments on two publicly available benchmark datasets:
OHSUMED (https://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval/), and Drug Response Prediction (DRP)(https://modac.cancer.gov/
assetDetails?dme_data_id=NCI-DME-MS01-8088592). As a subset of the MEDLINE data-
base (a database on medical publications), the OHSUMED corpus [31] consists of about 0.3
million records from 270 medical journals from 1987 to 1991. A query set with 106 queries
on the OHSUMED corpus has been extensively used in previous works, in which each query
is represented by 45 features [2]. There are in total 16,140 query document pairs with rele-
vance judgments. LETOR [2] defined three ratings 0, 1, 2, corresponding to “irrelevant,”
“partially relevant,” and “definitely relevant,” respectively. In addition to OHSUMED, we
trained and evaluated our method using the cell line data and drug sensitivity data from the
Cancer Cell Line Encyclopedia (CCLE) [32] and the Cancer Therapeutics Response Portal
(CTRP v2) [33]. A total of 332 cell lines (i.e., queries) and 50 drug responses were used. The
“Act Area” (the area above the fitted dose-response curve) was used to quantify drug sensi-
tivity where a lower response value indicates higher drug sensitivity. After several pre-pro-
cessing steps, cell lines are represented by 251 numeric features (i.e., genes) and drug
sensitivities are labeled with graded relevance from 0 to 2 (i.e., “insensitive,”
“highly sensitive,” respectively) with larger labels indicating a higher sensitivity. Further
details of the data pre-processing steps can be found in S1 Appendix. Moreover, all code
written in support of this publication is publicly available on a GitHub repository(https://
github.com/noc-lab/DRMRR-Distributionally-robust-learning-to-rank-under-the-
Wasserstein-metric). Please note that we targeted biomedical applications with limited data.
Since the number of drug-cell line pairs is much less than the number of features, most
approaches “overfit.” Similarly, OHSUMED challenges ranking models due to its small sam-
ple size.

Evaluation metrics. We evaluated model performance using two metrics: NDCG@k and
AP@k. NDCG@k is the top-k version of NDCG, where the discount function is D(s) = 0 for s
> k. Precision at position k (P@Kk) is the fraction of relevant documents in the top-k. Suppose

sensitive,” and

we have binary relevance for the documents in a g-query; we define P@k as PQk =
i Jl;l 1(yn] = 1) where 1(-) is the indicator function. We define Average Precision at position

kas APQk =1 Z}’;l PQj x 10’nj = 1), where m is the total number of relevant documents in

the top-k of the ranking list. AP is a highly localized performance measure and captures the
quality of rankings for applications where only the first few results matter. The main difference
between AP and NDCG is that NDCG differentiates between “partially relevant” and “defi-
nitely relevant” documents while AP treats them equally. Given a set of testing queries and a
performance metric, we are interested in the mean metric which is simply the mean of the per-
formance metric for all queries. From now on, we use NDCG@k and AP@k to denote mean
NDCG@k and mean AP@K, respectively.

Competing methods. Although the list of published LTR algorithms is endless, Lambda-
MARTpap [16], LambdaMART\pcg [16], and XE-MARTNpcg [4] have been demonstrated
repeatedly to outperfrom other algorithms including RankNet [10], Coordinate Ascent [34],
ListNet [12], Random Forests [35], BoltzRank [36], ListMLE [15], Position-Aware ListMLE
[37], RankBoost [11], AdaRank [38], SoftRank [14], ApproxNDCG [13], ApproxAP [13], and
several direct optimization methods [39, 40]. Moreover, multiple comparative studies [41-43]
reported that tree-based models exhibit top performance in drug response prediction.
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Thus, we rely on prior research [4, 41, 44] and do not include the weaker methods in our
experiments. It is important to note that the author of XE-MART\pcg proposed this model as
a robust alternative to LambdaMART-based models. We also compared DRMRR against the
state-of-the-art transformer-based neural ranking model [45] with different loss functions.
However, since the performance of the aforementioned tree-based baselines was by far better
than the latter (especially on our main application, namely DRP), we defer the presentation of
the performance of the latter methods to the S1 Appendix.

Experimental settings and hyper-parameter optimization. In our experiments, we
used the standard supervised LTR framework [9]. Authors of LETOR [2] partitioned the
OHSUMED data set into five parts for five-fold cross-validation where three parts were used
for training, one part for validation (i.e., tuning the hyperparameters of the learning algo-
rithms), and the remaining part for evaluating the performance of the learned model. Simi-
larly, we partitioned the drug response data set into five folds and conducted five-fold cross-
validation to train, validate, and evaluate the ranking algorithms. In all experiments, the aver-
age on the test set over the 5 folds was reported. Algorithm parameters were tuned on the vali-
dation sets. We optimized the algorithm parameters to maximize NDCG@5 and NDCG@10.
The details of the parameter-tuning procedure and the optimal parameters for each algorithm
can be found in the S1 Appendix.

Overall comparison

We compared the performance of DRMRR on OHSUMED, and DRP data sets with baseline
methods introduced in the previous sections. The results are in Table 1. The values inside the
parentheses denote the Standard Deviation (SD) of the corresponding metrics. Bold numbers
indicate the best performance among all methods for each metric. DRMRR consistently out-
performs all baseline methods across all metrics. In our experiment on OHSUMED data,
LambdaMARTyNpcg demonstrated a reasonably good overall performance and it is the sec-
ond-best method. However, XE-MARTypcg was the second-best method in our experiment
on the DRP data. The difference between the best and the second-best methods for the DRP
data set is greater than what we obtained for OHSUMED. Due to the limited number of sam-
ples available and the specific structure of the DRP data, the performance of the baseline meth-
ods diminished significantly. On the other hand, DRMRR was able to maintain its high
performance. To sum up, the proposed method is not only able to push the most relevant
documents (or sensitive drugs) to the top of the ranking list, but it can put them in the right
order. Furthermore, as we discuss in the Supplement, our model is more efficient (low model
complexity) and generalizes better (typically, the generalization error increases with model
complexity).

Table 1. Performance comparison of ranking methods.

OHSUMED

DRP

Algorithms
LambdaMARTsp
LambdaMARTNpcG
XE-MART\pcG
DRMRR
LambdaMARTap
LambdaMARTNpcG
XE-MARTNpcG
DRMRR

https://doi.org/10.1371/journal.pone.0283574.t001

NDCG@5
45.18% (5.07%)
46.17% (5.91%)
44.31% (6.58%)
47.79% (6.58%)
58.11% (1.90%)
58.73% (2.54%)
59.37% (1.92%)
68.40% (1.74%)

NDCG@10
43.65% (3.55%)
44.40% (5.00%)
44.79% (5.65%)
45.36% (4.84%)
63.39% (2.17%)
62.87% (2.83%)
63.51% (2.18%)
71.27% (1.78%)

AP@5
67.94% (7.26%)
68.53% (8.40%)
65.25% (8.08%)
70.84% (7.35%)
83.27% (1.57%)
83.07% (1.99%)
83.70% (1.28%)
85.03% (1.10%)

AP@10
64.12% (5.83%)
65.25% (6.47%)
62.41% (6.76%)
65.31% (7.35%)
77.25% (1.07%)
76.95% (1.19%)
77.43% (1.34%)
81.03% (1.00%)
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Robustness comparison

In this section, we empirically study the behavior of DRMRR in the presence of noise. While
our overall performance analysis suggested that DRMRR should be the most “well-behaved” of
the four, that analysis was performed on the clean data. The robustness of a ranking model to
noise is crucial in practice, especially in the healthcare domain. We put this hypothesis to test
through four types of experiments. We conducted all experiments on the OHSUMED data set
since it is a popular and standard LTR data set. In all experiments, the values are the average of
5 folds.

Gaussian noise attack. We added Gaussian noise to the test documents to deliberately
corrupt them; therefore, depreciating their predictability. Gaussian noise was added to 75% of
the test queries randomly. Experiments were conducted using various means and a fixed stan-
dard deviation of 0.001. We used the perturbed test data to evaluate the trained models (i.e., all
algorithms were tested on the same perturbed test data). Fig 2 demonstrates the performance
of the algorithms on the perturbed test data. Two observations are in order: (i) DRMRR out-
performed the baseline models at different levels of noise; and (i{) DRMRR demonstrated a rel-
atively stable performance.

Universal adversarial perturbation attack. We built an adversarial model to introduce
perturbations that break the neighborhood relationships by altering the input slightly. To that

Gaussian Noise Attack
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Fig 2. The impact of Gaussian noise on the performance of ranking models.

https://doi.org/10.1371/journal.pone.0283574.g002
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Fig 3. The impact of universal adversarial perturbation on the performance of ranking models.

https://doi.org/10.1371/journal.pone.0283574.9003

end, a pointwise linear regression ranking model was trained as the adversarial model on the
clean training set. Then, 75% of the test queries were perturbed using the coefficient of the
adversarial model and the Fast Gradient Sign Method (FGSM) method:

=d

X;=x/+7- sgn(ng J(x¢, 7)), where X{ is the perturbed feature vector, o controls the magni-

tude of the perturbations, and J is the cost function of the adversarial model [46].

All algorithms that we trained in the “Overall Comparison” section were evaluated on the
same perturbed test data. In this case, the adversary had no knowledge of the ranking models;
however, it was trained on the same training data. Fig 3 shows the performance of the algo-
rithms on the perturbed test data. As we increase the level of perturbations (i.e., ), we can see
that DRMRR is less sensitive to adversarial perturbations in comparison with the competing
methods. It demonstrated a stable performance across all metrics. Among the baselines,
XE-MARTNpcG that performed well in terms of NDCG@5, demonstrated poor performance
in terms of AP@5.

Black-box adversarial attack. The black-box adversarial attack restricts the attacker’s
knowledge only to the deployed model [47]. The setting of black-box attacks is closer to the
real-world scenario; therefore, this is the most practical experiment to measure the robustness
of our algorithm. Please refer to [47] for more information on the black-box adversarial
attacks. Since the adversary has no access to the model’s weights and parameters, the adversary
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Fig 4. The impact of black-box adversarial perturbation on the performance of ranking models.

https://doi.org/10.1371/journal.pone.0283574.9004

can choose to train a parallel model called a substitute model to imitate the original model.
Here, we use a four layers fully connected network as our substitute models (see the S1 Appen-
dix for more details). To construct the substitute models, the training data were independently
fed to each model and the output was observed. Then, for each algorithm, a Neural Network
(NN) ranking model was trained as an adversarial substitute model using the training feature
vectors and the observed output of that specific algorithm. Subsequently, 75% of the test que-
ries were perturbed using the FGSM method and the parameters of the substitute model corre-
sponding to each algorithm. We trained four substitute models corresponding to each ranking
algorithm. We used the specific perturbed test data to evaluate the best trained models (i.e.,
each model has a different perturbed test set). Fig 4 demonstrates the performance of the algo-
rithms on the perturbed test data. The values are the average of 5 folds. We can see that both
figures show the same trend—increasing the level of perturbations (i.e., 0) leads to significant
differences between DRMRR and the baselines methods. The competing methods were greatly
affected by this type of noise, whereas their performance was modest in the simpler experi-
ments, namely universal adversarial attack and Gaussian attack. We conclude that DRMRR is
robust to adversarial perturbations, an important property that leads to good generalization

ability.
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Table 2. The error probability table.

P(y!—y}) ”
0 1 2
y 0 e 2(1-¢) Hi—e)
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2 f1—e) 2(1—e) e

https://doi.org/10.1371/journal.pone.0283574.1002

Label attack. In practice, the vagueness of query intent, insufficient domain knowledge,
and ambiguous definition of relevance levels make it hard for human judges to assign proper
relevance labels to some documents. Practically speaking, the probability of judgment errors in
various relevance degrees is not equal. Even if human annotators misjudge a document, they
are more probable to label it closer to its ground-truth label. Inspired by [48], we define the
non-uniform error probabilities in Table 2 where entries of this table correspond to the proba-
bility that a document with ground-truth label y{ is prone to be labeled as y{. We randomly
changed the labels of the training data using the probabilities in Table 2. Then, each model was
trained on the noisy training data. Clean test data were used to evaluate each model. We con-
ducted two sets of experiments, namely low label noise (i.e., e = 0.85) and high label noise (i.e.,
e=0.7). Table 3 reports the performance of the algorithms on the clean test data. The values in
these figures are the average of 5 folds. For the low noise scenario, the differences between the
average AP@5 and NDCG@5 of the baseline models and DRMRR were 2.53% and 1.59%,
respectively. Notably, the gaps were even larger for the high noise scenario (AP@5 = 3.08%,
NDCG@5=1.68%). Since noise in human-labeled data is an inevitable issue, we can argue that
the baseline models are susceptible and degrade more severely as more noise is added to the
training set.

Discussion and conclusion

This paper went beyond conventional listwise learning-to-rank approaches and introduced a
distributionally robust learning-to-rank framework with multiple outputs, referred to as
DRMRR. Unlike existing methods, the scoring function in DRMRR was designed as a multi-
variate mapping from a feature vector to a vector of deviation scores (a.k.a. GTD vector). The
GTD vector captures local context information and cross-document interactions. Moreover,
we formulated DRMRR as a min-max problem where one minimizes a worst-case expected
loss over a probabilistic ambiguity set. The ambiguity set was defined as a ball of distributions
using the Wasserstein metric. Notably, we presented a compact and computationally solvable
equivalent reformulation of the min-max formulation of DRMRR. We compared DRMRR
with the baseline models in terms of: (a) the overall performance on two real-world applica-
tions and (b) the robustness to various types and degrees of noise. In medical document

Table 3. The impact of label noise on the performance of ranking models.

NDCG®@5 AP@10 NDCG@10
High Low High Low High Low High Low

DRMRR 70.25% 69.30% 48.43% 47.76% 66.59% 65.18% 46.67% 45.44%

LambdaMARTyp 67.97% 67.87% 47.16% 45.87% 65.06% 63.23% 46.27% 44.92%

LambdaMART\pcg 67.82% 66.79% 46.89% 46.46% 64.51% 63.38% 45.30% 44.58%

XE-MARTNpcG 65.70% 65.65% 46.19% 46.18% 63.71% 63.50% 45.80% 44.81%

https://doi.org/10.1371/journal.pone.0283574.t003
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retrieval, DRMRR outperformed state-of-the-art LTR models and established its capability in
differentiating relevant documents from irrelevant ones. In drug response prediction, our
results indicated that DRMRR leads to substantially improved performance when compared to
the competing methods across all performance metrics. Thus, DRMRR can infer robust pre-
dictors of drug responses from patient genomic or proteomic profiles which can lead to select-
ing a highly effective personalized treatment. In our robustness evaluations, we conducted a
comprehensive analysis to assess the resilience of DRMRR against various types of noise and
perturbations. Experimental results demonstrated that DRMRR is effective against: (i) Gauss-
ian noise; (ii) universal adversarial perturbations by a substitute model with no knowledge of
the victim model; (iii) black-box adversarial perturbations by a substitute model with access
only to the deployed victim model; and (iv) probabilistic perturbation of relevance labels.
Interestingly, the performance of DRMRR was consistently better than the baseline methods
for all levels of noise. More importantly, DRMRR showed no significant change in its perfor-
mance with the increase in the noise intensity. Two attributes of DRMRR did help to enhance
its performance and robustness: (i) efficiently capturing the contextual information and inter-
relationship between documents/drugs via the GTD vector; and (ii) the distributional robust-
ness by hedging against a family of plausible distributions, including the true distribution with
high confidence.

Even though DRMRR demonstrated promising performance, it also suffers from some lim-
itations that can be addressed in future work. DRMRR solves a convex problem which can be
done very efficiently with 1st-order gradient methods. Its computational complexity is compa-
rable to the training of leaf nodes in tree models (or the last layer of a neural network model),
where a simple regression model is being trained. However, listwise ranking models can get
relatively complex compared to pointwise or pairwise approaches and DRMRR is not an
exception. One possible direction is to reformulate the problem to speed up the solutions to
the DRO problem considered in this paper. As for the DRP application, an interesting future
direction is to incorporate the toxicity of drugs in our predictions. Since the biological dissimi-
larities among patients affect the side effects of medications, patients may have various side
effects. Hence, we can improve our predictions by considering the side effects and toxicity of
drugs.
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