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Stoquastic Hamiltonians play a role in the computational complexity of the local Hamiltonian problem
as well as the study of classical simulability. In particular, stoquastic Hamiltonians can be straightforwardly
simulated using Monte Carlo techniques. We address the question of whether two or more Hamiltonians may
be made simultaneously stoquastic via a unitary transformation. This question has important implications for
the complexity of simulating quantum annealing where quantum advantage is related to the stoquasticity of the
Hamiltonians involved in the anneal. We find that for almost all problems no such unitary exists and show that
the problem of determining the existence of such a unitary is equivalent to identifying if there is a solution to a
system of polynomial (in)equalities in the matrix elements of the initial and transformed Hamiltonians. Solving
such a system of equations is NP-hard. We highlight a geometric understanding of this problem in terms of a

collection of generalized Bloch vectors.
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I. INTRODUCTION

The efficient simulation of quantum phenomena is essen-
tial to understanding chemistry, materials, and physics, and
similarly the lack of efficient classical simulation is critical
to the long-term applicability of quantum computing. One
of the key properties that can make a Hamiltonian easy to
simulate classically is stoquasticity [1], a basis-dependent
property where the off-diagonal matrix elements are real and
nonpositive [2]. Such stoquastic Hamiltonians do not suffer
from the sign problem, allowing classical simulation of their
ground-state properties via Monte Carlo techniques [3,4].

Stoquastic Hamiltonians have been especially important
in the development of quantum annealing [5] and quantum
adiabatic computation [6]. Adiabatic quantum computing is
quantum universal [7], but the proof relies on nonstoquas-
tic Hamiltonians. There is growing evidence that adiabatic
computing with stoquastic Hamiltonians is no more pow-
erful than classical computing [4,8—11] except in contrived
highly nonlocal settings [12]. In complexity theory, stoquastic
Hamiltonians appear in the definition of the complexity class
StogMA, which characterizes the computational hardness
of the local Hamiltonian problem for stoquastic Hamiltoni-
ans [13].

A large body of literature has been built up around the
problem of finding stoquastic [14,15] or nearly stoquas-
tic [16,17] bases for Hamiltonians. The corresponding unitary
basis change is said to “cure” the nonstoquastic Hamiltonian.
While the existence of such a basis is guaranteed by the
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diagonalizability of Hermitian matrices (the locality of such
a basis is not guaranteed), finding such a basis change is an
NP-hard problem [18-20]. However, this literature has mostly
focused on just curing a single Hamiltonian’s sign problem. In
order to run simulated quantum annealing [9,21] or otherwise
simulate the behavior of adiabatic computation, both anneal-
ing Hamiltonians must be stoquastic. This raises the question
not just of how to find a basis in which two Hamiltonians
are simultaneously stoquastic but further whether such a basis
even exists. Our work in this direction is complementary to
the results in Ref. [19], where the authors considered the
problem of stoquasticizing a local Hamiltonian consisting of
a sum of local terms and showed that this Hamiltonian can be
stoquasticized if and only if all terms can be simultaneously
stoquasticized. Furthermore, they showed that it is NP-hard to
find a basis that accomplishes this.

To formally state our problem of interest. Let Stoq be the
set of all stoquastic matrices. Given a set of Hamiltonians § =
{H\,H,, ..., H,} defined on a d-dimensional Hilbert space
Ha, does there exist a single unitary U that simultaneously
cures the nonstoquasticity of (stoquasticizes) all H; € §, that
is, 3U such that UHjUJf € Stoq for all j?

Using the mathematical theory of simultaneous unitary
similarities [22-25], we find that the problem reduces to de-
termining if there exists a solution to a system of polynomial
(in)equalities. For m > 2 and/or d > 2, the resulting system
of polynomial equations does not generically have a solu-
tion and therefore a simultaneously stoquasticizing unitary
does not always exist. In fact, we show almost every set S
of Hamiltonians is not simultaneously stoquasticizable. By
considering a generalized Bloch vector representation, we can
geometrically interpret our results, connecting to the literature
on the geometry of quantum states [26-31].

©2022 American Physical Society
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This result has broad implications for adiabatic quantum
computing, where annealing between two Hamiltonians that
are not simultaneously stoquasticizable should be hard to
simulate classically, independent of basis. The more general
theory of simultaneous transformation of two or more Her-
mitian operators plays a key role in other areas of quantum
physics, the most obvious being simultaneous diagonaliz-
ability governing the commutativity and compatibility of
observables. Similarly, simultaneous unitary congruence has
been used to show that quantum separability is connected
to the simultaneous ability to hollow matrices [32], and si-
multaneous orthogonal equivalence connects to local unitary
equivalence of a pair of quantum states [33].

II. LIE ALGEBRAS AND LIE GROUPS

Formally, any Hamiltonian H € C¢*¢ is (up to a physically
irrelevant shift by a multiple of identity) an element of the Lie
algebra su(d). Here we take the usual physicist convention
that su(d) consists of the set of all d x d traceless Hermitian
matrices. This is known as the fundamental representation.
The Lie algebra su(d) has real dimension d 2 — 1 and therefore
any element of the Lie algebra may be expanded in a basis of
d? — 1 elements of the algebra, which we choose to obey the
standard orthonormality condition

Tr(Aik;) = 28;;. (1)
We also have that
A 2 - N
)Li)\.j = 55,’]'1 + iﬁjk)"k + dijk)\k7 (2)

where [ is the identity matrix and f;j;x and d;;; are the
totally antisymmetric and symmetric structure constants, re-
spectively. We use the convention of summing over repeated
indices. A standard choice of basis is the generalized Gell-
Mann basis. It is made up of d(d — 1)/2 symmetric matrices

R0 = 1)kl + 1K) |

d(d — 1)/2 skew-symmetric matrices

(I<j<k<d), (3a)

i%:—i|j)(k|+i|k)(j| (1<j<k<d), (3b)

and d — 1 diagonal matrices

A (diag) #diag(l, o 1,—=7,0,...,0), (3¢
! JG+1D \—;—’

where in this final equation we have j € {1,...,d — 1}. For
su(2), the generators defined in this way are the familiar
Pauli operators, which motivates the x and y superscripts for
the symmetric and skew-symmetric generalized Gell-Mann
matrices, respectively. For su(3), they are the Gell-Mann ma-
trices.

We can write any traceless Hamiltonian H in this basis as

H=Db-i, 4)

where A is a vector of basis elements and b € R?’~! is the
so-called (generalized) Bloch vector corresponding to H. We
consider grouping the components of A into subsets matching
the basis elements defined in Egs. (3a)—(3c) as follows. Let

ngiag) _ 5'(Z)

FIG. 1. For a qubit, the geometric representation of Stoq in
Bloch vector space is the (£6@, —6™) half plane. Observe that
for two Hamiltonians H; and H,, represented by their Bloch vectors,
there always exists a unitary which can simultaneously take both H|
and H, to the Stoq subspace.

X, YV, and D be the sets of indices corresponding to the sym-
metric, skew-symmetric, and diagonal generalized Gell-Mann
matrices, respectively. We have {X', Y, D} = {1, ..., d* —1}.
Therefore, there exists an isomorphism S = B between
aset S={H, H,,...,H,} of traceless Hamiltonians and a
set of corresponding Bloch vectors B = {b"), b?®, ... b™}.
These Bloch vectors will simplify a number of proofs and
provide a valuable geometric interpretation of our results.

III. SIMULTANEOUS STOQUASTICITY

Given the set S={H,H,...,H,}, we want to
solve the decision problem: Does there exist a unitary
U such that Hj=UH;U" € Stoq for all HjeS :=
{UH\UY, URUT, ..., UH,U"}?

Observe that the trace of the Hamiltonians and of the
Hermitian generators of U can be chosen to be zero with no
physical consequence. Therefore, without loss of generality,
we restrict our consideration to traceless H; € S and to special
unitaries U € SU(d).

This assumption allows us to directly describe the problem
in terms of Bloch vectors as detailed in the preceding section.
In particular, consider the sets of Bloch vectors B = S and
B’ = 8. In the space of Bloch vectors Stoq corresponds to
the subset of Bloch vectors such that b; = 0 for j € Y and
b; < Ofor j € X. The decision problem is now that of finding
whether there exists a unitary U such that the vectors b’ € B
all fall in this subspace.

When d = 2, the Bloch space is of dimension d>—1=3
and Stoq is easily visualizable as the (6, —6™) half
plane, as depicted in Fig. 1. In this case, it is well known
that SU(2) is a double cover of SO(3) and therefore we can
visualize the action of unitaries on S as rotations of the col-
lection of vectors B. It is simple to observe that the answer
to our decision problem is yes if and only if the vectors B all
lie in a single half plane. This plane can then be rotated via
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some unitary to align with the Stoq half plane. This is always
possible if m < 2 and d = 2.

We seek to generalize and formalize this geometric intu-
ition for d > 2. We will make use of the mathematical theory
of simultaneous unitary similarities [22—24,34] and the related
theory of simultaneous invariants [35]. Two ordered sets of m
matrices S and S’ are simultaneously unitarily similar if there
exists a unitary U such that H; = UH;U " for all H; € S and
H} € §'. In this terminology our goal is to determine if the set
S of Hamiltonians is simultaneously unitarily similar to a set
S’ € Stogq.

Define a word on a set T as any formal product of non-
negative powers of the elements ¢; € T. We then have the
following theorem due to Ref. [24].

Theorem 1. The ordered sets of Hermitian matrices S =
(Hi,...,Hy}and S’ = {H], ..., H,} are simultaneously uni-
tarily similar if and only if Tr[w(S)] = Tr[w(S")] for all words
win S and §'.

The quantities Tr[w(S)] are known as trace invariants un-
der simultaneous unitary similarity. Unfortunately, Theorem
1 is a practically useless condition since it requires the check-
ing of all words in S and §’. To get around this issue, one
must demonstrate that only a finite set of independent words
exists [34,36-38].

When checking the unitary similarity of a single pair of
Hermitian matrices H and H', it is often quoted in the physics
literature (typically in the context of density matrices) that
it is sufficient to check the equivalence of the trace invari-
ants Tr[H*] and Tr[H*] for k € [1,d] [27,39-41]. While
perhaps intuitively obvious, as Hermitian matrices have d
real eigenvalues, this is typically stated without proof. For
completeness, we give such a proof in Appendix B.

More generally, for m > 2, we can show that it is sufficient
to consider word lengths up to

|’(cd)32+2‘|

gmax = min (5)
2(cd)? 1 d
cd\ )23+ i+ 5 —2,

where ¢ is the minimum integer such that (¢> — 3¢ +2)/2 >
m. For instance, if m = 2, ¢ = 4. The proof mostly follows
Refs. [24,36,37], and the derivation of this expression is
demonstrated in Appendix C.

Therefore, the decision problem of whether there exists a
unitary that simultaneously stoquasticizes S is equivalent to
determining if there exists a solution to the system of polyno-
mial (in)equalities in the matrix elements of H' € §":

Tr[w(S)] = Tr[w(SH]V |w] < Limax, (6a)
Re(Hj,) <OVj#k H €S, (6b)
Im(Hj) =0V j#k, H €5 (6¢)

This amounts to a system of Zﬁi“g mt 4+ md(d —1)/2 ~
mPU”) polynomial equations and md(d — 1)/2 inequality
constraints on md? real variables. Many of the equations for
different words in Eq. (6a) will end up being redundant due
to symmetries such as the cyclicity of the trace and algebraic
dependence of the resulting trace invariants. Independent of if
one can identify the minimal set of such constraints, solving
the decision problem of whether or not a solution exists to

this set of polynomial (in)equalities is NP-hard and lies in
PSPACE [42]. Therefore, identifying if S is simultaneously
stoquasticizable is completely intractable for large problem
instances.

IV. ANO-GO RESULT

Given this computational difficulty, we also present the
following no-go result.

Theorem 2. A necessary condition for S to be simultane-
ously stoquasticizable is that for every eigenvalue A # 0 of
i[H;, H;] there is another eigenvalue —A of i[H;, H;] (paired
eigenvalue condition) for all H; # H; € S.

Proof. Any two matrices H;/, H; € Stoq have all real ma-
trix elements. Therefore, the Hermitian matrix C’' = i[H], H j/.]
must be skew symmetric. Skew-symmetric matrices have the
property that all eigenvalues are paired. As eigenvalues remain
unchanged under action by a unitary and if we act on H; and
H; by a unitary, C" changes equivalently, this paired property
must exist for any simultaneously stoquastizable H; and H;.
This holds for all pairs of Hamiltonians in S. ]

This theorem provides a straightforward condition to rule
out if S is simultaneously stoquasticizable. However, the pres-
ence of paired eigenvalues does not guarantee simultaneous
stoquasticity as (a) stoquastic matrices must have negative, as
well as real, off-diagonal elements and (b) it is possible for
simultaneously nonstoquastic Hamiltonians to have a commu-
tator with paired eigenvalues.

This condition also relates to the dynamical Lie algebra
from quantum control theory [43,44], which for simultane-
ously real Hamiltonians (in any basis) neatly breaks up into a
Cartan decomposition with every other layer of the dynamical
Lie algebra (i.e., nested commutators with even numbers of
our original Hamiltonians) corresponding to purely imaginary
Hamiltonians (transformed into a given basis). Therefore,
finding a basis in which the Hamiltonians of a set are si-
multaneously real, a necessary condition for simultaneous
stoquasticization, is equivalent to identifying whether there is
a Cartan decomposition of su(d) = p @ so(d) where the set
of Hamiltonians is contained in p.

V. BLOCH VECTOR APPROACH

We now reexpress the trace invariants in terms of Bloch
vectors. This provides a geometric interpretation that neatly
connects back to the intuition from the one-qubit example
given earlier, while highlighting a number of symmetries be-
tween words that are less clear in the alternative formalism.
This approach will also allow us to prove another no-go result,
from which the following theorem establishing the rareness of
simultaneous stoquasticity immediately follows.

Theorem 3. For almost every S withm > 2 andd > 3, S is
not simultaneously stoquasticizable.

“Almost every” is used in the technical sense that the set of
simultaneously stoquastizable S are measure zero.

With this goal in mind, let us consider expressing the trace
invariants from Theorem III in terms of Bloch vectors. For
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words of arbitrary length |w|, we have

|lw| d?—1

Trlw®)] =Te| [T Y 604, |. 7

Jj=1 ;=1

where we have denoted the jth element of w by w;.

Now consider evaluating Eq. (7) explicitly for words of
small length. By our assumption of tracelessness, the trace
invariant for any w(S) of length one is zero. A general trace
invariant for |w| = 2 is

Tr[H:H,] = Tr[(b? - L)(bY) - 1)] = 2b7 . b, (8)

where we used Eq. (2) to evaluate the trace. Therefore, the
lengths (from the i = j case) and relative angles (from the
i # j case) of the Bloch vectors corresponding to pairs of
Hamiltonians in § are simultaneous trace invariants.

This result is intuitively satisfying. For a qubit, recalling
that SU(2) is homomorphic to SO(3), this is precisely what we
would expect to be invariant for a rigid collection of vectors
being rotated simultaneously about the origin. We should also
expect this to be the only constraint for a qubit. This expecta-
tion is validated by computing the trace invariant for words of
length 3,

Te[HiH;H] = 2d,,6bb0 0 = 207 D) - b®, (9)

where we have introduced the star product, defined compo-
nentwise, using the symmetric structure constants, as

B % b)) = dyebPbY. (10)

For su(2), the symmetric structure constants are all zero,
so, as expected for a qubit, words of length greater than 2
provide no further constraints.

Various properties of the star product are detailed in Ap-
pendix A. In particular, observe that the star product is not
associative and that Eq. (9) is completely symmetric in the
input word. Similar observations allow us to show that any
trace invariant can be written as v - b for some i € [1, m],
where v is any vector in the set B of all possible combina-
tions of star products between Bloch vectors in B, that is,
B={®Y,Y «b® B «p®)xp", .. }. This can be ver-
ified by direct computation, but we provide explicit proof in
Appendix D.

Given this formalism, we can pick a finite set of Bloch
trace invariants using Eq. (5) and then construct a decision
problem equivalent to Egs. (6a)—(6¢) to test for simultaneous
stoquasticity. The stoquasticity conditions in this context are
b/j(i) =0jeYand b/j(i) < Ofor j € X foralli.

We also obtain the following no-go result.

Theorem 4. Let S be a set of Hermitian matrices with
corresponding Bloch vectors B = (b, b® ... b™). Let B
be the set of all possible star products between elements of B.
A necessary condition for S to be simultaneously stoquasticiz-
able is that dim[span(B)] < d*+d - 1)/2. _

Proof sketch. Observe that for all H; € Stoq, b;’) = 0 for
j € Y. From the definition of the star product and the form
of the nonzero symmetric structure constants of su(d) [45],
one observes that if § € Stoq all vectors in B are also in this
subspace. The dimension of B is invariant under unitary trans-

formations, so this is a necessary condition for simultaneous
stoquasticity. |

Full details are provided in Appendix E. Most impor-
tantly, this result leads directly to Theorem IV, the proof of
which we sketch below, again leaving the algebraic details to
Appendix E.

Proof sketch of Theorem 3. From similar analysis of the
star products, we can prove that for almost every S, dim(B) =
d? — 1. That is, B spans the full Bloch vector space for almost
every S. Combining this result with Theorem 4, Theorem 3
immediately follows. |

VI. CONCLUSION AND OUTLOOK

Quantum annealing relies on the interaction of two non-
commuting Hamiltonians, and there are clear connections
between the power of that computation and the stoquasticity
of the Hamiltonians. Our results provide proof that a gen-
eral quantum annealing procedure does not possess any basis
in which it can be described completely stoquastically. We
know that classical computing can be described using simul-
taneously diagonal Hamiltonians, and the seeming power of
nonstoquasticity speaks to the idea that quantum advantage
might lie beyond simultaneously stoquastic Hamiltonians.
More work is needed to determine how tightly quantum
advantage is bound up merely with these notions of simultane-
ous stoquasticity and how much other factors, such as locality
of the simultaneous basis, play a role.

Furthermore, our results provide a definitive set of condi-
tions for simultaneous stoquasticity, which are, as expected,
difficult to calculate in practice given the computational
complexity of this problem. The commutator condition of
Theorem 2, while enticing from its connections to simul-
taneous diagonalizability (see Appendix F for a further
exploration of how these geometric ideas relate to simultane-
ous diagonalizability) and dynamical Lie algebras, provides
only a necessary but not sufficient condition and then only
on a simultaneous real basis, not specifically a simultaneous
stoquastic basis. The other no-go result in Theorem 4 suffers
a similar flaw.

Further work is also possible by extending these results
beyond just stoquasticity to the full class of Hamiltonians
lacking sign problems. General sign problem free Hamilto-
nians take a vanishing geometric phase (VGP) form [46,47].
This form generalizes the notion of stoquastic Hamiltonians to
all Hamiltonians generated from stoquastic Hamiltonians via
diagonal unitary transformations. While this is a more general
form that should be studied in the context of simultaneous
transformations, it lacks linearity, meaning that linear com-
binations of VGP Hamiltonians are not necessarily of VGP
form, hinting that simultaneous stoquasticizability is a more
fundamental concept to consider for multiple Hamiltonians.

ACKNOWLEDGMENTS

We thank Adam Ehrenberg, Luis Pedro Garcia-Pintos,
Alexey V. Gorshkov, Dominik Hangleiter, Michael Jarret, and
Alexander F. Shaw for helpful discussions. J.B. acknowledges
support from the U.S. Department of Energy (DOE), Office of
Science, Office of Advanced Scientific Computing Research,

062601-4



SIMULTANEOUS STOQUASTICITY

PHYSICAL REVIEW A 105, 062601 (2022)

Department of Energy Computational Science Graduate Fel-
lowship (Award No. DE-SC0019323) and from the DOE
ASCR Accelerated Research in Quantum Computing pro-
gram (Award No. DE-SC0020312), DOE QSA, NSF QLCI
(Award No. OMA-2120757), DOE ASCR Quantum Testbed
Pathfinder program (Award No. DE-SC0019040), U.S. De-
partment of Energy Award No. DE-SC0019449, NSF PFCQC
program, AFOSR, ARO MURI, AFOSR MURI, and DARPA
SAVaNT ADVENT. During the preparation of this paper L.B.
changed affiliation from QuICS/NIST to QuAIL/KBR. L.B.
is supported by the Prime Contract No. 80ARC020D0010
with the NASA Ames Research Center and is grateful for
support from DARPA under IAA 8839 annex 128. The United
States Government retains, and by accepting the article for
publication, the publisher acknowledges that the United States
Government retains, a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form
of this work, or allow others to do so, for United States
Government purposes.

APPENDIX A: SOME PROPERTIES
OF THE STAR PRODUCT

Here we demonstrate a number of useful identities regard-
ing the star product introduced in the main text. Some of
these properties do not seem to be well documented in the
literature on generalized Bloch vectors due to the focus on
single density matrices. In these contexts, only star products
between the same Bloch vector arise, which obscures some of
the more general properties of the product. In particular, we
emphasize that the product is nonassociative.

We define the star product of two vectors a, b € R4 ™!
componentwise as

(a%b)e = d,zaub,, (A1)

where d,,, ¢ are totally symmetric structure constants for su(d).
Observe that this product is basis dependent due to the struc-
ture constants.

The star product has the following properties, which can be
verified by explicit componentwise computation:

axb=bxa (commutative),
(@xb)*c#ax*b=c) (nonassociative),
axb+c)=axb+axc (distributive),

(@axb)-c=bBx*c)-a=(ax*xc)-b.
The last identity can be used to show that
(@a*xb)-(cxd)=((@axb)*xc)-d
=((@axb)xd)-c
=((cxd)*a)-b
=((c*d)*b)-a. (A2)

This result generalizes: The dot product of any combination of
star products can be rearranged such that the dot product is just
with a single vector at the end of the computation, provided
one is careful with the nonassociativity of the star product.
When it is not misleading, it can be convenient to adopt the
convention that multiplication proceeds from left to right, so

we can drop the parentheses and have, for instance, that

(((@xb)y*xc)*xd)=a=xbxcxd. (A3)

Finally, we introduce the notation that b** denotes the k-fold
star product b % b s - - - % b such that b*' = b, b**> = b % b, and
SO on.

APPENDIX B: PROOF OF SUFFICIENT WORD LENGTH
FOR UNITARY SIMILARITY OF A PAIR
OF HERMITIAN MATRICES

Theorem 5. Two Hermitian matrices H, H' € C¢*? are uni-
tarily similar if and only if Tr[H Kl = Tr[H*] for k € [1, d].

Proof. In general, from Theorem 1 it is necessary to check
the trace conditions for all words H* and H*. We show it
is only necessary to check the first d such words. That is,
Tr[H*] = Tr[H*] for k € [1, d] implies Tr[H*] = Tr[H*] for
k>d.

Observe that traces are basis independent, so we may write
the given set of equivalences for k € [1, d] as

d d
Te[H*] = Tr[H ] = Y "3k =) 2%, (B1)
j=1

j=1

where {A;} and {)L’]-} are the eigenvalues of H and H', respec-
tively. Because H and H' are Hermitian, these are real. The
sums in Eq. (B1) are known as the power sums pi(Aq, ..., Ag)
and py (A}, ..., A)). Via the Newton-Girard identities, one can
explicitly write the first d elementary symmetric polynomials
e, ..., eq in these eigenvalues in terms of the power sums py
for k € [1, d]. By the equivalence of the power sums between
the variables {1} and {1’}, the elementary symmetric polyno-
mials in these two variables are also equivalent.

The elementary symmetric polynomials then allow us to
write the chain of equalities via a standard expansion of a
polynomial in some variable x with roots {A ;}:

d n
[[e=2)=>D (—DferGu. ... ax"*
j=1 k=0

n d
=Y (=Drer@®f. oo =TT = 1)
k=0 Jj=1
(B2)

This implies that A; = )»} for all j € [1, d]. This in turn im-
plies that Tr[H*] = Tr[H'¥] for k > d, proving the result. W

We remark that Theorem 5 is often stated without proof
in the context of giving the independent trace invariants of
density matrices p € C?*? [27,40,41]. Given that Hermitian
matrices have d eigenvalues, the theorem is intuitively obvi-
ous, but we have not seen the explicit proof of this statement
in the physics literature.

We also provide an alternative statement of the theorem
and a corresponding proof which makes use of the Bloch
vector formalism for trace invariants.

Theorem 6. Two traceless Hermitian matrices H, H' €
C4*4 are unitarily similar if and only if a* -a = b** - b for
k € [1,d — 1], where a and b are the Bloch vectors corre-
sponding to H and H’, respectively.
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Proof. Consider the infinite set of vectors A = {a,a *
a,axax*a, ...} The invariants of H under unitary transfor-
mations are v - a for any v € span(A).

Any Hermitian matrix can be diagonalized via a unitary
matrix and the invariants are unchanged under this transfor-
mation, so assume that we have diagonalized H. Suppose we
are using a generalized Gell-Mann basis, as described in the
main text. Then the corresponding @ has a; = 0 for j € X', V.
That is, a is in a subspace T of dimension d — 1 spanned by
A0122) with corresponding indices D. We have that

(a * a)k = dijka,-aj, (BS)
where the only nonzero terms in the sum correspond to
nonzero d;j; with i, j € D. The only nonzero d;;; satisfying
this condition have k € D. Therefore, a xa € T. This is true
forallv € A. As T is of dimension of d — 1, onlyuptod — 1
of the vectors in A are independent. Adding in the trace-
less condition, this makes for a maximum of d independent
invariants. Therefore, to determine the simultaneous similarity
of H and H' it is sufficient to check the equivalence of only
the d invariants in the theorem statement. ]

We remark that if H and H' are not traceless one can
merely check if the matrices have the same trace and then
apply the theorem above.

APPENDIX C: BOUND ON THE LENGTH OF WORDS

This Appendix seeks to prove the bound on €.y, the
maximum length of the word we need to check to capture
all independent invariants, given in Eq. (5). This proof is
just an application of the bound and construction provided in
Ref. [24].

The idea of simultaneous unitary similarity is derived in
Ref. [24], starting from whether two complex matrices are
unitarily similar. It is a known result that two n x n complex
matrices A and B (with A* and B* denoting their complex con-
jugates) are unitarily similar if and only if Tr[w({A, A*})] =
Tr[w({B, B*})] for every word w({s, t}) of two noncommuting
matrices whose length is less than or equal to

n’42
L[
= min
max 2 1
n/t+3+5 -2

The O(n*) bound is due to Paz [36] and the asymptoti-
cally better O(n*?) bound is due to Pappacena [37]. This
result holds for arbitrary complex matrices, and as we dis-
cussed in Appendix B, the bound on considered words can
be much tighter if we consider just the unitary similarity of
two Hermitian matrices. However, this more general bound
is important in the context of the unitary similarity of sets of
matrices. In Ref. [24] the authors produced an encoding of sets
of matrices into two larger matrices such that if those two
larger matrices are unitarily similar, then all the individual
pairs of matrices from the two sets must be unitarily similar
under the same transformation. Furthermore, the word trace
condition for unitary similarity of these larger matrices is
equivalent to a word trace condition on all words of that same
length compared between words made entirely of one of the
sets and words made entirely from the other set.

(ChH

Specifically, given two sets of matrices S = {sy, 52,
..., Suyand 8" = {s}, 55, ..., s,,} where each matrix is of size
d x d, we can encode these sets into matrices A and B. Matrix
A will be a block matrix constructed of d x d matrices, and
the diagonal and all blocks below it are zero. Immediately
above the diagonal are d x d identity matrix blocks, and into
the remaining portion of the upper triangular portion, we slot
the matrices from S into the blocks. In order to do this, we
need m spaces remaining in the upper triangle. If the A matrix
is ¢ blocks long, then there will be (¢* — 3¢ + 2)/2 spaces for
matrices from our set S. Thus, we must choose ¢ such that
(c? — 3¢ +2)/2 > m. Any unused blocks are set to zero. The
B matrix is constructed similarly except using S’ instead of S.
These matrices will both be of size n = cd.

In Ref. [24] it was proven that the matrices A and B are
unitarily similar if and only if the sets S and S’ are unitarily
similar. Furthermore, the trace word conditions on A and B
being unitarily similar is equivalent to the condition that all
words have equal traces between sets S and S” with the lengths
of these necessary words being bounded by the same length
as the words necessary to check unitary similarity of A and B.
Therefore, it is sufficient to check words up to length based
off Eq. (C1) with n = cd, recovering Eq. (5).

APPENDIX D: TRACE INVARIANTS IN TERMS
OF BLOCH VECTORS

In this Appendix we demonstrate the claim from the
main text that all trace invariants under simultaneous unitary
transformations can be expressed as linear combinations of
invariants v - b for v € B and b’ a Bloch vector corre-
sponding to the Hamiltonian H;. Recall that we define B to
be the set of all possible star products between Bloch vectors
in B.

Furthermore, recall that for a trace invariant for a word of
arbitrary length we have

lw| d>—1

Trlw®)] =Te| [T Y 604, |.

Jj=1 ;=1

(D)

where we have denoted the jth element of w by w;. We can
flip the order of the product and the sum and write

[wl|
Tr[w(S)] = Z Tr |:1_[ bﬁfjﬁiw} , (D2)
y Li=1

{1 tyw)

where the sum is over all ordered sets (with replacement) of
indices € [1, d*> — 1]. We now make use of Eq. (2) to evaluate
the products of basis elements of su(d). Due the sum over
all ordered sets, the antisymmetric terms in each product of
)ij cancel and we are left to consider the identity terms and
the terms with symmetric structure constants. As the basis
elements are all traceless, what ultimately survives the trace
once we fully expand all products are the terms proportional
to identity.

Under an expansion of the products and evaluation of the
trace, the term with the most symmetric structure constants is
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proportional to

(dll-lltzvldll-svlvzd/t4vzv3 ne .dl/v\wlflV\u:\f3U\LLY\*Z(SV\UJ\*ZMIW\)

(w)) (W)
X (b - b”), (D3)
where we use the convention of summing over repeated
indices. After staring at the proliferation of indices, one ob-

serves that this term can be compactly written as

(((b(w]) * b(wz)) * b(wz)) %ok b(w\uvH)) . b(w““'>. (D4)

All other terms in the expansion of the products of basis
elements of su(d) consist of fewer symmetric structure con-
stants and more Kronecker deltas. These other terms amount
to dot products between terms similar to this one but with
smaller word length. Therefore, this term is the only one that
is not dependent on invariants established from smaller length
words. By the commutativity of the star product, we may
permute any products we like, provided we respect the lack
of associativity. From this, and the fact that all words yield
trace invariants, we establish the intended claim.

This result implies a nice geometric interpretation of the
trace invariants. In particular, the relative angles between all
vectors in B are the invariants under unitary transformations.
This is a manifestation of the fact that SU(d) C SO(d? — 1).
Due to the asymmetry in Bloch space of the symmetric struc-
ture constants, the set of star products B are not, in general,
rotationally invariant; the rotations where this infinite set of
vectors do rotate rigidly picks out the rotations corresponding
to SU(d).

APPENDIX E: SIMULTANEOUS STOQUASTICIZABILITY
IS RARE

For all the proofs in this Appendix it will be necessary to
identify the nonzero symmetric structure constants of su(d)
in the generalized Gell-Mann basis. We take the explicit
form of these from Ref. [45], with some slight differences
in indexing to account for our conventions differing from
those used by those authors [49]. We identify these symmetric
structure constants based on whether the indices correspond to
symmetric [Eq. (3a)], skew-symmetric [Eq. (3b)], or diagonal
[Eq. (3¢)] basis elements. In particular, we give a one-to-
one mapping between indices i € [1, d? — 1] and indices X ks
Yijk, and D; corresponding to the sets of symmetric, skew-
symmetric, and diagonal basis element, respectively, as

Xjp=k*+2G -k —1, (E1)
Vi =k +2(j — k), (E2)
D;=j(+2), (E3)

where 1 < j <k <d. Let X ={&Xy}, YV ={Vi},and D =
{D;}. Given such an identification, we have the following
nonzero symmetric structure constants:

1

dekXI;XIk = dekyljylk = dekykzyﬂ = _dekyjlylk = 57

j—1
dekakDf—l = dyjkyjkDf—l = - T

)

[ 1 .
dekakDI—l = dyfkyjkD[—] = m’ J < <k

2—k
dekaka—l = dy/kyjka—l = m’
2
dekakDI—l = dy/kyjkD[—] = 11— 1)’ k<l
d 2 k j
D Diai Dt = T 0 <1J
i—1 Di—1Di—1 iG—1D
2
dp, \,p; \p, , =2 —))| 757" (E4)
e iG=1

We will find for the following proofs that it is sufficient to
observe which symmetric structure constants are nonzero,
but for explicit application of these theorems these analytic
expressions would be convenient.

As implied by the structure constants being consid-
ered, we will make use of the generalized Gell-Mann basis
throughout these proofs, but we observe that all trace invari-
ants are basis independent. Consequently, the dimensions of
spaces spanned by the star products of Bloch vectors are also
basis-independent quantities.

We begin with a simple theorem describing the maximum
size of the set of star products arising from simultaneously
stoquastic matrices.

Theorem 7 (Theorem 4 from the main text). Let S =
{H,, ..., H,} be aset of Hermitian matrices with correspond-
ing Bloch vectors B = {by, b5, ..., b,}. Let B be the set of
all possible star products between elements of B. A necessary
condition for the elements of S to be simultaneously stoquas-
tizable is that dim[span(B)] < (d> +d — 1)/2.

Proof. Suppose H € Stoq for all H € S. Observe from
the list of nonzero symmetric structure constants in Eq. (E4)
that any star products between elements of B necessarily
have all components j € ) equal to zero. That is, any star
product between vectors in the (X, D) subspace remain in
that subspace. Therefore, dim[span(3)] < d*+d - 1)/2,
where (d?> + d — 1)/2 is the dimension of this subspace. The
dimension of this subspace is preserved under unitary trans-
formations as the relative angles between all elements of B
are preserved under unitary transformations. This establishes
the necessary condition for simultaneous stoquasticity in the
theorem statement. |

From here, our goal will be to look at the space of star
products arising from general Bloch vectors and show that
this space is generally much larger than the space spanned
by simultaneously stoquastic Bloch vectors. We begin with a
useful lemma.

Lemma 1. Let H be a traceless Hermitian matrix with
corresponding Bloch vector b. Let B = (b* |k e ZT} be
the (infinite) set of all possible star products of b. Then
dim[span(B)] < d — 1.

Proof. As dim[span([3)] is a basis-independent property,
assume that H is diagonal without loss of generality. There-
fore, the generalized Gell-Mann basis b; =0 for all j e
{X, V}. From the definition of the star product and the form
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of the structure constants in Eq. (E4), observe that the only
nonzero components of the star b x b are those with index
J € D. This holds for the star product of any pair of vectors u
and v with u;, v; = O for all j € {X, V}. Therefore, all v e B
are necessarily contained in the (d — 1)-dimensional subspace
with indices D. n

If H in the above lemma is generic, i.e., has nondegenerate
eigenvalues, dim[span(B)] = d — 1. For nongeneric Hamil-
tonians, there exist additional symmetries, which leads to a
dependence between the elements of B and consequently a
reduction in the dimension of span(53). For instance, in the
extreme case of H corresponding to a pure state density matrix
0, which has zero as a (d — 1)-fold degenerate eigenvalue, we
have that b x b = b, implying that dim[span(B)] = 1 [28].

We will also make use of the following lemma, proving a
linear algebra fact that will be useful later on.

Lemma 2. Let R € R¥>*?" be a diagonal matrix with all
nonzero, twofold-degenerate matrix elements such that R;; =
Ry for k =2j and R;; # Ry otherwise. Let u, v € R?" be
vectors with all unique elements such that u = 0, vy =
for some particular j*. Then the vectors in the set {R*u, R*v}
for k € Z*+ span R,

Proof. With the exception of the zero vector, span({R*u})
is completely disjoint from span({Rv}) from the uniqueness
conditions on R, u, and v and the fact that u ;= = 0 and v,;+ =
0. In particular, there exists no nontrivial g, ry € R such that
YR =Y, nR'v =Y, qru= Y, rxv, as this would
require ), gxirj» = 0 and ), rvj = 0, implying D, gx =
Z e = 0.

Now consider the span of {Rfu}. As the components of
u are unique and R has n unique components, these vectors
will span a space of dimension n. This is because for R*u to
be linearly dependent on {R'u} for / < k requires that there
not exist constants ¢; € R such Rfu = Zf;ll ¢;R"u, which, by
the uniqueness of the components of u, implies we require
R = Y}~ ¢;R for dependence. Such constants only exist for
k > n due to the uniqueness conditions on R.

An identical argument holds for the span of {R*u}. As the
two spans are completely disjoint, together they span the full
vector space of dimension 2n. ]

Armed with the preceding two lemmas, we are now pre-
pared to prove the following important theorem.. Here “almost
every” is used in a technical sense, in that the set of possibil-
ities not obeying the given condition are (Lebesgue) measure
Zero.

Theorem 8. Let S={H,,...,H,} be a set of Her-
mitian matrices with corresponding Bloch vectors B =
(B, 6®, ... b"™)}. Let B be the (infinite) set of all possible
star products between elements of B. For almost every S with
m > 2 and d > 3, dim[span(B)] = d* — 1. That is, B spans
the full Bloch vector space for almost every S.

Proof. 1t is sufficient to consider m = 2 as the dimension
of the space spanned by this subset is less than or equal to
that of the full set 5. Without loss of generality, assume that
H, is diagonal so that in the generalized Gell-Mann basis
b(il) =0 for all j € {X, YV}. By Lemma 1 and the discussion

that follows it, the star products (b")* for k € Z* span the
(d — 1)-dimensional space corresponding to indices j € D for
any H; with nondegenerate eigenvalues. Hermitian matrices

with degenerate eigenvalues are measure zero in the space of
traceless Hermitian matrices [50] and therefore almost every
H, is such that (6'V)* for k € Z* span the full (d — 1)-
dimensional space corresponding to indices j € D.

As these products of the form (bm)*k span the (d — 1)-
dimensional space corresponding to indices j € D, we now
seek to show that other elements of 3 span the remaining X
and Y components for almost every b? . To this end, consider
the vectors b® and b® % b®. Then consider just the com-
ponents of these vectors in the (X, )) subspace. Call these
restricted vectors w and v. Thatis, u; = 0 for j € D and u; =

bj.z) for j € {X, YV}, and similarly for v. For almost all b(z), the
corresponding u, v are linearly independent. Therefore, we
can construct via linear combinations two new vectors u’ and
v’ such that u’Xl2 =0 and vsjlz = 0. Such linear combinations
are, by definition, in the span of 5.

Now consider acting from the right on this linear com-
binations by star products of the form (b'")*, i.e., consider
elements in the span of 5 of the form ((u’ * by« by k...
From the definition of the star product, the fact that b;l) =0
for all j € {X, V}, and the form of the structure constants in
Eq. (E4) we observe that such star products by (b(l))*k (from
the right) act to scale the X’ and )V components of u’ and v’ by
symmetric structure constant-dependent factors. We can write
this scaling behavior as

u® = Rk, (E5)

where R is a diagonal matrix with components given by

Rjj — Zze’D JItYd ] { y} (E6)
0, j€D,

which comes from identifying the nonzero terms in the cor-
responding star product. There is an equation identical to
Eq. (ES) for v'. Importantly, we observe that R;; = Ry for
Jj = &, and k = Y;,,,. This can be determined by observing in
Eq. (E4) thatdy,, x,,; = dy,,y,,; forall j € D. Otherwise, for
almost every Hy, R;; # Ry for j, k € {X, V}. From Lemma
2, {u'®, v'®} span the (X, )) subspace of Bloch vector space
for almost all A, and H,. |

Finally, we arrive at the following theorem, which estab-
lishes that simultaneous stoquasticity is rare.

Theorem 9 (Theorem 3 from the main text). Let S =
{Hy, ..., H,} be a set of Hermitian matrices. For almost every
Swithm > 2andd > 3, S is not simultaneously stoquasticiz-
able.

Proof. This is an immediate consequence of Theorems 7
and 8. |

APPENDIX F: RESULTS ON SIMULTANEOUS
DIAGONALIZABILITY

Results similar to those in Appendix E can also be obtained
for the problem of determining the simultaneous diagonal-
izability of a set of Hermitian matrices. This problem is, of
course, well known to be related to the problem of mutual
compatibility of observables. Therefore, while taking an ap-
proach similar to that in our paper for this problem is largely
overcomplicated compared to applying the simple condition
that the Hermitian matrices of a set are simultaneously di-
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agonalizable if and only if they all commute, it is useful
to compare the formalism established in this work to such
conditions.

In particular, as discussed in the main text, we expect that a
deeper understanding of how our conditions relate to commu-
tator conditions will enable connections to the dynamical Lie
algebra of quantum optimal control theory. The case of simul-
taneous diagonalizability, with its well-known commutation
condition, provides a possible route forward.

We have the following theorem, which is analogous to
Theorem 7 (Theorem 4 from the main text). The logic is also
similar to that of Lemma 1, but extended to multiple matrices.

Theorem 10. Let S ={H;,...,H,} be a set of Her-
mitian matrices with corresponding Bloch vectors B =
(B, b, ..., b™)}. Let B be the (infinite) set of all possible
star products between elements of B. A necessary condition
for the elements of S to be simultaneously diagonalizable is
that dim[span(B)] < d — 1.

Proof. The proof is identical to that of Theorem 7 ex-
cept that, in this case, the star products of Bloch vectors
corresponding to simultaneously diagonal Hermitian matrices

are confined to the (d — 1)-dimensional subspace of Bloch
vector space with all components j € X, ) equal to zero.
Therefore, a set of simultaneously diagonal Hermitian matri-
ces has dim[span(B)] < d — 1. Again, the dimension of this
subspace is preserved under unitary transformations, proving
the result. |

Combined with Theorem 8, we have the following corol-
lary as an immediate consequence.

Corollary 1. Let S = {H,, ..., H,} be a set of Hermitian
matrices. For almost every S withm > 2 and d > 3, S is not
simultaneously diagonalizable.

One also expects that among simultaneously stoquas-
tic Hamiltonians simultaneously diagonalizable Hamiltonians
are vanishingly rare. Proving this would follow a similar line
of reasoning to that in Appendix E. In particular, it would
be sufficient to prove that for almost every set of stoquastic
Hamiltonians the inequality in Theorem 7 is tight. Unfor-
tunately, the approach in Theorem 8 does not immediately
apply here since we cannot diagonalize one of the matrices
in a set of stoquastic Hamiltonians and keep all Hamiltonians
stoquastic.
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