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Abstract

Physics-based models are widely used to study dynamical systems in
a variety of scientific and engineering problems. However, these models
are necessarily approximations of reality due to incomplete knowledge
or excessive complexity in modeling underlying processes. As a result,
they often produce biased simulations due to inaccurate parameteriza-
tions or approximations used to represent the true physics. In this paper,
we aim to build a new physics-guided machine learning framework to
monitor dynamical systems. The idea is to use advanced machine learn-
ing model to extract complex spatio-temporal data patterns while also
incorporating general scientific knowledge embodied in simulated data
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generated by the physics-based model. To handle the bias in simulated
data caused by imperfect parameterization, we propose to extract general
physical relations jointly from multiple sets of simulations generated by
a physics-based model under different physical parameters. In particular,
we develop a spatio-temporal network architecture that uses its gating
variables to capture the variation of physical parameters. We initialize
this model using a pre-training strategy that helps discover common
physical patterns shared by different sets of simulated data. Then we
fine-tune it combining limited observations and adequate simulations. By
leveraging the complementary strength of machine learning and domain
knowledge, our method has been shown to produce accurate predictions,
use less training samples and generalize to out-of-sample scenarios. We
further show that the method can provide insights about the variation
of physical parameters over space and time in two domain applications:
predicting temperature in streams and predicting temperature in lakes.

Keywords: Physics-guided machine learning, Spatio-temporal data, Deep
learning, Freshwater science, Stream networks, Simulated data

1 Introduction

Physics-based models, which are also referred to as process-based models or
mechanistic models, have been widely used to study scientific and engineering
systems in domains such as hydrology [1], climate science [2], and material sci-
ence [3]. Even though physics-based models are based on known physical laws
that govern relations between input and output variables, most physics-based
models are necessarily approximations of reality due to incomplete knowl-
edge of certain processes or excessive complexity in modeling these processes;
e.g., see a series of debate papers in hydrology [4–6]. For example, existing
physics-based approaches for predicting river networks simulate target vari-
ables (e.g., streamflow and temperature) based on general physical relations
such as energy and mass conservation. However, the model predictions still
rely on parameterizations of land surface and subsurface processes based on
soil and surficial geologic classification along with topography, land cover, and
climate input. Hence, such models have limits of prediction performance even
after parameter calibration due to constraints from the model structure and
simplified representation (e.g., by assuming physical parameters are static in
space and/or time). Furthermore, calibration of physics-based models often
requires extensive expert knowledge of the system and can be extremely time
intensive due to the complex (sometimes chaotic) dynamics in the system and
uncertainty in observations, initial conditions, and model error. The limita-
tions of physics-based models cut across disciplinary boundaries and are well
known in the scientific community.

Recent advances in machine learning (ML) make it possible to capture
spatial and temporal dependencies from data of great complexity. These ML
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techniques have found tremendous success in several commercial applications,
e.g., computer vision [7] and natural language processing [8, 9]. Given the
success of ML in these commercial domains, researchers have started to use
ML approaches for advancing scientific discovery [10, 11], and this idea has
been pursued in diverse disciplines, such as hydrology [12], Earth systems [13],
and climate science [14–16]. The use of ML models is especially promising
when relevant physical processes are not completely understood by our cur-
rent body of knowledge due to the inherent complexity of the underlying
phenomenon. State-of-the-art ML models (e.g., deep learning models), given
enough data, can often achieve better predictive performance than physics-
based models [17, 18]. Early results in isolated and relatively simple scenarios
have been promising, and the expectations are rising for this paradigm to accel-
erate scientific discovery and help address some of the biggest challenges that
are facing humanity such as food and water security. However, direct appli-
cation of “black-box” ML models has had limited success in some scientific
domains, given that the data available for many scientific problems are far
smaller than what are needed to effectively train advanced ML models. More-
over, in the absence of adequate information about the physical mechanisms of
real-world processes, ML approaches are prone to false discoveries of patterns
that cannot generalize to out-of-sample scenarios.

In recent years, there has been a great interest in developing new
approaches that integrate scientific knowledge into ML models (e.g., see a
recent survey [11]). From the earliest residual modeling approaches, where an
ML model is trained to predict the discrepancy between observations and sim-
ulations made by a physics-based model [12, 19, 20], researchers have now
shifted their focus to new methods that leverage knowledge of physics to guide
the learning process of ML models. This includes new loss functions to preserve
consistency with established physical laws [21–27], new model initialization
methods by transferring physics [21, 24, 28, 29], and new model architectures
by encoding specific physical relationships [30–36]. In particular, previous work
has shown that ML models can learn more generalizable patterns from lim-
ited observation data by transferring knowledge from simulations produced by
physics-based models [21, 24, 37].

However, there are two major challenges faced by these methods when
applied to real-world scientific problems. First, these methods can require
access to a physics-based model that well simulates the target system, which
is often not feasible given the high cost of calibration and/or parameteriza-
tion and the prediction errors that persist even after these procedures. The
parameters of a physics-based model modulate the translation of input drivers
to predictions of target variables. For example, given the same meteorologi-
cal drivers for a lake system, the physics-based model can simulate different
water temperature profiles by varying the parameter of water clarity, which
controls how much light can penetrate into the water column and warm deeper
waters. When transferring physics knowledge to an ML model, existing meth-
ods are likely to be affected by the inherent bias due to uncertainties remaining
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after parameterization thereby limiting the model’s potential to extract general
physical knowledge from the physics-based model. Second, existing methods
commonly use physical simulations in a separate training stage [21] or for
feature augmentation [23] without fully exploring the relationships between
simulations and true observations. Learning such relationships has the poten-
tial to identify simulation biases and variations of physical parameters over
space and time.

In this paper, we propose a new framework, SIMulation-guided LeaRning
(SIMLR), which extracts the general physical knowledge jointly from multiple
sets of physical simulations with imperfect parameterizations. We also explore
the relationship between observation data and simulated data and identify
parameter settings that produce the most accurate predictions over different
locations and time periods. In particular, we first build a spatial-temporal net-
work (STN) architecture to represent the spatial and temporal relationships
in the dynamical system. Given that most physical parameters determine spe-
cific conditions that control how the system states react to external changes,
we represent such conditioning factors using a set of gating variables in the
ML architecture. The gating variables are used to filter the information from
the current time step, previous time steps, and the spatial neighborhood. The
filtered information is combined to update the state of the ML model.

Then we propose a new pre-training strategy that leverages general phys-
ical patterns from different sets of simulated data to inform the initialization
of the STN model. 1 This pre-training process can also leverage many existing
simulation datasets [39–41] and does not require true observed labels, which
are often expensive to collect. The idea is that the initialized model obtained
through pre-training can be easily adjusted to fit each set of simulated data
by slightly altering gating variables. After the initialization, we further refine
the model using true observations and simulations. Specifically, we propose
two fine-tuning approaches, the contrastive learning method and the attention-
based ensemble learning method. The contrastive learning process aims to
explore the similarity of relations between observations and different sets of
simulated data and further transfer the knowledge from specific simulations
that are closer to the observed reality. The ensemble learning method aggre-
gates the output of STN and different sets of simulated data and assigns them
different weights based on an attention mechanism.

We evaluate the performance in two societally relevant applications, mod-
eling water temperature in a lake system and water temperature in river
networks. Although predicting the same variable, these two applications have
distinct spatiotemporal drivers of water temperature and focal parameters for
physics-based calibration. We demonstrate the effectiveness of model initializa-
tion using general physical knowledge and show that our method can achieve
good predictive performance even with very sparse observation data. We also
analyze the similarity relationships learned from the fine-tuning process and

1This is an extension of our previous conference paper [38].
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provide scientific interpretability. Our method has shown promise in discover-
ing variations of physical parameters across space and time while traditional
physics-based model can often take fixed parameter values. Moreover, we show
that our method under the guidance of general physical relationships can bet-
ter generalize to different scenarios. We have released our code and the river
dataset in a Google Drive link2.

Our contributions can be summarized as follows:
• We build a new model architecture STN and use it to extract general phys-

ical knowledge from multiple sets of simulated data during the pre-training
process.

• We leverage both the observation data and simulated data in the model fine-
tuning process. In particular, we use a contrastive loss function to explore the
similarity between observations and each set of simulated data. The ensem-
ble learning method dynamically adjusts different weights for combining
observations and simulated data.

• We have implemented the proposed methods in two societally relevant appli-
cations. The proposed method not only improves the predictive performance
using limited data, but also reveals the variation of physical parameters over
space and time.

2 Related Work

Recently, we have seen an increasing interest of integrating physics into ML
models for a variety of scientific applications. The objective is to improving the
predictive performance and generalizability in addressing scientific problems.
This is commonly conducted in several ways, including applying additional loss
functions to enforce physical consistency [21, 23, 24], developing new model
architectures to encode intermediate physical variables or relationships [32, 42,
43], and transferring knowledge from physical simulations [21, 29, 44, 45].

The idea of including an additional term in the loss function to prefer solu-
tions that are consistent with domain specific knowledge is beginning to find
extensive use in many scientific applications. For example, Karpatne et al. [23]
use a physics-based loss that ensures that denser water are located at lower
depths in lake systems. Jia et al. [21, 37] and Read et al. [24] further extend
this work to capture even more complex and general physical relationships
that happen on a temporal scale. Specifically, they create a loss function to
ensure that the lake thermal energy gain across time is consistent with the net
thermodynamic fluxes in and out of the lake, which is a known as the energy
conservation law in the lake system. Another benefit of this approach is that
the physics-based loss allows training in absence of labels, since it can often
be computed even in absence of class labels or target variables. Moreover, the
regularization by the physics-based loss can reduce the search space for train-
ing the ML model, and thus requires less amount of labeled training samples.
Despite the promise of this method, many dynamical systems are driven by

2https://drive.google.com/open?id=12l9RhiaGZqwZEp3URFY8GrQ4VAMpRtvy
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complex physical processes that are non-differentiable or difficult to explicitly
include in the loss function. More importantly, many equations that are used
to build physics-based models (except first principles) are only approximations
of reality due to the incomplete knowledge about underlying processes. Hence,
it requires additional effort to adjust the weight of physics-based loss to avoid
performance degradation in real scenarios.

Another way is to modify model architectures to reflect known physics.
For example, Muralidlar et al. [31] insert physical variables as the intermedi-
ate variables in the convolutional neural network (CNN) architecture which
achieved significant improvement over state-of-the-art physics-based models on
the problem of predicting drag force on particle suspensions in moving fluids.
In the context of modeling stream networks, Jia et al. [46] introduce a PGRGrN
model, which uses additional physical variables to enforce that the advected
energy fluxes are propagated from upstream to downstream rivers through
the graph convolution process. The PGRGrN model capture the spatial and
temporal patterns using graph network layer and recurrent network layer,
respectively, and uses simulations to enforce energy conservation. However, it
can be affected by biased simulations with imperfect physical parameters. Our
work is also inspired by the prior work on modifying gating variables to filter
the effect of input data for predicting streamflow in basins [47]. The intuition
of this work is that the response of streamflow given climate input drivers also
depend on catchment characteristics, and thus catchment characteristics can
be used to create the input gate in LSTM.

The design of physics-based loss functions and architectures often requires
explicit physics. In contrast, another branch of research aims to transfer knowl-
edge directly from simulated data produced by physics-based models. The most
common approach for using simulated data is residual modeling, where an ML
model is trained to make corrections to physical model outputs. Most of the
work on residual modeling going back several decades has used plain regres-
sion models [12, 19], although some recent works [20] have used Long-Short
Term Memory (LSTM). Karpatne et al. extended residual modeling by feed-
ing the output of a physics model into an ML model as additional input [23].
More recently, simulated data have been used for pre-training ML models with
the aim of improving the initialization of ML models. Intuitively, if physical
or other contextual knowledge can be used to help inform the initialization of
the weights, model training can be accelerated or improved while also requir-
ing less training samples [21]. One way to inform the initialization to assist in
model training and escaping local minima is to use an ML technique known as
transfer learning. In transfer learning, a model can be pre-trained on physics-
based model’s simulated data prior to being fine-tuned with limited training
data to fit the desired task. The pre-trained model serves as an informed initial
state that ideally is closer to the desired parameters for the desired task than
random initialization. For example, Jia et al. used this strategy in the context
of modeling lake temperature dynamics [21]. They pre-trained their Physics-
Guided Recurrent Neural Network (PGRNN) models for lake temperature
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modeling on simulated data generated from a physics-based model and fine
tuned the network with small observed data. They showed that pre-training,
even using data from a physical model with an incorrect set of parameters,
can still reduce the training data needed for a quality model. In addition,
Read et al. [24] demonstrated that such models are able to generalize better to
unseen scenarios than pure physics-based models. Such pre-training methods
have also been explored in computational biophysics [29], chemistry [45, 48],
and climate science [44].

Our method differs from these existing works in that it aims to extract
general physical relationships from multiple sets of simulated data produced
using several default physical parameters. Moreover, the variation of physical
parameters can be reflected in the model architecture as we use different gating
variables for different sets of simulated data during the pre-training process.
Furthermore, the fine-tuning process combines the observations and the knowl-
edge from simulated data to enhance the model. Our work is also relevant to
existing work on learning from multiple noisy annotators [49]. The difference
is that we aim to use physical simulations to initialize the ML model and then
use true observations to adjust the model and identify the gaps and similarities
with different parameter settings. Also, the bias introduced by simulated data
are not randomly generated but caused by the deviation of physical parameters
used in the governing equations.

The objective of using simulations is to enhance the learning of complex
data patterns governed by physical relationships using limited observation
samples. There have been multiple machine learning approaches developed to
address the data paucity issues, such as semi-supervised learning [50, 51] and
transfer learning [52, 53]. For example, the prior work [54] explores the class-
wise domain-invariant features to facilitate the model transfer from a source
domain to another target domain. Another promising work incorporates unla-
beled data through posterior regularization in a Bayesian framework while also
using the Tikhonov regularization to ensure the smoothness of the smoothness
of the predictions [55]. These methods aim to explore certain structures or
feature invariance in the input feature space, but they are unable to capture
the joint distribution of input features and target variables under different
scenarios. Many transfer learning methods and self-supervised learning meth-
ods [56, 57] also use a similar pre-training idea, but they are focused on
extracting features that are representative of certain input data dependencies.
These methods can still be limited given a large hypothesis space and limited
observations. In such ill-posed problem setting, multiple mappings from input
to output can be valid as they match training observations. However, many of
these mappings are not consistent to underlying physical processes and thus
they should not be selected. The use of simulated data generated by physics-
based models can aid in reducing the hypothesis space and selecting physically
consistent mappings. Recent advances on active learning for network data [58]
also provide opportunities for addressing the data scarcity issue in scientific
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systems with interacting processes, but active learning is beyond the scope of
this paper.

3 Problem Definition

Our objective is to predict target variables for each location i ∈ {1, ..., N},
and on each date t ∈ {1, ..., T}, given input physical variables that drive the
dynamics of the physical system. Specifically, we use xt

i to represent input
features for each location i on a specific date t, and we aim to predict the
corresponding target variables yt

i. In aquatic systems, each location can be a
specific depth layer in a lake, or a different segment in a river network. To fully
capture the spatial dependencies amongst different locations, we also introduce
the neighborhood N (i) and the adjacency matrix A, where N (i) represents a
set of locations that are spatial neighbors of the location i, and Aij represents
the adjacency level between each pair of locations i and j (more details in
Section 5.1).

In real-world scientific applications, the observed labels yt
i are often sparse

due to the substantial manual labor required to collect the observation data.
In this paper, we use “observations” or “observation data” to represent the
observed y values, which can be considered the ground truth of the target
variables. The sparsity of the observations makes it challenging to directly
train an ML model. To address this issue, we leverage the simulated data gen-
erated by the physics-based model to guide the learning of ML model. The
physics-based model takes the input features {xt

i} and simulates target vari-
ables based on known physical theory and a set of physical parameters. For
example, in the context of modeling lake systems, the physics-based model sim-
ulates water temperature based on energy conservation law, and also requires
physical parameters such as lake geometry and water clarity, which directly
affect the change of temperature in response to external energy fluxes. In this
work, we use “simulations” or “simulated data” to represent the y values simu-
lated by physics-based models. This work also considers a learning framework
using an ensemble of multiple sets of simulated data. In particular, we are pro-
vided with K different sets of simulated data generated by using K different
parameter values (that are commonly used by domain scientists) for a specific
physical parameter (e.g., water clarity). We represent each set of simulated
target variables as Ỹk = {ỹti,k} for each location i on each date t.

To avoid ambiguity, we use “physical parameters” in this paper to refer to
parameters in the physics-based model and otherwise “parameters” refer to
parameters in the ML model.

4 Method

This section presents our proposed SIMLR framework (Fig. 1). We will first
describe the architecture of the spatial temporal network (STN). This model
not only captures the spatial and temporal data dependencies, but also
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Fig. 1: The flow chart of the proposed framework. The thickened arrows
represent data being fed to the next model. For example, we feed limited obser-
vations to the obtained pre-trained model and fine-tune it to the final model.

maintains separate network components for modeling general physical relation-
ships and simulation-specific patterns. Then we will introduce a pre-training
approach to initialize the STN model using multiple sets of simulated data.
The pre-training approach aims to extract general physical knowledge from
simulated data and leverage the separate components in the STN model to
encode the extracted physical knowledge. The obtained initialized STN model
needs to be fine-tuned to capture the gap between true observations and simu-
lations. We will describe the fine-tuning process for the STN. This process also
explores the relationships between observation data and simulated data, which
brings two additional benefits. First, it provides additional interpretability by
identifying the most suitable simulation setting for the target real system. Sec-
ond, it helps better preserve the knowledge learned from the simulated data,
especially for those simulations generated under the most suitable simulation
setting.

4.1 Spatio-temporal model for scientific systems with
different physical parameters

Physics-based models, e.g., General Lake Model [1] and PRMS-SNTemp [59],
commonly use parameterized governing equations to represent physical pro-
cesses that underlie the dynamical system. The physical parameters used in
these models have physical definitions and often cannot be easily measured.
These physical parameters determine how the model states change in response
to external inputs. For example, given the same amount of solar radiation, a
lake with higher water clarity will have a larger increase of water temperature
at lower depths compared with a darker lake because more light can penetrate
to the lower depths of the water column.

To represent these relationships and also to facilitate learning from multiple
sets of simulated data, we build the STN model architecture. The STN model is
essentially an extension of the LSTM structure. It uses a set of gating variables
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to control the influence from different sources, including the inputs at the
current time step, model states from the previous time step, and the effect
from spatial neighbors.

Similar to the standard LSTM, the STN preserves a model state cti for
each location i at time t, which serves as a memory and will be updated over
time (see Fig. 1). It also outputs a hidden representation ht

i at every time
step, which encodes the information about the location i and its spatial and
temporal context. Now we describe the details of computing model states and
hidden representation. First, we generate a candidate state c̄ti by combining
xt
i and ht−1

i using a tanh(·) function, as follows:

c̄ti = tanh(Wh
ch

t−1
i + Wx

cx
t
i + bc), (1)

where {Wh
c , Wx

c , bc} are model parameters.
For each location i, we generate hidden variables qt−1

i by aggregating the
hidden representation from its neighbors based on their adjacency level with
the location i, as follows:

qt−1
i = tanh(Wq

∑
j∈N (i)

Ajih
t−1
j + bq), (2)

where {Wq, bq} are model parameters.
Then we generate three sets of gating variables: forget gating variables fti,

input gating variables gt
i, and spatial gating variables sti. These gating variables

are used to filter the information passed from the previous time step, the
current time step, and the spatial neighborhood, respectively. Formally, these
gating variables are computed using sigmoid function σ(·) as follows:

fti = σ(Wh
fh

t−1
i + Wx

fx
t
i + bf ),

gt
i = σ(Wh

gh
t−1
i + Wx

gx
t
i + bg),

sti = σ(Wq
sq

t−1
i + Wx

sx
t
i + bs),

(3)

where Θ={Wh
f , Wx

f , Wh
g , Wx

g , Wq
s, Wx

s , ,bf , bg, bs} are model parameters.
Once we obtain the gating variables, we can use them to filter the informa-

tion from the previous time (ct−1
i ), the current time step (c̄ti), and the spatial

neighborhood (qt−1
i ) via element-wise product ⊙, and combine the filtered

information to compute the model state at time t. This can be expressed as
follows:

cti = fti ⊙ ct−1
i + gt

i ⊙ c̄ti + sti ⊙ qt−1
i , (4)

According to this equation, the change of model states given the inputs
over space and time is conditioned on the gating variables fti, g

t
i, and sti. This

is analogous to the evolution of a dynamical system, which is conditioned on
specific physical parameters. Hence, we can use these gating variables to encode
variations in physical parameters. By varying parameters Θ, the STN model
can represent the dynamical system using different physical parameters.
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After obtaining the model state cti, we generate the output gating variables
ot
i and use them to filter the model state to compute the hidden representation

ht, as follows:
ot
i = σ(Wh

oh
t−1
i + Wx

ox
t
i + bo),

ht
i = ot

i ⊙ tanh(cti).
(5)

Finally, we generate predicted target variables ŷt
i using a linear transfor-

mation, as follows:
ŷt
i = Wyh

t
i + by. (6)

The loss function of STN is defined using true observations Y = {yt
i} that

are available at certain time steps and certain locations, as follows:

LSTN(Ŷ,Y) =
1

Y

∑
{(i,t)|yt

i∈Y}
(yt

i − ŷt
i)

2. (7)

The model has two sets of parameters. The model parameters
Θ={Wh

f ,Wx
f ,Wh

g ,Wx
g ,Wq

s,Wx
s ,bf ,bg, bs} can capture the difference in physi-

cal processes represented using different physical parameters and thus they are
specific to each set of simulated data. Later in Section 4.2, we will create differ-
ent copies of these parameters Θ for different sets of simulated data. We repre-
sent other parameters using Φ={Wh

c ,Wx
c ,Wq,Wh

o ,Wx
o ,Wy,bc,bq,bo,by}. The

parameters Φ are shared across different sets of simulated data.

4.2 Pre-training: Extract knowledge shared across
simulations

Although different sets of simulated data are generated using different physical
parameters (some are close to reality and some are different), the simulations
still share some common patterns of general physical relationships embodied
in the physics-based model. At the same time, each set of simulated data also
shows patterns specific to its own parameter set. Here we introduce a pre-
training strategy for the STN model, which aims to estimate the initial value
of Φ0 and Θ0 by extracting the general physical relationships. The goal is that
the initial value of Θ0 can later be quickly adjusted to fit different simulation
settings while keeping the Φ0 parameters the same across different simulations.

Our method is inspired by the Model Agnostic Meta Learning
(MAML) [60]. The original MAML is designed for learning a model that can
be easily adapted to a new task using limited samples. Although the objective
of MAML is different from our task, we use the similar method to construct to
learning objective so that the pre-trained model can be easily adapted to each
set of simulations after slight fine-tuning. In particular, we divide each set of

simulated data {X, Ỹk} into a separate training set {Xtr, Ỹ
tr

k } and validation

set {Xval, Ỹ
val

k }. For the kth simulation, we update Θ0 using its training data

{Xtr, Ỹ
tr

k } with a learning rate α while not changing the other parameters Φ0,
as follows:

Θk = Θ0 − α∇ΘLSTN(fSTN(Xtr; Θ0,Φ0), Ỹ
tr

k ), (8)
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where fSTN(·) represents the mapping relation from input features to target
variables defined by the STN (Eqs. (1)-(6)), Θk represents the simulation-
specific parameters for gating variables. Here Eq. (8) just shows the adjustment
of Θ using a one-step gradient descent. This can be easily extended to multiple
update steps, which allows more flexible adjustment of Θ to fit each simulation.
In our implementation, we found the update with no more than five steps can
already lead to good performance. More discussions on the selection of the
number of update steps are in Section 5.6.

Once we gather the Θk that are specific to each set of simulated data, we
define the pre-training loss using the kth simulation’s validation set, as follows:

Lpre =
∑
k

LSTN(fSTN(Xval; Θk,Φ0), Ỹ
val

k )/K. (9)

During the pre-training process, we minimize the loss Lpre with respect
to the initial parameters Φ0 and Θ0. These estimated parameters are used to
initialize the STN model, which will then be fine-tuned using true observations.
We also collect the obtained intermediate parameters Θk values for k=1 to
K, which encode the information specific to each set of simulated data. These
simulation-specific parameters will also be used for model fine-tuning.

4.3 Fine-tuning with True Observations

After initializing the parameters Φ and Θ using the values Φ0 and Θ0, we refine
these parameters using the available observed target variables. Moreover, we
aim to further leverage the simulated data to enhance the fine-tuning phase.
In the following, we will introduce two approaches, contrastive learning and
attention-based ensemble learning.

4.3.1 Contrastive Learning

Our goal for using contrastive learning is to explore the relationships between
the observation data and different sets of simulated data during the fine-tuning
phase. Because each set of simulated data can be considered as an ideal ver-
sion of real data under certain physical parameter settings, for each observed
sample, it is possible to find its matched counterpart in the set of simulated
data. Here we will introduce a new loss function for fine-tuning that captures
this relationship.

In particular, we first generate the hidden representation for each location
i at time t, as follows:

ht
i = gSTN(x1:t

i ; Φ,Θ), (10)

where the function gSTN(·) represents the function defined by the STN model
to extract hidden representation ht

i from input data by following Eqs. (1)-(5).
Using the collected Θk for kth simulation setting, we also generate the

corresponding hidden representation h̃
t

i,k. It is noteworthy that these hidden
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representations are generated using gating variables that are specific to each
set of simulated data. This process can be expressed as follows:

h̃
t

i,k = gSTN(x1:t
i ; Φ,Θk). (11)

Here the obtained h̃
t

i,k encodes the spatial and temporal patterns under

the specific parameter settings used to generate kth set of simulated data.
After gathering these hidden representations, we define a similarity map-

ping ht
i → h̃

t

i,k for each k=1 to K using the inner product of these two vectors.
Once we obtain the similarity values for all sets of simulated data (i.e., k=1
to K), we normalize the obtained similarity values and convert them into a

distribution Q(ht
i → h̃

t

i,k) via a softmax function. More formally, this can be
expressed as follows:

Q(ht
i → h̃

t

i,k) =
exp(ht

i · h̃
t

i,k)∑
k′ exp(ht

i · h̃
t

i,k′)
(12)

We aim to ensure that the patterns extracted from observation data are
similar to certain sets of simulated data that use more accurate physical param-
eters, but are different from other simulation settings. Specifically, we define a
contrastive loss based on the entropy of the similarity probability, as follows:

Lctr = −
N∑
i=1

T∑
t=1

K∑
k=1

Q(ht
i → h̃

t

i,k) logQ(ht
i → h̃

t

i,k)/NT. (13)

As a side benefit, this method also enables the discovery of more accu-
rate physical parameters for each location at each time step. Compared to
standard physics-based model which commonly assumes static parameters in
space and/or time, the proposed method has a better chance at capturing the
variability of underlying physical processes.

Combining the contrastive loss and the standard supervised loss (Eq. (7))
using the observation data, we get the final fine-tuning loss, as follows:

Lft = LSTN + λLctr, (14)

where λ is a hyper-parameter.

4.3.2 Attention-based Ensemble Learning

The contrastive learning method enforces that the STN predictions are close to
a small set of simulations and regularizes the model training though the sim-
ilarity mapping over the hidden space. An alternative approach is to directly
aggregate STN predictions with simulated data in the output space. In this
aggregation process, each set of the simulations may contribute differently over
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time due to the variability of underlying physical characteristics. To address
the issue, we use the attention mechanism to dynamically adjust the con-
tribution from each data source. The attention mechanism was designed to
intelligently switch the focus of the ML model to important features or data
portions [61, 62]. Our attention model weigh the STN outputs and simula-
tion vectors differently by automatically learning their importance to the final
prediction.

In particular, as we need to weigh both STN outputs and simulated data
in the attention mechanism, we first create an augmented hidden representa-
tion hati for each location i by concatenating its STN representation and the
simulation-specific hidden representation, as

hati = [ht
i, h̃

t

i,1, h̃
t

i,2, ..., h̃
t

i,K ]. (15)

Then we use the augmented representation to generate the attention
weights in a similar way with the Eq. 12 in building the similarity mapping, as

αt
i,k =

exp(ht
i · ha

t
i,k)∑K

k′=0 exp(ht
i · ha

t
i,k′)

, (16)

where hati,0 = ht
i, and hati,k = h̃

t

i,k for k = 1, 2, ...,K. Also note that the
Eq. (16) uses a softmax function, and thus the obtained attention weights
{αt

i,k}Kk=1 sum up to 1 for each location i at each time t.
After obtaining the attention weights, we combine the STN outputs

yt
i(Eq. (6)) and simulated target variables in an ensemble way using attention

weights. This aggregation process can be expressed as follows:

ȳt
i = αt

i,0y
t
i +

K∑
k=1

αt
i,kỹ

t
i,k. (17)

This model will be updated by minimizing the supervised loss between the
obtained aggregated outputs {ȳt

i} and observed data using the supervised loss
function (Eq. (7)).

In summary, there are two training phases for the STN model, the pre-
training phase and the fine-tuning phase. The pre-training phase uses only
the simulated data to initialize the STN model. The fine-tuning phase further
adjusts the STN model parameters using observation data. At the same time,
the fine-tuning process leverages the simulation-specific parameters learned
from the pre-training phase to explore the relationship between observations
and simulations.

5 Experiments

In this section, we first introduce two datasets that are used in our tests. Then
we evaluate our proposed method to answer the following questions:
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• Q1: Can the proposed method outperform existing methods in predicting
target variables?

• Q2: How will the predictive performance change under data-sparse
scenarios?

• Q3: Can the model better generalize to out-of-distribution scenario?
• Q4: What is the effect of pre-training in the prediction?
• Q5: Can the proposed method discover the physical parameters that are

most suitable for our study region over long time periods?
• Q6: How sensitive is the performance with respect to hyper-parameters

in the proposed method?

5.1 Datasets

We apply our SIMLR model to two different environmental modeling chal-
lenges, predicting depth-specific water temperatures in a lake and predicting
water temperatures for segments in a stream network. Both problems require
accurately accounting for variations across space (e.g. lake depth, stream
reaches) and time (e.g. daily weather patterns, seasonal climate). Note that
these problems differ substantially in the nature of the spatial relationships,
and they need to be modeled by very different physics-based models. In partic-
ular, lakes exchange heat mostly at the water surface. At the same time, there
are various processes operating at different timescales act to distribute heat
through the lake vertically. In contrast, because streams are well-mixed, the
entire stream warms or cools primarily due to energy exchange with the atmo-
sphere and other water sources (e.g., groundwater). In-stream heat almost
exclusively flows downhill along the river network and at the same pace as the
water. The focal parameters are different in each problem and have very differ-
ent effects: lake geometry affects the degree, timing, and duration of thermal
stratification and affects the response of the lake to wind events, and lake water
clarity controls the depths at which incoming solar energy is absorbed, while
the groundwater residence time in stream reaches controls the temperature of
incoming groundwater.

D1: Predicting water temperature in Lake Mendota. This dataset was
collected from Lake Mendota in Wisconsin, USA [24]. This lake system is
reasonably large (∼40 km2 in area) and the lake has a maximum depth of
25 meters. It also exhibits large changes in water temperatures in response
to seasonal and sub-seasonal weather patterns and thermally stratifies during
the summertime. Observations of lake temperature were collected from North
Temperate Lakes Long-Term Ecological Research Program [24].

The input features that describe prevailing meteorological conditions are
available on a continuous daily basis from April 02, 1980, to December 30,
2014 (12,690 dates). We used a set of seven input features, including short-
wave and long-wave radiation, air temperature, relative humidity, wind speed,
frozen and snowing indicators. These were acquired and/or computed from the
North American Land Data Assimilation System. Temperature observations
vary in their distribution across depths and time, i.e., there are certain days
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when observations are available only on a few depths or no observations are
available.

We use the observed data from April 02, 1980, to October 31, 1991, and the
data from June 01, 2003, to December 30, 2014, as training data (in total 8,037
observations). Then we applied the trained model to predict the temperature
at different depths for the period from November 01, 1991, to May 31, 2003
(in total 5,121 observations).

D2: Predicting water temperature in Delaware River Basin. The dataset is
pulled from U.S. Geological Survey’s National Water Information System [63]
and the Water Quality Portal [64]. The river segments were defined by the
network used for the National Hydrologic Model [65], and the river segments
are split up to have roughly a one day water travel time. We study a subset of
the Delaware River Basin with 42 river segments that feed into the mainstream
Delaware River at Wilmington, Delaware.

We use input features at the daily scale from October 01, 1980, to Septem-
ber 30, 2016 (13,149 dates). The input features have 10 dimensions which
include precipitation, air temperature, day of year, solar radiation, shade frac-
tion, potential evapotranspiration, and the geometric features of each segment
(e.g., elevation, length, slope, and width). Air temperature, precipitation, and
solar radiation values were derived from the gridMET dataset [66]. For both
datasets D1 and D2, the daily scale meteorological input are calculated as the
daily average of the original hourly meteorological data from the gridMET
dataset. Other input features (e.g., shade fraction, potential evapotranspira-
tion) are difficult to measure frequently, and we use values produced by the
PRMS-SNTemp model as its internal variables. Water temperature observa-
tions were available for 32 segments but the temperature was observed only
on certain dates. The number of temperature observations available for each
observed segment ranged from 1 to 9,810 with a total of 51,103 observations
across all dates and segments. We use the observed data from October 01,
1980, to September 30, 1992, and the data from October 01, 2004, to Septem-
ber 30, 2016, as training data (in total 34,985 observations). Then we applied
the trained model to predict the temperature for the period from October 01,
1992, to September 30, 2004 (in total 16,118 observations).

Simulated data: In D1, we use the physics-based General Lake Model
(GLM) [1] to generate different simulated data by varying the lake geome-
try and water clarity. Specifically, we used “cone,” “barrel,” and “martini”
shapes to define the depth-area parameters in the GLM to generate three
sets of simulated data. Then we fix the geometry as “cone” and use three
different clarity levels “normal” (Kw=0.45), “dark” (Kw=1.20), and “clear”
(Kw=0.25). Water clarity affects the penetration of solar radiation into the
deeper water. In D2, we use PRMS-SNTemp [59] to generate different simula-
tions by setting average groundwater residence time (τ) as 10 days, 45 days,
and 100 days. A shorter τ means the groundwater quickly moves through the
groundwater aquifer and enters the stream at a temperature more similar to
recent air temperatures, whereas a longer τ means groundwater temperatures
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Table 1: Performance (as measured by root mean squared error (RMSE) in
degrees Celsius) using simulations with different geometric parameters in mod-
eling lake water temperature (D1). The first three rows represent the simulated
data produced by the physics-based model using different parameters. The
methods RNN, STN, and STNDA (rows 4-6) do not use any simulations. The
superscript p(k) means that the model is first pre-trained using simulations
generated using parameter k. Here % columns are percent observations used
during fine-tuning phase. The +/- values represents the range of values across
replicates with random starting weights, and NA’s for the +/- values are for
models that did not have multiple model runs. The bolded values are the best
performing models in each dataset and data sparsity level.

Method 0% 0.2% 2% 100%

GLM(cone) 2.664(±NA) - - -

GLM(barrel) 3.791(±NA) - - -

GLM(martini) 5.919(±NA) - - -
RNN - 4.615(±0.173) 2.311(±0.240) 1.489(±0.091)
STN - 3.349(±0.381) 1.848(±0.200) 1.393(±0.070)

STNDA - 3.867(±0.390) 1.862(±0.189) 1.394(±0.073)

STNcomb(cone) - 2.272(±0.256) 1.703(±0.113) 1.381(±0.073)

PGRNNp(cone) 2.469(±0.168) 2.056(±0.184) 1.595(±0.097) 1.374(±0.074)

STNp(cone) 2.289(±0.175) 2.181 (±0.173) 1.591(±0.107) 1.368(±0.075)

STNp(barrel) 2.996(±0.102) 2.808(±0.187) 1.642(±0.102) 1.312(±0.075)

STNp(martini) 5.386(±0.124) 2.955(±0.074) 1.821(±0.071) 1.402(±0.081)

STNSIMLR 2.914(±0.116) 2.103(±0.076) 1.634(±0.144) 1.373(±0.045)

STNSIMLR-att 2.914(±0.116) 2.083(±0.183) 1.636(±0.135) 1.372(±0.058)

STNSIMLR-ctr 2.914(±0.116) 2.431(±0.196) 1.535(±0.132) 1.248(±0.061)

are more seasonally stable. These physical parameter values represent a range
of values observed across lake and stream systems, but are not tailored to our
target systems.

Goals: In D1, we aim to predict water temperature in each depth of the
water column. In D2, we aim to predict water temperature in each river seg-
ment. Here we assume the river temperature is the same across depth because
rivers tend to be well-mixed and shallower.

Implementation details: We implement STN using Tensorflow and GTX
2080 GPU. All the hidden variables and gating variables have 20 dimensions.
We use five update steps for obtaining simulation-specific parameters Θk dur-
ing each epoch of pre-training. The model is pre-trained for 150 epochs with
learning rate 0.001 before being fine-tuned for 100 epochs with learning 0.0005.
The hyper-parameter λ is set as 0.5.

We generate the adjacency matrix A based on the inverse relation of the
distance between each pair of locations i and j. We represent the distance as
dist(i, j). In D1, we use the distance between different layers across depth. In
D2, this represents the stream distance between the endpoints of each pair of
river segments and we only consider i as a neighbor of j when i is anywhere
upstream from j (so j is affected by water flow from i). We standardize the
distance and then compute the adjacency level as Aij = 1/(1+exp(dist(i, j)))
for each pair of locations (i, j).
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Table 2: Performance using simulations with different clarity parameters in
modeling lake water temperature (D1). The bolded values are the best per-
forming models in each dataset and data sparsity level.

Method 0% 0.2% 2% 100%

GLM(normal) 2.664(±NA) - - -

GLM(dark) 3.053(±NA) - - -

GLM(clear) 1.723(±NA) - - -
RNN - 4.615(±0.173) 2.311(±0.240) 1.489(±0.091)
STN - 3.349(±0.381) 1.848(±0.200) 1.393(±0.070)

STNDA - 3.867(±0.390) 1.862(±0.189) 1.394(±0.073)

STNcomb(clear) - 2.141(±0.181) 1.692(±0.132) 1.380(±0.075)

PGRNNp(clear) 2.518(±0.135) 2.050(±0.120) 1.648(±0.128) 1.371(±0.076)

STNp(normal) 2.289(±0.175) 2.179 (±0.206) 1.594(±0.100) 1.377(±0.074)

STNp(dark) 2.582(±0.164) 2.084(±0.195) 1.634(±0.099) 1.326(±0.031)

STNp(clear) 2.214(±0.133) 1.847(±0.205) 1.645(±0.116) 1.308(±0.056)

STNSIMLR 2.425(±0.044) 1.817(±0.049) 1.601(±0.035) 1.372(±0.034)

STNSIMLR-att 2.425(±0.044) 1.819(±0.042) 1.525(±0.031) 1.366(±0.031)

STNSIMLR-ctr 2.425(±0.044) 1.806(±0.036) 1.503(±0.029) 1.263(±0.031)

Table 3: Performance using simulations with different parameters of average
groundwater residence time (τ) in modeling river water temperature (D2).
The bolded values are the best performing models in each dataset and data
sparsity level.
Method 0% 0.2% 2% 100%

PRMS-SNTemp(τ10) 2.618(±NA) - - -

PRMS-SNTemp(τ45) 3.558(±NA) - - -

PRMS-SNTemp(τ100) 5.840(±NA) - - -
RNN - 2.867(±0.147) 1.732(±0.083) 1.445(±0.027)
STN - 2.356(±0.135) 1.858(±0.105) 1.397(±0.030)

STNDA - 2.624(±0.138) 1.863(±0.103) 1.420(±0.032)

STNcomb(τ10) - 2.396(±0.109) 1.716(±0.094) 1.439(±0.075)

PGRGrNp(τ10) 2.852(±0.103) 2.362(±0.098) 1.628(±0.063) 1.396(±0.033)

STNp(τ10) 2.738(±0.094) 2.259(±0.123) 1.697(±0.096) 1.403(±0.022)

STNp(τ45) 3.632(±0.084) 2.409(±0.124) 1.874(±0.079) 1.473(±0.029)

STNp(τ100) 5.596(±0.079) 2.480(±0.089) 1.871(±0.092) 1.457(±0.027)

STNSIMLR 3.235(±0.045) 2.009(±0.130) 1.636(±0.066) 1.403(±0.014)

STNSIMLR-att 3.235(±0.045) 2.054(±0.090) 1.675(±0.057) 1.468(±0.019)

STNSIMLR-ctr 3.235(±0.045) 2.103(±0.079) 1.618(±0.058) 1.362(±0.021)

5.2 Evaluation of predictive performance

We compare our method against multiple baselines, i.e., the physics-based
model (GLM in D1 and PRMS-SNTemp in D2); Recurrent Neural Network
(RNN) with the LSTM cell; and the state-of-the-art methods, PGRNN [21]
and PGRGrN [46], which have shown success in modeling lake temperature
and river temperature, respectively. We also compare different versions of the
STN model. First, we compare to the STN model trained using only observed
labels (STN). We also implement a semi-supervised version of the STN model
via adversarial domain adaptation (STNDA) [67], which considers the training
data as the source domain and the testing data as the target domain. Next,
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we consider the STN models that are pre-trained using a specific set of simu-
lated data (as proxy labels) and then fine-tuned with observed labels (STNp(c),
where c is a specific parameter setting). Such a comparison aims to show the
advantage of our proposed pre-training strategy in extracting general physical
patterns jointly from multiple sets of simulations. To show the effectiveness
of pre-training, we also implement a baseline STNcomb(c), which directly com-
bines the simulations and observations as training labels during the training
process. Specifically, in the training period, this baseline uses observed labels
when they are available and uses simulated labels otherwise. Since simulated
labels under different parameter settings are different with each other, we only
report the simulation setting c that produces the best performance in each test.
Additionally, we implement three versions of our proposed method STNSIMLR,
STNSIMLR-att, and STNSIMLR-ctr. They have the same pre-training process but
different fine-tuning processes. The STNSIMLR method only uses the supervised
loss on the outputs of the STN model (Eq. (7)) in fine-tuning. STNSIMLR-att

also uses the supervised loss but it combines the STN outputs with simulation
data through the ensemble method (discussed in Section 4.3.2) to generate final
predictions. STNSIMLR-ctr follows the contrastive learning method (discussed
in Section 4.3.1) and optimizes the the contrastive loss (Eq. (14)).

In Tables 1 and 2, we report the performance of different methods in pre-
dicting water temperature in lake systems using different parameters of lake
geometry and clarity, respectively. In Table 3, we report the performance in
predicting water temperature in river networks using different parameters for
average residence time in groundwater flow (i.e., τ). For methods PGRNN (for
lake temperature prediction) and PGRGrN (for river temperature prediction),
because they can only learn from one set of simulated data, we show the per-
formance of these methods using the simulated data that produce the best
performance (“cone” for lake geometry, “clear” for lake clarity, and “τ=10
days” in river modeling).

We can observe that our method outperforms other methods by a con-
siderable margin in both applications (Q1). The improvement from RNN to
STN shows the effectiveness of incorporating spatial dependencies in modeling
thermodynamic patterns. The domain adaptation method (STNDA) does not
improve the performance because the invariance structure of input features
cannot help extract underlying effect on weather conditions to water tem-
perature change. The physics-based models (i.e., GLM and PRMS-SNTemp)
perform poorly because of their inherent model bias due to approxima-
tions and imperfect parameterizations. Nevertheless, the proposed pre-training
method (i.e., STNSIMLR) can still extract useful physical knowledge from
the imperfect simulated data and thus performs better than STN, especially
when we are using less training data. The performance is further improved
after we use the contrastive loss in fine-tuning (i.e., STNSIMLR-ctr). This is
because STNSIMLR-ctr can better learn from specific sets of simulated data
that are closer to the reality. In general, STNSIMLR-ctr performs better than
STNSIMLR-att. In the contrastive learning process, the simulated data have
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been used to guide the training of STN training by exploring similarity
amongst STN and each physics-based model. In contrast, the attention-based
ensemble model directly combines STN and physics-based models in the out-
put layer. Hence, the attention-based ensemble prediction can be affected by
the bias in simulated data while the contrastive learning method only enforces
the similarity through the hidden representation, which encodes representative
patterns of water dynamics.

As we reduce the amount of training data, all of the methods produce
larger prediction error. However, we can clearly see that the models that are
pre-trained using simulated data (i.e., methods in the second and third blocks
of each dataset) have much lower error than non-pre-trained models when we
use fewer training samples. The pre-trained model also performs better than
the STNcomb method using the simulations under the same setting. This is
because the simulated labels can be biased due to approximations used in
physics-based models and thus directly using them as supervision can degrade
the performance. In contrast, the pre-training-based training method uses sim-
ulations and observations in two separate stages. Using simulated labels can
help initialize intermediate network layers in the STN model, and the bias can
be mitigated when the model is fine-tuned with observed labels. These models
can learn a better initialized state from a large amount of simulated data (avail-
able at every day and every location) and thus require less observation data for
fine-tuning. Also, our proposed method generally performs better than exist-
ing methods with the pre-training process (i.e., PGRNN and PGRGrN) given
limited observation data (e.g., 0% and 0.2%) (Q2). The pre-training strategy
used in STN jointly learns from multiple sets of simulated data and updates
different components of the model (e.g., gating variables and other layers) in
a deliberate way to reflect the difference in physical parameters. Hence, com-
pared to PGRNN and PGRGrN, STN has a better chance at capturing general
physical knowledge while reducing the effect of imperfect physical settings.

We can also observe that models pre-trained using different sets of simu-
lated data can have very different performance. Specifically, the martini shape
is very different from the true shape of Lake Mendota so the model pre-trained
with the martini simulations has relatively poor performance. Similarly, the
river temperature model STNp(τ100) has worse performance because the resi-
dence time for shallow groundwater is thought to be generally less than 100
days for many segments in the Delaware River Basin especially during higher
stream flows (Martin Briggs, U.S. Geological Survey, written commun., Feb.
8, 2021). However, these pre-trained models (STNp(martini) and STNp(τ100))
can get much better performance when refined using even a small amount of
data (e.g., 2%), and predictions can still be much better than the STN model
without pre-training. The methods PGRNN and PGRGrN show similar results
since they are also pre-trained using simulations.

Moreover, we can observe that some pre-trained models (e.g., STNp(cone),
STNp(clear), and STNp(τ10)) have better performance than our proposed meth-
ods (STNSIMLR, STNSIMLR-att, STNSIMLR-ctr) before fine-tuning (i.e., with 0%
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Fig. 2: Predictions made by models pre-trained using our method and using
each set of simulations with different parameters for geometry (first column)
and clarity (second column). All the predictions are shown at 0m depth, 12m
depth, and 24m depth (Rows 1-3).

data for fine-tuning). However, in practice we may not know the most suitable
parameters when training the model. We can see that our method can still get
comparable performance even without access to such information. Moreover,
our method (STNSIMLR-ctr) after fine-tuning has better performance than all
the baselines by using the contrastive loss to explore the relationship between
observations and different sets of simulated data.

5.3 Predictions of pre-trained models

Here we discuss the effect of pre-training in different scenarios (Q4). In Fig. 2,
we show the predictions made by the pre-trained model using our method
(SIMLR) and using each set of simulated data over different depths of Lake
Mendota. Pre-trained models are always biased because they are trained from
simulations with imperfect parameterization. We can observe that SIMLR pre-
dictions are generally in the middle of predictions made by other pre-trained
models and also follow the similar temporal patterns. This is because SIMLR
extracts general patterns that are shared by all these different sets of simu-
lated data. Besides, SIMLR is able to achieve reasonable accuracy compared
with observations even without the awareness of the best parameter setting.

In Fig. 3, we show the predictions made by the pre-trained model
using our proposed method and the fine-tuned model using 2% data (using
STNSIMLR-ctr). Although the pre-trained model has bias compared to true
observations, it is able to capture many general physical relationships (e.g.,
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Fig. 3: Predictions made by both pre-trained and fine-tuned (using 2% obser-
vations) models using simulations with different parameters for geometry (first
column) and clarity (second column). All the predictions are shown at 0m
depth, 12m depth, and 24m depth (Columns 1-3).

seasonal patterns, temperature variation across depths), and thus it can be
easily refined to match observations even using just 2% data.

5.4 Variation of physical parameters

A goal of this work is to better understand the relation between observations
and simulations through the similarity learned from the fine-tuning process
(i.e., Eq. (12)). The results in this part are produced using STNSIMLR-ctr and
STNSIMLR-att. In Fig. 4 (a) and (c), we show the similarity with different clar-
ity values in different lake depths (averaged over time). In Fig. 4 (b) and (d),
we show the similarity with different geometries (cone, barrel, and martini) in
different months (averaged over depth). We can see that the model is closer to
clear or normal simulations in shallower depths but closer to dark simulations
in lower depths. As none of the physics-based models provided accurate predic-
tions for all depths, SIMLR revealed unaccounted-for or poorly parameterized
processes that could be addressed given these insights, such as introducing a
clarity parameter that varies with depth (as is common in the natural environ-
ment) or modifying vertical mixing parameters that could alter bottom water
warming rates. We can also see that the model is closer to cone simulations
in the summer and closer to barrel simulations in the fall and winter, which
indicates the fall cooling period and under ice temperatures were better sim-
ulated when cooling was slowed by using the barrel lake shape. Moreover, it
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(a) (b)

(c) (d)

Fig. 4: (a)(b) The similarity mapping obtained from STNSTN-ctr, and (c)(d)
the attention weights obtained from STNSTN-att for each parameter setting.
(a)(c) The similarity/weight to different clarity settings in different depths
of the Lake Mendota. (b)(d) The similarity to different geometry settings in
different months.

can be seen that the similarity relation learned by STNSIMLR-ctr is generally
consistent to the attention weights learned by STNSIMLR-att.

For the river modeling, SIMLR detects that most segments are more similar
to simulation with groundwater residence time τ=10 days during March-May.
A lower τ value indicates the groundwater temperature is more similar to
recent air temperatures. Although PRMS-SNTemp encodes a constant value
of τ throughout the year, seasonality in groundwater residence times has been
confirmed in nearby watersheds, with shallow groundwater (having lower τ)
contributing more in the spring than in other seasons [68]. These results show
that the SIMLR approach transforms a constant physics-based model parame-
ter into a flexibly time-varying parameter that is more consistent with observed
temperatures and known processes (Q5).

5.5 Generalization test

We expect that our method has better generalizability to different scenarios
given its ability to extract and transfer general physical relationships. Gener-
alizability is important for scientific problems because most observation data
may be collected from certain periods or locations for which it is easier to
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Table 4: Temperature root mean squared error (RMSE) in the summer seasons
of the testing period using models trained from spring, fall, and winter in the
training period (the first column) and trained using all the data in the training
period (the second column).

Method Train on cold seasons Train on all the data

GLMclear 2.037(±NA) 2.037(±NA)
RNN 2.587(±0.245) 1.500(±0.035)
STN 2.180(±0.092) 1.389(±0.045)

STNDA 2.932(±0.087) 1.497(±0.051)

STNSIMLR 1.724(±0.061) 1.402(±0.037)

STNSIMLR-att 1.821(±0.057) 1.398(±0.034)

STNSIMLR-ctr 1.685(±0.066) 1.325(±0.034)

deploy sensors. As a strong test of generalizability for modeling lake tempera-
ture, we train the model using observations from colder seasons in the training
period and then test in the summer time of the testing period. Although real-
world temperate data collection procedures more often provide data in summer
than in winter, training only on cold seasons is more challenging because Lake
Mendota has highly dynamic patterns in summer and also a unique stratifi-
cation across different layers due to the temperature difference between the
surface and the lake bottom.

We test our method on the D1 dataset using three sets of simulated data
with different clarity values. In Table 4, we report the performance in the
summer seasons of the test period. We also include the testing performance of
the model trained using all observations from the training period as a base-
line in the second column of Table 4. We can see that all the methods have
larger errors when they are trained only on colder seasons. However, our pro-
posed method still yields better performance than other methods (Q3). This
is because our method learns the general physical relationships that hold in
different scenarios. We can see that the GLM model (under the clear clarity
setting) performs better than pure data-driven models such as RNN and STN.
The domain adaptation method (STNDA) has a worse performance because
the predictive model cannot fully distinguish different conditions in warmer
and colder seasons by referring to an invariant feature space. Our proposed
method performs better than GLMclear in this generalization test because
SIMLR is able to intelligently transfer knowledge from multiple sets of sim-
ulated data. Also, compared to the GLM simulation, the fine-tuning process
using true observations from a different season is also helpful if it is applied to
a good initial model, e.g., the model learned through SIMLR that embodies
general physical relationships.

5.6 Sensitivity test

Here we test the performance using different settings of hyper-parameters
(Q6). First, we test different number of update steps (iteration of Eq. (8))
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(a) (b)

Fig. 5: The prediction root mean squared error (RMSE) using (a) different
number of update steps and (b) the value of λ, for the STNSIMLR-ctr method.

and report the predictive performance of lake temperature modeling using
simulations with clarity settings. Specifically, we show the performance using
100% data and 0.2% observation data in Fig. 5 (a). We can see that the
model has similar performance when we set the number of update steps to
be greater or equal to five. Although more update steps can slightly improve
the performance, it will bring additional computational cost to the training
process.

We also study the effect of hyper-parameter λ (the weight for the con-
trastive loss) on the performance of STNSIMLR-ctr (see Fig. 5 (b)). As we
increase the value from 0, the prediction error decreases gradually. Such
decrease is especially obvious when we use 100% data because the contrastive
loss can better explore the relationship between observation and simulated
data. In particular, if we set a very high value for λ, then the prediction error
becomes larger when we use limited data (i.e., 0.2% data). This is because the
small data may better fit certain simulations that are not close to reality and
thus mislead the training process.

6 Conclusion

In this paper, we propose a new method for modeling spatial and tempo-
ral patterns in dynamical systems while also accommodating uncertainties in
physics-based model parameters. We extract the general physical relationships
over space and time to inform the initialization of the ML model. Then we fine-
tune the model by exploring the similarity between available observation data
and simulated data. We have demonstrated the superiority of the proposed
method, which is better equipped to learn from limited observation data, pro-
vide insights about the value of physical parameters, and better generalize to
unseen scenarios.

The proposed method can be widely applied to other dynamical sys-
tems that are commonly simulated by physics-based models with uncertain
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parameters. For example, physics-based models for hydrology and climate sys-
tems often have bias, which stems from the uncertainty in selecting physical
parameters. Another example is in the agriculture domain, in which many
physics-based models have been developed to simulate the carbon cycle and
model the growth of crops. Such modeling process also highly depends on soil
properties, vegetation, and surrounding land covers, which are often uncertain
over large regions. Our proposed method can bring a great potential to these
applications by jointly learning from multiple sets of uncertain simulations.

While our method has shown the improved predictive performance by
considering the variations on certain physical parameters, we could certainly
explore a larger number of variations in future studies. Moreover, one could
explore ways to learn from variations of multiple physical parameters at the
same time. Another extension is to investigate the pre-training process using
simulations that are created by different physics-based models. This could be
very helpful for many scientific problems where multiple physics-based models
have been developed with different modeling components and parameteriza-
tions. Finally, we anticipate the knowledge discovered by our method can
advance the design of both physics-based models and machine learning models.
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