
Combining Hard and Soft Constraints in Quantum
Constraint-Satisfaction Systems

Ellis Wilson
North Carolina State University

Raleigh, North Carolina 27695-8206
Email: ejwilso2@ncsu.edu

Frank Mueller
North Carolina State University

Raleigh, North Carolina 27695-8206
Email: mueller@cs.ncsu.edu

Scott Pakin
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Email: pakin@lanl.gov

Abstract—This work presents a generalization of NchooseK, a
constraint satisfaction system designed to target both quantum
circuit devices and quantum annealing devices. Previously,
NchooseK supported only hard constraints, which made it suitable
for expressing problems in NP (e.g., 3-SAT) but not NP-hard
problems (e.g., minimum vertex cover). In this paper we show
how support for soft constraints can be added to the model and
implementation, broadening the classes of problems that can be
expressed elegantly in NchooseK without sacrificing portability
across different quantum devices.

Through a set of examples, we argue that this enhanced
version of NchooseK enables problems to be expressed in a
more concise, less error-prone manner than if these problems
were encoded manually for quantum execution. We include an
empirical evaluation of performance, scalability, and fidelity on
both a large IBM Q system and a large D-Wave system.

Index Terms—circuit-model quantum computing, quantum
annealing, programming models

I. INTRODUCTION

Much like GPUs, which have become omnipresent in high-
performance computing (HPC) systems, quantum processing
units (QPUs) are intended to accelerate computational kernels.
The difference is that QPUs offer the potential of solving
computationally hard problems in shorter time than would be
possible via any form of classical computing—either by a
constant though polynomial factor (termed “quantum advan-
tage”) or in a few cases even exponentially, making classically
intractable problems tractable (termed “quantum supremacy”).
In today’s age of noisy, intermediate-scale quantum (NISQ)
computation [1], practical experiments are limited by the
number of available qubits and their high susceptibility to
noise. Consequently, quantum supremacy in particular has been
demonstrated to date on actual QPUs only for problems or input
sizes that lack practical applicability [2], [3], [4]. Nevertheless,
the hope that future, fault-tolerant quantum computers will
usher in a new era of HPC makes quantum computing an area
with significant research potential and relevance to the HPC
community.

Quantum programming requires a way of thinking that is
very unlike that of classical programming and as such can have
a high barrier of entry even for those already comfortable
with coding in a variety of classical computer languages.
Furthermore, there is substantial architectural variety among
different quantum computers—analogous to CPUs vs. GPUs vs.

TPUs [5] vs. IPUs [6] vs. RDUs [7] and the like in the classical
world—which frustrates the creation of a portable programming
model.

Currently, the two dominant architectural models for quan-
tum computers are the circuit model and the annealing
model. Most hardware vendors, including IBM, IonQ, Rigetti,
Honeywell, ColdQuanta, PsiQuantum, Quantum Brilliance, and
many more, are basing their products on the circuit model [8],
[9], [10], [11], [12]. At its core, a circuit-model program is an
enormous (2n ×2n) unitary matrix, expressed as the product
of tensor products of small (usually 2×2 and 4×4) unitary
matrices.

D-Wave [13] is the lone vendor championing the annealing
model, although Fujitsu’s Digital Annealer [14] represents a
classical analogue (same computational model but a classical
rather than a quantum implementation). Although both the
circuit model and the annealing model are ultimately governed
by the Schrödinger equation, an annealing-model program is
essentially a quadratic pseudo-Boolean function. The hardware
searches (heuristically) for the inputs that minimize this
function [15], [16].

Being tied specifically to a particular type of optimization
problem, the annealing model is more restrictive than the
general-purpose circuit model. However, the annealing model
offers an important engineering advantage: scalability. D-Wave
has manufactured annealing devices with about two orders of
magnitude more qubits than what is available today for the
circuit model. At the time of this writing, D-Wave’s largest
machine provides nearly 5,760 qubits, while IBM’s largest
machine provides only 127.

To date, there have been virtually no attempts to develop a
high-level programming model that bridges these two quantum
computational models. Because of the popularity of the
circuit model, most programming systems target that. Some
recent examples of circuit-model programming languages are
Twist [17], Silq [18], Q# [19], ProjectQ [20], QWIRE [21],
Scaffold [22], and Quipper [23]. D-Wave’s Ocean API [24]
facilitates the expression of annealing-model programs. All of
these work at a fairly low level of abstraction. The circuit-model
systems provide mechanisms for juxtaposing small unitary
matrices in a large matrix product, and the annealing-model
system provides mechanisms for specifying coefficients for a
quadratic pseudo-Boolean function.

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F3571885.3571902&domain=pdf&date_stamp=2022-11-18

A rare example of cross-paradigm quantum programming is
NchooseK [25], [26]. NchooseK is a domain-specific language
focusing on the domain of constraint satisfaction problems. It
seeks to work at a sufficiently high level of abstraction as to
both facilitate programming, even for quantum novices, and
enable execution on both circuit-model and annealing-model
devices. The fundamentals of a simplistic NchooseK abstraction
was first used for a Grover search by Khetawat et al. [25] and
developed further for simple constraint-satisfaction problems in
a workshop paper by Wilson et al. [26]. Section II elaborates
further, but a small example of an NchooseK program is
nck({a,b},{0,1})∧ nck({b,c},{1}), which is interpreted as
“Neither or exactly one of a and b must be TRUE, and,
simultaneously, exactly one of b and c must be TRUE.”

This paper presents a more generalized variant of NchooseK
for expressing complex constraint-satisfaction problems. Specif-
ically, the paper makes the following contributions:

• It introduces soft constraints—constraints, which, if bro-
ken, will incur a penalty but will not invalidate the problem.
Soft constraints are crucial for expressing minimization
or maximization problems in NchooseK.

• It evaluates a larger set of NchooseK problems, including
both hard and soft constraints, than had previous been
studied.

• It compares both the complexity of NchooseK and the
quality of the quadratic unconstrained binary optimization
(QUBO) expressions used as an intermediate representa-
tion of NchooseK, by comparing them to manually created
QUBOs for the same problems.

• It evaluates quantum computations of much larger scale
in today’s terms than previous work—of up to 65 qubits
on the IBM gate-based machines, utilizing every qubit on
the ibmq brooklyn [27], and 1163 qubits on the D-Wave
quantum annealers, even within a range where correct
answers were potentially no longer found.

II. BACKGROUND

NchooseK is a programming paradigm based on expressing
constraint-satisfaction problems over a set of boolean variables.
Each constraint in a problem specification takes the form,
“Given a variable collection of size N, a specified number of
them, K, must be TRUE.” Before elaborating we state some
relevant definitions:

Definition 1 (Variable collection). A variable collection
comprises a number of Boolean variables in which variables
can be repeated, but order does not matter. Its cardinality is the
number of elements (which can exceed the number of unique
variables due to repetitions).

Definition 2 (Selection set). A selection set comprises a set
of disjoint whole numbers, none of which can be greater than
the cardinality of a corresponding variable collection.

Definition 3 (Hard constraint). An NchooseK hard constraint,
written as nck(N,K), consists of a variable collection N and a
selection set K. It is satisfied if the cardinality of the variable

collection whose variables are TRUE equals one of the numbers
in the selection set:

nck(N,K)≡

(
∑

n∈N
n

)
∈ K,

where n ∈ {0,1} and we associate FALSE with 0 and TRUE
with 1.

Definition 4 (NchooseK program). An NchooseK program
is a conjunction of NchooseK hard constraints written as
nck(N1,K1) ∧ nck(N2,K2) ∧ ·· · ∧ nck(Nn,Kn). The result of
executing a program is either an assignment of Boolean values
to all variables over the variable collections such that all hard
constraints are honored or an indication that no such assignment
exists.

To create useful NchooseK constraints, a programmer must
focus on the relationships among variables. For example,
consider a collection containing the variables a and b. The
problem formulation in which a and b must both be TRUE
is given by the constraint nck({a,b},{2}). This indicates that
exactly two of a and b must be TRUE, and therefore none can
be FALSE. If they need to have the same value but it does not
matter which, this would be expressed as nck({a,b},{0,2}).
By including two numbers in the selection set, K, this constraint
will be satisfied if two variables are TRUE or if zero variables
are TRUE but not if exactly one is TRUE. If, on the other hand,
the two variables need to have different values, the constraint
would be nck({a,b},{1}), indicating that exactly one must
be TRUE, and, therefore, the other must be FALSE. If at least
one of a and b need to be TRUE, the constraint would be
nck({a,b},{1,2}). Omitting 0 from the selection set ensures
that they cannot both be FALSE.

As a more complicated example, consider satisfiability
problems, discussed more in depth in Section VI. A satisfiability
problem accepts an expression in conjunctive normal form
(conjunctions of unions of possibly negated variables) and re-
ports whether there exists a variable assignment that makes the
expression TRUE. “(v1 ∨ v2 ∨¬v3)∧ (¬v2 ∨¬v3 ∨ v4)

?
= TRUE”

is an example of a 3-SAT problem, which is a satisfiability
problem in which each clause contains at most three variables.
For a single 3-SAT clause (x∨ y∨ z) to be TRUE, at least one
of the three variables must be TRUE. This is expressed in
NchooseK with the constraint

nck({x,y,z},{1,2,3}) .

This constraint is illustrated graphically in Figure 1.

III. RELATED WORK

A number of quantum circuit languages are being developed,
either as standalone languages or as embedded domain-specific
languages. These include Q# [19], Twist [17], Silq [18],
ProjectQ [20], QWIRE [21], Scaffold [22], and Quipper [23].
D-Wave’s Ocean API [24] likewise functions as a language for
their annealing devices and simulators. While not a language
per se, Xanadu’s PennyLane is a quantum machine-learning

x

1, 2, 3

y z

Fig. 1: A visual representation of a 3-SAT clause with the
variables x, y, and z. The nodes represent the Boolean variables,
and the box indicates the constraint.

software package designed to work across a number of circuit-
model systems [28]. In contrast to those efforts, which target
a single computational model apiece, NchooseK programs
run unmodified on both annealing-model and circuit-model
machines.

XACC [29] is a software infrastructure that can interface
to multiple hardware platforms, including both circuit-model
and annealing-model systems. It enables classical programs to
embed blocks of quantum code, e.g., written in Quil [30], and
designate a quantum computer on which to run it. The primary
difference with NchooseK is that NchooseK raises the level
of abstraction above that of the underlying form of quantum
computation, enabling true portability across computational
models. XACC, in contrast, enables a program to integrate
circuit-model-specific code that runs only on circuit-model
quantum computers and annealing-model-specific code that
runs only on quantum annealers. Despite defining its own
intermediate representation, XACC is not designed to run any
given piece of code on both circuit-model quantum computers
and quantum annealers. Another difference between the two
systems is that one can program in NchooseK without any
knowledge of quantum computing while XACC programmers
must be familiar with at least one quantum computational
model.

The closest related work to ours is Wilson et al. [26],
which introduces NchooseK for hard constraints. However,
their work lacks soft constraints, which are essential for
generalizing NchooseK’s applicability to maximization and
minimization problems. Our work not only fills this gap
but also presents a problem complexity analysis, considers
symmetrical constraints in doing so, and more thoroughly
evaluates success characteristics through an empirical study
involving both quantum circuit and annealing devices.

IV. SOFT CONSTRAINTS

In this work we propose a generalized NchooseK model
that additionally supports soft constraints: constraints whose
satisfaction is desired but not required. To motivate the need
for soft constraints we consider an example of a problem that
cannot be expressed in the existing NchooseK paradigm. We
attempt to solve this problem first using only hard constraints
and then, after showing how that fails, including soft constraints
to make the problem expressible.

A. Problem requirements and initial formulation

Minimum Vertex Cover is a well-known graph problem:
Given an undirected graph G = (V,E), a vertex cover is a
subset of vertices W ⊆V such that each edge in E is connected
to at least one member of W . The Minimum Vertex Cover is
the smallest W in cardinality that meets this requirement.

The first step in solving any NchooseK problem is deciding
what the variables should represent. Because the solution to
a Minimum Vertex Cover problem is formulated in terms of
vertices, we associate one variable per vertex such that the
variable is TRUE if and only if the corresponding vertex is
in W .

B. Setting up the vertex cover

As a running example, consider the graph in Figure 2, which
has five vertices and five edges.

a

b
c
d
e

Fig. 2: A graph of 5 vertices for reference

Consider first a smallest possible subgraph, e.g., the graph
G′ = ({a,b},{(a,b)}). For G′, we can easily determine a
minimum vertex cover immediately by expressing the problem
with the constraint nck({a,b},{1}). This ensures that exactly
one of the two variables will be TRUE and gives W a cardinality
of 1.

An inductive step is non-trivial. If we add to G′ vertex c and
edges (a,c) and (b,c), the resulting constraints, nck({a,c},{1})
and nck({b,c},{1}), cannot both be satisfied. For instance, if
a ∈ W then a is TRUE. In this case, b and c must both be
FALSE by the constraints nck({a,b},{1}) and nck({a,c},{1}),
which ensure that exactly one of the variables in the collections
is TRUE, and a must have the same value in all NchooseK
constraints within the same program. This leaves the constraint
nck({b,c},{1}) unsatisfiable.

Instead, we need to refine our original constraint to
allow both variables to be TRUE if necessary. Using
nck({a,b},{1,2}), as illustrated in Figure 3, not only expresses
a constraint that finds a vertex cover for our minimal subgraph
but can be extended over the entire graph to ensure that a
solution can be found.

The refined NchooseK program for five vertices is

nck({a,b},{1,2})∧nck({a,c},{1,2})∧
nck({b,c},{1,2})∧nck({c,d},{1,2})∧nck({d,e},{1,2}) ,

and this is illustrated in Figure 4. Unfortunately, this program
is incorrect in that it will be satisfied by any vertex cover of
the graph in Figure 2, not necessarily a minimum vertex cover.
The problem is that NchooseK requires all constraints to be
met, but this is not generally possible in a minimization or
maximization problem.

a

1, 2

b

Fig. 3: A single edge in a vertex cover. Each node corresponds
to a vertex in the original graph and a variable in the NchooseK
program. The box represents an NchooseK constraint.

a

1, 2

1, 2

b

1, 2

c

1, 2

d

1, 2

e

Fig. 4: A full vertex cover representation in NchooseK. This
will be satisfied by every valid vertex cover.

C. Minimization via soft constraints

To find specifically a minimum vertex cover we propose
generalizing NchooseK to support soft constraints in addition
to its existing hard constraints:

Definition 5 (Soft constraint). An NchooseK soft constraint,
written as nck(N,K,soft), acts as a desired but not required
constraint.

Definition 6 (Generalized NchooseK program). A generalized
NchooseK program is a conjunction of NchooseK hard and soft
constraints written as nck(N1,K1)∧nck(N2,K2)∧nck(Ni,Ki)∧
nck(Ni+1,Ki+1,soft)∧ nck(Ni+2,Ki+2,soft)∧ nck(Nm,Km,soft).
The result of executing a program is either an assignment of
Boolean values to all variables over the variable collections
such that all hard constraint are honored and the number of
satisfied soft constraints is maximized; or an indication that
no such assignment exists.

In short, the semantics is that an NchooseK program
execution will satisfy all hard constraints (or fail if this is
not possible) and as many soft constraints as it can.

For a minimization problem, one wants as few variables
as possible to be TRUE. To this end, one can associate a soft
constraint with each variable: nck({v},{0},soft), to indicate
a preference but not a demand that v be 0. Consequently,
adding the following constraints to our Minimum Vertex Cover
program requests that the solution represent a minimum vertex

cover:

nck({a},{0},soft)∧nck({b},{0},soft)∧
nck({c},{0},soft)∧nck({d},{0},soft)∧

nck({e},{0},soft)

The resulting Minimum Vertex Cover program is illustrated
in Figure 5.



 



 









 









 









 













Fig. 5: A visual representation of a minimum vertex cover
represented in NchooseK. The filled boxes with rounded corners
are soft constraints and act to minimize the number of vertices
in the cover.

Conversely, if one wanted to maximize the variables in a
particular problem, one could incorporate a constraint with a
selection set of one, i.e., nck({v},{1},soft). Constraints like
this are among the most common soft constraints used in
solving minimization or maximization problems, but they can
take other forms as well, potentially opening up problems
to more efficient solutions. For example, with the Max Cut
problem, one solution is to add an extra variable per edge
which is set up to be TRUE if and only if the edge has
been cut, then add a soft maximization constraint to each
of these new variables. This works, but adds many unnecessary
variables and greatly increases the number and complexity of
constraints. Another option is to instead have a soft constraint of
nck({u,v},{1},soft) to every edge. This expresses a preference
that every edge be cut, and NchooseK attempts to maximize the
number of soft constraints which have been met. This solves
the Max Cut problem more efficiently.

V. IMPLEMENTATION

One of NchooseK’s design goals is to run problems on both
circuit-model devices and annealing-model devices. The imple-
mentation of NchooseK uses a quadratic unconstrained binary
optimization (QUBO) format as an intermediate representation.
A QUBO seeks to minimize a quadratic equation in which
every term comprises either one or two binary variables and a
real, constant coefficient. These equations are of the form

f (xxx) =
N

∑
i=1

aixi +
N−1

∑
i=1

N

∑
j=i+1

bi, jxix j , (1)

and the objective is to find a set of values for variables xxx =
x1, ...,xn that minimize f (xxx).

The challenge in creating QUBOs is determining ai and
bi, j coefficients such that the values of xxx that minimize f (xxx)
correspond to the constraints of the target problem. One feature
of QUBOs that facilitates the identification of appropriate

coefficients is that QUBOs are compositional with respect
to addition. If a problem can be broken into small parts
before being translated into simple QUBOs, those QUBOs
can be combined via addition to form an overall problem
QUBO. NchooseK exploits this property by translating each
nck constraint individually to a QUBO, using QUBO variables
to represent the NchooseK variables, before summing all of
them into a final QUBO. The NchooseK implementation finds
the coefficients of each per-constraint QUBO by expressing the
coefficients in terms of a satisfiability modulo theories (SMT)
problem, which it then solves using the Z3 SMT solver [31].

Once an NchooseK program has been compiled to a QUBO,
it can be run essentially natively on quantum annealers.
NchooseK targets D-Wave quantum annealers by passing the
QUBO directly to D-Wave’s Ocean API [32]. For circuit-
model devices, NchooseK expresses the QUBO as a problem
Hamiltonian suitable for use with the QAOA [33] algorithm—
a software analogue of the quantum-annealing process. To
run on IBM Q circuit-model quantum computers, NchooseK
currently invokes the QAOA function provided by IBM’s
Qiskit library [34]. In either case, each QUBO variable and
therefore each NchooseK variable is represented by a qubit,
with the state of that qubit corresponding to the value of the
variable in the solution. Both of these types of machines may
also use additional qubits; this is discussed in more detail in
Section VIII.

As an example, consider the (a,b) edge from the minimum
vertex cover, constrained by nck({a,b},{1,2}). We translate
this constraint to

f (a,b) = ab−a−b , a,b ∈ {0,1} (2)

which is minimized when at least one of a or b has a value
of 1. If both edges (a,b) and (b,c) are constrained with
nck({a,b},{1,2})∧nck({b,c},{1,2}), this expression will be
transformed into f (a,b)+ f (b,c) = (ab−a−b)+(bc−b−c),
which in turn is minimized over a, b, and c.

Soft constraints introduce additional complexity to the
implementation. There is no inherent distinction between
hard and soft constraints in QUBOs. To incorporate soft
constraints in NchooseK we consider another property of
QUBOs: a QUBO function can be scaled by any positive
real-valued factor without altering the values that minimize
it. However, when multiple QUBOs are combined, larger-in-
magnitude coefficients bias the solution towards minimizing
those coefficients’ associated variables over the variables
associated with smaller-in-magnitude coefficients.

We exploit this property in order to strengthen hard con-
straints over soft constraints. When creating the QUBO for a
hard constraint, we multiply its coefficients by a factor of one
higher than the total weight of all soft constraints. Doing so
ensures that meeting a single hard constraint reduces the overall
value of f (xxx) more than would meeting all soft constraints.
Nevertheless, the more soft constraints are satisfied, the more
f (xxx) is further reduced beyond its value from satisfying hard
constraints alone.

import nchoosek

env = nchoosek.Environment()
verts = [’a’, ’b’, ’c’, ’d’, ’e’]
edges = [[’a’, ’b’], [’a’, ’c’], [’b’, ’c’],

[’c’, ’d’], [’d’, ’e’]]
for vert in verts:

env.register port(vert)
env.nck([vert], {0}, soft=True)

for edge in edges:
env.nck([edge[0], edge[1]], {1, 2})

print(env.solve())

Fig. 6: An NchooseK program to solve the minimum vertex
cover for the graph shown in Figure 2.

NchooseK is implemented as an embedded domain specific
language written in Python. Figure 6 shows the final vertex
cover from Figure 5 as a runnable program. Other problems
have a similar code structure: the environment is set up, each
variable needs to be registered, then each constraint is added
with the same syntax as described in this paper. When executed,
this program produces the following QUBO:

f (a,b,c,d,e) =−11a−11b−17c−11d −5e+

6ab+6ac+6bc+6cd +6de

This QUBO is isomorphic in the term structure to what one
might create by hand, up to the choice of coefficients, which
could be chosen differently, e.g., by multiplying by a common
positive, real-valued factor.

VI. COMPLEXITY COMPARISON

NchooseK is intended to be more programmer-friendly
than lower-level computational models. We therefore compare
the complexity of constructing a problem using NchooseK
constraints versus directly constructing a QUBO, which is how
one would normally program a quantum annealer or set up a
QAOA problem for a circuit-model quantum computer. The
set of problems considered is summarized in Table I. Besides
distinguishing the complexity class of problems in column 2
(NP-hard and NP-complete), we assess at the number of non-
symmetric constraints (column 3) to demonstrate the simplicity
of setting up a problem using NchooseK as opposed the less
intuitive and error-prone task of formulating a QUBO with
changing coefficients dependent on problem size. We observe
that problems either fall into the group of (a) constant (1 or 2)
or (b) linear non-symmetric constraints relative to their input,
which illustrates the ease of programming with the NchooseK
abstraction.

Definition 7 (Symmetric Constraints). Two NchooseK con-
straints are considered symmetric with one another if they have
the same selection set and their variable collections have the
same cardinality.

Problem Class # non-symm. NchooseK QUBO
constraints constraints terms

1. Exact Cover NP-C n n nN2

2. Min. Cover NP-H n nN nN2

3. Min. Vert. Cover NP-H 2 |V |+ |E| |V |+ |E|
4. Map Color NP-C 2 |V |+ |E|n |V |n2 + |E|n
5. Clique Cover NP-C 2 n|V |2 −|E| n|V |2 −|E|
6. k-SAT NP-H 2 n+m nm2 +n2m
7. Max. Cut NP-H 1 |E| |E|+ |V |

TABLE I: Sample problems, each listed with its complexity
class (NP-complete or NP-hard), number of non-symmetric
(different types of) constraints, total number of constraints, and
number of terms if expressed directly as a QUBO. For Exact
Cover and Minimum Set Cover, n refers to the number of the
original elements and N refers to the number of subsets.

For example, the constraints nck({a,b,c},{0,2}) and
nck({b,c,d},{0,2}) are symmetric, but nck({a,b,c},{0,2})
and nck({b,c,d},{1,2}) are non-symmetric, as are
nck({a,b,c},{0,2}) and nck({b,c},{1,2}).

When simpler to express a problem, we consider two-local
Ising Hamiltonians, in which the variables have values of −1
or 1, as opposed to QUBOs, in which the variables have values
of 0 or 1. A simple linear transformation maps between the
two problem forms.

Columns 4 and 5 indicate the worst-case complexity of
problem formulations as NchooseK constraints vs. as QUBOs,
respectively. In most cases, the number of constraints generated
by NchooseK is lower than the number of equivalent QUBO
terms, often reduced by at least one polynomial order with
few a few exceptions (minimum cover, clique cover), again a
reflection of NchooseK’s conciseness as an abstraction.

A. Number of terms and number of constraints

a) Exact set cover: The exact cover problem, which is NP-
complete, is covered in depth in a related workshop paper [26]
and will be described only briefly here. Given a set E and a set
S of subsets of E, find a subset of S such that every element of
E is included exactly once. This can be solved with NchooseK
by adding a constraint for each element of E with a variable
collection containing a variable corresponding to each subset
which contains that element, and a selection set of {1}.

For an exact cover problem with n elements and N subsets,
NchooseK requires n constraints, all of which may be non-
symmetric and could have a variable collection cardinality of
up to N. To formulate the QUBO directly one can adapt the
Ising Hamiltonian

HA = A
n

∑
α=1

(
1− ∑

i:α∈Vi

xi

)2

along the lines of Lucas [35], where α refers to an element and
Vi refers to subset i. The factor A may be omitted (A = 1) in
this context. With this equation, removing constant terms and
x2

i terms (because xi =−1 or 1, which becomes the constant 1
when squared), we have at least n terms, but realistically would

encounter more constraints as a problem where each element
is only in one subset would be trivial.

If an element is included in m subsets, however, that
element alone would introduce m(m+1)/2 terms. This direct
formulation has a worst-case complexity of nN(N + 1)/2
or O(nN2) compared to only O(n) for NchooseK. Both
formulations have the same best case.

b) Minimum set cover: The minimum set cover is NP-
hard and is the same as the exact cover problem with two key
differences: each element of E can be in the solution multiple
times, and the goal is to find the smallest subset of S which
contains every element of E. This needs the same number of
constraints using the same variable collections as the exact
set cover, with the selection set now containing every positive
integer up to the cardinality of the variable collection. It also
requires one soft constraint per subset in order to minimize
the number of subsets in the cover.

Both NchooseK and the QUBO formulation for this problem
are set up initially as in the exact cover, but require n additional
terms to express the minimization; the worst-case complexity
is therefore unchanged. It should be noted that in this case
these additional terms in the QUBO can be combined, but two
different coefficients for these terms need to be chosen and
balanced against each other.

c) Minimum vertex cover: For the minimum vertex cover,
an NP-hard problem described in Section IV, the NchooseK
solution requires |E| hard constraints and |V | soft constraints.
The corresponding Hamiltonian is formulated as the QUBO

H = A ∑
uv∈E

(1− xu)(1− xv)+B∑
v

xv

where u and v denote vertices. This results in 3|E|+ |V |
terms, the same complexity as NchooseK. The number of
mutually non-symmetric constraints for NchooseK is only two;
every constraint corresponds either to an edge of the form
nck({u,v},{1,2}) or to a vertex of the form nck({v},{0},soft).

d) Map coloring: The map coloring problem with n colors
is another NP-complete problem covered in depth by Wilson
et al. [26]. The solution uses one-hot encoding, meaning it
assigns n variables per vertex, with each variable indicating if
the vertex has the associated color. If vertex v has color options
1, 2, and 3, it has variables v1, v2, and v3. If v1 is TRUE, the
other two will be FALSE, and vertex v will have color 1. We
need one constraint per vertex to ensure that the vertex has
only one color. The variable collection contains n variables,
one for each color, and the selection set is {1}. This problem
also requires n constraints per edge. For these constraints, the
variable collection contains two variables corresponding to the
same color on each of the vertices the edge is connecting. The
selection set is {0,1}, ensuring that two adjacent vertices do
not share a color: nck({ui,vi},{0,1}). Every constraint in the
map coloring problem will be symmetric with one of these
two types.

Our NchooseK solution therefore requires |V |+ n|E| con-
straints. A QUBO using the same one-hot encoding scheme

is

∑
v

(
1−

n

∑
i=1

xv,i

)2

+ ∑
(uv)∈E

n

∑
i=1

xu,ixv, j

This uses |V |n/2(n+ 1) + |E|n terms, leading to O(|V |n2 +
|E|n) compared to NchooseK’s O(|V |+ |E|n). This same trend
is seen any time one-hot encoding is used; if n designations are
used between V vertices, the QUBO results in O(V n2) terms
while NchooseK uses only O(V) constraints.

e) Clique cover: The clique cover problem is NP-
complete. It requires the coloring of a graph with n colors such
that the nodes of each color form a clique within the color.
As in the map coloring problem, the solution to this problem
requires one-hot encoding with one constraint per vertex. It
also needs n constraints per edge absent from the graph to
ensure that two vertices that are not adjacent do not share a
color, similar to the constraints in the map coloring problem.
It also needs only two types of non-symmetric constraints.

The clique cover solutions are nearly identical in terms of
NchooseK constraints and QUBO terms. Both depend on the
number of possible edges not included in E. This is enumerated
as |V |(|V | − 1)/2− |E|. In both cases, the solution requires
O(n|V |2 −|E|) terms or constraints.

f) k-satisfiability: The NP-complete k-satisfiability prob-
lem establishes m constraints over n boolean variables, each
constraint of cardinality k. One or more variables per constraint
must have the value of either TRUE or FALSE specified by the
constraint. This is similar to how NchooseK constraints are
built, with one major exception: NchooseK requires either
twice as many variables or much more complicated constraints.
The satisfiability constraints can force variables to be either
TRUE or FALSE in their constraints without treating them any
differently, but NchooseK does not have that capability.

One solution is to create one ancilla variable per original
variable, where the ancilla has the opposite value, for example
x and ¬x. These need a constraint to ensure that they have
opposite values, with a selection set of {1}. Furthermore, one
constraint is required per satisfiability constraint with the same
variables in the variable collection. The selection set contains
every positive integer up to and including k, as seen in Figure 1
for 3-SAT. Using this solution, two non-symmetric types of
constraints are used.

The other solution is to create more complicated constraints.
Variables can be treated differently from one another by insert-
ing additional copies of them in the variable collection. For the
satisfiability constraint {x,y,¬z}, the NchooseK specification
nck({x,y,z,z,z},{0,1,2,4,5}) establishes the same constraint,
as all instances of z must have the same value. This approach
requires fewer NchooseK variables and fewer constraints, but
the more complicated constraints run the risk of requiring more
ancillary qubits. Copying variables in this manner also changes
the number of non-symmetric constraints, giving us a worst
case of k. Copying variables further impedes simplicity of
expression, which motivated the creation of NchooseK in first
place.

When considering its complexity, the dual variable setup of
NchooseK for a satisfaction problem with n variables and m
constraints requires n+m constraints, while the same problem
with larger variable collections requires only m constraints.
QUBO formulation of this problem is more complicated. One
common solution translates the 3-SAT problem into a Maximum
Independent Set problem [36], [37], [35]. This requires km
variables, one variable for each variable within each constraint
and one term per variable. k(k − 1)m/2 terms are required
between the variables within constraints. Additional terms result
from each instance of TRUE/FALSE versions of the variables—
if there are i constraints with x and j with ¬x, i j terms would
be needed to ensure that a variable never has more than one
value. In the worst case, this amounts to m2k/4, giving the
QUBO a worst-case complexity of O(km2 + k2m), compared
to the NchooseK worst case of O(n+m).

g) Maximum cut: The NP-hard max cut problem is one of
the simplest to express in NchooseK: only one soft constraint is
needed per edge. The variable collection contains the vertices
of the edge, and the selection set is {1}. These soft constraints
ensure that as many vertices as possible have the opposite value
to their adjacent vertices. All constraints are symmetric with
one another. The max cut problem produces an equal number
of NchooseK constraints and Ising terms: O(|E|). However,
conversion from Ising to QUBO increases the complexity to
O(|E|+ |V |) for this particular problem.

B. Generated versus manually produced QUBOs

As NchooseK translates to QUBOs before solving on both
gate-based and annealing devices, an important question then is
how these translated QUBOs compare to handcrafted QUBOs
for the same problem.

QUBO creation is itself computationally difficult. NchooseK
uses the Z3 SMT solver [31] to map an individual constraint to
a QUBO. For every problem discussed in this paper with the
exception of the satisfaction problem and minimum set cover,
the QUBO used in NchooseK is the same as the handcrafted
QUBO for that problem. This holds regardless of problem size
for three reasons:

• NchooseK converts each constraint individually. In most
of the problems discussed here, extending the prob-
lem means adding additional symmetric constraints
(e.g., nck({a,b},{0,1}) and nck({c,d},{0,1})). These
additional constraints will be converted to QUBOs with
the same performance as the previous ones.

• QUBOs are compositional. Two constraints which have
been converted into QUBOs are combined with simple
addition, meaning that the number of constraints used has
no effect on the efficacy of the conversion.

• Constraints with a selection set of {1} are trivial to convert
to a QUBO, even for large variable collections. No efficacy
of conversion is lost for those problems in which extending
the problem likewise extends the size of the variable
collection, such as adding additional colors in the map
coloring problem or subsets in the exact cover problem.

Discussion: Many problems require the introduction of
ancillary variables to enable their expression as a QUBO.
For example, the NchooseK constraint nck({a,b,c},{1,3})
cannot be expressed as a three-variable QUBO; it requires a
fourth, ancillary variable for an additional degree of freedom in
computing the QUBO coefficients. In the minimum set cover
problem, constraints with a large variable collection and a large
selection set will occasionally have ancillary variables added,
whereas there are none in the handmade QUBO for the same
problem. Even in this case, the number of additional terms is
upper-bounded by O(nN2). Satisfiability problems exhibit a
similar difference in the number of ancillary variables between
NchooseK and handmade QUBOs.

C. Ease of construction

Setting up a problem in NchooseK is simpler and more
intuitive than setting up the same problem directly as a QUBO
even though the number of NchooseK constraints is often
similar to the number of QUBO terms. This is due to the fact
that constraints are often symmetric across variable sets, and
their corresponding selection sets correspond to the problem
specification. That is, a constant number of constraint forms
tend to be replicated over variable permutations. In contrast,
QUBO coefficients change as problem sizes change, and for
some constraints ancillary variables may be required. It is
not apparent from a problem formulation how many ancillary
variables, if any, will be required.

Wilson et al. [26] examine the difference in creating an
NchooseK and a QUBO for the equation A ⊕ B = C. We
reiterate their conclusions here: To write an XOR equation
c = a⊕b in NchooseK, the constraint nck({a,b,c},{0,2}) can
easily be obtained by inspection of the XOR truth table. To
write the same equation as a QUBO, a number of algebraic
transformations are needed. In addition, this equation requires
an ancillary variable. The final QUBO is given by

f (a,b,c,κ) = a+b+ c+4κ

−2ab−2ac−4aκ −2bc−4bκ +4cκ , (3)

where κ is an ancillary variable without which f (a,b,c) cannot
be expressed as a QUBO.

Not only are QUBOs difficult to create by hand, but, as is
apparent from Eq. 3, QUBOs are also not particularly human-
readable. This is especially true when ancillary variables are
used. Compared to nck({a,b,c},{0,2}), Eq. 3 is complex and
obtuse.

VII. EXPERIMENTAL SETUP

We ran a variety of experiments on IBM’s 65-qubit circuit-
based machine, ibmq brooklyn [27], and one of D-Wave’s
annealing machines, Advantage 4.1 [38]. In the case of
the circuit-based machines, running the program relies on
preparing a subroutine (a Hamiltonian function known as a
“phase separator”) for the Quantum Approximate Optimization
Algorithm (QAOA) [33]. QAOA sequentially runs multiple
circuits—in our case, 4000 times each—which produce a single

result. In contrast, the annealing machines run a single circuit
multiple times—in our case, 100. Each run produces a result.
For the experiments described in this section we consider only
the best (lowest-energy) result.

All problems in Section VI are either NP-hard or NP-
complete. They fall under three categories. (1) Problems
exclusively with soft constraints (NP-hard): max cut; (2)
Problems with a mix of hard and soft constraints (NP-
hard): minimum vertex cover and minimum set cover; (3)
Problems exclusively with hard constraints (NP-complete):
clique cover, map coloring, satisfaction, and exact cover. Of
these problems, only those without soft constraints could be
solved by the original NchooseK abstraction prior to us adding
soft constraints in this paper, and only map coloring and exact
cover had been discussed in prior NchooseK work [26] and
only for small problems.

In the world of classical computing, metrics tend to focus
on execution time. In contrast, the noise of contemporary
quantum devices forces researchers to assess which, if any, of
the provided answers are correct in the first place. To this end,
we establish the following terminology for NchooseK:

Definition 8 (Optimal, suboptimal and incorrect). An
NchooseK solution over h hard and s soft constraints is optimal
if all hard and as many soft constraints as possible are satisfied;
it is suboptimal if all hard (but less than maximum soft)
constraints are satisfied; and it is incorrect if fewer than h
hard constrains are satisfied.

The rationale here is that for problems only using hard con-
straints, an optimal solution requires full constraint satisfaction,
but more than one optimal result may exist. For mixed hard/soft
problems, suboptimal solutions still meet all hard constraints
but not the maximum number of soft ones, which provides a
solution that can be considered non-minimal.

We determined if the results with soft constraints were opti-
mal by checking against the Z3 solver, which solves the prob-
lems classically. For mixed problems run on ibmq brooklyn,
results were optimal at smaller scale before becoming subop-
timal and then incorrect at larger scale. That is, there seems
to be a discrete barrier to optimal solutions. Exposing the
same problems to Advantage 4.1 resulted in more suboptimal
solutions than optimal ones. Because we are more interested
in optimal solutions, we report how many optimal solutions
were found.

Subsequent experiments focus on how complex NchooseK
problems can become before only incorrect answers are
returned. Scaling up the problems from Section VI, we study
how the addition of variables and constraints affects the answers
obtained. The clique cover problem and map coloring problems
require many more qubits than the others. Up to the limit of
these two problems, which varies depending on the physical
machine, all of the graph problems (Minimum Vertex Cover,
Max Cut, Clique Cover, and Map Coloring) are performed on
the same graphs.

We ran two different scaling studies: vertex scaling and
edge scaling. For vertex scaling, each iteration adds a clique

of three vertices connected to the previous iteration by two
edges up to 33 vertices. After 33 vertices the scaling continues
in larger increments until the max cut and minimum vertex
cover problems use all of the qubits on the IBM machine, and
correct (optimal/suboptimal) results are no longer found on the
D-Wave system.

For edge scaling, 12 vertices are used—this is where the
clique cover problem fails on the D-Wave system. The first
one to fail under vertex scaling is the clique cover problem
on Advantage 4.1. This problem initially has four cliques
and 18 edges. Six or seven edges are added each time up
until 48 edges, where adding a single edge between any two
disconnected vertices would allow it to be covered by only
three cliques. More edges are then added up until 63 edges, at
which point adding another edge would allow it to be covered
by only two cliques. In this region, the clique cover problem is
run with a target of both three and four cliques for comparison.

For the exact cover, minimum set cover, and satisfaction
problems, each problem is generated randomly in increasing
size with the exact cover and minimum set cover using the same
sets and subsets. The k-satisfiability problems are all 3-SAT
problems, i.e., every satisfiability constraint contains three
terms. The same problems are run on each type of machine.

VIII. RESULTS

A. D-Wave Advantage 4.1

Figure 7 presents measurements the percentage of results
(y axis) that are optimal (as opposed to suboptimal or incorrect)
over the number of qubits (x axis) on the D-Wave system. With
the exception of the exact set problem, the problems with soft
constraints generally perform worse than problems exclusively
using hard constraints. This is due to the fact that in mixed
problems hard constraints receive a higher bias (in terms of
constraint factors) than soft constraints. This makes the energy
gap relatively small between one solution and another with
an additional soft constraint satisfied. If we, instead, reported
the percentage of optimal and suboptimal results in the y axis,
mixed problems would have a higher success rate (omitted
due to space). We also observed that the total number of
optimal+suboptimal solutions for mixed problems is larger
than the number of optimal solutions for hard ones using
similar numbers of qubits.

The number of qubits and the connectivity between them for
D-Wave’s annealing devices are important considerations. First,
the Advantage 4.1 system has 5,640 qubits so any problem
that requires more will not be able to be run on that machine.
Second, problem variables (e.g., nodes of a graph) are often
coupled to many other variables. Given the physical qubit
graph topology of a D-Wave device, a variable may need to
be mapped to a chain of qubits to establish these couplings.
Hence, the more densely connected the problem, the more
qubits are required to represent each variable. This ratio tends
to become significant for larger problems.

This explains why the number of qubits used on D-Wave
systems relates not only to the number of NchooseK variables
used, but also to the number of constraints, which affect the

Fig. 7: Fraction of optimal results on D-Wave systems versus
number of qubits.

number of connections needed on the physical annealing device.
For the clique cover, 48 variables and 18 edges requires 188
qubits, but increasing the number of edges reduces the number
of constraints for this particular problem formulation. For 37
edges, optimal results are found again as only 132 qubits are
needed. At the extreme of 63 edges, still using 48 variables,
only 52 qubits are used, increasing the success rate to 65%.

In fact, reducing the number of constraints can have as great
an effect on the accuracy as reducing the number of variables
does. For the clique cover again with 48 variables, increasing
the number of constraints from 24 to 36 results in a drop in
success rate from 65% to 20%. These solutions use 52 and 55
qubits, respectively, i.e., only a small increase in the number
of qubits is imposed. Instead, if we use 27 variables and 78
constraints, 57 qubits are required with a success rate of just
39%. Decreasing the number of variables used from 48 to 27
still results in a significant drop in success rate because the
number of constraints increases dramatically, even though the
number of qubits used is similar.

B. IBM Q Brooklyn

The problems performed worse on ibmq brooklyn than on
Advantage 4.1; different problems failed to find an optimal
result at a lower number of variables and constraints than used
for annealing. Despite this, it should be stressed that using
QAOA a single result is returned and found to be optimal or
not, while using an annealer the problem is considered to be
solved correctly if any of the hundred solutions returned is
optimal.

As with annealing devices, the number of qubits is an
important consideration when utilizing circuit-model devices.
The most obvious reason is that the machine has far fewer
qubits; no NchooseK problem with more than 65 variables can
be mapped onto ibmq brooklyn. Another factor is that some
qubits and some connections between qubits are worse than
others in terms of noise. Small problems may select the best
performing qubits on a given device, while larger ones must

Fig. 8: Optimal (colored tics) and suboptimal or incorrect
(block × tics) results of the QAOA problems for ibmq brooklyn
vs. number of qubits used.

Fig. 9: Optimal (colored tics) and suboptimal or incorrect
(block × tics) results of the QAOA problems for ibmq brooklyn
vs. circuit depth. Six failed clique cover problems were omitted
for clarity; they used circuits of depth 432, 516, 537, 676, 697,
and 717.

use more error-prone ones as the fraction of utilized qubits
increases. Due to limited qubit connectivity in the physical
topology, circuit-model machines cannot directly perform two-
qubit operations on arbitrary pairs of qubits. Hence, they must
frequently swap the state of adjacent qubits in sequence to
move pairwise interactions to physical neighbors. The compiler
sometimes prioritizes a shorter but lower-quality (higher-noise)
path of swaps. This affects solution quality as the number of
qubits and circuit depth increase.

Recall from the discussion in Section VI-B that the QUBO
formulation of a problem often requires the introduction of
ancillary variables. This explains why the number of qubits
sometimes exceeds the number of variables in an NchooseK
problem.

Fig. 10: The depth of QAOA circuits with respect to the number
of constraints in the NchooseK problem.

Figure 8 depicts the number of qubits used (y axis) for
problems (x axis) from Table I indicating both optimal (colored
tics) and suboptimal (block × tics) results. We observe that
there is a correlation between the number of qubits and
obtaining optimal results. Figure 9 depicts results for the same
programs (x axis) over the circuit depth (y axis) measured as the
number of gates in the longest path of a single QAOA circuit
with the same tic mark colors as before. While each QAOA
runs around 30 different circuits (slight variations are due to
convergence properties), these circuits differ by the parameters
of the gates (qubit rotation angles), not the type or number
of gates. Circuit depth is an important considerations when
experimenting with circuit model devices. This is true not only
because each gate adds a small amount of probabilistic error
(noise) to a circuit, but also because a deeper circuit needs to
stay active on the machine longer, leading to an increase in
chance of qubits decohering before results can be measured.

These two figures show the trends in correctness for the
different problems. Note that the edge study and the vertex
study are both included for the map problems. This explains
the low qubit failures for the vertex cover seen in Figure 8:
Even using few qubits, a sufficient number of constraints will
add enough complexity to the problem to cause a failure. This
relationship between circuit depth, which can be thought of as
a simplistic measure of circuit complexity, and the number of
constraints is exposed in Figure 10, which depicts the number
of constraints (x axis) over circuit depth (y axis) for each
problem type. The general trend shows increasing depth as more
variables and constraints are added during problem scaling,
albeit at different rates per problem, i.e., in a problem-specific
manner. Exceptions include the minimum vertex cover: At 30
variables and 82 constraints, it uses 32 qubits with a depth of
245. At 33 variables and 90 constraints, only 33 qubits are
used with a depth of 199. Hence, depth is not always related
to the success rate (optimality) of results. This was also visible
in Figure 9, where a suboptimal solution for Max Cut at depth

172 is followed by optimal solutions at 179 and thereafter.
Nonetheless, these problems scale up to mid to high teens of
qubits on the IBM device (25–100% of qubit utilization) and
into the hundreds of qubits on the D-Wave device (4–6% of
physical qubit utilization).

C. Timing

Given the limitations of contemporary quantum computers
in terms of qubit counts, coherence times, control precision,
resilience to noise, and qubit connectivity, raw execution time is
generally not the focus of current quantum-computing research.
Nevertheless, we include a brief summary of the time taken
and the bottlenecks of running a sample of our problems. The
client-side operations for experiments described in this section
were performed on a 4 GHz Quad-Core i7 processor with
40 GB memory.

For the problems run on the IBM systems, each execution
of the QAOA algorithm implicitly submits approximately 25
to 35 jobs, the number of which does not discernibly depend
on the size of the problem. Each job comprised 4000 shots,
the default for Qiskit’s QAOA, and took between 7 and 23
seconds.

We were unable to determine any correlation between
problem size and time per job. Figure 11 shows a box plot of
job run time (y axis) versus the number of variables (x axis)
in the original NchooseK environment.

Fig. 11: The run time of QAOA circuits with respect to the
number of variables used.

Aside from the time spent running on the quantum computer,
a job also requires computation time on the IBM server. It
takes a few seconds to create, transpile, and validate a job
plus an indeterminate amount of time waiting in the queue for
access to the machine. All together, our jobs spent roughly
500 seconds on IBM’s servers, not counting communication
or queue time. This time can vary greatly, depending on how
full the queue is with unrelated jobs.

On the client side, some amount of time is spent generating
the QUBO and working with the optimizer. Relative to the
amount of time spent in IBM’s cloud, the time spent creating
the QUBO is not only negligible—taking a second or less—but

is also overshadowed by the variance in communication and
number of jobs run, not to mention the indeterminate time spent
waiting in the job queue. Finally, the classical optimization
step in the QAOA process typically takes two to three seconds
per job. All together, even a small problem takes about 500
seconds plus queueing time to solve. IBM has recently started
offering the option to run QAOA more closely tied to the IBM
servers through Qiskit Runtime [39], which should cut down
on communication time and possibly time spent on classical
optimization.

The problems run on the D-Wave systems were submitted
as a single job consisting of 100 samples. According to the
D-Wave documentation [40], each job has a single, relatively
long programming step (observed to be on the order of 15ms)
in addition to the cost of the 100 samples. The cost of a
sample includes the cost of the anneal itself, a parameter that
can be defined by the user (our experiments used the default of
20µs); a readout time with a cost that is usually 3–4 times as
long as the annealing time; and an added delay between each
readout and the subsequent anneal (about 20µs each). The total
time for the 100 samples is slightly less than the time than the
programming step. Finally, a few more milliseconds are needed
for post-processing. Neglecting the time in the queue, our jobs
each spent about 30ms apiece on the Advantage system.

A large cost on the client side is the conversion of constraints
to individual QUBOs. This procedure is currently under devel-
opment and is not yet optimized. Specifically, it redundantly
computes QUBOs for symmetric constraints instead of caching
previously computed QUBOs. Due to this wasted computation,
the total time to compile a complete NchooseK problem to
a QUBO is 40–50x the time needed for direct (non-QUBO)
solution by the Z3 solver of problems of the size covered in
this paper. After constructing the QUBO, preparing it to send
to a D-Wave system takes approximately an additional 40ms.

Fig. 12: The run time of minimum vertex cover on Z3. Each
problem was run 30 times on a circulant graph with the
indicated number of nodes.

Z3 is a highly optimized classical SMT solver, and it is

able to solve each of the problems contained here in less than
three seconds. It can also solve problems much larger than
can fit on current quantum hardware, scaling quite well. The
minimum vertex cover problems we ran fit very close to a
polynomial equation as shown in Figure 12. However, when
presenting Z3 with problems after they have been translated
into a QUBO, many of them perform quite poorly: solving a
minimum vertex cover problem with 10 vertices of degree 3
takes less than a second while 20 vertices takes a minute and a
half, and 30 vertices takes multiple hours. NchooseK’s classical
Z3 back end runs faster than either of the two quantum back
ends on current quantum hardware. However, we note that the
D-Wave Advantage machine completes the optimization step
proper in a fraction of a second. This suggests that there exists
opportunities to close the performance gap between D-Wave
and Z3 through additional software optimizations.

IX. FUTURE WORK

One of the current limitations of NchooseK is its reliance
on QAOA for operation on circuit-based machines. We are
investigating different methods of converting NchooseK pro-
grams into quantum circuits. This may involve abandoning
QAOA entirely for an alternative variational quantum algorithm,
or it may involve devising NchooseK-specific or problem-
specific customizations to QAOA’s problem and mixer Hamil-
tonians. This is the basic concept underlying the Quantum
Alternating Operator Ansatz [41] (a refinement of the Quantum
Approximate Optimization Algorithm that is also abbreviated
QAOA). The custom mixers used in this version of QAOA
seem especially appropriate to NchooseK problems with both
hard and soft constraints.

X. CONCLUSIONS

NchooseK is an effective and relatively simple method
of expressing and solving NP-complete problems on both
quantum annealers and circuit-based quantum computers. Our
contribution is a generalization of NchooseK to include soft
constraints, which widens the scope of problems that can be
expressed to include NP-hard problems. We show that NP-
complete and NP-hard problems can be solved using NchooseK
on current, noisy, intermediate-scale quantum (NISQ) devices
utilizing up to 65 qubits on IBM’s devices and hundreds of
qubits on D-Wave’s annealing devices. One contribution of
NchooseK is given by its intuitive problem formulation with
(typically) only a constant or a linear number of non-symmetric
constraints, whereas manual QUBO formulations are more
complex and require computing different coefficients depending
on problem size. Another contribution is that NchooseK
enables a transformation even of soft constraints into QUBOs,
which make a suitable intermediate representation for enabling
portability across the circuit model and the annealing model.
QUBO generation is fully automated, and NchooseK produces
QUBOs that are comparable to those painstakingly developed
by hand.

ACKNOWLEDGMENTS

Research presented in this paper was supported by the
Laboratory Directed Research and Development program
of Los Alamos National Laboratory under project number
20210397ER. Los Alamos National Laboratory is operated
by Triad National Security, LLC for the National Nuclear
Security Administration of U.S. Department of Energy (contract
no. 89233218CNA000001). This work was also supported in
part by LANL subcontract 725530 and by NSF awards DMR-
1747426, PHY-1818914, OAC-1917383, MPS-2120757, and
CISE-2217020.

REFERENCES

[1] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, Aug. 2018.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin,
S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann,
T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri,
K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,
D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R.
McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni,
J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C.
Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D.
Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh,
A. Zalcman, and H. N. J. M. Martinis, “Quantum supremacy using a
programmable superconducting processor,” Nature, vol. 574, no. 7779,
pp. 505–510, Oct. 23, 2019.

[3] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta, “On ‘quantum
supremacy’,” Oct. 2019. [Online]. Available: https://www.ibm.com/blogs/
research/2019/10/on-quantum-supremacy/

[4] S. Aaronson, “Shtetl-optimized,” Sep. 2019. [Online]. Available:
https://www.scottaaronson.com/blog/

[5] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[6] T. R. Louw and S. N. McIntosh-Smith, “Using the Graphcore IPU
for traditional HPC applications,” in 3rd Workshop on Accelerated
Machine Learning (AccML), HiPEAC 2021 Conference, ser. EasyChair
preprint, no. 4986. European Network on High-performance Embedded
Architecture and Compilation, Jan. 18, 2021. [Online]. Available:
https://easychair.org/publications/preprint/ztfj

[7] R. Prabhakar, S. Jairath, and J. L. Shin, “SambaNova SN10 RDU: A
7nm dataflow architecture to accelerate software 2.0,” in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp.
350–352.

[8] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature,
vol. 453, no. 7198, p. 1031, 2008.

[9] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,”
Physical review letters, vol. 74, no. 20, p. 4091, 1995.

[10] IBM, “IBM Q Experience,” https://quantumexperience.ng.bluemix.net/qx.
[11] “Welcome to quantum cloud services—QCS documentation,” 2022.

[Online]. Available: https://docs.rigetti.com/qcs/
[12] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak,

J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek,
J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon,
M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin,
M. Keesan, C. Monroe, and J. Kim, “Benchmarking an 11-qubit
quantum computer,” arXiv:1903.08181, 2019. [Online]. Available:
https://arxiv.org/abs/1903.08181

[13] K. Boothby, C. Enderud, T. Lanting, R. Molavi, N. Tsai, M. H. Volkmann,
F. Altomare, M. H. Amin, M. Babcock, A. J. Berkley, C. B. Aznar,
M. Boschnak, H. Christiani, S. Ejtemaee, B. Evert, M. Gullen, M. Hager,
R. Harris, E. Hoskinson, J. P. Hilton, K. Jooya, A. Huang, M. W.
Johnson, A. D. King, E. Ladizinsky, R. Li, A. MacDonald, T. M.
Fernandez, R. Neufeld, M. Norouzpour, T. Oh, I. Ozfidan, P. Paddon,
I. Perminov, G. Poulin-Lamarre, T. Prescott, J. Raymond, M. Reis,

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.scottaaronson.com/blog/
https://easychair.org/publications/preprint/ztfj
https://quantumexperience.ng.bluemix.net/qx
https://docs.rigetti.com/qcs/
https://arxiv.org/abs/1903.08181

C. Rich, A. Roy, H. S. Esfahani, Y. Sato, B. Sheldan, A. Smirnov, L. J.
Swenson, J. Whittaker, J. Yao, A. Yarovoy, and P. I. Bunyk, “Architectural
considerations in the design of a third-generation superconducting
quantum annealing processor,” Aug. 5, 2021, arXiv:2108.02322v1 [quant-
ph].

[14] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura,
and H. G. Katzgraber, “Physics-inspired optimization for quadratic
unconstrained problems using a digital annealer,” Frontiers in Physics,
vol. 7, 2019.

[15] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A.
Lidar, “Experimental signature of programmable quantum annealing,”
arXiv:1212.1739, 2012. [Online]. Available: http://arxiv.org/abs/1212.
1739

[16] D. Bacon, S. T. Flammia, and G. M. Crosswhite, “Adiabatic quantum
transistors,” Physical Review X, vol. 3, pp. 021 015:1–17, Jun. 14, 2013.

[17] C. Yuan, C. McNally, and M. Carbin, “Twist: Sound reasoning for purity
and entanglement in quantum programs,” Proceedings of the ACM on
Programming Languages, vol. 6, no. POPL, pp. 30:1–32, Jan. 2022.

[18] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: A high-level
quantum language with safe uncomputation and intuitive semantics,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York, New York, USA:
Association for Computing Machinery, 2020, pp. 286–300.

[19] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q#: Enabling
scalable quantum computing and development with a high-level DSL,”
in Proceedings of the Real World Domain Specific Languages Workshop
2018. New York, New York, USA: Association for Computing
Machinery, 2018, pp. 7:1–10.

[20] D. S. Steiger, T. Häner, and M. Troyer. (2018, Jan. 29,) ProjectQ: An open
source software framework for quantum computing. arXiv:1612.08091v2
[quant-ph].

[21] J. Paykin, R. Rand, and S. Zdancewic, “QWIRE: A core language for
quantum circuits,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. New York, New York, USA:
Association for Computing Machinery, 2017, pp. 846–858.

[22] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “ScaffCC: Scalable compilation and analysis of
quantum programs,” Parallel Computing, vol. 45, pp. 2–17, 2015.

[23] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: A scalable quantum programming language,” in Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation. New York, New York, USA: Association for
Computing Machinery, 2013, pp. 333–342.

[24] D-Wave Systems Inc. D-Wave Ocean software documentation. [Online].
Available: https://docs.ocean.dwavesys.com/

[25] H. Khetawat, A. Atrey, G. Li, F. Mueller, and S. Pakin, “Implementing
NChooseK on IBM Q quantum computers,” in Reversible Computing,
ser. Lecture Notes in Computer Science, M. K. Thomsen and M. Soeken,
Eds., vol. 11497. Springer, Nov. 2019, pp. 209–223.

[26] E. Wilson, F. Mueller, and S. Pakin, “Mapping constraint problems
onto quantum gate and annealing devices,” in 2021 IEEE/ACM Second
International Workshop on Quantum Computing Software (QCS). IEEE,
Nov. 15, 2021, pp. 110–117.

[27] IBM Quantum Services. ibmq brooklyn. Accessed 20-May-2022.
[Online]. Available: https://quantum-computing.ibm.com/services?
services=systems&system=ibmq brooklyn

[28] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed,
J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J.
Meyer, Z. Niu, A. Száva, and N. Killoran, “PennyLane: Automatic
differentiation of hybrid quantum-classical computations,” 2018. [Online].
Available: https://arxiv.org/abs/1811.04968

[29] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and
T. S. Humble, “XACC: A system-level software infrastructure for
heterogeneous quantum–classical computing,” Quantum Science and
Technology, vol. 5, no. 2, pp. 024 002:1–23, Feb. 2020.

[30] R. S. Smith, M. J. Curtis, and W. J. Zeng. (2017, Feb. 17,) A
practical quantum instruction set architecture. Rigetti Computing, Inc.
ArXiv:1608.03355 [quant-ph].

[31] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, C. R. Ramakrishnan and J. Rehof, Eds.,
vol. 4963. Budapest, Hungary: Springer, Mar. 29–Apr. 6, 2008, pp.
337–340.

[32] D-Wave Systems, Inc., “D-Wave Ocean software documentation, revision
6f16a2d3,” https://ocean.dwavesys.com/, accessed 2-Oct-2021.

[33] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” Center for Theoretical Physics, Massachusetts
Institute of Technology, Tech. Rep. MIT-CTP/4610, 2014.

[34] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F.
Chen, J. M. Chow, A. D. Córcoles-Gonzales, A. J. Cross, A. Cross,
J. Cruz-Benito, C. Culver, S. D. L. P. González, E. D. L. Torre,
D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage,
A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera,
D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok,
H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa,
A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques,
F. J. Martı́n-Fernández, D. T. McClure, D. McKay, S. Meesala,
A. Mezzacapo, N. Moll, D. M. Rodrı́guez, G. Nannicini, P. Nation,
P. Ollitrault, L. J. O’Riordan, H. Paik, J. Pérez, A. Phan, M. Pistoia,
V. Prutyanov, M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu,
N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva,
Y. Siraichi, S. Sivarajah, J. A. Smolin, M. Soeken, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner,
D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston,
C. Wood, S. Wood, S. Wörner, I. Y. Akhalwaya, and C. Zoufal, “Qiskit:
An open-source framework for quantum computing,” Jan. 2019. [Online].
Available: https://doi.org/10.5281/zenodo.2562111

[35] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, pp. 5:1–5:15, 2014.

[36] V. Choi, “Different adiabatic quantum optimization algorithms for
the NP-complete exact cover problem,” Proceedings of the National
Academy of Sciences, vol. 108, no. 7, Jan. 2011. [Online]. Available:
https://doi.org/10.1073%2Fpnas.1018310108

[37] T. Gabor, S. Zielinski, S. Feld, C. Roch, C. Seidel, F. Neukart, I. Galter,
W. Mauerer, and C. Linnhoff-Popien, “Assessing solution quality of
3SAT on a quantum annealing platform,” 2019. [Online]. Available:
https://arxiv.org/abs/1902.04703

[38] D-Wave Systems, Inc., “D-Wave Advantage system
overview,” https://www.dwavesys.com/resources/white-paper/
the-d-wave-advantage-system-an-overview/, accessed 20-May-2022.

[39] B. Johnson and G. Ben-Shach. (2022, Apr. 12,) Qiskit Runtime
primitives make algorithm development easier than ever. Accessed
23-Aug-2022. [Online]. Available: https://research.ibm.com/blog/
qiskit-runtime-for-useful-quantum-computing

[40] D-Wave Systems, Inc. Operation and timing. Accessed 20-Jul-2022.
[Online]. Available: https://docs.dwavesys.com/docs/latest/c qpu timing.
html

[41] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and
R. Biswas, “From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, 2019.

http://arxiv.org/abs/1212.1739
http://arxiv.org/abs/1212.1739
https://docs.ocean.dwavesys.com/
https://quantum-computing.ibm.com/services?services=systems&system=ibmq_brooklyn
https://quantum-computing.ibm.com/services?services=systems&system=ibmq_brooklyn
https://arxiv.org/abs/1811.04968
https://ocean.dwavesys.com/
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1073%2Fpnas.1018310108
https://arxiv.org/abs/1902.04703
https://www.dwavesys.com/resources/white-paper/the-d-wave-advantage-system-an-overview/
https://www.dwavesys.com/resources/white-paper/the-d-wave-advantage-system-an-overview/
https://research.ibm.com/blog/qiskit-runtime-for-useful-quantum-computing
https://research.ibm.com/blog/qiskit-runtime-for-useful-quantum-computing
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Experiments were run on both the DWave quantum annealer Ad-
vantage 4.1 and the IBM Quantum circuit device ibm_brooklyn.
Three graph problems: minimum vertex cover, max cut, and clique
cover are run. There are two scaling studies: vertex scaling and
edge scaling. Problems were run with qiskit 0.34.2 and the dwave-
ocean-sdk 0.8.5, on python 3.9.12

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: 10.5281/zenodo.6916782
Artifact name: nchoosek_sc22

Reproduction of the artifact with container: Follow the directions
in README.txt An anaconda environment is provided in order to
set up dependencies; user accounts are necessary with IBM and
DWave to use their quantum devices.

	Introduction
	Background
	Related Work
	Soft Constraints
	Problem requirements and initial formulation
	Setting up the vertex cover
	Minimization via soft constraints

	Implementation
	Complexity Comparison
	Number of terms and number of constraints
	Generated versus manually produced QUBOs
	Ease of construction

	Experimental Setup
	Results
	D-Wave Advantage 4.1
	IBM Q Brooklyn
	Timing

	Future Work
	Conclusions
	Acknowledgments
	References

