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Abstract

This paper introduces a new method for combining simu-
lated data over different types of nodes in heterogeneous
graphs to facilitate predictive learning. Simulation has been
widely used in scientific domains to mitigate the need for a
large number of observation samples. However, simulated
data are often created separately for each type of physi-
cal systems while interactions amongst different types of
systems remain unexplored. Our method is developed in
the context of predicting water temperature in stream net-
works, which is critical for decision making in water man-
agement. In particular, we first develop a graph diffusion
network (GDN) to model the interactions amongst stream
segments and reservoirs in a heterogeneous graph. We use
the GDN model to combine simulated data for both streams
and reservoirs in the graph, and use the obtained composite
simulations to train the GDN model in a semi-supervised
manner. Then the GDN model is further fine-tuned using
true observations. Since observation data are often sparse
and localized, we further leverage the information from sim-
ulations to build a reweighting strategy so as to migitage the
discrepancy between training and testing data. Our evalua-
tions in the Delaware River Basin have shown the superiority
of the proposed method over multiple baselines using either
sparse or localized training data. The proposed GDN model
also creates a better composite simulation dataset for het-
erogeneous graphs.

1 Introduction

Graph neural networks have been widely used to model
the spatial dependencies amongst different objects in
a variety of scientific applications, including freshwa-
ter science [1, 2], bio-medicine [3], and quantum chem-
istry [4]. Given their ability to capture interactions
amongst physical processes, these models often achieve
better performance than other machine learning models
without spatial awareness. The graph neural networks
were further extended to model physical systems with
different types of interacting objects and processes using
multiple types of nodes and edges, which is also referred
to as heterogeneous graphs [5]. For example, hetero-

geneous graphs have been used to model interactions
amongst multiple streams and reservoirs [6]. The water
managers can release cold water from reservoirs to cool
down the water temperature for the downstream river
segments. The river segments and reservoirs need to be
modeled separately as different types of nodes because
of their difference in water dynamics caused by the dis-
tinction in their geometric structures and stratification
patterns. Despite the promise of graph network mod-
els, the data annotations in real scientific problems are
often very sparse, which makes it challenging to train
advanced graph network model.

Physics-based models have been widely used to
study scientific and engineering systems in scientific do-
mains [7, 8, 9]. Physics-based models are based on
known physical laws that govern relations between input
and output variables, but most physics-based models
are necessarily approximations of reality due to incom-
plete knowledge of certain processes or excessive com-
plexity in modeling these processes. For example, ex-
isting physics-based approaches for river networks sim-
ulate the internal distribution of target variables (e.g.,
water temperature and streamflow) based on general
physical relations such as energy and mass conservation.
However, given that some processes are not fully un-
derstood and many physical variables cannot be easily
measured, the model predictions still rely on parameter-
izations of land surface and subsurface processes based
on soil and surficial geologic classification along with
topography, land cover, and climate input.

Prior work has shown that machine learning mod-
els can achieve better performance using a small number
of observation samples after they are pre-trained using
simulated data [10, 11]. The idea is that the pre-trained
model can extract general physical relationships from
simulated data and stay closer to the optimal solution
so it requires fewer data samples to fine-tune itself to a
quality model. Similar ideas have also been pursued in
other domains, such as autonomous vehicle [12]. How-
ever, simulations are often less accurate for graph data
because calibrating physics-based models is challenging
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with the interactions amongst different nodes. More-
over, existing physics-based models are often designed
for specific physical systems (i.e., each type of node)
without considering the interactions amongst different
types of nodes in the heterogeneous graph. For example,
the PRMS-SNTemp model [7] has been used to simu-
late water temperature for streams but it does not con-
sider the cold water release from reservoirs. Hence, the
simulation produced by PRMS-SNTemp can often over-
estimate the stream temperature for the region down-
stream from reservoirs. Recently, the GLM model [§]
was used to simulate water temperature for different
depth layers of reservoirs by treating them as artificial
lakes [13]. However, the combination of reservoir mod-
eling and stream modeling remains largely unexplored.

To address this issue, we propose Physics-guided
Graph Diffusion Network, to combine simulated data
for multiple types of nodes in a graph (e.g., streams
and reservoirs) and leverage the knowledge embodied
in simulations to enhance the learning process. In
particular, we create a heterogeneous graph that contain
multiple types of nodes and edges, and develop a
diffusion graph network for propagating the information
of data input, temporal patterns, and simulated data to
the spatial neighborhood. Compared to other standard
graph neural networks models, the diffusion network
allows flexible setting of the neighborhood radius for
information propagation in a continuous manner. We
further extend the diffusion structure to be adaptive
for each type of node in the graph due to the distinct
influence of water released from reservoirs and advected
from streams.

Specifically, we train the model in two stages. In
the first stage, we create new composite simulated
labels by propagating simulated data over the graph
using the diffusion network. Then we use the obtained
composite data to tune the diffusion network in a self-
supervised manner. This approach helps fully leverage
the knowledge embodied in the simulated data, which
can be generated for all the nodes and all the time steps.
In the second stage, we fine-tune the graph diffusion
network using the available true observations. To
address the distribution shift between localized training
observations and testing data, we adopt a reweighting
strategy to amplify the importance of training samples
that are closer to the distribution of testing data.

Our evaluations on real stream data from the
Delaware River Basin in a 14-year period show the supe-
riority of the proposed method over multiple baselines,
especially when the available observed labels are sparse
and localized. Besides, we show that our method can
produce a better simulation dataset combining existing
simulations on different types of nodes.

2 Related Work

Graph neural networks (GNN) have been widely
adopted in a variety of scientific problems due to their
capacity in modeling interacting processes [14, 15, 1].
This can be especially beneficial for complex physical
systems because modeling interacting processes and cal-
ibrating parameters in these processes often require sub-
stantial efforts in traditional physics-based models. The
GNN models have been further extended to represent
heterogeneous interactions amongst different types of
objects and processes [16, 17, 6, 18, 19]. Compared
to convolutional neural networks (CNN), the GNN-
based models are more flexible in representing spatial
dependencies amongst irregularly distributed locations,
which are common in scientific applications. The GNN-
based model can also be used as a building block and
combined with other temporal models, e.g., Long-short
Term Memory (LSTM) and temporal convolution net-
work (TCN), to capture both the spatial and temporal
dependencies [20, 2].

Despite its capabilities, GNN has several limitations
when applied to scientific problems. For example, it
often prioritizes the nodes with more training samples
over other nodes in node-level prediction tasks [21, 22].
Moreover, most existing GNN models were not designed
for representing complex physical processes. The nature
of scientific studies requires adaptation of these neural
network models based on scientific knowledge to better
represent the influence amongst processes. Finally,
training these models often require a large number of
observation samples, which can be difficult to obtain in
many real scientific problems.

One promising direction to mitigate these issues is
to combine physical simulations with machine learning
models. Simulated data can be generated by physics-
based models that represent underlying physical pro-
cesses using a series of mathematical equations. For
example, prior work has shown that ML models pre-
trained using simulated data can perform much better
under data-scarce scenarios for predicting water temper-
ature in lake and stream systems [10, 2, 23, 24]. Sim-
ilar idea has been pursued in other disciplines [11, 25].
Other works have also explored using simulated target
variables to augment input data and achieved improved
predictive performance [26, 19]. These methods often
require high-quality simulations that are close to reality,
otherwise, the improvement can be limited. However, it
can be challenging to calibrate physics-based models for
complex interacting processes. Moreover, many physics-
based models do not consider the interactions amongst
different types of processes and objects. Hence, new
mechanism is needed to create better simulations to fa-
cilitate machine learning in heterogeneous graphs.
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Figure 1: The overall flow of the proposed method.

3 Problem definition

We consider N stream segments and M reservoirs
in a stream network. Fach stream segment ¢ has
input features over multiple daily time steps X; =
{x},x2,..,xI'}. The input features x! include climate
drivers and geometric parameters of the segment (more
details can be found in Section 5.1). Similarly, for
each reservoir j, we are provided with its input features
XR; = {xr},xr?,...,xr] }, and the features xr} include
climate drivers and its meta-features, e.g., the height
and width of the dam. We also have observed water
temperature Y = {yf} for certain segments and on
certain dates. This work is focused on predicting water
temperature only for N stream segments. The proposed
method can be easily extended to model target variables
for different types of nodes in heterogeneous graphs.

We use a graph G = {V,&, A} to represent depen-
dencies amongst stream segments and reservoirs. Here
the node set V = {V,,V,} contains the set of river
segments Vs and reservoirs V,. The edge set & =
{Ess, Esr, Ers } contains three types of edges among river
segments and reservoirs. Specifically, £ss represents the
edges between pairs of segments (i,j) where the seg-
ment ¢ is upstream from the segment j, &, represents
the edges between river segments and their downstream
reservoirs, and &, represents the edges between reser-
voirs and their downstream river segments. We create
three adjacency matrices A®° € RVXN A" ¢ RV*M|
and A" € RM*M hased on the inverse of stream dis-
tance between streams to streams, streams to reservoirs,
and reservoirs to streams. All the three matrices are
row-normalized.

4 Method

This section provides the details of the proposed algo-
rithm (Fig. 1). We first introduce the structure of the
graph diffusion network. Then we discuss the adaptive

diffusion structure and the self-supervised learning us-
ing the composite simulations. Finally, we describe the
fine-tuning process with the reweighting strategy.

4.1 Diffusion networks on the heterogeneous
graph The proposed graph diffusion networks (GDN)
captures both the spatial dependencies amongst differ-
ent nodes in the heterogeneous graph and the temporal
dynamics for each node. It maintains two sets of states
for the two types of nodes, i.e., stream segment states
{csi}iZiiy and reservoir state {cr!}i={7,. Each state
variable is updated over time using a temporal structure
that is similar to the LSTM model. Specifically, LSTM
creates the model state at each time step by combin-
ing the current input data and the previous state. For
example, for each stream segment i, its state can be
updated as cst = LSTM(x!, cs! ™), where the function
LSTM involves a series of gating functions to filter the
information from the previous time steps and the cur-
rent time step, and combine them to compute the cur-
rent state. The obtained state cs! can then be used to
create hidden representation h! and prediction .

To further incorporate the spatial dependencies in
updating the stream state, the GDN model updates the
stream state as follows:

(4.1) cst = fs(xf,csf_l,pt_l)7

i

-1
where p!

;  captures the influence from node ¢’s neigh-
borhood, which is described later. We use the neighbor-
hood influence from the previous time step ¢t — 1 due to
the time delay of influence propagation, e.g., the travel
time for water flows advected from upstream to down-
stream segments. The function f; is defined in a similar
way with the LSTM model. Specifically, it uses three
gating variables, input gate igﬁ, forget gate fgﬁ, and spa-
tial gate sg!, to filter the information of current input
data at time t , the previous state csﬁf1 , and the neigh-
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borhood influence p75 1 respectively. The input gate

and forget gate are created using the current input data
x! and the previous hidden representation hﬁ_l through
a fully connected layer. The spatial gate is created us-
ing the current input x! for the node i and its spatial
influence pffl through a fully connected layer. All the
gating variables are computed with a sigmoid function
after the fully connected layer so their values are within
(0,1).The filtered information from different sources are
then combined to compute the current stream state as
(4.2) csi =

t—1

igﬁ@c‘sﬁ—kfg?@c —|—sgl®p1 ,

where © denotes entry-wise product, and ¢s! represents
the candidate stream state, which encodes the informa-
tion from the current step, and is computed using x!
and h! using a fully connected layer, following the same
process as in the standard LSTM.

To neighborhood influence pt aggregates the in-
formation from the neighbors of node i in the graph,
including both streams (N'(7)) and reservoirs (M(i))
in the neighborhood. The aggregation is conducted
through a graph diffusion process, as

(4.3)
p.~" = tanh( Z T bs(csh ') + Z
JEM(3)

i/ EN(3)

1

rf(ﬁ'f‘ )),

where the functions ¢, and ¢, are transformations
implemented by fully connected networks, and T*°
and T"° represent the diffusion matrices for stream-
stream interactions and reservoir-stream interactions,
respectively. The diffusion matrices are essentially
generalized adjacency matrices that capture multi-hop
spatial dependencies. This is especially important for
modeling stream networks because the water flows can
affect multiple downstream segments and the range of
such influence can depend on catchment characteristics
such as soil properties, groundwater, and land covers.

In particular, the diffusion matrices can be com-
puted from the initial adjacency matrix. For example,
the most common way of building a diffusion matrix
is through weighted sum of a power series of the ad-
jacency matrix , ie., T = Y, 6x[A°*]*, where 6, is
the weight for k-hop dependencies. Our proposed GDN
model uses an adaptive diffusion strategy that distin-
guishes between different types of nodes (i.e., streams
and reservoirs) as well as different reservoirs. The de-
tails about how to create diffusion matrices in the pro-
posed GDN model will be introduced in Section. 4.2.

We further augment the GDN model with the
simulated target variables for all the nodes. Given the
simulated water temperature g! for each stream segment
1 at time ¢, we augment the transformed stream state
¢s(csh) in Eq. 4.3 as follows:

(4.4) s (csi) = ¢s(csy) + s (i),

where 1 is a fully connected network to transform the
simulated data.

Similarly, we augment the transformed reservoir
state ¢,(cr) using the simulated reservoir temperature
r. When aggregating the influence from reservoirs to
streams, we have to consider not only the simulated
water temperature for each reservoir, but also the
amount of water released from the reservoir. Combining
these data can help estimate the water temperature
for the water flows released from each reservoir. The
augmentation of reservoir state can be expressed as:

(4.5) or(erf) = dr(ery) + 9o (A5, 5),

where the function v, transforms the released flow ﬂt
and the simulated water temperature r , both of Wthh
are available for multiple depth layers 1n the reservoir.
In contrast, the simulated stream temperature y! is a
scalar because streams are much shallower and are often
assumed to be well-mixed.

Following the same process as Eqs. 4.1 and 4.2, we
update reservoir states using another function f,, as

(4.6) cr? = f,ﬂ(xr;7 créfl7 pr?l),

where the neighborhood influence prz-*1 for each reser-
voir j aggregates the information from its upstream
river segments U(j). Here we assume that reservoirs
do not interfere with each other because reservoirs are
often built distant from each other. Specifically, the
neighborhood influence prt ! is computed as follows:

= tanh( Y T (s ),

1€U(J)

(4.7) pr; '

where ¢, is implemented by fully connected networks.
Since this work is focused on predicting stream

water temperature, we create hidden representation and

predicted output from the stream states, as follows:

h} = og! © tanh(cs!),

4.8
( ) 'gf = Wyhg + by,

where og! represents the output gate variable used
to filter the stream state. The output gate og! is
computed following the standard LSTM model, i.e., by
transforming the current input and the previous hidden
representation via a fully connected layer. The overall
model structure is shown in Fig. 2

4.2 Adaptive graph diffusion and self-
supervised learning In a standard homogeneous
graph, the diffusion matrix T used for graph convolu-
tion is often computed as the aggregated power series
of the adjacency matrix A, as follows:

T=> 0:A",
k

(4.9)
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where 0}, represents the weight for the k-hop transition
relations, i.e., A®. The weight coefficients {01} satisty
> i 0r = 1. When the weight ), is higher for larger &
values, the model will focus on long-distance informa-
tion propagation. Intuitively, the radius of the informa-
tion propagation can be defined as ), k6.

This work adopts the heat kernel for defining the
weights {6;}. The heat kernel describes the heat
diffusion process [27], and the weight is estimated as:

k
-n1_

(4.10) o

O = e
where 7 is the diffusion parameter. It can be proved
that the radius of the diffusion matrix in Eq. 4.9 using
the heat kernel has the radius of n [28]. Hence, the
use of heat kernel with n € [0, 00) enables defining the
spatial neighborhood in a continuous manner.

We now extend this diffusion structure to the het-
erogeneous graph. Different types of nodes in the graph
often have different properties for diffusion so they need
to be modeled using separate diffusion matrices and pa-
rameters. We first create the diffusion matrix amongst
stream segments, as follows:

— 0" "
;e k—A o

(4.11)

where L is the Lapacian matrix I — A®®. The last equa-
tion is obtained using the matrix exponential function.
Similarly, we create the diffusion matrix between
reservoirs and streams. Here we use 7 to represent the
diffusion parameter for the reservoirs, as follows:

T = 0oA” + 0 AT A% + .. + 0, AT [AT])" 4 ..

_ A'rs 26—77 [Ass Arse—'yL

)

(4.12) .
T = 0o A*" + 01 A A" + .. 4+ 0x[A*°]" A" +

[eo]

=> "

k=0

Ass As'r — 67’YLAST

Here each entry T;ZS represents the connection
strength between a reservoir j and a multi-hop down-
stream river segment ¢, and each entry Tfjr represents
the connection strength between a river segment ¢ and
a multi-hop downstream reservoir j. Different from
n € [0,00) in Eq. 4.11, the value of v is in [—1, 00) be-
cause the term e " captures the connection between
one river segment and the outlet/inlet segment of a
reservoir, and v = —1 indicates that we consider only
the connection between the outlet/inlet river segment
and the reservoir captured by A™/A°".

We further make this model to be adaptive for each
reservoir node in the graph. This is because different

-1 Graph Composite simulations
SS
Simulated conv T 9() ~t—1
data Graph »
T s
convT f\fﬂ“\ DLear

est1 ) Graph || Gating, Y.,
convT* || tanh(-)
- Graph ‘
t—1 ) | -
r conv T™

Time

Figure 2: The structure of the proposed GDN model
(only for stream state update) and its training objec-
tives. The first step is to generate composite simulations
(in orange) by minimizing L.,;. The second step is to
train the lower part of the GDN model (in orange) by
minimizing L. Finally, the entire model is fine-tuned
with true observations by minimizing L.

reservoirs are often operated with different priorities in
water management, e.g., maintaining water tempera-
ture for aquatic life or sufficient water supply, and thus
they influence downstream river segments in different
ways. Given that we usually have a much smaller num-
ber of reservoirs compared to the number of stream seg-
ments, we estimate the parameter - separately for each
reservoir in the graph.

In particular, we leverage simulated data from
different nodes to calibrate the diffusion parameters 7,
and 7 (separately for each reservoir). The objective is to
create composite simulated data using the GDN model
by reducing the discrepancy with the true observations.
The composite simulated label ¢! is computed as follows:

G=g( Y THG@)+ Y THEee(f) ),

i’ eN(4) JEM(3)

(4.13)

where A/ (i) denotes the spatial neighbors of node i and
the node 7 itself, and the function g is implemented using
fully connected neural networks.

The diffusion parameters n and  are estimated
by minimizing the difference between the composite
simulations and true observations, as follows:

Xty (@

(4.14) )
' Y|

min L.q =
o

where the parameter set ® includes 7, v, and parameters
in ¢, Yr, and g.

Then, we conduct a self-supervised training using
the generated composite simulations. The objective
of the self-supervised learning is to pre-train the GDN
model to predict the composite simulations using input
features. In this step, GDN creates prediction ¢!
using only the transformation of input features (i.e.,
the components in orange color in Fig. 2) without the
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augmentation by Eqgs. 4.4 and 4.5. The loss function for
the self-supervised learning is shown as follows:

X @)’

(4.15) T

where the parameter set ¥ includes all the model
parameters © except parameters in ®, i.e., ¥ = O\d.

4.3 Fine-tuning Next, we fine-tune the entire
model using available observations. One major chal-
lenge is that the observations are very sparse and lo-
calized, resulting in a different distribution with test-
ing data. To address this challenge, we aim to leverage
the input features and simulated data that are available
over all the nodes to discover the discrepancy between
localized observations and the testing data.

Specifically, we propose a reweighting strategy to
increase the weights for those training samples that
are closer to the distribution of testing samples. We
build a classifier D to distinguish between training and
testing data, which is implemented as a two-layer fully-
connected network. The classifier takes the hidden
representation from the GDN model, which encodes
the information of input data, temporal patterns, and
physical simulations. Its output is in the range of [0,1],
and is closer to 1 if it predicts the data to be more likely
from the target years and otherwise is closer to 0. Then
the weight of each training sample is w! = D(h}).

The obtained weights can then be used in the
training loss function to alleviate the temporal data shift
in the training process, as follows:

(4.16) v

m@i)n Ly =

5 Experimental Results

5.1 Dataset and evaluation details The dataset
used in our evaluation is from U.S. Geological Survey
(USGS)’s National Water Information System [29] and
the Water Quality Portal [30]. The river segments were
defined by the national geospatial fabric used for the
National Hydrologic Model [31], and the river segments
are split up to have roughly a one day water travel time.
We study a subset of the Delaware River Basin with 56
river segments at Lordville, New York. We select this
subset since we have sufficient observations collected
in this area. In particular, we use input features at
the daily scale from Jan 01, 1980, to June 22, 2020
(14,784 dates). The input features have 10 dimensions,
which include daily average precipitation, daily average
air temperature, date of the year, solar radiation, shade
fraction, potential evapotranspiration and the geometric
features of each segment (e.g., elevation, length, slope

and width). Air temperature, precipitation, and solar
radiation values were derived from the gridMET gridded
dataset [32]. Other input features (e.g., shade fraction,
potential evapotranspiration) are difficult to measure
frequently, and we use values internally calculated by
the physics-based PRMS-SNTemp model [33]. Water
temperature observations were available for 29 segments
but the temperature was observed only on certain dates
(a total of 76,163 observations). In addition, we have the
water release data for the two reservoirs in this region,
i.e., the Cannonsville Reservoir and Pepacton Reservoir.
The release data includes how much water is released
under each type of release strategy (conservation-based
release, direct water release, and water spill release)
at a daily scale. We also have meteorological data for
the locations of reservoirs as well as the meta-features
of these reservoirs, including dam height, dam length,
depth, elevation, and area of catchment.

The following tests use data from Jan 01, 1980,
to Dec 25, 2006, for training and then measure the
performance from Dec 26, 2006, to June 22, 2020. The
evaluation is focused on stream temperature prediction.

The proposed model is implemented using GTX
3080 GPU and AMD Ryzen 9 5950X 16-Core Processor.
The training uses the ADAM optimizer [34] with an
initial learning rate of 0.002. All the hidden variables
and gating variables have 20 dimensions.

We conduct experiments to answer the following
questions: @I: Can the proposed outperform ezisting
methods, especially under data-sparse scenarios?

Q2: What is the effect of the reweighting strategy in
fine-tuning the model using localized observations?

Q3: Can GDN create better simulated labels?

Q4: How will the performance change if the model
does not use adaptive diffusion structures?

5.2 Predictive performance We measure the pre-
dictive root mean squared error (RMSE) on streams for
the proposed GDN method against several baselines,
including physics-based PRMS-SNTemp (SNTemp)
model [7], the RNN model with the LSTM cell (RNN),
Recurrent Graph Networks (RGrN) [2], HydroNets [1],
and Heterogeneous Graph Networks (HGN) [6]. Here
RNN is trained using data from all the streams but
it does not consider spatial dependencies. The graph-
based methods RGrN and HydroNets only capture
stream interactions but do not consider the impact of
reservoirs. The HGN model considers both streams and
reservoirs using a heterogeneous graph representation,
and is implemented in multiple versions (HGNP" and
HGN?"8) to further show the effect of incorporating sim-
ulated data. The HGNP' method first pre-trains HGN
using simulated stream temperature and then fine-tunes
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Table 1: Mean prediction RMSE (& standard deviation)
for temperature modeling using 0.1%, 2% and 100%
training labels from five runs with random initialization
and data sampling. Rows in grey uses simulated data.

Method 0.1% 2% 100%

SNTemp 4.06 4.06 4.06

RNN 3.03£0.09  2.20£0.04 1.95+0.02
RGrN 2.81+0.06  2.13£0.03  1.84+0.03
HydroNets | 2.95+0.08 2.154+0.04 1.9040.03
HGN 2.79£0.05 1.93£0.06  1.48+0.03
HGNPr 2.54+0.07 1.81£0.06 1.484+0.02
HGN?2u& 2.62+0.07 1.81£0.06  1.39£0.02
GDN 2.57+£0.05 1.89£0.05 1.41+£0.02
GDN?au& 2.52£0.05 1.80£0.08 1.23£0.03
GDNss! 2.4240.08 1.75£0.08 1.20+£0.02

HGN using true observations. Here the pre-training
uses the composite simulations from a USGS data re-
lease that combines SNTemp simulations and reservoir
simulations using a distance-based decay function [13].
HGN?®"¢ uses the simulations to augment the state vari-
ables, in the same way as in the proposed GDN model
(described in Section 4.1). We also implement three
versions of the proposed GDN model: GDN, GDN?",
and GDN®!. The first version GDN uses the hetero-
geneous graph diffusion model, but does not use the
simulated data. The GDN?"® method uses the simu-
lated data to augment the intermediate model states
(Section 4.1), and the GDN**! method further conducts
the self-supervised learning using the obtained compos-
ite simulations (Section 4.2). We also randomly select
a portion of observation data from the training period
(0.1%, 2%) for tuning each model.

Table 1 and Fig. 3 show that our method outper-
forms all the baselines. We also have several observa-
tions: (1) RGrN and HydroNets perform better than
RNN because they can capture stream interactions.
HydroNets uses both global and node-specific param-
eters, leading to worse performance for poorly-observed
stream segments compared to RGrN. (2) The improve-
ment from RGrN to HGN and GDN confirms the effec-
tiveness of modeling different types of nodes. GDN out-
performs HGN because it betters captures long-distance
effect of water flows. (3) The methods using simu-

:
0
1226019 410812%%" 313811007 10202057 (1 30200% (0200 02200
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Eloverall
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Figure 4: The prediction RMSE over all the segments
and only the segments that are not involved in training.

lated data (HGNP' HGN2u& GDN2us GDN*!) are
better than their prototype models without using the
simulated data. Also, the augmentation-based method
(HGN?"¢ and GDN?®"8) generally lead to better perfor-
mance when using a larger number of training sam-
ples while the methods with a separate pre-training
stage (HGNP' and GDN®!) often perform better using
sparser observations.

b) 2% training data.

N

-
[
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5.3 Localized data To verify the model perfor-
mance using localized training data, we hide data from a
set of four stream segments S and each stream in S has
over 4,000 training observations. The total training ob-
servations in § covers 56.77% of all the training samples.
We measure the performance of HGNP*, GDN®! with-
out using the reweighting strategy (GDN®s!\reW) and
GDN*! using the reweighting strategy (GDN®!).

Fig. 4 shows the performance measured over all the
testing data and over only the hidden segments S. All
the methods have larger errors on the hidden segments
compared to the prediction error over all the testing
data. This indicates that data patterns from the set of
nodes with training data may not apply to other nodes.
This can be due to the difference of characteristics across
stream segments, e.g., soil properties, groundwater.
The GDN**! method has a smaller error compared to
HGNPY" and GDN®sI\"¢® because training samples are
reweighted to reduce the discrepancy between local
training data and testing data.

5.4 The accuracy of composite simulations Ta-
ble 2 shows the accuracy of the composite simulated
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Table 2: The RMSE of different simulation dataset
for the entire dataset, the segments downstream from
reservoirs, and other stream segments.

Method Overall Down-Reservoirs  Others
SNTemp 4.06 4.06 4.06
Exp-decay 3.19 2.64 3.60
GDN-composite 2.73 2.54 2.90

data created by the proposed GDN model (GDN-
composite) as well as the original simulated water tem-
perature on streams (SNTemp) and the composite sim-
ulations released by USGS (Exp-decay) [13]. The Exp-
decay method uses a linear combination of simulated
water temperature for streams and released flows from
reservoirs with a decay function. Specifically, for a seg-
ment ¢ downstream from the reservoir j, the composite
simulation is ¢} = wfl’-F} + (1 — w)§!, where the weight
w = exp(—ad), and d is the stream distance from the
stream segment to the reservoir. The parameter « is
calibrated using true observations.

We can observe that both GDN-composite and
Exponential-decay simulations are better than the
SNTemp-based simulations. By comparing GDN-
composite and Exponential-decay, we can see that
GDN-composite is slightly better for streams down-
stream from reservoirs while being much better for
other segments. This is because GDN also propagates
simulated water temperature amongst different stream
segments while the Exponential-Decay modifies stream
simulations considering only the impact of reservoirs.

Fig. 5 shows simulated data generated by different
methods for two streams downstream from the Can-
nonsville Reservoir. It can be seen that the SNTemp
over-estimates the water temperature because it does
not consider the cold water released at the beginning
of the summer period. The Exp-decay method predicts
lower water temperature at the beginning of the summer
period because it combines the simulations for the cold
water release and the stream water temperature. How-
ever, the effect of cold release on downstream streams
cannot be fully captured by a simple linear combina-
tion. Also, the impact on water temperature may not
be reflected immediately. In contrast, GDN-composite
better matches true observations.

5.5 Adaptive diffusion model Finally, we test the
performance using different numbers of diffusion param-
eters in the GDN model. We report the performance of
three versions of GDN®! model in Table 3. First, we use
a single diffusion parameter for all the nodes (Single),
i.e., p== in Egs. 4.11 and 4.12. Second, we use two scal-
ing parameters 7 and «y for stream segments and reser-
voirs, respectively (Node Type). Third, we also cali-
brate different diffusion parameters for the Cannonsville

Table 3: The RMSE of the simulations and final
predictions generated by different GDN models.
Method Simulation  Final prediction
Single 2.75 1.36
Node type 2.73 1.33
Adaptive 2.73 1.20

Reservoir and the Pepacton Reservoir (Adaptive). It
can be seen that the simulated data created by all the
three models have similar performance. However, the
Adaptive approach generates better final predictions.

6 Conclusion

In this paper, we build a GDN model with adaptive dif-
fusion structures for different types of nodes in the het-
erogeneous graph. The GDN model is applied to trans-
form and combine both input features and simulated
data over different nodes. We first use the GDN model
to create composite simulations over all the nodes, and
then train the GDN model in a self-supervised fashion.
Finally, it is fine-tuned using reweighted observed la-
bels. Our evaluations demonstrate that the proposed
method can improve the predictive performance even
using sparse and localized training samples. The GDN
model also creates new composite simulations, which
have higher accuracy for streams either affected or not
affected by reservoirs. The adaptive diffusion struc-
ture is also shown to contribute to better performance.
Although this method is developed in the context of
modeling stream networks, the method can be gener-
ally applicable to a variety of scientific problems with
heterogeneous interacting processes. Our future work
will also pursue interpreting the GDN combination of
simulations to aid in the design physics-based models.
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