
Physics-Guided Meta-Learning Method in Baseflow Prediction over Large
Regions

Shengyu Chen1, Yiqun Xie2, Xiang Li3, Xu Liang1, Xiaowei Jia1
1 University of Pittsburgh, 2University of Maryland, 3 University of Minnesota

1{shc160,xuliang,xiaowei}@pitt.edu,2xie@umd.edu,3lixx5000@umn.edu

Abstract

Physics-based groundwater flow equations are power-
ful tools for water resource assessment under different
hydrological and climatic conditions. How these con-
ditions affect the discharge of groundwater (i.e., base-
flow) into rivers is one of the most important topics in
the hydrology domain. However, due to the different
environmental conditions in different basins, it is diffi-
cult to use a single physics-based equation to represent
the discharge of groundwater in all river basins. De-
spite the promise of data-driven models in capturing
complex relationships, they are also limited in learning
heterogeneous baseflow patterns from multiple basins,
especially with sparse training data. In this paper, we
propose a new data-driven model Physics Guided MeTa
Learning (PGMTL), which uses meta-learning to adapt
the predictive model to multiple basins and also enhance
the meta-learning process with knowledge embodied in
different physics-based equations so as to improve the
baseflow prediction over a large number of river basins.
Experimental results show that our proposed PGMTL
has a significant improvement over either physics-based
equations or ML models. Moreover, our method has
been shown to perform much better with sparse or lo-
calized training data. Finally, our method is able to
interpret the contribution of each physics-based equa-
tion under different scenarios.

Keywords: Physics-guided Meta-learning,
Baseflow prediction, Clustering.

1 Introduction

Baseflow, also referred to as low flow, is the portion of
the stream flow that is sustained between rainfall events
and also during dry periods. Baseflow is contributed
by slowly moving water from the groundwater aquifer
and the slow flow within the porous media due to soil
moisture and other delayed sources. Baseflow is essen-
tial for ecosystem functioning and provides habitat for
stream biota, and it affects the water quality. Improving
the reliability of baseflow prediction is critically impor-
tant to water resources management, especially with the

changing climate and continuing population growth. In
addition, better quantification of the baseflow lays the
scientific foundation for investigating groundwater and
surface water interactions, analysis of baseflow yields,
and estimation of groundwater storage change, which is
not only important for catchment hydrology [1] but also
for the regional and global water and energy balance and
climate studies as it directly affects soil moisture and
groundwater storage [2]. Furthermore, a better under-
standing of groundwater storage is critical for making
better strategies in dealing with extended drought since
groundwater is an important buffer against climate vari-
ability by providing a secure water supply.

At present, baseflow for a watershed is often pre-
dicted by using either empirical [3], semi-empirical [4],
or theoretically-based expressions/parameterizations as
a function of soil moisture, groundwater table depth, soil
properties, and watershed characteristics [5, 6]; or by
using comprehensive groundwater numerical models [7].
Tallaksen [8] provided a comprehensive overview of the
various baseflow relationships/parameterizations. How-
ever, all of these approaches have their significant limi-
tations. For example, the empirical and semi-empirical
expressions used to represent the baseflow behaviors are
usually obtained according to specific conditions and
observations and thus are only applicable to specific
situations. The physically-derived relationships have
theories to support but suffer various assumptions and
simplifications made in the derivations and are gener-
ally applicable to relatively homogeneous watersheds.
Therefore, the current widely used baseflow relation-
ships/expressions cannot represent well the nonlinear
behaviors involved in the baseflow dynamics in all situ-
ations. Beside, there are various parameters and coeffi-
cients involved in these relationships that cannot be ad-
equately estimated due to limited available information
and the current understanding of the complex problems.
Predicting the baseflow using the groundwater numeri-
cal model approach is not only computationally expen-
sive but also has various uncertainties involved as well,
such as uncertainties due to limitations of our under-
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standing of various hydrological processes, parameter-
izations, and simplifications of these processes, model
structures, a large number of model parameters associ-
ated with soil properties (e.g., hydraulic conductivities)
that need to be estimated with limited data, etc.

Machine learning (ML) models, given their tremen-
dous success in several commercial applications (e.g.,
computer vision, and natural language processing),
are increasingly being considered promising alternatives
to physics-based equations in the scientific domains.
For example, the long short-term memory (LSTM)
model [9] has been widely used in modeling temporal
patterns of water dynamics in the hydrology domain [10,
11]. Prior works have also used graph neural networks
to model the interactions amongst streams [12, 13]. In
streamflow problems, Moshe et al. [12] proposed the Hy-
droNets model, which uses the ML model to integrate
the information from river segments and their upstream
segments to improve the streamflow predictions. Fur-
thermore, Chen et al. [13] proposed an HRGN model
to represent underlying stream-reservoir networks and
improve streamflow temperature prediction in all river
segments within a river network.

However, there are still several challenges faced
by existing methods. Firstly, scientific problems often
exhibit complex patterns amongst multiple physical
variables. Standard ML approaches are not designed
to capture such complex patterns solely from data.
Secondly, given the substantial labor and material cost
of collecting data, labeled data samples (observations)
are limited. Third, different river basins exhibit distinct
baseflow behaviors due to the variation of hydrological
conditions (e.g., soil property and land covers). It
increases the difficulty of using ML models to capture
underlying relationships collectively from all basins.

In this work, we develop a new data-driven method
Physics Guided MeTa Learning (PGMTL) to improve
the prediction of baseflow dynamics for a large number
of basins. The central idea is to leverage physical
knowledge in adapting the ML model to different basins.
Specifically, we use hydrological conditions of basins to
create multiple tasks through a clustering process. Then
we incorporate additional physical theories when the
global ML model is adapted to each task. To facilitate
the learning of complex baseflow patterns, we propose
three different methods to enhance model predictions
using simulated baseflow data generated by multiple
physics-based equations.

We evaluate the proposed method in the 60 different
river basins in Pennsylvania. The results demonstrate
the superiority of the proposed method under whatever
conditions with sufficient data or sparse data. The ex-
perimental results also show the effectiveness of the pro-

posed meta-learning method in extracting underlying
physical relationships from simulations.

2 Related Work

Observations are used to evaluate various approaches for
baseflow simulations and predictions, such as the vari-
ous baseflow expressions, groundwater numerical mod-
els, ML methods, and hybrid methods. However, base-
flow is not as directly observable as streamflow is. Thus,
baseflow (the slow component) is obtained by separating
it from the surface flow (the fast component) based on
measured streamflow data. Common approaches to sep-
arate the baseflow from streamflow include the chemical
balance approach (CBM) [14], and hydrograph separa-
tion (HS) approach [15, 16, 17]. The HS approach is
widely used in hydrology and it includes different meth-
ods, such as graphical method [18], fixed and sliding
interval method [19], local minimum methods [19, 20],
and digital filter methods [15, 16, 17]. Each method has
its strengths and limitations but past studies showed
that the choice of different digital filters and local min-
imum methods provide comparable results [21].

Recent research has shown immense success in inte-
grating physics knowledge into ML models to improve
predictive performance and solve general scientific prob-
lems. The most common ways include applying ad-
ditional loss functions [22, 23] and other hybrid ap-
proaches [24, 22]. In a recent survey [25], it summarized
existing literature and approaches for integrating scien-
tific knowledge into machine learning models. For exam-
ple, Hanson et al. [26] developed a PGRNN model to in-
troduce ecological principles as physical constraints into
the loss function of ML models to improve the lake sur-
face water phosphorus prediction. Karpatne et al. [22]
proposed a hybrid ML and physics model which can in-
troduce physics models into an ML model as additional
input. This model can guarantee the physical relation-
ship that the density of water at a lower depth is always
greater than the density of water at any depth above.
Then, our previous works [11, 23] further proposed new
methods to reduce search space and improve prediction
accuracy by including an additional penalty term for
violating the law of energy conservation.

Meta-learning leverages a variety of general knowl-
edge across a set of learning tasks to learn how to learn
effectively when given a new task. The optimization-
based [27, 28] meta-learning methods can adjust the
optimization algorithm directly and adapt to new task
learning quickly. For example, the Model agnostic meta-
learning (MAML) [28] method consists of learning an
initial set of model weights that are optimized to effi-
ciently learn new tasks. Furthermore, the meta-learning
method has been widely used in solving scientific prob-
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Figure 1: The overall structure of the proposed PGMTL framework.

lems [29, 30, 31]. For example, Liu et al. [30] integrated
the meta-learning methods into the physics-informed
neural networks (PINN) [32] to reduce the computation
complexity and achieved higher accuracy in solving par-
tial differential equation (PDE) related problems.

3 Problem Definition

Our objective is to predict the target variable baseflow
for each basin m ∈ {1, ...,M}, and on each date
t ∈ {1, ..., T}, given input physical variables that drive
the dynamics of the physical system. In detail, we
use Xd = {xt

m,d} to represent dynamic climate input
features for each location m on a specific date t, and
use Xs to represent the hydrological conditions for each
location. Xs include several hydrological features of all
river basins such as soil features (more details provided
in Section 5.1). We also regard X = {xt

m} as the
complete input features, which contain both Xd and
Xs. Then, we aim to predict the corresponding target
variables (i.e., baseflow) Y = {ytm}.

Additionally, we leverage the simulation data gener-
ated by different physics-based equations (parameteri-
zations) into the ML model training. The physics-based
equations take the input features X = {xt

m} and simu-
late target variables based on known physical theory and
a set of estimated parameters. Specifically, the physics-
based equations simulate baseflow based on input fea-
tures (e.g., rainfall and soil moisture), which can affect
the discharge of groundwater directly. In this work, we
selected K different sets of simulated data generated
by using K different physics-based equations (that are
commonly used by domain scientists). We represent
each set of simulated target variables as Ỹk = {ỹtm,k}.

4 Method

In Fig. 1, we show the overall architecture of our pro-
posed framework PGMTL. This framework is agnostic

of the specific predictive model. We adopt standard
LSTM [9] as a base predictive model in this work but
the proposed framework can be applied to other mod-
els (e.g., EA-LSTM [33]). In the proposed framework,
we first use the data of all river basins to train a global
model. Then we divide all the river basins into N differ-
ent clusters according to their hydrological conditions.
The global model is adjusted through a meta-learning
process to find the optimal global initial model, which
is then adapted to different clusters. In this process,
we also introduce three different physics-guided meta-
learning methods to incorporate the physical informa-
tion into our model training and learn separate models
for each cluster.

4.1 Physics-Guided Meta-Learning To help the
predictive model better capture underlying physical re-
lationships in baseflow dynamics, we introduce multiple
sets of simulations generated by different physics-based
equations to enhance the predictive model.

Hydrological scientists use different physics-based
equations to simulate the baseflow dynamics as baseflow
behaviors vary across river basins due to their distinct
hydrological conditions [8]. These equations are created
based on both known physical relationships and empir-
ical analysis. Each physics-based equation often per-
forms better on certain basins over other basins. This
suggests that multiple sets of simulations created using
different equations can have different degrees of contri-
butions to modeling different river basins. To better
utilize simulations to aid model prediction, we use the
K-means clustering algorithm to divide all river basins
into different clusters according to the hydrological con-
ditions of river basins Xs. Then, we consider each clus-
ter of river basins to be a learning task, and we aim to
build a model that can be quickly adapted to all the
tasks. The river basins in each cluster are expected to
share similar hydrological conditions, and thus can ben-
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efit from the knowledge embedded in the same set of
physical simulations.

Then we introduce new physics-guided meta-
learning methods to integrate different simulations into
the learning process for each task (i.e., a cluster of
basins). Inspired by the MAML algorithm [28], we aim
to identify a set of shared initial parameters Θ0 such
that the model can be slightly fine-tuned to fit each new
task. Our method extends the MAML method in that
we also introduce some new model components during
the adaptation process to each task by leveraging auxil-
iary physical knowledge. Specifically, in addition to the
set of shared initial parameters Θ0, we also create an-
other set of distinct parameters Φi for each task i, which
is used to capture the contributions from different sets
of physical simulation data.

In particular, in the meta-learning process, we start
from an initial global model with Θ0 and fine-tune it to
N different clusters separately using the training data
{Xtr

i ,Y
tr
i } for each task. Such a fine-tuning process

produces N sets of task-specific parameters Θi for
i = 1 to N . In this process, we also train another
set of distinct parameters Φi for N different clusters.
These parameters Φi are used to create additional
regularization or augmentation components to enhance
the base model (parameterized by Θi) by leveraging
physical knowledge (will be discussed in Section 4.2).
This process can be represented by:

(4.1) Θi = Θ0 − α∇ΘL(f(Xtr
i ; Θ,Φi),Y

tr
i )|Θ=Θ0 ,

where α is a learning rate of our proposed model, f(·)
represents the mapping relation from input features
to target variables defined by the PGMTL method, L
represents the mean squared error (MSE) loss function,
and Θ0 is a set of shared initial parameters. Here we
only show a one-step gradient descent process, but it
can be generalized to multiple gradient steps. The one-
step gradient is adopted in our test and achieves good
performance.

Once gathering Θi for each cluster, we define the
loss of meta-learning on an independent validation set
of each task {Xval

i ,Yval
i }, optimizing Θ0 and {Φi}Ni=1 as:

(4.2) min
Θ0,{Φi}

Lmeta =

N∑
i=1

L(f(Xval
i ; Θi,Φi),Y

val
i ).

In our implementation, we first train a global pre-
dictive model using data from all tasks and obtain its
parameters Θg. Note that this global model does not
use parameters Φ. This is because different sets of
basins may be better simulated by different physics-
based equations, and thus it is difficult to use a single
set of parameters Φ to capture the contribution of dif-
ferent physics-based equations for all the basins. Then

we use Θg to initialize Θ0 and run the meta-learning
process. After obtaining the optimal initial parameters
Θ0 and the other parameters Φi for each task i, we can
test the model by fine-tuning the model for each cluster
and update Θ0 to be Θi. The parameters Φi are fixed
during the fine-tuning process in the testing phase.

4.2 Methods of Integrating Simulations We
consider three different methods for incorporating phys-
ical simulations (created using multiple physical equa-
tions) into the PGMTL framework: (i) augmentation,
(ii) attention mechanism, and (iii) contrastive learning.
These methods are described in the following:

4.2.1 Augmentation The meta-learning loss in
Eq. 4.2 requires the predicted target variables and true
observations. Here we represent the predicted target
variables as Ŷ = {ŷtm}, and the loss function of stan-
dard LSTM is defined using true observationsY = {ytm}
that are available at certain time steps for certain loca-
tions, described as:

(4.3) LLSTM(Ŷ,Y) =
1

|Y|
∑

{(m,t)|yt
m∈Y}

(yt
m − ŷt

m)2.

Next, in order to incorporate the simulations gen-
erated from different physics-based equations into our
proposed model, we also calculate the loss between each
set of simulated target variables Ỹk = {ỹtm,k} and pre-

dicted target variables ŷtm, which is shown as:

(4.4) Lphy(Ŷ, Ỹk) =
1

|Ỹk|

∑
{(m,t)|ỹt

m,k
∈Ỹk}

(ỹt
m,k − ŷt

m)2.

To train the predictive model while preserving the
consistency with simulated data, we combine these two
loss functions together and obtain the complete loss
function, as follows:

(4.5) LAUG = LLSTM(Ŷ,Y) +
∑
k

λkLphy(Ŷ, Ỹk),

where λk represents the weight of kth set of simulation
data. In particular, this new loss LAUG is used to
replace the loss in Eq. 4.1 while we still use the standard
supervised loss in Eq. 4.2. Here Φ = {λk} and is
essentially the parameters of the loss function instead of
the predictive model f . These parameters {λk} need to
be tuned separately for each task. It is also worthwhile
to mention that the physical loss Lphy can be evaluated
for a larger set of data samples for which observations
are not available.

4.2.2 Attention Mechanism We also adapt the
attention mechanism [34] to combine the predicted
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target variables ŷtm with the simulated target variables
Ỹk = {ỹtm,k} to obtain the final predicted target

variables Yf = {ŷtm,f}, which can be represented by
the following equation:

(4.6) ŷt
m,f = wt

0ŷ
t
m + wt

k

K∑
k=1

ỹt
m,k,

where wt
k (k = 0, 1...K) are weights for ŷtm and ỹtm,k.

These sets of weights wt
k come from another LSTM

model. In particular, we use a separate LSTM model
to produce hidden representation {ht

a} = g(xt) on each
date t. Our goal is to use the attention mechanism by a
fully connected layer to convert {ht

a} to a set of weights
wt

k on each date t corresponding to the predicted target
variables ŷtm and the simulated target variables ỹtm,k.

Once we obtain a set of weights for ŷtm and ỹtm,k, we

normalize them into attention weights wt
k via softmax

function. More formally, the attention weights can be
represented by:

(4.7) wt
k =

Wkh
t
a + bk∑

k′ Wk′ht
a + bk′

,

where Wk and bk are attention model parameters.
These parameters and the parameters introduced in the
additional LSTM g(·) form the parameter set Φ.

Using the predictions produced by Eq. 4.6, we can
measure the complete loss as:

(4.8) LATN(Yf ,Y) =
1

|Y|
∑

{(m,t)|yt
m∈Y}

(yt
m − ŷt

m,f )
2,

This loss LATN is used in both the inner meta-update
process (Eq. 4.1) and the outer update process (Eq. 4.2).

4.2.3 Contrastive Learning As the augmentation
method did, we calculate the loss LLSTM(Ŷ,Y) between
the predicted target variables and true observations.
Then, we will also further leverage the knowledge ex-
tracted from simulation data by exploring the relation-
ships between the observation data and different sets
of simulation data. Here we will introduce a new loss
function to capture this relationship.

After gathering the predicted target variables ŷtm
and simulated target variables ỹtm,k, we define a sim-

ilarity mapping ŷtm → ỹtm,k for each k=1 to K using

the distance between ŷtm and ỹtm,k. Once we obtain the
similarity values for all sets of simulation data, we nor-
malize the obtained similarity values and convert them
into a distribution Q(ŷtm → ỹtm,k) via a softmax func-
tion. More formally, this can be expressed as:

(4.9) Q(ŷt
m → ỹt

m,k}) =
exp(−|ỹt

m,k − ŷt
m|)∑

k′ exp(−|ỹt
m,k′ − ŷt

m|) .

We aim to ensure that the patterns extracted from
observation data are similar to the sets of simulation
data created by physical equations suitable for modeling
the target basin system while staying different from
other sets of simulations. Specifically, we define a
contrastive loss based on the entropy of the similarity
probability, as follows:
(4.10)

Lctr = − 1

|Y|
∑

{yt
m∈Y}

K∑
k=1

Q(ŷt
m → ỹt

m,k}) logQ(ŷt
m → ỹt

m,k}).

Combining the contrastive loss and the loss
LLSTM(Ŷ,Y), we get the complete loss, as follows:

(4.11) LCTR-all = LLSTM(Ŷ,Y) + γLctr,

where γ is a hyper-parameter.
The contrastive learning method adapts a new

regularizer based on different sets of simulations but
unlike the previous two methods, without involving any
additional model parameters Φ. The meta-learning
process is conducted by updating Θ0 to Θi with a new
loss function LCTR-all. This loss LCTR-all is used in the
inner meta update process (Eq. 4.1) while the validation
loss in Eq. 4.2 remains the standard supervised loss.
This is the same with the augmentation method.

4.3 Implementation Details We clarify the imple-
mentation details of our framework in the following:.

We first utilize input feature X, including dynamic
climate input features Xd and hydrological condition
Xs, to train a global model, and obtain a set of
parameters of Θg. Second, we adapt Θg to initialize
shared parameters Θ0, and randomly initialize another
set of parameters Φi. We continue to use the physics-
guided meta-learning method to train each task in a
random order multiple times. Then, we obtain a set
of shared parameters Θ0 and another set of distinct
parameters Φi for each task. Lastly, we adapt the
learned model to each cluster by fine-tuning Θ0 into
Θi while fixing Φi, and use the updated parameters
{Θi,Φi} to predict target variables.

Second, we obtain simulations from physics-based
equations. We select two physics-based equations which
are widely used in the hydrology domain to simulate
baseflow [8], as:

(4.12)
Ỹ1 = b(sp),

Ỹ2 = c ∗ exp(b(s− smax)),

where c is hyper-parameter, b and p are equation
parameters, s is the soil moisture, and smax is the
maximum value of soil moisture in a certain river basin.
The proposed method can be applied to other baseflow
equations as summarized in [8].
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Figure 2: shows the parts of the selected river basin’s
distribution in PA, the blue circles represent the loca-
tions of river basins.

To find the appropriate pair value of parameters
b and p, we first use the gradient descent method to
fit both equations and find the suitable initial value
of parameters b and p for each river basin. Then we
take them as the initial values and adjust them 300
times using a grid search, each adjustment with an
amplitude of 0.05. Finally, we can find the best pair
value of parameters b and p, which can bring simulated
target variables generated by these two equations closest
to the true observation. Such a calibration process is
conducted using only the training samples.

5 Experiments

5.1 Dataset Climate Driver and Observation: We
study 60 river basins in Pennsylvania, and the distri-
bution of a subset of these river basins can be seen in
Fig. 2. We use the dynamic input feature on a daily
scale from January 01, 1987, to July 27, 2016 (a total
of 10,800 days). The input dynamic features are taken
from the NCA-LDAS dataset [35], including 20 variables
on energy fluxes (e.g., radiation), snow/rain precipi-
tation rate, evapotranspiration, potential evaporation
rate, snowmelt, soil moisture in different depths, some
features of wind speed, humidity and pressure. We also
have static hydrological conditions of river basins from
the GAGES-II dataset [36], which includes 40 dimen-
sions such as soil properties (e.g., bulk density), stream
geometry (e.g., stream lengths), and dam-related fea-
tures (e.g., dam density). The baseflow time series ob-
tained from the one-parameter digital filter method [15]
of the HS approach is used as the labels in our exper-
iment. This method has been shown in prior work to
provide high-fidelity baseflow estimates [21].

Simulation data: For the simulation data, we gener-
ate two sets of different simulation data by two different
physics-based equations (Eq. (4.12)). We use these two
physics-based equations to generate the simulated data
over the same study period of 10,800 days.

5.2 Experiment Settings Firstly, we compare the
performance of our proposed PGMTL method against

Table 1: Predictive NSE [37] performance for baseflow
prediction, with columns 2-4 showing the results using
0.5%, 1%, and 100% training data, respectively.

Method 0.5% 1% 100%

LSTM 0.645 0.821 0.875
LSTM-M 0.817 0.836 0.880
LSTM-C 0.839 0.841 0.883
EA-LSTM 0.778 0.821 0.871

EA-LSTM-M 0.816 0.865 0.867
EA-LSTM-C 0.836 0.870 0.891

PGMTL-Augmentation 0.857 0.875 0.901
PGMTL-Attention 0.864 0.877 0.908
PGMTL-Contrastive 0.859 0.876 0.921

several existing methods that have been widely used
in the hydrology domain. Specifically, we implement
our three proposed methods: PGMTL-Augmentation,
PGMTL-Attention, PGMTL-Contrastive 1, and also
implement LSTM [9], EA-LSTM [33] as baselines. In
particular, EA-LSTM is a specially designed variant of
LSTM, which uses hydrological conditions to modify the
input gate of the LSTM cell. This is to simulate how
hydrological conditions can be used to filter the impact
from the current climate input (e.g., rainfall and radi-
ation) to the state of the hydrological system. In addi-
tion, to better verify the effectiveness of our proposed
clustering and meta-learning methods, we further im-
plement four extra baselines LSTM-M, LSTM-C, EA-
LSTM-M, and EA-LSTM-C, described below:

Baseline methods with MAML [28] (LSTM-M and
EA-LSTM-M): We compare to the standard MAML
method by implementing the MAML method using the
base model of LSTM and EA-LSTM.

Baseline methods with MAML + Clustering
(LSTM-C and EA-LSTM-C): We also implement
MAML at the clustering level (using the proposed clus-
tering mechanism) and combine it with both LSTM-M
and EA-LSTM-M. The comparison between our pro-
posed PGMTL model and these two baselines (LSTM-
C and EA-LSTM-C) shows the effect of incorporating
physical relationships in the model adaptation process.

In the following experiments, we use data from Jan-
uary 01, 1987, to September 18, 2006, for training, and
then measure the testing performance on data from
September 18, 2006, to July 27, 2016. Specifically, dur-
ing the processing of our proposed meta-learning meth-
ods, we use data from January 01, 1987, to November
19, 1996 as training (totally 3,600 days), and data from
November 19, 1996, to September 18, 2006, as validat-
ing (totally 3,600 days).

1The source code for the PGMTL-based models and
dataset presented in this study are available online at

the link: https://drive.google.com/drive/folders/

1j-8Owmk71a7XKy11B0DKDuqyM5L4Gvvr?usp=sharing
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(a) PGMTL-Augmentation. (b) PGMTL-Attention. (c) PGMTL-Contrastive.

Figure 3: Predictive performance of full data experiment within the period from 01/01/2007 to 12/31/2007.

(a) PGMTL-Augmentation. (b) PGMTL-Attention. (c) PGMTL-Contrastive.

Figure 4: Predictive performance of 0.5% data experiment within the period from 01/01/2007 to 12/31/2007.

(a) PGMTL-Augmentation. (b) PGMTL-Attention. (c) PGMTL-Contrastive.

Figure 5: Distribution of NSE value for river basins in 0.5% training data sparse experiment.

(a) PGMTL-Augmentation. (b) PGMTL-Attention. (c) PGMTL-Contrastive.

Figure 6: Transferring Experiment’s NSE Comparisons between PGMTL methods and baseline LSTM model.

5.3 Prediction Performance In the following, we
compare our proposed model with baselines by using the
Nash–Sutcliffe model efficiency coefficient (NSE) [37].
NSE is widely used to assess the predictive performance
of hydrological models. The value of NSE ranges in (-∞,
1], and the higher value indicates better performance.

5.3.1 Full Data Experiment We report the per-
formance of each method using data from 60 basins
in Table 1 (the last column). We have several obser-
vations: (1) By comparing LSTM and LSTM-M, we
show the improvement by using the MAML method.
Also, by comparing LSTM-M and LSTM-C, we show
the effectiveness of using the clustering mechanism in
our proposed methods. We can also obtain a similar
conclusion by comparing the EA-LSTM-based baseline

methods. (2) When comparing our proposed PGMTL
methods with baseline methods, our methods perform
better and produce the highest NSE. It means that in-
corporating the simulation data into the ML model can
bring significant improvement in terms of NSE. (3) We
can observe similar performance between LSTM-based
and EA-LSTM-based methods in this experiment. It
means LSTM is sufficient to directly learn how to in-
corporate hydrological conditions into the prediction.
Hence, we use LSTM as the base model for implement-
ing PGMTL-based methods.

On the other hand, Figs. 3 (a)-(c) show that the
LSTM model often underestimates the baseflow of river
basins, especially in the Spring period. Our proposed
PGMTL model, regardless of which adaptation meth-
ods are used in meta-learning, can obtain a better pre-
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diction performance, especially in the Spring when the
discharge of groundwater is larger.

5.3.2 Sparse Data Experiment To simulate the
difficulty of data collection in the real world, we also
conduct a group of sparse tests. In these tests, we chose
to use only 1% and 0.5% of the training data to train
our proposed model and baseline models, to prove that
our proposed PGMTL model still has a great advantage
when the training data is limited.

In this sparse experiment, we have new observations
from Table 1: (1) As training data becomes sparser, the
improvement of our proposed methods to the model be-
comes more significant. Specifically, considering the ex-
periment using only the 0.5% training data, we can ob-
serve a huge improvement from the global pre-training
model (LSTM) to our proposed models. It also shows
that our methods are still highly adaptable in the case of
sparse observation data. (2) Similar to the previous full
data experiment, we show the effectiveness of proposed
methods against LSTM, LSTM-M, and LSTM-C. (3) By
comparing the LSTM and EA-LSTM methods, we can
observe a significant difference in using only 0.5% train-
ing data, which can suggest that the EA-LSTM model
would be more suitable than the LSTM model if data is
extremely sparse. In future extensions, we may use the
EA-LSTM model as a benchmark instead of LSTM in
this extreme condition.

At the same time, from Figs. 4 (a)-(c), we can see
that the LSTM model produces much worse predic-
tions, especially for time periods with baseflow oscil-
lations, if it uses extremely limited training data. As
for the PGMTL-based methods, although their perfor-
mance is worse than the performance obtained using
sufficient training data, they still have a great advan-
tage compared with the LSTM model. On the other
hand, Figs. 5 (a)-(c) show the comparison between the
PGMTL-based methods and the LSTM model for each
basin in terms of the NSE value. These results suggest
that more than 90% river basins will get better perfor-
mance if using our proposed methods, which confirms
that our proposed model has significant superiority over
the baseline model.

5.3.3 Transferring Experiment In addition, we
also design a transferring experiment to test the
PGMTL-based methods in real-world scenarios in which
the available training data are highly localized in cer-
tain basins while other basins only have limited training
data. We plan to test whether the proposed model and
the standard ML model can use the information of other
river basins with sufficient data to improve the predic-
tion of other river basins with limited training data.

In this experiment, we randomly select half of the
river basins in each cluster and randomly sparsify their
training data by 50%, 10%, 5%, and 0.5%, respectively,
and then measure the testing performance on these se-
lected basins. The training data for other basins still
remain the same. We show the NSE performance be-
tween our proposed methods and baseline model LSTM
in Figs. 6 (a)-(c). From these figures, we can conclude
that: (1) When the training data is sufficient (e.g. over
50% training data), both the proposed PGMTL meth-
ods and the baseline LSTM model can achieve a good
NSE score, and the performance decrease only slightly
as we reduce the training data. It can be seen that the
decreasing degree of NSE value of our methods is still
slightly slower than the LSTM model. (2) When re-
ducing the amount of training data to less than 10%,
it is clear that LSTM performance starts to decrease
much faster while the decreasing degree of our meth-
ods is much slower than the baseline LSTM model. (3)
In the extreme case with only 0.5% training data, the
LSTM model has bad performance. This indicates that
the LSTM model cannot fully leverage the information
from other well-observed basins. In contrast, although
our proposed PGMTL-based methods have worse per-
formance with sparser data, it performs much better
than LSTM, which confirms that our methods can ef-
fectively transfer knowledge from well-observed basins
to poorly-observed basins. All of the discoveries also
prove the superiority of the proposed methods, which
can be easily adapted to real-world conditions.

6 Conclusion

In this paper, we develop a new data-driven method
PGMTL that integrates scientific knowledge from sim-
ulation data into the model adaptation process. We also
introduce a clustering mechanism based on the hydro-
logical conditions of basins. Under the obtained cluster-
ing structure, our method can capture the contribution
level of multiple physics-based equations (i.e., physical
equations) for different clusters of the river basins un-
der different hydrological environments. At the same
time, we come up with three different machine learning
methods to transfer physical knowledge from simulation
data to the model adaptation process in meta-learning.
Our experiments in real river basin data have demon-
strated the effectiveness of these methods in improving
baseflow prediction even with sparse or localized data.
Moreover, we have shown in a synthetic data experiment
that our proposed PGMTL can reveal the contribution
of each physics-based equation under different scenar-
ios. In future work, we will continue to explore a larger
variety of physics-based equations, furthermore, evalu-
ate their contributions in larger regions. We also will
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propose new extensions to dynamically learn the clus-
tering structure from hydrological conditions while also
optimizing the meta-learning performance.
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[3] Derly Gómez et al. Empirical rainfall-based model
for defining baseflow and dynamical water use rights.
River Research and Applications, 2020.

[4] Christine A Rumsey et al. Regional Studies Regional
scale estimates of baseflow and factors influencing
baseflow in the Upper Colorado River Basin. 2015.

[5] Peter R. Furey et al. Tests of two physically based
filters for base flow separation. WRR, 2003.

[6] Katie Price. Effects of watershed topography, soils,
land use, and climate on baseflow hydrology in humid
regions: A review. PPG, 2011.

[7] Christopher J. Duffy. A two-state integral-balance
model for soil moisture and groundwater dynamics in
complex terrain. WRR, 1996.

[8] L. M. Tallaksen. A review of baseflow recession
analysis. Journal of Hydrology, 1995.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Computation, 1997.

[10] Frederik Kratzert et al. Toward improved predictions
in ungauged basins: Exploiting the power of machine
learning. WRR, 2019.

[11] Xiaowei Jia et al. Physics guided rnns for modeling
dynamical systems: A case study in simulating lake
temperature profiles. In SDM, 2019.

[12] Zach Moshe et al. Hydronets: Leveraging river struc-
ture for hydrologic modeling. 2020.

[13] Shengyu Chen et al. Heterogeneous stream-reservoir
graph networks with data assimilation. In ICDM, 2021.

[14] Rory M. Cowie et al. Sources of streamflow along
a headwater catchment elevational gradient. Science,
1990.

[15] V Lyne et al. Stochastic time-variable rainfall-runoff
modelling. In Institute of Engineers Australia National
Conference, 1979.

[16] Kyoung Jae Lim et al. Automated web gis based
hydrograph analysis tool, what 1. JAWRA, 2005.

[17] Klaus Eckhardt. How to construct recursive digital
filters for baseflow separation. Hydrological Processes:
An International Journal, 2005.

[18] Ven Te Chow. Applied hydrology. Tata McGraw-Hill
Education, 2010.

[19] Ronald A Sloto et al. Hysep: A computer program
for streamflow hydrograph separation and analysis.
Water-resources investigations report, 1996.

[20] Institute of Hydrology. Low flow studies report no. 1:
Research report. 1980.

[21] Sebastian J Gnann et al. Is there a baseflow budyko
curve? WRR, 2019.

[22] Anuj Karpatne et al. Physics-guided neural networks
(pgnn): An application in lake temperature modeling.
arXiv, 2017.

[23] Jordan S Read et al. Process-guided deep learning
predictions of lake water temperature. WRR, 2019.

[24] Dehao Liu et al. Multi-fidelity physics-constrained
neural network and its application in materials model-
ing. Journal of Mechanical Design, 2019.

[25] Jared Willard et al. Integrating physics-based model-
ing with machine learning: A survey. arXiv, 2020.

[26] Paul C Hanson et al. Predicting lake surface water
phosphorus dynamics using process-guided machine
learning. Ecological Modelling, 2020.

[27] Huaxiu Yao et al. Hierarchically structured meta-
learning. PMLR, 2019.

[28] Chelsea Finn et al. Model-agnostic meta-learning for
fast adaptation of deep networks. arXiv, 2017.

[29] Xiaowei Jia et al. Physics-guided machine learning
from simulation data: An application in modeling lake
and river systems. In ICDM, 2021.

[30] Xu Liu et al. A novel meta-learning initialization
method for physics-informed neural networks. arXiv,
2021.

[31] Shengyu Chen, Jacob A Zwart, and Xiaowei Jia.
Physics-guided graph meta learning for predicting wa-
ter temperature and streamflow in stream networks. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 2752–
2761, 2022.

[32] Maziar Raissi et al. Physics-informed neural networks:
A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 2019.

[33] Frederik Kratzert et al. Benchmarking a catchment-
aware long short-term memory network (lstm) for
large-scale hydrological modeling. Hydrology and Earth
System Sciences Discussions, 2019.

[34] Zhaoyang Niu et al. A review on the attention
mechanism of deep learning. Neurocomputing, 2021.

[35] Michael F. Jasinski et al. Nca-ldas: Overview and
analysis of hydrologic trends for the national climate
assessment. Journal of Hydrometeorology, 2019.

[36] James A. Falcone. Nages-ii: Geospatial attributes of
gages for evaluating streamflow. 2011.

[37] Wikipedia contributors. Nash–sutcliffe model effi-
ciency coefficient, 2021.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited


