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Abstract
Widespread, and rapid, environmental transforma-
tion is underway on Earth driven by human activ-
ities. Climate shifts such as global warming have
led to massive and alarming loss of ice and snow
in the high-latitude regions including the Arctic,
causing many natural disasters due to sea-level rise,
etc. Mitigating the impacts of climate change has
also become a United Nations’ Sustainable Devel-
opment Goal for 2030. The recent launch of the
ICESat-2 satellites target on heights in the polar re-
gions. However, the observations are only avail-
able along very narrow scan lines, leaving large
no-data gaps in-between. We aim to fill the gaps
by combining the height observations with high-
resolution satellite imagery that have large foot-
prints (spatial coverage). The data expansion is
a challenging task as the height data are often
constrained on one or a few lines per image in
real applications, and the images are highly noisy
for height estimation. Related work on image-
based height prediction and interpolation relies
on specific types of images or does not consider
the highly-localized height distribution. We pro-
pose a spatial self-corrective learning framework,
which explicitly uses confidence-based pseudo-
interpolation, recurrent self-refinement, and truth-
based correction with a regression layer to address
the challenges. We carry out experiments on differ-
ent landscapes in the high-latitude regions and the
proposed method shows stable improvements com-
pared to the baseline methods.

1 Introduction
Climate action is an important component of the 2030 Sus-
tainable Development Goals (SDGs) of the United Nations
[UN, 2022]. Human activities have led to widespread trans-
formations of the Earth’s environment and climate [Pörtner
et al., 2019]. Observational evidence suggests that the cli-
mate system at high latitudes including the Arctic is undergo-
ing significant shifts with faster increases in air temperatures

∗Corresponding author.

[Richter-Menge et al., 2019], which have led to changes in-
cluding the mass loss of Greenland Ice Sheet and glaciers,
permafrost thaw, decreasing snow and ice cover on land, and
increasing vegetation cover.

Satellite remote sensing systems play a key role in monitor-
ing essential climate variables in the polar regions, which are
hard to access for traditional observation. Indeed, advances in
sensing instruments have continued to demonstrate promising
potentials. The recent launch of ICESat-2 satellites provides a
revolutionary approach to measure the surface heights at high
precision to help scientists quantify and better understand the
ongoing changes from a third dimension. However, in order
to obtain high-resolution heights at large scale with altimeter
instruments, ICESat-2 has a very narrow footprint (i.e., width
of a scan line) as shown in Fig. 1(a), leaving large empty
gaps between scan lines. Filling the gaps will substantially
improve the representativeness of the dataset.

We aim to expand the spatial footprints of the height data
by combining the single-line height observations with large-
footprint satellite imagery. This height estimation task has
the following challenges. First, there are often only one or
a few scan lines available in each satellite image tile for the
corresponding timestamp, and all height observations are spa-
tially constrained to the single or few lines, making it difficult
for traditional interpolation methods to expand spatial foot-
prints. Second, a large proportion of pixels in satellite im-
agery present variations in spectral characteristics (e.g., col-
ors) that are irrelevant to height variations, which brings chal-
lenges in building the connections between the height data
and spectral imagery. Finally, an image only reflects height
variations in the covered region, and the base height can be
highly uncertain to set. Different landscapes may also exhibit
heterogeneous patterns over space [Xie et al., 2021].

While image-based height estimation has been widely
studied, most existing works rely on high-contrast character-
istics from man-made structures in urban areas with aerial
images, which are not available in non-urban regions at large
scale. Or they often require specific image types such as
stereo images that are not available for most satellites [Qin,
2019]. Traditional spatial interpolation methods (e.g., Krig-
ing) designed to fill data gaps cannot well capture complex
nonlinear relationships between spectral features and heights.
While their deep learning extensions (e.g., Kriging convolu-
tional networks [Appleby et al., 2020]) enhance such ability,



their performances suffer when observations are highly local-
ized in space. More details are discussed in Sec. 3.

We propose a spatial self-corrective learning framework to
expand the coverage of surface height data in high latitudes
including polar regions with the following contributions:

• We propose a confidence-based pseudo-interpolation
framework to correct lower-confidence predictions using
higher-confidence predictions from spatially-adjacent ar-
eas. This helps suppress erroneous predictions caused by
irrelevant feature variations from the input imagery.

• We propose a dynamic refinement strategy with a recur-
rent structure to allow the pseudo-interpolation to itera-
tively correct low-confidence predictions, allowing adap-
tive self-correction during test.

• We integrate an inverse-confidence-based ridge regression
layer to utilize the limited observations from the scan line
(i.e., a line crossing an image) to perform truth-based cor-
rection. We further improve the robustness of the correction
by using it recurrently with random ensembles. The net-
work parameters are trained to collaborate with the recur-
rent regression correction to better generalize over space.

• We use base-height augmentation to reduce the overfitting
effects and improve the model’s usability in new test sites.

Our experiments in high-latitude regions show that the pro-
posed self-corrective learning can stably improve height esti-
mation compared to baseline methods on various scenarios.

2 Problem Statement
We first introduce several basic concepts for the problem.

• Satellite footprints: Earth observation satellites collect
surface data following pre-defined orbits or scan lines. The
data thus center around the scan lines. Satellites with differ-
ent sensors (e.g., multispectral instrument, altimeter) cover
different widths along the lines, resulting in different sizes
of footprints. Large or wide footprints can cover all gaps
between adjacent scan lines, whereas narrow footprints
leave large empty gaps.

• Large-footprint spectral imagery: Satellite imagery con-
tains multiple spectral bands (e.g., 13 bands for the
Sentinel-2A product) that can range from visible (i.e.,
RGB) to non-visible (e.g., near-infrared) wavelengths.
Spectral imagery is often collected with large footprints.

• Large-footprint surface heights: Surface height data can
also be collected with large footprints (e.g., SRTM col-
lected by the Space Shuttle Endeavour [Farr and Kobrick,
2000]). However, this kind of data has very limited avail-
ability at large scale or has low update frequency due to the
high cost (e.g., SRTM data were last collected in 2000).

• Narrow-footprint surface heights: The most recent satel-
lite constellation ICESat-2 takes a different approach by
using narrow footprints at high resolution. The satellites
can also continuously fly along the orbits to provide up-
dates throughout the many-year mission. However, the nar-
row footprints leave large empty gaps in-between scan lines
(e.g., 17m swaths vs. 3km gaps).

(a) Inputs (b) Output
𝑿! 𝒁! 𝒀!

Figure 1: Examples of inputs (spectral image Xi and narrow-
footprint height Zi) and output (large-footprint height Yi). Areas
in black color between scanning lines in Zi are empty gaps.

• Tile vs. patch: Satellite images are often provided as large
tiles. For example, Sentinel-2 tiles are aligned with UTM
zones, where each zone is a 6◦ × 6◦ region that can corre-
spond to an image of size 10000× 10000 (∼600MBs). As
such tiles are often too large as training samples for deep
networks, in practice they are split into small patches (e.g.,
400×400, 200×200) during preprocessing, with or without
overlapping.

In the problem, we are given the following three data
sources for training: (1) A collection of large-footprint spec-
tral imagery tiles that are split into small patches X = {Xi ∈
Rm×m×d} where m is the patch size and d is the num-
ber of spectral bands; (2) Narrow-footprint surface heights
along scan lines that spatially and temporally intersect with
Xi ∈ X. We align the height data with the image patches
and preprocess them into the same image patch representa-
tions Z = {Zi ∈ Rm×m×1}, where pixels intersecting the
scan lines contain the elevation values and others are set to
0 with a mask; and (3) The large-footprint surface heights
{Yi ∈ Rm×m×1} for patches Xi ∈ X.

The prediction problem takes X and Z as inputs and aims to
predict height values that are unavailable in Z due to gaps in
the scan lines. Y is used as the ground-truth labels for train-
ing. Overall, Y is only available for very limited image tiles
in practice, so the goal is to use the trained model to expand
height coverage for tiles where height is only available as Z.
Fig. 1 shows examples of the inputs and outputs.

3 Related Work
Pixel-level prediction with imagery: To derive height in-
formation at the pixel level, traditional methods mostly fo-
cus on stereo matching [Soergel et al., 2009], which uses
two stereo images (i.e., near-simultaneous images at differ-
ent angles) to reconstruct 3D information. For example, [Liu
et al., 2017] estimates building heights using high-resolution
stereo images in urban areas. However, stereo images are un-
available in most of the satellite platforms. Additionally, non-
urban areas often do not have the high-contrast correspond-
ing points needed by the methods. Deep semantic segmen-
tation networks such as U-Net [Ronneberger et al., 2015],
DeepLabV3+ [Chen et al., 2018] and so on can also be uti-
lized for single-image-based height prediction. [Amirkolaee
and Arefi, 2019] used a multi-scale encoder-decoder to es-
timate height using single aerial images. These methods
perform well in urban areas. However, they rely on high-
resolution aerial imagery and do not have the capacity to in-



corporate additional information from narrow-footprint sur-
face heights.
Traditional interpolation: Spatial interpolation methods
estimate unknown values using distance-weighted aggrega-
tion of observations. Many interpolation methods have been
developed, such as inverse distance weighting [Shepard,
1968], spline [McKinley and Levine, 1998], Kriging [Cressie,
2015], etc. Among the methods, Kriging [Cressie, 2015] is
the most widely adopted approach, which is a nonparamet-
ric model based on Gaussian processes. Ordinary Kriging
[Wackernagel and Wackernagel, 2003] performs estimation
directly using known labels (or targets), whereas universal
Kriging [Caballero et al., 2013] can also incorporate feature
variables. However, traditional Kriging cannot model com-
plex non-linear relationships and its performance relies on the
availability of spatially-nearby observations.
Deep-learning-based interpolation: Integrations between
Kriging and deep neural networks have been developed to en-
hance the ability to capture non-linear relationships. Kriging
convolutional networks [Appleby et al., 2020] approximate
Kriging interpolation using a graph neural network (GNN),
which enables learning information propagation between data
points. Inductive Graph Neural Network Kriging (IGNNK)
model [Wu et al., 2021] trains a GNN to reconstruct infor-
mation on random subgraph structures, allowing it to learn
to generalize to unseen nodes/graphs for spatiotemporal in-
terpolation. However, these methods are computationally ex-
pensive and they are intended for data with a smaller number
of points (e.g., thousands), which is not suitable for satellite
data that often have millions of pixels (points) per image. A
recent work [Liu et al., 2022] proposed an image-based in-
terpolation technique that parameterizes Kriging with deep
neural networks to learn single-pixel and neighborhood em-
beddings for interpolation. However, these methods share a
common limitation with traditional Kriging, i.e., their perfor-
mances degrade when points with known labels are highly
localized in space.

4 Spatial Self-Corrective Learning
We decompose the spatial self-corrective learning frame-
work into four components: (1) A confidence-based pseudo-
interpolation method to correct low-confidence predictions in
local neighborhoods; (2) A recurrent structure that uses the
confidence-based pseudo-interpolation as a sub-routine and
self-refines the height in an iterative manner; (3) An inverse-
confidence-based regression layer that further corrects the
predictions using limited observations (from narrow-footprint
height data) in each recurrent step; and (4) A height-based
augmentation to reduce overfitting.

4.1 Spatial Correction with Confidence-Based
Pseudo-Interpolation

One challenge facing height prediction from spectral imagery
is the high volume of irrelevant variations. For example, spec-
tral features may change by surface properties that are not
highly correlated with changes in height, such as types of
soils or rocks, surface moisture, color differences between
vegetation, etc. Such irrelevant variations in signals can be

both smooth or sharp. They introduce additional confusion
during the training process, and will likely lead to undesired
or distorted variations in predicted heights. Since the deep
network F still needs to make predictions at all locations,
these hard-to-fix errors caused by the local variations may
further lead to uninformative gradient updates that increase
errors at other easier-to-predict locations.

To address the problems introduced by irrelevant spec-
tral variations, we propose to reduce their impact using an
“ignore-and-interpolate” correction strategy. The idea is
that, rather than having the variations pollute the results, we
can let the network “ignore” predictions at the locations being
affected by variations and re-fill their values by doing inter-
polation with nearby predictions within a spatially-adjacent
neighborhood S.

Denote the deep network as F , and FH and FC as two
sub-branches (may have shared layers) that predict prelimi-
nary heights Ŷi and confidence scores Ĉi, respectively. The
correction layer of the network updates height values at low-
confidence locations using high-confidence values to produce
the output heights Ŷ

∗
i . In the following, we explain the details

of the key steps on confidence estimation and confidence-
based pseudo-interpolation.
Confidence estimation: The goal of confidence estima-
tion is to help the model locate predictions with potential
high-errors. We estimate the confidence using maximum like-
lihood estimation (MLE). The normal-based MLE can be es-
timated by assuming each of the predictions (i.e., each pixel
from an input image patch) follows a normal distribution, i.e,
p(xj) ∼ N (ŷj , (1/ĉ)

2), where predicted heights ŷj ∈ Ŷi

and the inverses of confidences ĉj ∈ Ĉi are used as means
and standard deviations, respectively; and Ŷi and Ĉi are in
Rm×m×1, which have the same shape as inputs Xi as speci-
fied in the problem definition (Sec. 2). Denote ΘH and ΘC as
network parameters for FH and FC , respectively, and so we
have Ŷ = FH(Xi,ΘH) and Ĉ = FC(Xi,ΘC). Using pixels
from each input image patch (xj , yj) ∈ (Xi,Yi) as examples,
the optimization is then:

argmin
ΘH,ΘC

LMLE(Ŷi|Xi,ΘH,ΘC) = − log

M∏
j=1

p(ŷj |xj ,ΘH,ΘC)

= argmin
ΘH,ΘC

M∑
j=1

[
(yj −FH(xj ,ΘH))2

2 · (1/FC(xj ,ΘC))2
+ log(

1

FC(xj ,ΘC)
)

]

where p(ŷj |xj) = 1√
2π/FC(xj ,ΘC)

· exp(− (yj−FH(xj ,ΘH))2

2·(1/FC(xj ,ΘC))2
)

and M = m2 is the number of pixels per image patch. The
first term shows that the errors on pixels with lower confi-
dences (i.e., higher variances) will be scaled down, and the
second term naturally constraints the variances.
Pseudo-Interpolation: We use a confidence-based interpo-
lation layer, which is attached after the preliminary height
predictions Ŷi, to generate the output heights Ŷ

∗
i using Ĉi.

We call it pseudo-interpolation as the approach we use is dif-
ferent from traditional interpolation where known values are
used to fill in unknown values based on explicit spatial dis-
tances. In our case, all values are known but with different



levels of confidences in Ĉi. Additionally, we do not use ex-
plicit distance-based interpolation (e.g., calculating distances
to all points and then do a weighted average), as that pro-
cess is often non-differentiable. Since the confidence-based
pseudo-interpolation will be used as a sub-routine in the en-
tire framework (Sec. 4.2), we need it to be differentiable to
better co-learn confidences and heights for better final out-
puts. Specifically, our pseudo-interpolation uses local neigh-
borhoods Sj around each pixel, where Sj is a W × W win-
dow. We use 7×7 window for Sj by default. The new values
are weighted averages of all values in Sj :

Ŷ
∗
i =

(
(Ŷi ⊙ Ĉi) ∗ JW

)
⊘
(
Ĉi ∗ JW

)
(1)

where JW is a W × W matrix with all ones; ⊙ and ⊘ are
Hadamard product and division, respectively; and ∗ is the
convolutional operation with the latter as the kernel.

Here Ŷ
∗
i is not the final output, and will be iteratively up-

dated together with the confidence Ĉi in the coming section.

4.2 Recurrent Interpolation for Self-Adaptive
Refinement

As after each pseudo-interpolation the confidence values
should be changed at each pixel, we propose a recurrent in-
terpolation structure to allow the predictions to continue to
refine themselves based on the new heights Ŷ

∗
i . Specifically,

here we use the pseudo-interpolation as a sub-routine in a re-
current manner. After each round of executing FH, we feed
the resulting Ŷ

∗
i – together with the original features Xi – as

inputs back to FH and FC for the next round of refinement.
In other words, here we include Ŷ

∗
i as an additional input to

FH and FC as compared to the base version in Sec. 4.1:

• Initial inputs: Denote Ŷ
∗,t
i as the output after the tth

round. Given the new input structure, we need to provide
an initial input for Ŷ

∗,0
i for the very first round. Here we

use the narrow-footprint height Zi as Ŷ
∗,0
i , which is part of

the known inputs to this problem (Sec. 2) and provides a
peek of true heights in the patch.

• Number of recurrent steps: In test phase, the recurrent
procedure can run till convergence, i.e., when:

eT ·
(
(Ŷ

∗,t
i − Ŷ

∗,t−1

i )⊘ Ŷ
∗,t−1

i

)
· e ≤ τ

where e is a vector of ones, and τ is a user-set tolerance.
It can be constrained by a maximum number of iterations
(e.g., 5, 10). For training, we fix the number of recurrent
steps to 5 to reduce overhead.

• Training: We evaluate the MLE loss LMLE at each recur-
rent step and update the parameters after the final recurrent
step using the average of the losses (Alg. 1).

4.3 Truth-Based Correction with
Narrow-Footprint Heights

Although the narrow-footprint heights Zi is used as an ini-
tial seed for height expansion in the recurrent framework,
the training has not yet explicitly utilized its truth-nature to
more effectively correct the predictions Ŷ

∗
i . This section aims

to perform such explicit and truth-based correction with an
inverse-confidence-based regression layer FR.
FR replaces the last layer of the height-prediction branch

FH to perform the correction. To avoid confusion, FR be-
comes the new final layer of FH, which happens before the
pseudo-interpolation (lines 9-10 in Alg. 1) and is included as
part of the recurrent process. FR takes the features learned
from its previous layer and performs a self-optimized linear
combination using weights ΘR to generate the outputs Ŷi.
In other words, while FR is part of the whole network, its
weights ΘR are obtained by a direct least-squares type of so-
lutions instead of by gradient descent, which has been used
as a paradigm in [Bertinetto et al., 2018] for adaptation. We
use this paradigm rather than standard gradient descent be-
cause: (1) It provides a direct one-step correction to allow
the predictions to quickly adapt to the limited ground truth Zi

in-network; (2) The least-squares solution can be computed
with a closed-form solution during feed-forward, which does
not interfere with or introduce major overhead to the over-
all gradient descent process of FH and FC ; and (3) Because
it can be seamlessly injected into the network, the network
can learn weights to adapt to additional correction from the
regression layer FR.

Note that this linear optimization is independent for each
input image patch Xi, and as ΘR for FR is not updated in
back-propagation, we can also consider weights in ΘR as
auxiliary inputs, which are dynamically updated on-the-fly.
In addition, the samples only involve the pixels intersecting
with the narrow-footprints from the scan lines (Fig. 1, stripes
in Zi) where ground-truth heights are known as inputs. For
simplicity, denote G as the set of pixels that have narrow-
footprint ground-truth given, and |G| as the set cardinality.
Further, denote Hi(G) ∈ R|G|×(h+1) as a list containing h
learned features from the previous layer of FR for all pixels
in |G|; we add an additional “1” value to each row to learn the
bias term. Similarly, denote Ĉi(G) and Zi(G) in R|G|×1 as
the confidence and known-heights (inputs), respectively. The
weights ΘR ∈ Rh+1 are then learned as:

ΘR =argmin
ΘR

||
(
Zi(G)− Hi(G)ΘR

)T · diag(Ĉi(G)−1)·(
Zi(G)− Hi(G)ΘR

)
+ λΘT

RΘR||22
=(Hi(G)T diag(Ĉi(G)−1)Hi(G) + λI)−1Hi(G)T Zi(G)

=(RT
i QT

i diag(Ĉi(G)−1)QiRi + λI)−1RT
i QT

i Zi(G)

=(RT
i diag(Ĉi(G)−1)Ri + λI)−1RT

i QT
i Zi(G)

where λ is the scaling factor for ridge regression, and Hi =
QiRi is the QR factorization of Hi for numerical stability.
We use inverse confidence to weigh pixels in the ridge re-
gression to strengthen the correction on the potentially under-
performing ones.

Finally, to make the correction more stable, we perform
a random ensemble on the linear optimization step. Specif-
ically, we split G into k overlapping subsets (e.g., 3 subsets
where each contains 2/3 of points in G), and perform k sepa-
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Figure 2: Similar spectral patterns (shadows) at various base heights.

rate linear optimizations of ΘR. The ensemble is then:

Ŷ
ens

i =
1

k
·

k∑
j=1

FR(Hi,Θ
j
R) (2)

Alg. 1 illustrates the key steps in Sec. 4.1 to 4.3 using one
batch as an example.

Algorithm 1 An iteration in spatial self-corrective learning

Require: A batch B of {(Xi,Zi,Yi)} with M pixels per image.
1: for (Xi,Zi,Yi) in B do
2: Ŷ

∗,0
i = Init(Zi)

{Recurrent correction. Network notation for convenience:
FH = F ′

H + FR (last correction layer), with ΘH = Θ′
H∪ΘR;

and FC has parameters ΘC .}
3: for t = 1 to T do
4: Ht

i = F ′
H(Xi, Ŷ

∗,t−1

i ,Θ′
H)

5: Ĉ
t

i = FC(Xi, Ŷ
∗,t−1

i ,ΘC)
6: for j = 1 to k do
7: Θj

R = Linear Opt(Ht
i , Ĉ

t

i , Zi, G) {G are pixels inter-
secting scan lines}

8: end for
9: Ŷ

ens,t

i = 1
k
·
∑k

j=1 FR(Ht
i,Θ

j
R)

10: Ŷ
∗,t
i = Conf Pseudo Interpolate(Ŷ

ens,t

i , Ĉ
t

i)
11: end for
12: Li

MLE =
∑T

t=1 LMLE(Yi, Ŷ
∗,t
i , Ĉ

t

i)/(T ·M)
13: end for
14: Update Θ′

H and ΘC using
∑|B|

i=1 L
i
MLE/|B|

4.4 Height Augmentation
While the spectral variations in each scene may reflect height
variations, they tend to be limited in estimating the base
height of the scene. More specifically, we can decompose
the heights of a scene into two parts Yi = Yvar

i + β, where
β is a constant representing a base height. Imagine if we in-
crease or decrease β by 100m (Fig. 2, we may obtain very
similar spectral variations (e.g., shadows) as the lights from
the sun can be considered very much as parallel beams with
similar angles at different altitudes.

While the limited observations in Zi help, the network
may still overfit to certain observed height values. Thus, we
include a simple base-height augmentation, where we ran-
domly increase or decrease the ground-truth height (identical
for Yi and Zi) of different samples during training. The ran-
dom change range is bounded by 500m as over-large altitude
changes may no longer keep similar characteristics in some
spectra. The augmentation encourages the network to focus
more on predicting variations, which can then be combined
with information in Zi to generate the height predictions.

5 Experiments
5.1 Datasets
Height data: As the goal is to fill height data gaps and gen-
erate large-footprint height data, ideally we also need such
data for evaluation. Due to the expensive collection cost,
large-footprint height information is in general less available
at large scales. Among existing datasets, the most commonly
used height data are provided by the Shuttle Radar Topogra-
phy Mission (SRTM). Thus, we use the SRTM data as a main
source for our experiments. As SRTM mainly covers regions
between 60◦N and 56◦S latitudes, we additionally include the
Interferometric Synthetic Aperture Radar (IFSAR) dataset,
which offers elevation measurements in the Arctic regions in
Alaska. Finally, we include test data from the most recent
ICESat-2 satellites. Since ICESat-2 only provides narrow-
footprint height observations (e.g., Fig. 1), in the testing we
leave out data from a subset of the scan lines (i.e., 2 out of 6)
per image patch for evaluation.

Spectral imagery: For the spectral imagery data, we need
to use images that are temporally aligned with the data from
SRTM, IFSAR and ICESat-2. Among them, SRTM and
IFSAR were collected in 2000 and 2010, respectively, and
the ICESat-2 mission started in 2018. Given the temporal
distribution, we use multispectral imagery from Landsat-7,
which covers all the durations. Especially, for SRTM and
IFSAR, Landsat-7 was one of the few high-resolution multi-
spectral satellite missions that overlapped with their times-
tamps (e.g., other popular missions such as Landsat-8 and
Sentinel-2 started in 2013 and 2015, respectively).

Additional data details: As most of the bands in Landsat-
7 imagery have a spatial resolution at 30m (side-length of
a pixel), we use 30m as the resolution in all experiments.
All height data have equal or higher resolution, so they can
be safely resampled to 30m. We select 5 locations in high-
latitude regions with different landscapes: (1) Two locations
for SRTM in the northwestern US (i.e., Washington and Idaho
in Table 1), which are mountainous regions with larger height
variations (e.g., steep mountainsides, deep valleys) and more
forests. Each region is about 22,500 km2 in size. (2) Two
locations for ISFAR in the Arctic region within northern
Alaska, US (Alaska-1 and Alaska-2 in Table 1). One location
has a bare-earth type of landscape with limited snow cover,
and the other is mostly covered by snow. Each region is about
3,600 km2 in size as ISFAR has smaller footprints. (3) Two
locations for ICESat-2 in Alaska, US (Alaska-3) and Yukon,
Canada, with bare-earth landscapes. Each location is about
2,000 km2 in size, which follows along a segment of the tra-
jectory of an ICESat-2 satellite. Finally, all the data are split
and formatted into image patches of size 500× 500 (Sec. 2).

Training and testing: We group SRTM and ISFAR to-
gether for the first evaluation as we have ground-truth large-
footprint height data. We use four train-test splits, each with
three locations as training and one as testing. Numbers in
Tables 1 and 2 represent results with the location in the cor-
responding column being the test site. To simulate narrow-
footprint height observations at intersecting scan lines (inputs
Zi, Fig. 1), we sample 2 sets of 3-lines (ICESat-2 scans three



Base DA FNN Kriging Ridge RF KCN KCN-att KCN-sage SCL
Washington 0.174 0.184 0.253 0.217 0.471 0.543 0.252 0.260 0.286 0.131
Idaho 0.065 0.062 0.084 0.061 0.517 0.493 0.089 0.080 0.077 0.033
Alaska-1 0.115 0.157 0.158 0.167 0.245 0.413 0.184 0.191 0.204 0.075
Alaska-2 0.225 0.972 0.278 0.284 0.791 0.923 0.304 0.318 0.259 0.216
Alaska-3 0.213 0.183 0.203 0.242 0.353 0.270 0.391 0.490 0.947 0.135
Yukon 0.190 0.244 0.183 0.184 0.179 0.180 0.187 0.180 0.228 0.145
Mean 0.164 0.301 0.193 0.193 0.426 0.470 0.235 0.253 0.334 0.123

Table 1: sMAPEs for height interpolation.

Base DA FNN Kriging Ridge RF KCN KCN-att KCN-sage SCL
Washington 0.806 0.795 0.584 0.631 0.565 0.675 0.494 0.487 0.322 0.843
Idaho 0.772 0.787 0.634 0.810 0.772 0.718 0.764 0.776 0.678 0.974
Alaska-1 0.900 0.809 0.793 0.763 0.673 0.346 0.692 0.665 0.568 0.95
Alaska-2 0.744 0.025 0.694 0.588 0.521 0.250 0.566 0.534 0.580 0.905
Alaska-3 0.879 0.894 0.769 0.745 0.839 0.883 0.478 0.042 0.487 0.901
Yukon 0.142 0.130 0.292 0.397 0.318 0.224 0.314 0.442 -0.018 0.459
Mean 0.707 0.573 0.628 0.656 0.615 0.516 0.551 0.491 0.436 0.839

Table 2: Correlation coefficients for height interpolation.

lines simultaneously) in two different directions with equal
intervals (3km; same as ICESat-2). During testing, all models
are first fine-tuned with Zi before prediction. For ICESat-2,
since there is no large-footprint height data, we use a trained
model from ISFAR(Alaska-1) and fine-tune it with 4 out of 6
lines per scene and use the rest for testing.

5.2 Methods for Evaluation
The following baseline methods are used in the comparison:
• Base: The base network is a U-Net architecture with 3

encoding blocks and 3 decoding blocks to learn features
across multiple scales and gradually combines them to
achieve full-resolution height prediction.

• DA: The base network with domain adaptation by using
a generative adversarial network for adversarial learning
[Goodfellow et al., 2020; Tzeng et al., 2017]. DA learns
domain-invariant features, but is limited when landscapes
are very different in training and testing [Li et al., 2023].

• FNN: A 5-layer fully-connected network that estimates
height values based on spectral features at the pixel-level.

• Kriging: The universal Kriging interpolation [Cressie,
2015] that uses spectral features and heights on the narrow-
footprint surface heights along scan lines (Fig. 1(a)) as in-
puts to predict the unknown height at other locations. We
use the closest 50 points as the neighborhood.

• Ridge: The ridge regression using L2-regularization with
the scaling factor λ of 0.1. It is limited for non-linear and
noisy problems [Bao et al., 2022].

• RF: Random forest regression with 100 trees using spectral
features at pixel-levels.

• KCN: The Kriging convolutional network [Appleby et al.,
2020] that interpolates height values based on known val-
ues on narrow-footprint surface heights along scan lines
(Fig. 1(a)) for each image. It relies on Graph Convolutional

Network (GCN) to embed neighborhood information. We
use the code provided by the authors in our experiments
[KCN, 2019]. We keep the recommended hyperparameters
and set the number of neighbors to use for interpolation to
50 (default was 5, which led to lower-quality results).

• KCN-att: KCN that uses graph attention [Veličković et al.,
2017] instead of original GCN layers to compute the atten-
tion weights of a node’s neighbors.

• KCN-sage: KCN that uses GraphSAGE [Hamilton et al.,
2017] to learn aggregator functions of nodes.

• SCL: Our proposed spatial self-corrective learning method.
Metrics. We use the symmetric mean absolute percentage
error (sMAPE) and correlation coefficients to evaluate the
performances of the methods. We use sMAPE instead of
MAPE as there are many lower-valued heights (e.g., near
0), which causes instability in MAPE calculation [Xie et al.,
2023a]. sMAPE is a standard extension of MAPE, which in-
cludes predicted values in the denominators to constrain the
range to [0,1].

5.3 Results
Comparative Analysis
The neural-network-based models are trained with the Adam
optimizer with an initial learning rate of 10−4. From Tables 1
and 2, we can see that the proposed spatial SCL approach out-
performed the baseline methods for all the scenarios in the ex-
periments. Domain adaptation methods did not improve upon
base networks mainly because different landscapes may have
different height variation patterns [Li et al., 2023]. There-
fore, forcing a similar representation may hurt the ability to
adapt to various landscapes. Pixel-wise regressors, such as
FNN, ridge regression, and random forest perform poorly, as
they can be largely affected by the spectral variations that are
irrelevant to height changes. They also have limited ability
to adapt to new regions. Kriging performs better than the
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Figure 3: Example visualizations of height estimations.

Base No-RR No-Reg No-Rec SCL
sMAPE 0.174 0.488 0.210 0.165 0.131
Corr. 0.806 0.503 0.773 0.831 0.843

Table 3: Effects of different components in SCL.

pixel-wise regressors in most cases as it exploits the known
height values in its neighborhood, which provide necessary
guidance for the unlabeled locations. However, Kriging con-
volutional networks did not show much improvements over,
and sometimes performed worse than, Kriging in this prob-
lem, as the major limiting factor of both types of methods
may be the spatially-constrained distribution of known val-
ues, under which the enhancement from the additional non-
linear capacity in KCN’s feature learning becomes limited.

Comparing across regions, most methods perform the best
in Idaho, which has relatively sharper landscapes and visual
features that make the estimation easier. In contrast, Alaska-
2 and Yukon were more challenging for all methods. This
is potentially caused by the more flat landscapes with smaller
height variations, which may reduce the amount of useful fea-
tures (e.g., shadows).

Fig. 3 visualizes several examples of height estimation in
several areas. We can see SCL can better capture the high
mountains and deeper valleys, and at the same time keep the
terrains smoother (i.e., less affected by irrelevant height vari-
ations) with the confidence-based interpolation. Fig. 4 shows
detailed height profiles along randomly sampled straight lines
intersecting the regions. Similarly, we can see that the predic-
tions from SCL show the best alignment with the ground truth
compared to the others.

Kriging Base SCL Ground Truth

Figure 4: Height profile comparison.

Ablation Studies
We conducted ablation experiments to validate the effective-
ness of the proposed recurrent refinement and regression-
based correction. In the first scenario, we removed both re-
current refinement and regression-based correction (No-RR)
from the proposed model. The models were tested on the
Seattle region and trained on the other three regions. In the
second scenario, we replaced the inverse-confidence-based
regression layer with a trainable 1 × 1 convolutional layer
(No-Reg) for height regression. In the third scenario, we set
the number of recurrent steps to 1 (No-Rec) to remove the ef-
fect of recurrent refinement while keeping other settings con-
stant. The results in Table 3 show that the removal of either
recurrent refinement or regression-based correction leads to a
drop in performance.

6 Conclusions
We proposed a spatial self-corrective learning framework to
expand the coverage of surface height data in high latitudes
by combining narrow-footprint heights and large-footprint
satellite imagery. The new framework includes several key
components, i.e., confidence-based pseudo-interpolation, re-
current self-correction, and truth-based correction with a re-
gression layer. The proposed method demonstrated consistent
improvements over baseline methods in the experiments for
different landscapes.

Our future work will evaluate the approach for more types
of landscapes and explore the integration of the methods in
domain analysis pipelines. We will also develop a bench-
mark dataset to facilitate future comparisons on this problem.
Finally, this work has not considered the issues of cloud cov-
erage in satellite imagery, which may need further exploration
especially for the polar regions [Xie et al., 2023b].
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