

1

2 **Relationships of the CSR functional strategies of grass species with lifespan,**
3 **photosynthetic type, naturalization and climate**

4

5

6 Running title: CSR strategies of grass species in relation to traits and climate

7 Abstract

- **Background and Aims** Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species' strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range.
- **Methods** We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C_3 or C_4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species' average mean annual temperature and annual precipitation across its range as a function of CSR scores.
- **Key Results** Values for competitiveness were higher in C_4 species than in C_3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation.

31 • **Conclusions** The findings presented here demonstrate that CSR classification of
32 functional strategies based on leaf traits matches expectations for the adaptations of
33 grass species that underlie lifespan, photosynthetic type, naturalization and climate.

34

35

36 **Key words:** annual, climate adaptation, competitor, CSR classification, functional traits, grass
37 family (Poaceae), introduced, leaf economics, native, perennial, ruderal, stress tolerator.

38 **INTRODUCTION**

39

40 The grass family (Poaceae), which includes about 12,000 species (Christenhusz and Byng,
41 2016), is the economically most important plant family. The global distribution of grasses and
42 their success in different climates depends on variation in functional traits, including traits that
43 determine stress tolerance and phenology (Ocheltree *et al.*, 2020; Schubert, 2020). Frequent
44 transitions from perennial to annual life cycles during grass evolution are associated with a
45 higher allocation of biomass above ground (Lindberg *et al.*, 2020). In addition, adaptation to
46 the growth environment is reflected in photosynthetic type, with over 20 evolutionary C₃/C₄
47 transitions (Aliscioni *et al.*, 2012).

48 Co-variation of leaf traits underlying a spectrum of strategies from slow to fast return
49 of investment was described for global trait relationships in plants: The worldwide leaf
50 economics spectrum (Wright *et al.*, 2004) relates leaf longevity to high leaf mass per area
51 (LMA) and low nitrogen content on a leaf mass basis (N_{mass}). High LMA is generally associated
52 with a conservative (slow) strategy, whereas high specific leaf area (SLA; the inverse of LMA)
53 and N_{mass} are indicative of an acquisitive (fast) strategy. Although the leaf economics spectrum
54 was originally used to describe covariation of traits for a wide range of plant growth forms in
55 different biomes, it also applies to more closely related species, including the grass family.
56 Analyzing trait relationships for a global set of grass species, Sandel *et al.* (2016) demonstrated
57 correlations among leaf economics traits (SLA, N_{mass} and P_{mass}) and among size-related traits
58 (plant height, seed mass, leaf size and rooting depth). Similarly, a positive relationship between
59 size-related traits (plant height and leaf area) was described for grass herbarium specimens
60 (Jardine *et al.*, 2020). Leaf area and height were also positively correlated not just among
61 different grass species, but also within species sampled at different locations across California
62 (Sandel *et al.*, 2021). In addition, intra-specific co-variation patterns were observed in

63 homogenous environments and common gardens, including negative correlations between SLA
64 and leaf dry matter content (LDMC), and between LDMC and N_{mass} (Gorné *et al.*, 2022),
65 showing that trait variation patterns are not only driven by the immediate growth environment.

66 Co-variation in plant traits along axes of specialization can be used to identify plant
67 functional strategies (Grime *et al.*, 1997). This classification of functional strategies is based on
68 adaptations to stress and/or disturbance. According to Grime (1977), stress refers to
69 environmental constraints, such as a shortage or excess of water, light or mineral nutrients, sub-
70 or supra-optimal temperatures, as well as toxins and pollutants. Disturbance, in this scheme, is
71 defined as destruction of vegetation by humans, herbivores or natural catastrophes. Three
72 primary strategies are described by Grime (1977): competitors (C) are adapted to low stress and
73 low disturbance, stress tolerators (S) to high stress and low disturbance, and ruderals (R) to low
74 stress and high disturbance. Annuals are expected to have predominantly ruderal strategies,
75 whereas stress-tolerance strategies are common in long-lived perennials (Grime, 1977).
76 Classification of the CSR strategies of 30 grass species growing in northern Italy showed that
77 competitive/ruderal strategies dominated in lowland species, whereas alpine species had stress-
78 tolerator strategies (Pierce *et al.*, 2007).

79 Building on CSR theory and the leaf economics spectrum, Pierce *et al.* (2013; 2017)
80 developed the StrateFy tool to ascribe CSR functional strategies based on the following three
81 leaf traits: SLA, leaf dry matter content (LDMC) and leaf area (LA). While the trade-off
82 between SLA and LDMC reflects the leaf economics spectrum, LA represents the spectrum of
83 plant size, a principal component perpendicular to leaf economics (Pierce *et al.*, 2013; Díaz *et*
84 *al.*, 2016). Application to species of the grass genus *Poa* confirmed ruderal strategies for
85 lowland grass species and stress tolerator strategies for montane species (Pierce *et al.*, 2013).
86 Recently, Yu *et al.* (2022) used the StrateFy tool for alpine Tibetan grasslands, demonstrating
87 that stress tolerator strategies dominated. Using the same method, intrageneric and intraspecific

88 variation was found for the grass genus *Brachypodium*, showing variation along the S and R
89 axes in perennial *Brachypodium* species, while the annual model species *B. distachyon* was
90 classified to have a less competitive strategy (Crowley and Wingler, 2020). Intraspecific
91 variation in functional strategies was also described for perennial ryegrass (*Lolium perenne*),
92 demonstrating a trade-off between growth and dehydration survival (Keep *et al.*, 2021). Such
93 variation is reflected in CSR classification, which showed that perennial ryegrass has a mainly
94 ruderal strategy, but with variation along the S- and R-axes (Crowley and Wingler, 2020).

95 Although traits may be expected to vary in response to climate, global climate-trait
96 relationships for different grass species are mainly weak (Jardine *et al.*, 2020); however, culm
97 length was positively correlated with mean annual precipitation (Sandel *et al.*, 2016). While
98 trait variation in the global context may be confounded by substantial variation within grass
99 biomes (Jardine *et al.*, 2020), clearer climate-trait relationships were detected in California,
100 where a positive relationship between SLA and temperature was demonstrated (Sandel *et al.*,
101 2021).

102 Compared to native plant species, introduced and particularly invasive species are
103 overall larger with higher SLA, and more but smaller seeds (e.g. Ordonez *et al.*, 2010; van
104 Kleunen *et al.*, 2010), suggesting that they are strong competitors, but also have traits
105 characteristic of ruderal plants. Higher values of traits such as SLA, photosynthesis and N_{mass}
106 indicate an acquisitive strategy. While trait relationships are the same for invasive and native
107 species at the global level, the patterns differed when data were analyzed at the regional level,
108 suggesting that different plant life forms may drive global patterns (Funk *et al.*, 2017). For
109 introduced grass species, higher SLA than for natives was described in California (Sandel and
110 Low, 2019) and globally (Broadbent *et al.*, 2020; Monnet *et al.*, 2020). There is also a general
111 trend for introduced, and in particular naturalized grass species to grow taller than native species
112 (Visser *et al.*, 2016; Monnet *et al.*, 2020), indicating higher competitive ability. However, while

113 introduced species in California had larger seeds than native species (Sandel and Low, 2019),
114 seeds of naturalized species were smaller than those of native species in a global analysis
115 (Monnet *et al.*, 2020). In addition, naturalized species are more likely to be annuals with C₄
116 photosynthesis (Monnet *et al.*, 2020).

117 The aim of this study was to investigate the relationship between CSR functional
118 strategies (according to Pierce *et al.*, 2013, 2017) and other traits using a set of 465 grass
119 species. We tested the following hypotheses: (i) CSR strategies identified based on leaf traits
120 reflect other functional traits such as plant height and root traits. (ii) Strategies differ according
121 to lifespan (annual/perennial), photosynthetic type (C₃/C₄), and naturalization
122 (introduced/native). Specifically, we expected perennial grass species to have more pronounced
123 stress tolerance strategies than annuals, C₄ species to be stronger competitors than C₃ species,
124 and introduced species to have competitive/ruderal strategies. (iii) CSR strategies reflect
125 adaptations to climate, such as species with C strategies growing in more favourable climates
126 than those with S strategies.

127

128

129 **MATERIALS AND METHODS**

130

131 *Dataset*

132 A global grass trait database (Sandel *et al.* 2016; Griffin-Nolan and Sandel in review) was used
133 (see Supplementary references for trait data sources **[Supplementary Information]**). The
134 dataset was filtered for species for which the following three leaf traits were available: leaf area
135 (LA), specific leaf area (SLA) and leaf dry matter content (LDMC). This resulted in a dataset
136 of 465 grass species (Supplementary Table S1 **[Supplementary Information]**), with a bias
137 towards the northern hemisphere (Supplementary Fig. S1 **[Supplementary Information]**). The

138 dataset included 278 species of the BOP clade (271 species in the subfamily Pooideae, 6 in the
139 Bambusoideae, and 1 in the Oryzoideae) and 187 of the PACMAD clade (92 species in the
140 subfamily Panicoideae, 68 in the Chloridoideae, 16 in the Arundinoideae, and 11 in the
141 Aristidoideae). The species were further classified according to lifespan (annual or perennial),
142 photosynthetic type (C₃ or C₄), or naturalization. Photosynthetic type (C₃ or C₄) was largely
143 assigned using the database published by Osborne *et al.* (2014). For three species
144 photosynthetic type could not be ascertained. To identify differences related to naturalization
145 status, the species were divided into those that grow only in their native environment (native)
146 and those that have naturalized beyond their native environment (introduced), as classified by
147 Monnet *et al.* (2020) (<https://datadryad.org/stash/dataset/doi:10.5061/dryad.bvq83bk63>) using
148 the World Checklist of Selected Plant Families (WCSP; Royal Botanic Gardens Kew 2015). In
149 cases where different species names were used in the original dataset and by Monnet *et al.*
150 (2020), synonyms were matched using the Plants of the World Online database
151 (<http://www.plantsoftheworldonline.org/>).

152

153 *Data analysis*

154 CSR classification was conducted with the Microsoft Excel-based StrateFy tool (Pierce *et al.*,
155 2017) using the following leaf traits: leaf area (LA; mm²), leaf dry matter content (LDMC; %)
156 and specific leaf area (SLA; mm² mg⁻¹). Outputs from the tool were used to create ternary plots
157 using SigmaPlot (Systat Software Inc.). The method for allocating CSR strategies was
158 developed by Pierce *et al.* (2013) by translating the axes from a principal component analysis
159 (PCA) into a CSR triangle. Specifically, two axes of variation were identified in the PCA: The
160 first axis describes the range from acquisitive (high SLA, high N_{mass}) to conservative (high
161 LDMC, high leaf carbon content) leaf economic trait values. The second, perpendicular axis
162 reflects the size spectrum (log LA and log leaf dry weight). Regression analysis was then used

163 to develop the equations that describe the relationships between LA, LDMC and SLA with the
164 two main PCA coordinates (Pierce et al., 2013).

165 All further analyses were conducted in R (R Core Team, 2021). Testing for normality using the
166 Shapiro-Wilk test showed that C, S and R data were not normally distributed. Non-parametric
167 tests were used throughout: The Wilcoxon rank sum test was used to compare C, S and R values
168 between annuals and perennials, between C₃ and C₄ species, and between native and introduced
169 species; the Kruskal-Wallis rank sum test was used to compare C, S and R values among grass
170 subfamilies; and the Spearman rank test was used to analyze correlations between C, S and R
171 values and other traits.

172 The relationship between climate and a species' C, S and R values was examined. For each
173 species its distributional data at Biodiversity Information Standards (TDWG) level 3 (countries
174 or states/provinces within large countries) was obtained from the World Checklist of Selected
175 Plant Families from the Royal Botanical Gardens, Kew (<http://wcsp.science.kew.org/>), and the
176 average mean annual temperature and annual precipitation were computed across a species'
177 entire range. Using all species, a linear model was then fitted to predict the mean annual
178 temperature or annual precipitation value for a species as a function of its C, S and R scores,
179 photosynthetic pathway, and lifespan, including all pairwise interactions except the
180 photosynthetic pathway-by-lifespan interaction.

181

182 **RESULTS**

183

184 *CSR functional strategies dependent on lifespan, photosynthesis and naturalization*

185 CSR classification was performed using the StrateFy tool based on leaf data, giving the relative
186 proportions of C, S and R components for each species (Pierce *et al.*, 2017). Before plotting,
187 the species were divided into annuals and perennials and then further subdivided into C₃ and
188 C₄ species, and species that have naturalized outside their native range (introduced) and species
189 only occurring in their native range (native) (Fig. 1A-H).

190 There were no annual C₃ species with high values for C, suggesting no strong
191 competitive strategy (Fig. 1A), but a small number of annual C₄ species had high C values (Fig.
192 1B). Similarly, for the perennial species, high C values were mainly found among the C₄ species
193 (Fig. 1C, D). On average (C₃ and C₄ species combined), perennials had only slightly higher C
194 values ($p = 0.008$; Wilcoxon rank sum test) than annuals, but more significantly higher values
195 for S ($p = 1.12*10^{-7}$), while values for R were lower in perennials than annuals ($p = 4.30*10^{-15}$)
196 (Fig. 2A-C). This suggests stronger stress tolerance strategies and less ruderalism in the
197 perennials than the annuals. On average (annuals and perennials combined), C₄ species had
198 higher values for C ($p = 1.68*10^{-5}$) and lower values for S ($p = 0.009$) than C₃ species, in
199 agreement with a higher competitive ability of C₄ species. However, values for R were not
200 different between C₃ and C₄ species (Fig. 2D-F).

201 Only a few of the annual species were not introduced somewhere, and these species had
202 low C-values (Fig. 1E). On average, introduced species had higher C values ($p = 5.38*10^{-4}$),
203 higher R values ($p = 2.69*10^{-15}$) and lower S values ($p = 1.41*10^{-14}$) than native species (Fig.
204 2G-I), suggesting stronger competitive and ruderal strategies, but less investment in stress
205 tolerance.

206 CRS strategies were affected by taxonomic classification, as indicated by the effect of
207 subfamily of the grass species on the values of C ($p = 2.30*10^{-12}$; Kruskal-Wallis rank sum
208 test), S ($p = 3.79*10^{-11}$) and R ($p = 3.80*10^{-5}$). For example, the Panicoideae, which include C₄
209 crops such *Zea mays* and *Sorghum bicolor*, had higher C values ($p = 1.20*10^{-12}$; Dunn test with
210 Holm adjustment) and lower S values ($p = 3.91*10^{-8}$) than the pooideae, cool-season grasses
211 which are exclusively C₃.

212

213 *Relationship between CSR functional strategies and other traits*

214 Across all grass species, the values for C were positively correlated with size-related traits,
215 including plant height (Fig. 3), with strong positive correlations of C and height both in annuals
216 ($p < 2.2*10^{-16}$, $\rho = 0.794$) and perennials ($p < 2.2*10^{-16}$, $\rho = 0.529$) (Fig. 4A). Among the
217 perennials, tall bamboo species were outliers with smaller than expected C values calculated
218 from the leaf traits. In addition, values for C were positively correlated with seed mass and root
219 depth, and more weakly with the rate of photosynthesis (A_{area}). In addition, C values and height
220 were positively correlated with seed mass.

221 Values for S were negatively correlated with size-related traits, including plant height
222 for all species combined (Fig. 3), and when analyzed separately for annuals ($p = 1.39*10^{-8}$, $\rho = -0.535$)
223 and perennials ($p = 9.08*10^{-9}$, $\rho = -0.331$) (Fig. 4B). In addition, the S values were
224 positively correlated with N and P content on a leaf area basis, but negatively with N and P
225 content on a leaf mass basis. There was also a negative correlation of S values with specific
226 root length (SRL; i.e. root length divided by root dry mass).

227 Values for R were negatively correlated with N and P area, but positively with N and P
228 mass, negatively with root depth, but positively with SRL (Fig. 3). In addition, SRL was
229 positively correlated with SLA and negatively with LDMC, which underlies the positive
230 correlation with R and the negative correlation with S. This would be expected if stress

231 tolerators have longer-lived roots than ruderal species. No significant correlation of R values
232 with height were found (Fig. 4C).

233

234 *Relationship between functional strategies and climate*

235 The average mean annual temperature and annual precipitation were computed across each
236 species' range and plotted with the predicted climate variables from linear models within the
237 CSR triangle (Fig. 5). This showed that C₃ species tend to inhabit cooler (Fig. 5A, C), drier
238 climates (Fig. 5E, G), and C₄ species warmer (Fig. 5B, D), wetter climates (Fig. 5F, H).
239 Perennials tend to grow in wetter climates (Fig. 5G, H) than annuals (Fig. 5 E, F). Within these
240 general patterns, species with high C values tend to occur in the warmest temperatures. Among
241 C₃ perennials, species with high R and S values are associated with relatively low annual
242 precipitation, and species with high C values associated with high precipitation. Among C₄
243 perennials, species with high C values were also associated with the highest precipitation levels,
244 and those with high S values with the lowest precipitation.

245

246

247 **DISCUSSION**

248

249 Using trait data for 465 grass species with global distribution but bias towards origin from the
250 northern hemisphere (especially northern Europe; Supplementary Fig. S1 [**Supplementary**
251 **Information**]), we classified CSR functional strategies based on leaf data with the StrateFy
252 tool (Pierce *et al.*, 2017). CSR strategies matched expectations for lifespan, photosynthetic type
253 and naturalization status (Fig. 1): perennial grass species had stronger stress tolerance strategies
254 but lower ruderality than annuals; C₄ species had strategies associated with stronger competitive

255 ability than C₃ species; and naturalized introduced species were characterized by more
256 pronounced competitive/ruderal strategies than native species (Fig. 2).

257 Importantly, relationships with independent traits (not directly connected to the leaf
258 traits used for the CSR classification) confirmed that CSR classification describes plant
259 functional strategies beyond leaf economics. For example, plant height was positively
260 correlated with the calculated values for C but negatively with S (Figs. 3, 4), showing a trade-
261 off between growth/competitiveness and stress tolerance. In addition, root depth was positively
262 correlated with values for C but negatively correlated with R, while specific root length (SRL)
263 emerged as a trait that may underlie the trade-off between stress tolerance and ruderalism.
264 Further, the analyses show that colder and drier climates are associated with higher S values
265 and lower C values (Fig. 5), suggesting that climate determines the trade-off between stress
266 tolerance and competitiveness.

267

268 *CSR classification of grass species reflects whole-plant strategies*

269 Our results show that CSR classification based on leaf traits not only reflects leaf economics,
270 but also wider, whole-plant strategies. Values for C were positively and S values negatively
271 correlated not just with leaf size, but also other size-related traits, such as culm length and plant
272 height (Figs. 3, 4). This is in agreement with positive correlations between size-related traits in
273 grass species (Sandel *et al.*, 2016). These findings reflect a trade-off between investment of
274 carbon in growth and in defense structures that are characteristic of long-lived leaves of stress
275 tolerators, such as investment in sclerenchyma (Pierce *et al.*, 2007).

276 Other schemes for classification of strategies highlight the importance of plant height.
277 While Westoby (1998) developed the leaf-height-seed (LHS) scheme on the assumption that
278 trade-offs exist between these traits, Diaz *et al.* (2016) identified two main axes of trait
279 variation, one describing leaf economics, the other linking plant height and diaspore size. Our

280 analysis reveals positive correlations of seed mass with plant height, leaf area and C values,
281 suggesting that there is no trade-off between different size-related traits among grass species.
282 However, the results presented here are based on species averages and do not reflect
283 intraspecific variation, which could result in trade-offs between investment in reproduction and
284 growth, especially in low-resource environments.

285 The relationships between the allocated CSR strategies and nutrient contents, such as
286 positive correlation of R values with N_{mass} and P_{mass} , but negative correlation of S values with
287 these parameters are based on leaf economics, reflecting the spectrum from acquisitive/short-
288 lived leaves with high SLA and N_{mass} to conservative/long-lived leaves with low SLA and low
289 N_{mass} (Wright *et al.*, 2004; Diaz *et al.*, 2016). Equally, positive correlations between SLA and
290 N_{mass} were described for grass species (Sandel, *et al.*, 2016; Jardine *et al.*, 2020).

291

292 *CSR classification connects leaf with root economics*

293 As described previously (Sandel *et al.*, 2016), root depth was positively correlated with size-
294 related traits such as leaf size and plant height. Our results also reveal a positive correlation
295 between root depth and competitiveness, but a negative correlation with ruderality (Fig. 3).
296 While we would have expected stress tolerance strategies to be related to root depth, no such
297 relationship was found. Instead, root depth was positively correlated with above-ground organ
298 size and values for C. This suggests that root depth reflects the overall size of grass species and
299 not a trade-off in shoot-root allocation associated with increased below-ground resource
300 acquisition under stress conditions.

301 The relationships of traits and strategies with SRL revealed here are of particular
302 significance: SRL was positively correlated with values for R, but negatively with values for S.
303 Since SRL was also positively correlated with SLA, our analysis links leaf economics with root
304 economics (Roumet *et al.*, 2016; Weigelt *et al.*, 2021). Roumet *et al.* (2016) found a positive

305 correlation between root respiration and SRL in graminoids, suggesting that the same
306 acquisitive-conservative (or fast-slow) gradient which applies to leaves is also valid for roots
307 (i.e. the root economics spectrum). Since root traits are more difficult to analyse than leaf traits,
308 it is promising that CSR classification based on leaf traits can provide information that is also
309 relevant for investment in the root system.

310

311 *The stress tolerance strategy of perennial species is determined by functional traits*

312 In line with expectations (Grime, 1977; Pierce et al, 2017), perennials were shown to have
313 higher values for S but lower values for R than annuals (Fig. 2). This was driven by lower SLA
314 but higher LDMC in the perennials, which is in line with findings for congeneric annual and
315 perennial grass species (Garnier *et al.*, 1992). These traits of perennials were associated with
316 higher growth rates of annual grass species (Garnier *et al.*, 1992; Garnier and Laurent, 1994).
317 However, we found slightly higher values for C in perennial species. Despite the described
318 differences, strategies were overall similar, with a SR/CSR strategy in annuals and an S/CSR
319 strategy in perennials, which is not surprising given that only grass species and not different
320 plant growth forms were compared.

321 The more competitive strategy in C₄ than C₃ species was expected; the only species with
322 very high C values were C₄ species (Fig. 1), including the annual crops *Eleusine coracana*
323 (Chloridoideae) and *Zea mays* (Panicoideae), and the perennials *Pennisetum purpureum* and
324 *Loudetia phragmitoides* (both Panicoideae). This also reflects the higher C values in the
325 Panicoideae (mostly C₄) than the Pooideae (exclusively C₃). Liu *et al.* (2019) described
326 interactions between life history and photosynthetic type showing that annuality/perenniality is
327 the determinant explaining traits in subtropical grasses, in line with the differences in functional
328 strategy described here.

329

330 *Competitiveness and ruderality are associated with naturalization of introduced species*
331 Introduced species had, on average, more competitive/ruderal strategies, but less pronounced
332 stress tolerance strategies than native species (Fig. 2). This is in agreement with expectations
333 based on trait comparisons between native and introduced grass species which show higher
334 SLA (Sandel and Low, 2019; Broadbent *et al.*, 2020; Monnet *et al.*, 2020), higher LA (Visser
335 *et al.*, 2016) and greater height (Visser *et al.*, 2016; Monnet *et al.*, 2020) for introduced species.
336 Visser *et al.* (2016) ascribe the competitive success of invasive grasses in South Africa to this
337 trait combination, but also highlight that the annual life cycle of invasive species points towards
338 a ruderal strategy.

339 Tall grass species with greater than 2 m height are more likely to naturalize than shorter
340 species, but probability of naturalization was only increased when bamboos and non-bamboos
341 were analysed separately (Canavan *et al.*, 2019). In our dataset, differences in height were only
342 found when bamboos were excluded from the native species (no introduced bamboos were
343 included in our analyses), with species averages of 42.8 cm for introduced species vs. 35.6 cm
344 for native species. Importantly, we show that these trait differences underlying the
345 naturalization success of introduced species can be captured in CSR functional strategies.

346

347 *Adaptation to climate underlie photosynthetic type, lifespan and functional strategy*
348 The occurrence of C₄ species in warmer climates (Fig. 5) was expected (Sage *et al.*, 2012),
349 whereas their occurrence in wetter climates was surprising since the evolution of C₄
350 photosynthesis has been linked to reduced annual precipitation (Edwards and Smith, 2010). C₄
351 photosynthesis can operate at lower stomatal conductance than C₃ photosynthesis which
352 enables higher photosynthetic water-use efficiency and drier precipitation niches (Taylor *et al.*,
353 2012). However, C₄ species still benefit from high rainfall during the warm season (Zhou *et al.*,

354 2018). In addition, tree cover and fire, which also determine C₄ grass distribution (Griffiths *et*
355 *al.*, 2015), were not considered here.

356 Given the higher stress tolerance of perennial species and their more extensive root
357 system, the association of perennial grass species with higher annual precipitation is surprising.
358 However, seasonality of rainfall rather than total annual precipitation may be the critical factor
359 because annual species can be better adapted to seasonally dry environments (Lindberg *et al.*,
360 2020). Similarly, Liu *et al.* (2019) found that for subtropical grasses, annuals (especially C₄
361 annuals) are distributed in regions with lower precipitation. The association of stress tolerance
362 with low precipitation in our analysis (Fig. 5) can therefore not be explained with a perennial
363 life history.

364 In agreement with the previous observation that culm length increased with precipitation
365 (Sandel *et al.*, 2016), the association of competitiveness with high precipitation shown here
366 (Fig. 5) supports a more competitive strategy in wetter climates. Although stress tolerance
367 strategies dominated in alpine grasslands on the Tibetan Plateau, the contribution of competitive
368 and ruderal strategies increased with increasing precipitation (Yu *et al.*, 2022). However, when
369 grass species were analyzed separately, values for C were zero for all grasslands, and higher
370 nutrient rather than water availability may explain the shift in strategy (Yu *et al.*, 2022).
371 Previously, Pierce *et al.* (2007) had also classified alpine grass species in Italy as stress
372 tolerators, while lowland species had more pronounced competitive-ruderal strategies. While
373 climate relationships were not analyzed by Pierce *et al.* (2007), adaptation to lower
374 temperatures at higher elevation may have been the dominant factor underlying this difference.

375 Our analyses use species trait means and do not take intraspecific variation into account.
376 For example, within Californian grass species, higher SLA and height were determined in
377 warmer climates, and bias of available records can thus affect species means (Sandel *et al.*,

378 2021). However, in the global context investigated here, which captures variation from arctic-
379 alpine to tropical species, intraspecific variation is relatively less significant.

380

381 *Conclusions*

382 We have shown that CSR functional strategies of grass species based on leaf economics reflect
383 whole-plant strategies related to both above- and belowground resource acquisition. Perennial
384 grass species had stronger stress tolerance and less pronounced ruderal strategies than annuals,
385 C₄ species had more competitive strategies than C₃ species, and introduced species had more
386 competitive-ruderal strategies than native species. Further, species with competitive strategies
387 were more common in climates with favourable growth conditions, whereas those with stress
388 tolerance strategies were more common in climates with low temperatures and low
389 precipitation. Species distribution and invasion success are therefore affected by climate
390 change, with competitive C₄ invaders likely to become more successful as temperatures rise in
391 currently colder climatic regions.

392

393

394 **LITERATURE CITED**

395

396 Aliscioni S, Bell HL, Besnard G *et al.* 2012. New grass phylogeny resolves deep evolutionary
397 relationships and discovers C₄ origins. *New Phytologist* 193: 304-312.

398 Broadbent AAD, Firn J, McGree JM *et al.* 2020. Dominant native and non-native graminoids
399 differ in key leaf traits irrespective of nutrient availability. *Global Ecology and Biogeography*
400 29: 1126-1138.

401 Canavan S, Meyerson LA, Packer JG *et al.* 2019. Tall-statured grasses: a useful functional
402 group for invasion science. *Biological Invasions* 21: 37-58.

403 Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its
404 annual increase. *Phytotaxa* 261: 201-217.

405 Crowley S, Wingler A. 2020. Functional strategies and life histories of grasses underlying yield
406 and resilience. 2020. *Annual Plant Reviews Online* 3: 111-133.

407 Díaz S, Kattge J, Cornelissen JHC *et al.* 2016. The global spectrum of plant form and function.
408 *Nature* 529: 167-171.

409 Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the shady history of C₄ grasses.
410 *Proceedings of the National Academy of Sciences of the United States of America* 107: 2532-
411 2537.

412 Funk JL, Nguyen MA, Standish RJ, Stock WD, Valladares F. 2017. Global resource acquisition
413 patterns of invasive and native plant species do not hold at the regional scale in Mediterranean
414 type ecosystems. *Biological Invasions* 19: 1143-1151.

415 Garnier E, Laurent G. 1994. Leaf anatomy, specific mass and water content in congeneric
416 annual and perennial grass species. *New Phytologist* 128: 725-736.

417 Garnier E. 1992. Growth analysis of congeneric annual and perennial grass species. *Journal of
418 Ecology* 80: 665-675.

419 Gorné LD, Díaz S, Minden V *et al.* 2022. The acquisitive-conservative axis of leaf trait
420 variation emerges even in homogeneous environments. *Annals of Botany* 129: 709-722.

421 Griffith DM, Anderson TM, Osborne CP, Stromberg CAE, Forrestel EJ, Still CJ. 2015.

422 Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and

423 physiological ecology. *Global Ecology and Biogeography* 24: 304-313.

424 Grime JP, Thompson K, Hunt R *et al.* 1997. Integrated screening validates primary axes of

425 specialisation in plants. *Oikos* 79: 259-281.

426 Grime JP. 1977. Evidence for existence of three primary strategies in plants and its relevance

427 to ecological and evolutionary theory. *American Naturalist* 111: 1169-1194.

428 Jardine EC, Thomas GH, Forrestel EJ, Lehmann CER, Osborne CP. 2020. The global

429 distribution of grass functional traits within grassy biomes. *Journal of Biogeography* 47: 553-

430 565.

431 Keep T, Sampoux JP, Barre P *et al.* 2021. To grow or survive: Which are the strategies of a

432 perennial grass to face severe seasonal stress? *Functional Ecology* 35: 1145-1158.

433 Lindberg CL, Hanslin HM, Schubert M *et al.* 2020. Increased above-ground resource allocation

434 is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass

435 subfamily. *New Phytologist* 228: 318-329.

436 Liu H, Taylor SH, Xu QY *et al.* 2019. Life history is a key factor explaining functional trait

437 diversity among subtropical grasses, and its influence differs between C₃ and C₄ species.

438 *Journal of Experimental Botany* 70: 1567-1580.

439 Monnet AC, Vorontsova MS, Govaerts RHA, Svenning JC, Sandel B. 2020. Historical legacies

440 and ecological determinants of grass naturalizations worldwide. *Ecography* 43: 1373-1385.

441 Ocheltree TW, Mueller KM, Chesus K, LeCain DR, Kray JA, Blumenthal DM. 2020.

442 Identification of suites of traits that explains drought resistance and phenological patterns of

443 plants in a semi-arid grassland community. *Oecologia* 192: 55-66.

444 Ordonez A, Wright IJ, Olff H. 2010. Functional differences between native and alien species:

445 a global-scale comparison. *Functional Ecology* 24: 1353-1361.

446 Osborne CP, Salomaa A, Kluyver TA *et al.* 2014. A global database of C₄ photosynthesis in

447 grasses. *New Phytologist* 204: 441-446.

448 Pierce S, Brusa G, Vagge I, Cerabolini BEL. 2013. Allocating CSR plant functional types: the

449 use of leaf economics and size traits to classify woody and herbaceous vascular plants.

450 *Functional Ecology* 27: 1002-1010.

451 Pierce S, Ceriani RM, de Andreis R, Luzzaro A, Cerabolini B. 2007. The leaf economics

452 spectrum of Poaceae reflects variation in survival strategies. *Plant Biosystems* 141: 337-343.

453 Pierce S, Negreiros D, Cerabolini BEL *et al.* 2017. A global method for calculating plant CSR

454 ecological strategies applied across biomes world-wide. *Functional Ecology* 31: 444-457.

455 R Core Team (2022). R: A language and environment for statistical computing. R Foundation

456 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

457 Roumet C, Birouste M, Picon-Cochard C *et al.* 2016. Root structure-function relationships in

458 74 species: evidence of a root economics spectrum related to carbon economy. *New Phytologist*

459 210: 815-826.

460 Royal Botanic Gardens Kew 2015. World checklist of selected plant families. – Royal Botanic

461 Gardens Kew. DOI: 10.15468/xydj63

462 Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the evolution of C₄ photosynthesis.

463 *Annual Review of Plant Biology* 63: 19-47.

464 Sandel B, Low R. 2019. Intraspecific trait variation, functional turnover and trait differences

465 among native and exotic grasses along a precipitation gradient. *Journal of Vegetation Science*

466 30: 633-643.

467 Sandel B, Monnet AC, Vorontsova M. 2016. Multidimensional structure of grass functional

468 traits among species and assemblages. *Journal of Vegetation Science* 27: 1047-1060.

469 Sandel B, Pavelka C, Hayashi T *et al.* 2021. Predicting intraspecific trait variation among

470 California's grasses. *Journal of Ecology* 109: 2662-2677.

471 Schubert M, Humphreys AM, Lindberg CL, Preston JC, Fjellheim S. 2020. To coldly go where

472 no grass has gone before: a multidisciplinary review of cold adaptation in Poaceae. *Annual*

473 *Plant Reviews Online* 3: 523-562.

474 Taylor SH, Franks PJ, Hulme SP *et al.* 2012. Photosynthetic pathway and ecological adaptation

475 explain stomatal trait diversity amongst grasses. *New Phytologist* 193: 387-396.

476 van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between

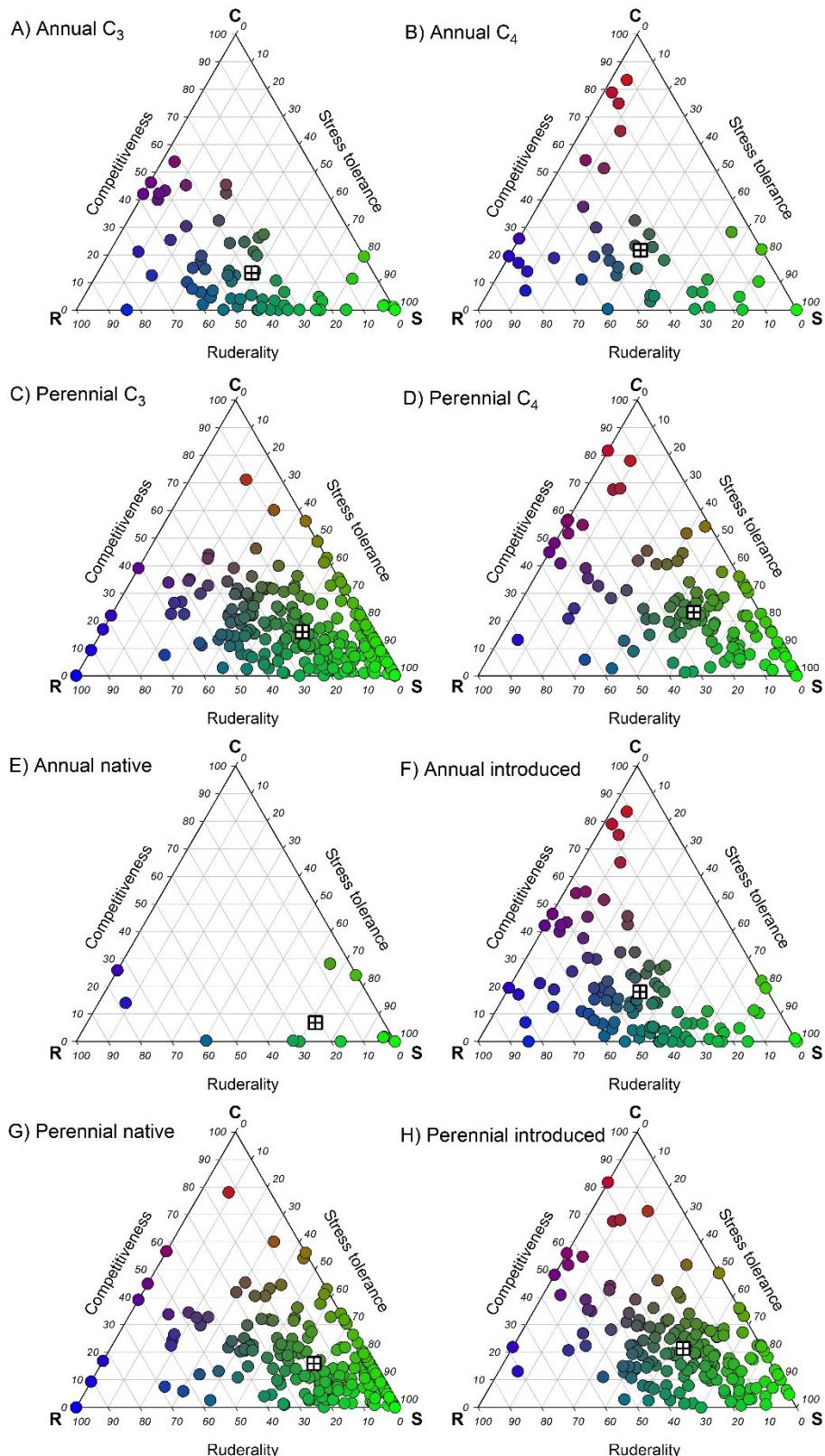
477 invasive and non-invasive plant species. *Ecology Letters* 13: 235-245.

478 Visser V, Wilson JRU, Fish L, Brown C, Cook GD, Richardson DM. 2016. Much more give

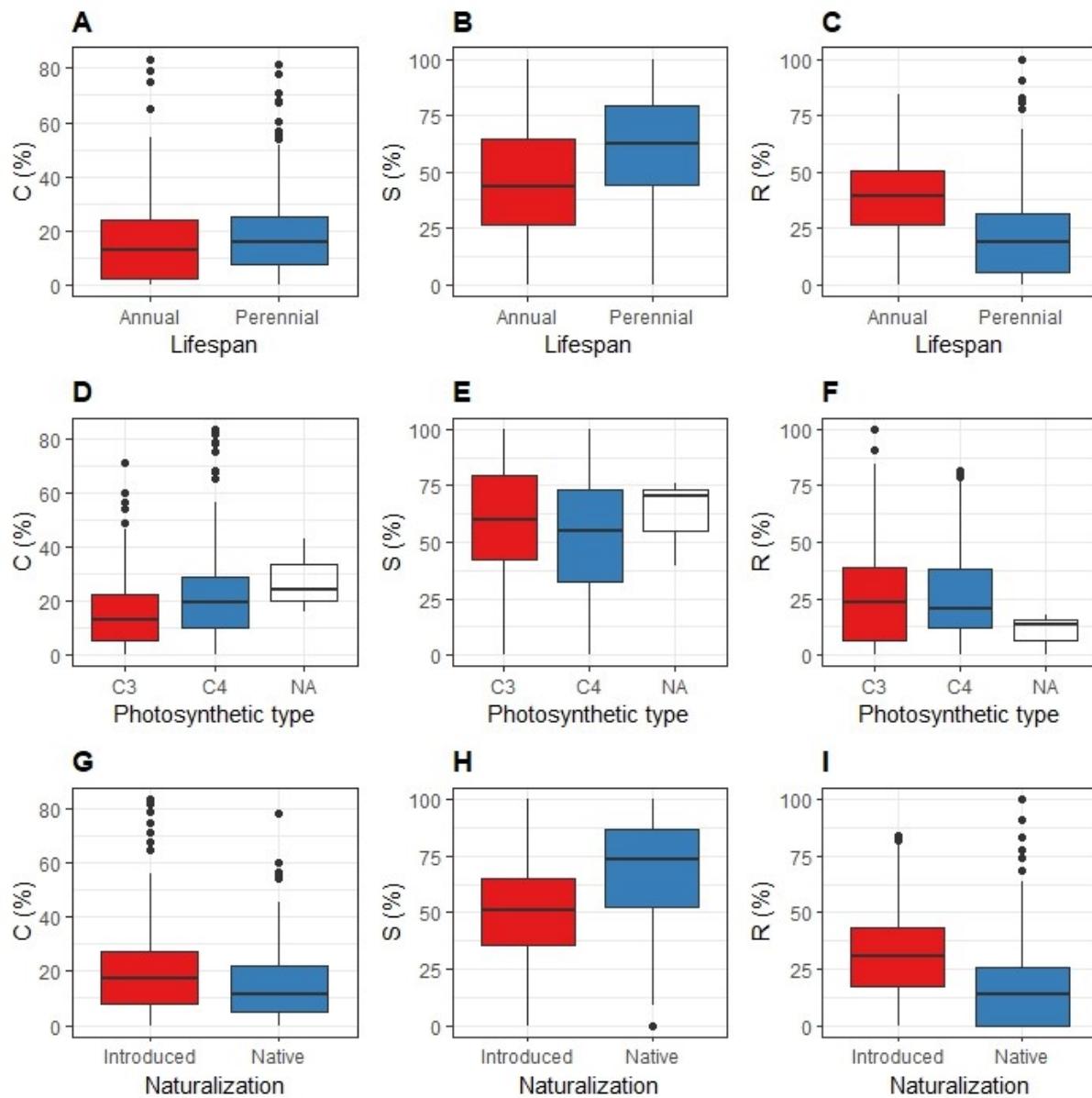
479 than take: South Africa as a major donor but infrequent recipient of invasive non-native grasses.

480 *Global Ecology and Biogeography* 25: 679-692.

481 Weigelt A, Mommer L, Andraczek K *et al.* 2021. An integrated framework of plant form and

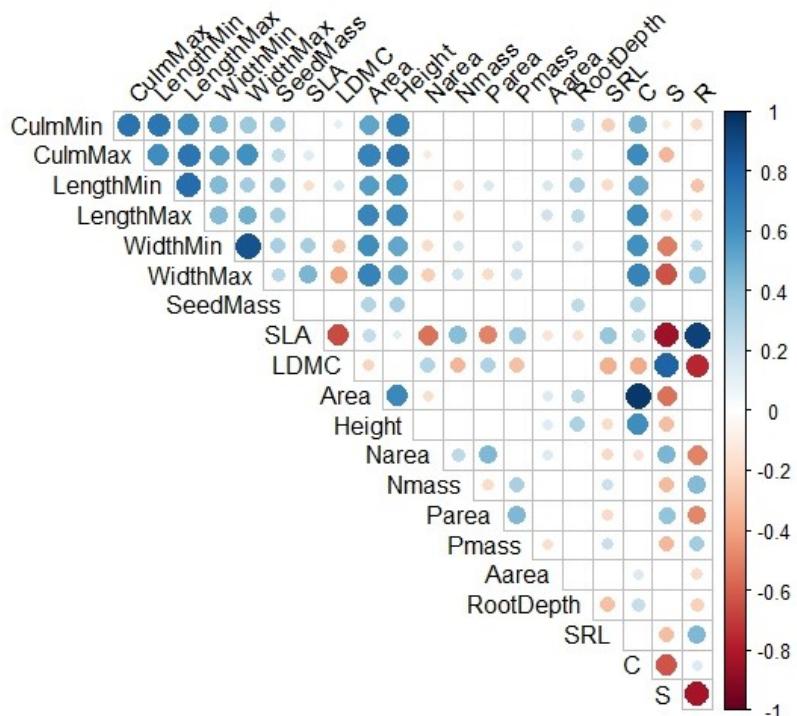

482 function: the belowground perspective. *New Phytologist* 232: 42-59.

483 Westoby M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and Soil* 199:
484 213-227.


485 Wright IJ, Reich PB, Westoby M *et al.* 2004. The worldwide leaf economics spectrum. *Nature*
486 428: 821-827.

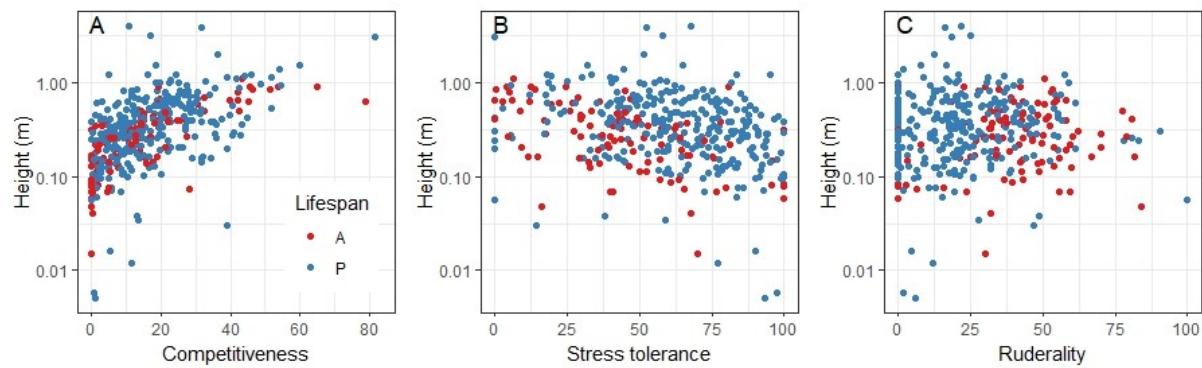
487 Yu JL, Hou G, Zhou TC, Shi PL, Zong N, Sun J. 2022. Variation of plant CSR strategies across
488 a precipitation gradient in the alpine grasslands on the northern Tibet Plateau. *Science of the*
489 *Total Environment* 838: 156512. doi: 10.1016/j.scitotenv.2022.156512

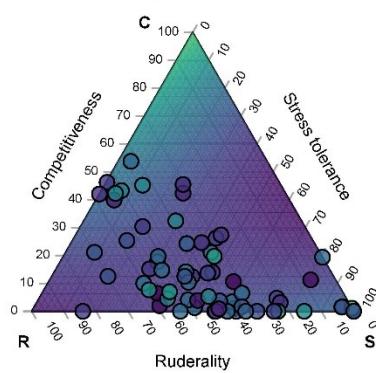
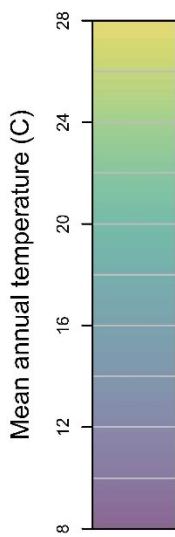
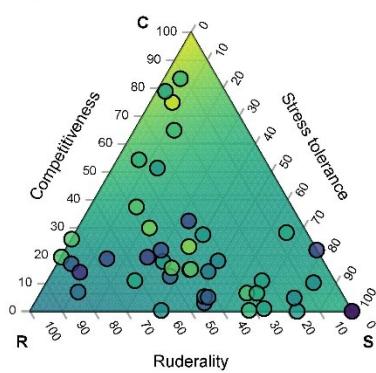
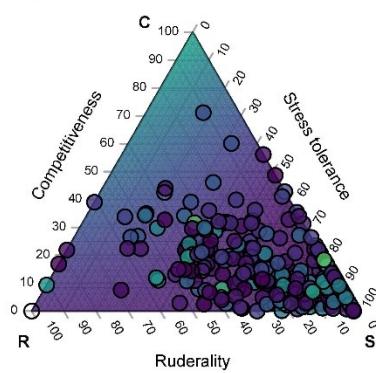
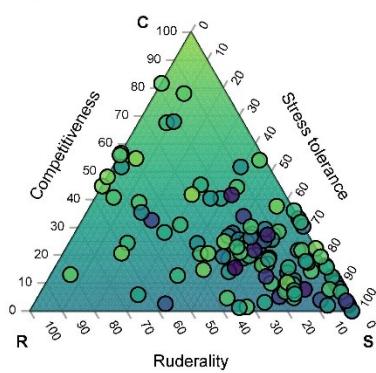
490 Zhou HR, Helliker BR, Huber M, Dicks A, Akcay E. 2018. C₄ photosynthesis and climate
491 through the lens of optimality. *Proceedings of the National Academy of Sciences of the United*
492 *States of America* 115: 12057-12062.



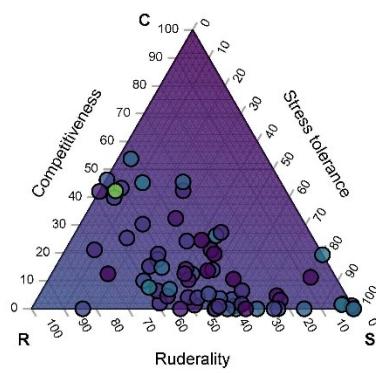
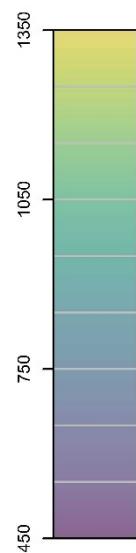
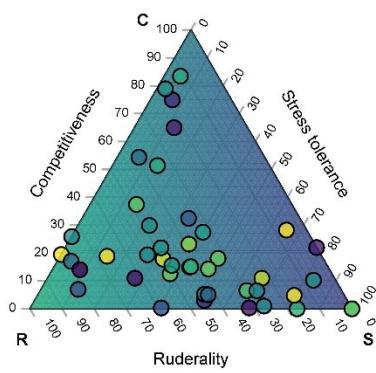
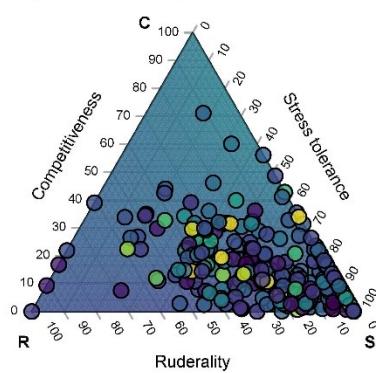
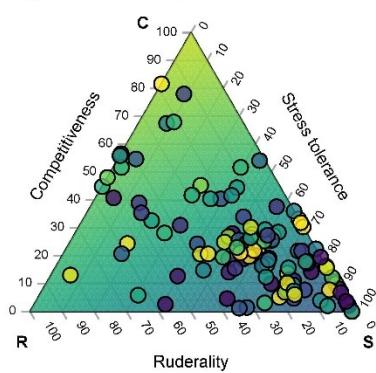
497 *al.*, 2017). Species were classified according to lifespan (annual or perennial), photosynthetic
 498 type (C₃ or C₄), or naturalization, i.e. species that grow only in their native environment (native)
 499 and those that have naturalized beyond their native environment (introduced). A. Annual C₃
 500 species; B. Annual C₄ species; C. Perennial C₃ species; D. Perennial C₄ species; E. Annual
 501 native species; F. Annual introduced species; G. Perennial native species; H. Perennial
 502 introduced species. Individual species are represented as circles; the mean for the species in
 503 each plot is shown as crossed square.

504


505 **Figure 2.** Comparison of CSR strategies between different functional groups of grass species;
 506 annual vs. perennial species (“Lifespan”; A, B, C); C₃ vs. C₄ species (“Photosynthesis”; D, E,
 507 F; “NA” = not available); introduced vs. native species (“Status”; G, H, I). Comparisons are
 508 shown for competitiveness (panels A, D, G), stress tolerance (panels B, E, H) and ruderalism
 509 (panels C, F, I). Horizontal lines in the boxplots represent medians, boxes quartiles, whiskers
 510 the minimum/maximum and circles outliers. Asterisks indicate statistically significant
 511 differences (Wilcoxon rank sum test); * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.






512

513 **Figure 3.** Correlation between CSR function strategies (C, S, R). Color and size of the circles
 514 represent *rho*-values for significant correlations ($p \leq 0.05$; Spearman rank test). CulmMin =
 515 minimum culm length; CulmMax = maximum culm length; LengthMin = minimum leaf length;
 516 LengthMax = maximum leaf length; WidthMin = minimum leaf width; Width Max = maximum
 517 leaf width; SeedMass = seed mass; SLA = specific leaf area; LDMC = leaf dry matter content;
 518 Area = leaf area; Height = plant height; Narea = nitrogen content on leaf area basis; Nmass =
 519 nitrogen content on leaf mass basis; Parea = phosphorus content on leaf area basis; Pmass =
 520 phosphorus content on leaf mass basis; Aarea = photosynthesis on leaf area basis; RootDepth
 521 = root depth; SRL = specific root length; C = competitiveness; S = stress tolerance; R =
 522 ruderality. The number of observations, *p*-values and *rho*-values are given in Supplementary
 523 Table S2 [Supplementary Information].






524

527
528 **Figure 4.** Relationship between CSR strategies and plant height of grass species;
529 competitiveness (A), stress tolerance (B) and ruderality (C). Red circles = annuals (A); blue
530 circles = perennials (P). Spearman rank correlations with height were analyzed. % C (annuals):
531 $p < 0.001$, $\rho = 0.794$. % C (perennials): $p < 0.001$, $\rho = 0.529$. % S (annuals): $p < 0.001$, $\rho =$
532 -0.535 . % S (perennials): < 0.001 , $\rho = -0.331$. % R (annuals): $p = 0.531$, $\rho = 0.064$. % R
533 (perennials): $p = 0.232$, $\rho = 0.071$.

A) Annual C₃B) Annual C₄C) Perennial C₃D) Perennial C₄

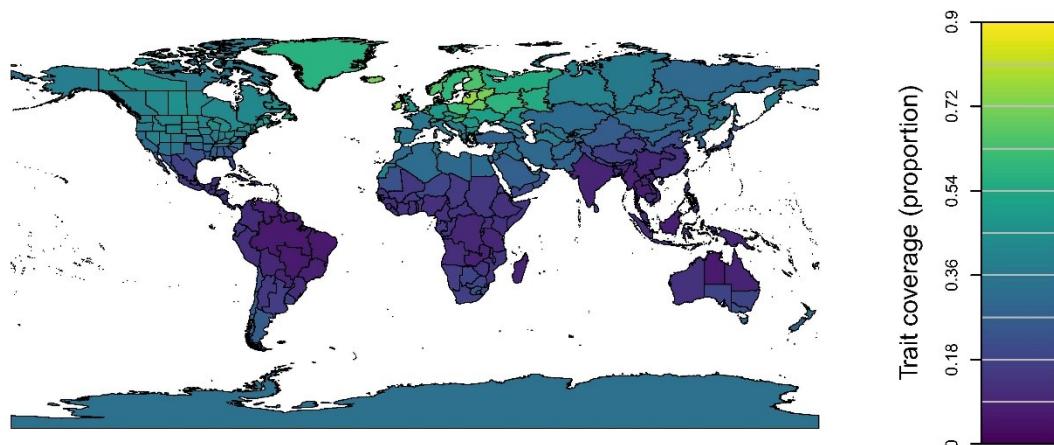
Mean annual temperature (C)

E) Annual C₃F) Annual C₄G) Perennial C₃H) Perennial C₄

Annual precipitation (mm)

535 **Figure 5.** Predicted temperature (A-D) and annual precipitation (E-H) according to CSR
536 functional strategy of grass species. Annual C₃ species (A and E); annual C₄ species (B and F);
537 perennial C₃ species (C and G); perennial C₄ species (D and H). Symbols show the CSR
538 positions of grass species, colored according to the average mean annual temperature or annual
539 precipitation within its range. The background color indicates the predicted temperature or
540 precipitation for a species at that position in each triangle.
541

542


543 **SUPPLEMENTARY MATERIALS**

544 **Supplementary references.** Trait data sources from TRY or the grass trait database.

545 **Supplementary Table S1.** Trait data and CSR scores for 465 grass species.

546 **Supplementary Table S2.** Spearman rank correlations among grass traits.

547 **Supplementary Figure S1.** Geographic distribution of 465 grass species.

548

549 **Figure S1.** The map shows the proportion of the 465 species included in the analysis within
550 each TDWG level 3 area, i.e. country or state/province within large countries (obtained from
551 the Checklist of Selected Plant Families from the Royal Botanical Gardens, Kew;
552 <http://wcsp.science.kew.org/>).
553

554