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Large-scale distributed storage systems, such as object stores, usually apply hashing-based placement and
lookup methods to achieve scalability and resource efficiency. However, when object locations are determined
by hash values, placement becomes inflexible, failing to optimize or satisfy application requirements such
as load balance, failure tolerance, parallelism, and network/system performance. This work presents a novel
solution to achieve the best of two worlds: flexibility while maintaining cost-effectiveness and scalability. The
proposed method Smash is an object placement and lookup method that achieves full placement flexibility,
balanced load, low resource cost, and short latency. Smash utilizes a recent space-efficient data structure and
applies it to object-location lookups. We implement Smash as a prototype system and evaluate it in a public
cloud. The analysis and experimental results show that Smash achieves full placement flexibility, fast storage
operations, fast recovery from node dynamics, and lower DRAM cost (<60%) compared to existing hash-based
solutions such as Ceph and MapX.
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1 INTRODUCTION
Distributed storage systems, such as object stores, are widely used today to manage large-scale

data in a variety of applications, including cloud computing [23, 33, 45], social networks [17], data
analytics [24], and serverless computing [11]. In such a system, each data file consists of one or
more named objects that are stored in a storage cluster. Each object is uniquely identified by a
bit string, called as an identifier (ID), name, or key. This paper studies object storage systems in
particular but the methods proposed in this work can be used for general distributed storage.
Object placement and lookup represent fundamental tasks that need to be provided by any
storage system. To manage objects on a massive scale, there are two typical object placement and
lookup strategies. 1) Naive directory-based approaches as shown in Fig. 1(a) that store ID-location
mappings in a central directory server or metadata server. Clients receive object locations by
querying the server. However, in large-scale object storage, the DRAM resources needed to be spent
for housing the directory are significant. For instance, storing 100 billion ID-location mappings
requires > 4TB DRAM, where the majority is used to store IDs, as in practice, the average size
of IDs is tens of bytes such as 16 bytes in Ceph [1] and 40 bytes in Twitter [46] or Facebook [9].
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Fig. 1. Comparison of different types of placement and lookup approaches for object storage.
Storage type Full placement flexibility Lookup units RAM cost Get latency
Amazon S3 [33] Object storage No Directory & local index High High
CRUSH (Ceph) [1, 43] Object storage No Local index & OSD daemon Low Low
MapX [40] Object storage No Local index & OSD daemon Low Low
HDFS [14] File system (block-based) No Local index & NameNode High Medium
IndexFS [34] File system Yes Directory & MDS index High Medium
InfiniFs [30] File system Yes Directory & MDS index High Low
Smash (this work) Distributed storage Yes Lookup units on nodes  <CRUSH/MapX Low

Table 1. Comparison of typical existing data placement methods

For many applications, the data/ID space ratio is smaller than 10 for most data [46] and, as a
result, many object storage systems choose an alternative option to implement object lookup: 2)
Hashing-based approaches as shown in Fig. 1(b) place data to storage nodes based on the hash
value of the ID h(ID) [11, 22, 38, 43]. Hashing avoids the overhead of a directory but introduces
several well-known issues, such as losing the flexibility of placing objects based on application
requirements. The problems include placing replicas into the same failure domain, introducing
load imbalance, and forcing data re-location when nodes join or leave the system [43]. A common
technique to address the above problems is to use hybrid approaches (Fig. 1(c)), such as Ceph
[1, 43], to find a balance between the DRAM cost of the directory and inflexibility by hashing.
However they cannot completely eliminate their disadvantages. As shown in Fig. 1(c), all objects
are mapped to groups using hash computations, and then all groups are assigned to different nodes
via directories indicated by CRUSH [43]. Hence the grouping is still inflexible. For example, if some
objects are hashed to the same group. They must be placed on the same node. When they are all
popular objects, the node might receive many requests and become overloaded.

Smash addresses the challenges above by introducing a solution that achieves all desired properties
of an object placement and lookup method. In particular, it enables full placement flexibility,
balanced load, low resource cost, and short latency. As shown in Fig. 1(d), a key innovation of
Smash is to apply a new space-efficient hash table and divide it into a number of distributed lookup
units, each of which is located within an individual storage node. Each lookup unit is responsible for
a group of objects whose locations can be distributed among arbitrary storage nodes. By querying
an object ID, a lookup unit returns the object location, including the node and physical block
address. A lookup unit can be considered a “shard’ of functions, including a global directory (to
locate the node for an object) and local indices (to locate the block address on a node), but it achieves
high resource efficiency by avoiding storing the IDs of the objects. Hence it can fit into the limited
memory resource of storage nodes. For example, lookup units only cost 1.6GB DRAM per node
for a storage system with 100 million objects per node, while other methods cost more than 5GB
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DRAM per node. Hence Smash naturally scale out with the size of storage systems — when a system
includes more nodes, it also supports more lookup units based on the configuration for Smash.

Lookup units of Smash are developed based on a recently proposed data structure Ludo hashing
[37], whose theoretical basis is dynamic minimal perfect hashing (MPH) [13]. MPH significantly
reduces space cost compared to a standard hash table because it avoids storing keys. Ludo and MPH
is a good match to the large-volume and long-ID features of object storage because it can save most
memory costs by avoiding storing IDs. Smash is the first to apply MPH to storage systems by
dividing the whole Ludo data structure into multiple independent lookup units, which scale out
with the system size. Another innovation in Smash is to decouple the metadata functions from the
lookup unit and move it to maintenance units. Different from a central directory, the maintenance
units are resource-efficient because most of them are stored on secondary storage such as SSDs
and not in DRAM. Only one maintenance unit needs to be active at a time and hence needs to be
resident DRAM. The active maintenance unit is responsible for handling new items that are being
inserted into the storage system, whereas de-activated maintenance units governing already placed
objects only need to be updated when a large amount of objects are relocated, which happens
very rarely in Smash. One key insight of Smash is that insertions/deletions can be separated from
lookups into two independent units. By decentralizing lookups, Smash enables high scalability and
efficiency, avoiding the need for a large, centralized directory and a single point of failure.

We implement Smash and deploy it in a public cloud platform, CloudLab [8]. We evaluate the
performance of Smash by comparing it with both a well-known method CRUSH [43], the placement
algorithm of Ceph [1], and very recent work MapX [40], under different workloads. We show that
Smash can achieve full placement flexibility, reduce the DRAM cost per node by > 60%
compared to other solutions, achieves very short convergence time for adding/removing
nodes, and achieves low latency of putting/modifying/deleting objects.

We show the qualitative comparison among different data placement and lookup methods in
Table 1. From the table, we can find there is an obvious dilemma as directory-based methods
introduce high DRAM costs while the hashing methods do not provide full placement flexibility.
Our work Smash achieves the best of these two worlds: full flexibility and low DRAM cost, using a
new design.

Our contributions can be summarized as follows.

o We are the first to apply MPH to storage research, and Smash resolves the flexibility-efficiency
dilemma. It is the first to achieve both full placement flexibility and low resource cost,
compared to the state-of-the-art object storage solutions CRUSH/Ceph and MapX. It costs
less than 100MB DRAM per node for up to 6 million objects per node — >60% reduction
compared to CRUSH/Ceph.

e We implement a prototype of Smash and develop it in a public cloud for evaluation. The
results show that Smash achieves low latency in put/get/modify/delete operations and smaller
per-node DRAM cost compared to existing object stores. Smash can also benefit from flexible
object placement, such as reducing inter-rack traffic in a data center. The code of Smash is
available at [7].

The rest of this paper is organized as follows. Section 2 introduces the design objectives and
algorithm foundations and Section 3 presents the idea of apply MPH to storage. Section 4 describes
the detailed design of Smash. Section 5 presents the prototype implementation and performance
evaluation of Smash. We present the related work in Section 6 and conclude this work in Section 7.

2 OBJECTIVES AND ALGORITHM FOUNDATIONS
This section introduces the design objectives of Smash and the background of the algorithm.
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# Objects pernode | IM | 2M | 4M | 8M
Bandwidth cost (IB) | 9.9 | 19.7 | 39.5 | 78.9

Table 2. Bandwidth cost for adding one node in CRUSH [43].

2.1 Design objectives of Smash
We consider a large-scale object storage system, in which each object is uniquely identified by its

ID. The objects are stored in storage servers called nodes, which may contain one or more storage
devices such as SSD or HDD. Each node also carries some limited computation, DRAM, and network
resources. A block is a sequence of bytes on a node that is read or written at a time. The storage
location of an object i can thus be specified as < Nj, B; > where Nj is the node’s network address
and B; is the sequence number of the block that stores the object. Following Ceph, the block size
in Smash is 4MB, however, the size can be configured freely. Each block may store one or more
objects. If a file is larger than 4MB, it is split into multiple objects. When a node writes objects
to its disk, it keeps writing objects to a block until the block is full. Each block contains a header
including the IDs of its objects and their location offsets. The objects are stored from the end of
each block so that the header and objects can grow toward the middle. Clients are authorized users
to access the objects, who may or may not be in the same cluster of the storage system.

The design objectives of Smash include: 1) Full placement flexibility. Smash must support the
placement of objects to arbitrary nodes, based on the application requirements for implementing
fault tolerance, load balancing, data locality, and exploiting parallelism. 2) Low DRAM cost. Smash
needs to minimize metadata storage overheads and DRAM footprint to provide a low total cost of
ownership (TCO). 3) Low latency Smash needs to perform object operations such as put, get, and
delete objects as well as adding and removing storage nodes with low latency. 4) High scalability.
When the system size increases, the extra resources to support object placement and the latency to
perform lookup should increase at most linearly. To our knowledge, there is no prior work that can
achieve all of these goals.

Placement flexibility is important. There are various data placement requirements of storage
systems, depending on the applications of these data and the priorities of placement policies. We
just name a few here. 1) Failure tolerance. Some applications may require the replicas of some data
to be in different failure domains to improve system robustness. 2) Parallelism. Some applications
may require the objects belonging to a big file or a set of files to be stored at different servers to
improve accessing parallelism. 3) Load balance. Placing data in different nodes such that no node
is overwhelmed by requests for popular data is an important task in storage systems [43]. This
requirement is particularly crucial for nodes with heterogeneous capacities and speeds because
slow devices will become the bottleneck of overall performance. 4) Some workloads require special
placement of data to optimize performance, such as those of high-performance computing [12] and
machine learning tasks [24]. Hash-based and hybrid methods cannot enforce flexible placement and
hence fail to guarantee fault tolerance. They also cause further problems such as a high bandwidth
cost for data migration under node addition and removal. Table 2 shows the high bandwidth cost
of adding one node in CRUSH - from 10TB to 80TB — causing traffic spikes while introducing
hardware costs and network overprovisioning. Our results are consistent to the reported results
in [40]. Smash is able to take any object-to-node placement as the input and does not need
data migration under node dynamics.

RAM cost and scalability. Every storage system requires DRAM space to support data place-
ment and lookups. Even in hashing-based methods, where clients use hash functions to compute
object locations, DRAM resource is still necessary on every node for local indices to support ID to
block address mappings. The proportion of space cost to store the IDs (or keys in some context)
usually contributes to the majority of the DRAM cost, e.g., > 80% [37]. The reason is that the sizes
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Fig. 2. The lookup structure of Ludo hashing. Fig. 3. The maintenance structure of Ludo hashing.

of IDs are usually much longer than those of locations — Ceph [42] uses 16-byte IDs, and Twitter’s
average key length is around 40 bytes [46]. It could cost hundreds of GBs DRAM for 10 billion
ID-location mappings, and the majority proportion is used to store the IDs. For the methods that
utilize directories, the directory and metadata servers introduce large DRAM overheads that need
to be hosted by specific servers to support client queries and data management. Smash requires a
number of maintenance units that can be run on either a server or storage nodes. Different from a
large directory, most maintenance units can be stored on SSD because they are rarely queried or
changed. Only one maintenance unit (a few hundred MBs) needs to be run in DRAM. Hence the
DRAM cost of Smash is scalable to support an extremely large number of storage objects.

2.2 Ludo hashing
Allowing fully flexible placement means an object can be placed onto an arbitrary node. Hence it is

essential that the system should support querying the locations of arbitrary objects from clients
and remember all object-location mappings in DRAM for fast response. The biggest challenge
is the DRAM cost to store the massive number of ID-to-location mappings. There is no way to
avoid storing locations because they are necessary results for lookups. However, we argue that
there is a way to avoid storing IDs, which contribute to a majority of the memory cost of storing
ID-to-location mappings.

To enable flexibility while minimizing storage overheads, we utilize Ludo hashing [37] and adapt
it for serving large-scale storage systems. Ludo is not a hash function, but a key-value lookup
engine: For any given key-value mapping, Ludo can build a space-compact data structure (called
the lookup structure) to return the corresponding values when keys are queried. The Ludo lookup
structure does not store the keys themselves and reduces the space cost by up to 90%, compared to
state-of-the-art hash tables such as (4,2)-Cuckoo [26].

The lookup structure. The lookup structure returns the value given a key — in our context
key-value is ID-location. All key-value mappings are specified by the user when constructing
the lookup structure and there is no restriction on the key-to-value mapping. As shown in Fig. 2,
the lookup structure consists of two parts. The first stage is a classifier that returns a 1-bit value
b € {0, 1} by querying the key i. The data structure of the classifier is called Bloomier filter [47].
Ludo selects one of two hash functions hy() and h;() based on the result of Bloomier filter b, where
b = 0 or 1 because we have two independent hashing functions. The result b (i) maps to a bucket
(row) of a table shown on the right of Fig. 2. The bucket includes a seed value s and four slots and
four elements are hashed into these four slots without collision by a seed computed by brute force.
Ludo computes a hash function by including the seed value s and i, H; (i), to produce a 2-bit result
ranging from 0 to 3. The slot with the resulting number will be chosen and the value stored in the
slot is the returned value — the object location in our context. The lookup structure is very compact
and only introduces a cost of 3.76 + 1.05] bit per key-value pair where [ is the size of each value.
The query time complexity is O(1).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 33. Publication date: June 2023.



336 Yi Liu et al.

Objects of a shard can

ID - location mapplngs be physically stored in

:' Maintenance different nodes

{ unit (shard 1) | ' O\Umtf-;:k:& H - E
__________ . -
LY
Most existing (mmmm——— \‘ ‘\\
maintenance shards Maintenance -—
. 1 \ =
are stored in SSD I unit (shard 2) HQ Lookup \ a =
e Unit (shard 2) "\ Y
A
. \\

One active shard is r--M-'-;e """" Yy

stored in BAM and 1 aintenance —
. - HQ Lookup

accepts new objects |  unit (shard k) UmIO(:hlalrd o —]

Each shard works independently

Fig. 4. Shards of Smash

The maintenance structure. The maintenance structure is used to construct the lookup struc-
ture. As shown in Fig. 3, it uses a (4,2)-Cuckoo hash table [26] to store all key-value mappings.
Each key-value pair is stored in one of the two buckets determined by the hash result of hy(i,) and
h1(ix). Each bucket contains four slots and a pair is stored in one of them. For each bucket, Ludo
finds a seed s using brute force such that all results of H;(i) for the four keys in the bucket are
different. Each seed is 5-bit long and a very small portion of seeds longer than 5-bit are addressed
in an overflowing table. The second stage of the lookup structure is a copy of this table with all
keys being removed. Using a seed for each bucket is the key idea to perform lookups in the table
without storing the keys, because the seed guarantees that there is no collision for IDs that are
mapped to the same bucket. The first stage of the lookup table is a classifier that maps each key to
either 0 or 1, depending on which bucket each key is stored in. The time complexity of constructing
a lookup structure is O(n) for n items in expectation and that of inserting, deleting, and changing
one item is O(1) in expectation.

3 APPLYING LUDO TO OBJECT STORAGE

Using Ludo directly as a solution for the central directory could be an improvement over existing
directories, but it still suffers from some crucial problems — the lookup structure still could be a
bandwidth bottleneck and the maintenance structure still introduces high DRAM space. Hence
we propose two modifications when applying Ludo to Smash: 1) We divide both the lookup and
maintenance structures into shards, called lookup units and maintenance units. Each shard works
independently. Sharding allows most maintenance units to be stored in SSD instead of DRAM and
lookup units can run on different storage nodes in a distributed manner. 2) We combine lookup
units with the local indices of storage nodes to further reduce DRAM cost.

Sharding. Sharding the lookup and maintenance structures of Ludo is the key idea for achieving
low memory cost and high scalability in Smash. Unlike existing hashing-based storage solutions
that make shards (groups) of the objects and put them onto different nodes, Smash makes shards
of the lookup and maintenance structures. Sharding the lookup and maintenance structures
preserves full placement flexibility — because the locations of the objects do not affect how these
structures are built. As shown in Fig. 4, all objects are divided into multiple shards. Each shard
includes the objects put to the system within a period of time.

In Smash, each maintenance structure is responsible for one shard that includes a fixed number
(e.g., 40 million) of objects. Objects are assigned to maintenance structures in a time-series order.
For example, the first 40 million objects will be added by the first shard. Then Smash stops adding
objects to the first shard, starts the second shard, and adds future objects to the second one. When
a shard is full, it becomes an immutable shard and cannot be added with more objects. Deleting
objects is allowed for an immutable shard. When an object is put by a user, the ID of the object is
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assigned by a maintenance unit running on a monitoring server, similar to CephFS [1], in which
metadata servers will give each object a unique ID. In Smash, each object ID’s prefix is its shard ID.
For example, if the length of each shard ID is 3 bytes and an object belongs to the first shard, the
object ID starts with 23 zeros and a one. Hence the shard ID of an object is directly accessible for
users by looking at the object ID prefix. There is no need to keep a data structure to look up the
responsible maintenance unit of an object. Such design supports a wide range of applications as
long as the stored data of these applications increase gradually with time without extensive deletion
operations (e.g., more than 50% of objects will be deleted in a short time), which could make each
shard less efficient in maintaining lookup units. Possible applications include 1) web applications
that store user activity data; 2) IoT applications that store the sensing and monitoring results from
IoT devices; 3) log data of large systems. In fact, embedding an object’s creation timestamp is very
common in databases. For example in MongoDB [5], each object ID is a 12-byte value that includes
a 4-byte timestamp that represents the number of seconds since the Unix epoch. The shard ID can
be considered a very coarse-grained timestamp.

Each shard has an independent maintenance unit to construct an independent lookup unit. Each
lookup unit is very compact (e.g., < 100MB) and physically stored in an arbitrary node’s DRAM.
An object of the shard can be physically stored in any node. When a shard is full, the maintenance
unit is switched into inactive mode and stored in the SSD of the server. At this time, the lookup
unit is considered to be immutable, and hence its maintenance unit is no longer needed in DRAM.
Inactive maintenance units are only used in rare situations (discussed later), hence it can tolerate
the latency of loading from the SSD. A new maintenance unit is started to accept new objects. The
overall DRAM cost of maintenance units is small (< 250MB) even for 8 million objects per node.
The number of lookup units increases with the system size, but it does not incur extra overhead
because the number of nodes that can host the lookup units also increases.

Combining local indices. Most existing methods return the node’s IP address as the location of
an object i. Hence it is still necessary to have local indices running on nodes to return the ID-block
mapping — a block is a basic storage unit for each read or write operation and it may store one
or more objects. We find that combining the lookup units and local indices can bring tremendous
savings to the DRAM cost of Smash. The location loc; of object i returned by the lookup unit can
contain both the node IP and block address: loc; =< IP;, block; >. Our evaluation results show
that such a combination reduces > 60% DRAM per node compared to the local indices of CRUSH
[1], because Smash’s lookup units do not store IDs. Note the IP address can be implemented as a
node ID that is much shorter than 32 bits, if there is another table maintaining the NodeID-to-IP
mappings or the node ID can simply be the suffix of an IP. For ease of presentation, we still use IP;
but in practice, it does not need 32 bits.

4 DESIGN OF Smash
4.1 System overview

Smash consists of three main software components: a monitor, a number of maintenance units (an
active one running in the DRAM and others stored in SSD), and a number of lookup units that are
located in the DRAM of storage nodes. Smash separates the tasks required to manage and look up
objects into these three components to enable flexible placement without requiring a large directory.
In particular, the directory-less, decentralized lookup units find objects without storing the keys
that contribute to the majority DRAM cost. Lookup units provide flexibility because objects can be
stored at arbitrary nodes. We leverage Ludo to scale MPH to a large number of objects per node.
The task of the maintenance units is to perform updating the lookup units. In most cases, only one
maintenance unit should be run in DRAM and the others can be stored in SSD. The whole system
costs very little resource: it requires one server running the monitor and active maintenance unit
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Term/Notation Explanation Example values
Node A physical storage server
n Number of storage nodes 1K~100K
Monitor A program to monitor storage space Only one in the whole system

A virtual group of objects. Shards are
Shard not tied to nodes, and a node can host 1M~10M objects per shard
objects belonging to different shards.

Maintenance unit A program to manage a shard. Only one is active in the whole system

A program to support lookups in a shard.
Lookup unit Can run on any server in the system. One per shard.
Smash co-locates them on the nodes.

Number of shards in the system.

k Also equal to # of maintenance units 1K~M

a Number of objects per shard 1M~1B
Number of blocks per node on average. IM~10M

P Each block is 4MB and stores one or more objects.

1 Length of an object ID (key) 40Bytes

I Length of a shard ID 3~4Bytes

I, Length of a node ID 3~4Bytes

Table 3. Terms and notations used in the paper.

and storing the other maintenance units. The lookup units are running in the DRAM of the storage
nodes.

Table 3 shows the list of parameters and their explanations. Suppose a large storage system
includes n = 10 thousand nodes, k = 10 thousand shards, each shard includes & = 40 million objects.
Based on our analysis (presented later), the monitor costs 391MB, a maintenance unit costs 1.5GB,
and a lookup unit costs 680MB. In this setting, a server with 4GB DRAM is sufficient to run the
monitor and the maintenance units and each node only needs <1GB DRAM to run the lookup
units.

Monitor. The monitor provides the following functions. 1) It maintains the disk availability on
all nodes at a coarse-grained level. Each node’s space is divided into bulks, each consisting of 1GB
data. A bulk is further divided into blocks and each block is 4MB. A block is used to store one or
more objects. These sizes may vary for different applications. The bulk-level management enables
the monitor to track whether each bulk has been assigned to an existing maintenance unit while it
does not track whether a block has been used or not. The block-level management is performed by
each maintenance unit. Hence the monitor maintains a bitmap containing one bit for each bulk
in the system and each bit representing whether a bulk has been assigned. 2) The monitor tracks
the resource load of every node, including disk space, network bandwidth, DRAM, and CPU. The
granularity of these loads is user-specified. 3) The monitor includes a load balancing function,
which can stop assigning bulks to nodes that are about to reach a high load. Therefore, it receives
information about the top-k most popular objects from high-load nodes enabling load-balancing of
the most frequently accessed objects among nodes. Any existing load-balancing algorithm such as
[44] is compatible with Smash because the placement is fully flexible.

Maintenance units. Maintenance units are responsible for constructing and updating lookup
units, as well as for providing fine-grained storage resource management at the block level. Each
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maintenance unit is responsible for a limited number of objects, and the set of these objects is
called a shard. When Smash enables a maintenance unit, it is resident in DRAM of one of the
servers accepting new put requests. Get requests are directly served by the lookup units and
require no maintenance unit interaction and Delete requests do not need to be processed by the
maintenance unit. The maintenance unit determines the object placement location (storage node) by
optimizing the application requirements considering fault tolerance regions, load balancing goals,
parallelism opportunities, and workload-specific requirements. The detailed optimizing algorithm
is out of the scope of this paper. However, Smash can be adapted to support any algorithm. Next, the
maintenance unit determines the bulk to house the object on the particular storage node. Therefore,
it either reuses an existing bulk that has free storage capacity or it claims a new bulk on that
node from the monitor. The maintenance unit then tracks the storage capacity available within
the bulk and stores the newly put object to an available block. It then adds the ID-location tuple
< i,loc; > to the Cuckoo table which is stored as part of the maintenance unit. Note that loc; is a
tuple including both IP and block addresses. It constructs the lookup unit of all < i, loc; > tuples
and deploys the lookup unit to a node with sufficient DRAM resources. The lookup unit will be
updated whenever additional objects are put into the system. When the number of objects within
an active maintenance unit reaches a threshold, the maintenance unit is stored to the SSD and it
becomes immutable (inactive). An inactive maintenance unit only needs to be accessed in the case
of rare situations, such as large-scale object relocation. Performing put, get, modify, and delete
operations no longer requires the access of an inactive maintenance unit. Hence only one active
maintenance unit is running in the DRAM of each server at a time.

Both the monitor and maintenance units are small enough to be hosted on different storage
nodes as long as the nodes have available DRAM space. Replicated monitors and maintenance units
can also be deployed in this way to achieve fault tolerance. For this, replicated copies of each object
are stored in multiple nodes. The ID-location mapping is then extended to < i, locy, locy, locs > for
3 copies in 3 different locations.

Lookup units. Lookup units respond to clients’ object get and modify requests. Every lookup
unit is resident in DRAM of a storage node. It returns the physical location loc; =< IP;, block; >
of the requested object i and forwards the request to the corresponding node. For fault tolerance,
replicated lookup units can run on multiple nodes.

Storage nodes. The storage space of a node is divided into blocks. When receiving a get request
forwarded by one of the lookup units, the storage node returns the corresponding data to the client
based on the block address block;. When receiving an modify request, the storage node sends a
message to the client directly, indicating the update was successful. Storage nodes also respond to
put, relocate, or delete requests to objects. For fault-tolerance, replicated copies of an object
can be stored in multiple nodes.

Clients. A client may or may not be in the same data center with the storage. For example, the
clients of the object database of a social network are the web servers in the same cloud. Smash
provides a client library for accessing the object storage system. Like the interfaces in existing
key-value stores, the client can request the lookup units or maintenance units to put, get, relocate,
or delete objects.

4.2 System Initialization

Objects and nodes can be incrementally deployed to a system running Smash. The number of
inactive maintenance units and lookup units depends on the system size. The monitor and all
maintenance units can be hosted by a server whose resources are not necessarily rich, possibly
with one or two backup servers. The lookup units are hosted by the storage nodes with very little
DRAM cost. When a storage node joins, the monitor notifies the active maintenance unit about the
node’s IP address and may assign the node’s bulks to the active maintenance unit.
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Fig. 5. The object operations of Smash.

Smash sets the maximum number of objects per shard as a. Each maintenance unit then contains
a Cuckoo hash table with [ - séx ;@1 = [0.263a] buckets with each bucket containing 4 slots. The
reason behind this is that the total number of slots is then 55=a, which can store all  ID-location
pairs with the table’s load factor up to 95%. According to theoretical studies [16, 19], insertions to a
Cuckoo hash table of load factor up to 98.03% is asymptotically almost surely (a.a.s) successful. We
use 95% to avoid hitting the tight threshold. The lookup unit has the same number of buckets.

Each client stores the mappings of every shard ID s; to the IPs of all nodes that host the lookup
unit of shard s;, which takes a few MBs. Storing IPs of the nodes is also necessary for all existing
object stores such as Ceph [1] and MapX [40].

4.3 Operations of Smash

Smash supports operations to put, get, modify, relocate, and delete objects. We describe the opera-
tions in the following. For ease of presentation and illustration, we first show the operations on
one copy of each object. We then extend the operations with replicated copies for fault-tolerance.

Put. Figure 5a shows the steps of putting a new object i. The client registers the new object to the
active maintenance unit (Step 1). The maintenance unit determines the location loc; =< IP;, block; >
to store the object, based on the application requirements and node availability. It then tells the
client the tuple < i,loc; > (Step 2). The maintenance unit updates the lookup unit and tells the
update to the node that hosts the lookup unit (Step 3). This update takes O(1) time and O(1)
communication bits in expectation [37]. At the same time, the client sends the object i to IP;, the IP
of the node to store i. The node IP; will store i to block address block; (Step 3).

Get. Figure 5b shows the steps of getting an object i. The client finds the shard ID k from the
ID i of the object it wants to get. Recall that each client maintains the mapping of every shard ID
k to the IPs of nodes that host the lookup unit of shard k. It then sends a lookup request of i to
the lookup unit (Step 1). The lookup unit returns loc; by looking up the ID i. Then it forwards the
lookup request to the node IP; that stores i along with the block address block; included in loc;
(Step 2). The node IP; gets the object from block; and sends it to the client (Step 3).

Delete. The process of deleting an object i can re-use the Steps 1) and 2) of Get. The difference
is that in Step 3) the node that stores i just deletes i and sends a confirmation message to the client.
Note this process does not need the involvement of the maintenance unit and the lookup unit does
not need to change. In the lookup unit, if i has been removed and never be queried, the correctness
of the lookup unit of MPH will not be affected. The maintenance unit needs to guarantee that an
ID will not be assigned twice to different objects, which can be easily achieved.

Modify. The process of modifying an object i can re-use the Step 1) of Get. The difference is
that in Step 2) when the lookup unit gets loc;, it does not forward the request to the node IP;
but sends loc; back to the client. Hence the client can directly contact the node IP; to modify the
content of i. This process does not need the involvement of the maintenance unit because the
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storage location of i does not change. Note that a “Modify” in Smash and an “update” in Ludo
have completely different meanings. An “update” in Ludo means inserting, deleting, or changing a
key-value pair. The correctness of insertion cannot be guaranteed without an active maintenance
unit. A “Modify” in Smash is to change the content of an object. The key-value pair of this object
from Ludo’s perspective is the ID-location pair, which does not change for such an update. Without
an active maintenance unit, an update of Smash is still always successful.

Relocate. A relocation happens rarely compared to the above operations. Each relocation is
initiated by the monitor, rather than the clients. It happens when the monitor wants to further
optimize the placements based on application requirements such as locality and load balance.
Note that when each object is placed for the first time, its location is already optimized by the
maintenance unit. Hence relocation may happen once during a long time period (such as several
days). A relocation might change the maintenance and lookup units in multiple shards and hence
some inactive maintenance units may need to be loaded to DRAM and updated at this point. Since
there are fewer relocations happening during a long time period, the monitor can process relevant
objects in one shard after another. Since the latency of relocation is not sensitive, changing inactive
maintenance units will not introduce much DRAM cost. This is the only case where an inactive
maintenance needs to change.

4.4 Replication for failure-tolerance
The above description of Smash operations assumes one copy of each lookup unit is running in the

system and one copy of each object is stored. In practice, it is common to have replicated lookup
units and replicated copies of objects to tolerate failures. In addition, the server that hosts the
monitor and maintenance units also has two backup servers. The main server keeps synchronizing
with the backup servers.

As shown in Figure 5c, we let Smash store 3 copies of each object and place 3 copies of a lookup
unit to different nodes. When a new object is registered, the maintenance unit determines 3 storage
locations, usually on nodes in different failure domains. Smash is compatible to arbitrary failure-
tolerant placement strategies since it provides full flexibility. Hence the ID-location pair is extended
to < i,locy, locy, locs >. The lookup result by querying a lookup unit will be three locations instead
of one. After knowing the three locations, the client will send three copies of the new objects to
the three locations respectively. In addition, the same lookup units of a shard are hosted by three
nodes and the location of an object can be obtained by querying any of the lookup units. At each
client, the shard ID to the IP of the lookup unit is extended to three IP addresses of the three nodes
hosting the lookup unit. For Put, Delete, and Modify, a client needs to communicate with all three
nodes that store the object. For Get, a client can contact any of the 3 IPs that host the lookup unit,
to get the object.

4.5 Failure handling
Smash includes recovery methods from node failures and server failures. We briefly describe them.

Node failure. A storage node continuously sends heartbeat messages to the monitor server
during operations. When the server does not receive heartbeat messages from a node for a certain
period or the maintenance unit or clients report the failure of reaching a node to the server, the
server concludes that the node has failed. For a failed node, its DRAM is erased but the disk can
return to operations after fixing the problem. Hence it is important to recover the lookup units
running in the DRAM of the failed node. When an inactive maintenance unit is stored in an SSD, its
immutable lookup unit is also persisted inducing only minimal storage cost. The monitor maintains
the mappings of every lookup unit to its hosting nodes and finds out all lookup units that ran on
the failed node. These lookup units can be loaded from the SSD. When the failed node returns back
to work and the system is rebooted, the monitor then sends the lookup units to it. If the failed node
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cannot be fixed, the monitor will send the lookup units and the objects on the failed node to other
nodes for hosting.

Server failure. The server running the monitor and maintenance units keeps sending heartbeat
messages — including any synchronization — to the backup servers. When the server fails, it will be
detected by the backup servers which will replace the failed instances. Clients detect the failure
when TCP connections cannot be established with the previously known server, forcing them to
choose a new replica.

4.6 Management Elasticity
So far we assume that each shard includes up to a objects and « is also the number of objects that a

standard node can store. For example, when the storage capacity of a node is 16TB and each object
is 100KB, & = 160 million. Each shard has one maintenance unit, constructing one lookup unit that
is responsible for the @ objects. So in expectation, each node will host one lookup unit.

In practice, node capacities may be heterogeneous and « can be any value as the objects of
the same shard can spread across different storage nodes. For a smaller a, each lookup unit costs
smaller memory, hence we can allocate lookup units to nodes with available DRAM resources, with
finer-grained management. However, smaller « also causes longer shard IDs and hence more bits in
object IDs should be used for shard IDs, which indirectly increases the cost of maintenance units.

In addition, the maintenance unit of a shard can further make f sub-shards and construct a
lookup unit for each sub-shard. Which sub-shard an object belongs to can be determined by hashing
the object ID.

4.7 Analysis
We analyze the DRAM cost and time complexity of Smash.

DRAM cost. The DRAM cost of Smash has three types: 1) DRAM for the monitor. There is only
one monitor needed in the whole system. 2) DRAM for the maintenance unit. There is only one
active maintenance unit running in DRAM for the whole system and all other maintenance units
are immutable and stored in SSD. 3) DRAM for lookup units. Each storage node needs to host one
lookup unit or multiple ones for replicated lookup units.

1) Monitor. Assume the system has n storage nodes, each of which holds p blocks on average.
There are k shards and each shard contains up to @ objects. The length of a shard ID is s > [log2(k)]
bits. Each object is stored in three different nodes. The monitor manages storage availability at the
bulk level and each bulk contains 256 blocks. It also maintains the load percentage of each node,
assuming each percentage number costs 10 bits. Thus the space required to keep the states in the
monitor is n - 55 - s + 10n bits. Note that there is only one unique monitor in the whole system,
running with a couple of replicas for failure tolerance.

2) Maintenance unit. Let [ be the length of an object ID i, [,, be the length of a node ID,
assumed to be the I,,-bit suffix of IP addresses, and the bucket address is [log, p]-bit. The length of
a location loc; is I + [log, p] bits and the length of an ID-to-locations tuple is [ + 3(1, + [log, p1)
bits, assuming 3 replicas. Each bucket costs 5 + 41 + 12(I, + [log, p]) bits. Hence the Cuckoo
table of a maintenance unit costs [0.263a[5 + 4l + 12(I, + [log, p1)] bits, as it includes [0.263]
buckets. The classifier costs 2.33a bits according to [37]. Therefore in total a maintenance unit
costs 2.33a + [0.263a ][5 + 41 + 12(1, + [log, p1)] bits.

3) Lookup unit. For each lookup unit, a bucket costs 5+ 12(l, + [log, p]) bits. Hence the lookup
table costs [0.263a][5 + 12(l, + [log, p])] bits. Together with the classifier, a lookup unit needs
2.33a + [0.263a][5 + 12(1, + [log, p1)] bits.

Suppose a large storage system includes n = 10 thousand nodes, each of which includes p = 1
million blocks, and k = 10 thousand shards, each of which includes @ = 40 million objects. An
object ID has [ = 160 bits. A shard ID has I; = 20 bits. A node ID has I, = 20 bits. In this setting, the
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number of shards is set to be equal to the number of nodes, so each node hosts one shard’s lookup
unit. The monitor costs 391MB, a maintenance unit costs 1.5GB, and a lookup unit costs 680MB. In
this setting, a server with 4GB DRAM is sufficient to run the monitor and the maintenance units
and each node only needs <1GB DRAM to run the lookup units. For a directory-based method, it
needs a directory of 9TB DRAM on a metadata server for 10K X 40M = 400B ID-to-node mappings.
It also needs at least 900MB DRAM on each node for the local directory to support ID-to-block
mappings.

Lookup and update complexity. The time complexity of querying a lookup unit is a small
constant. Each lookup requires 3 memory accesses: two for the classifier and one for the bucket
[37]. There is a small probability that the bucket seed overflows, hence the average number of
memory accesses is 3.016.

The time complexity of adding one object to the maintenance and lookup units is also O(1) in
expectation. All three parts of an update operation, namely adding an ID-location mapping to the
classifier, adding the mapping to the Cuckoo table, and updating the lookup unit, cost either O(1)
or amortized O(1) time [37]. The communication cost to updating a lookup unit (in bits) is also
O(1) and in practice around 100 bits excluding the packet headers.

The time complexity of querying a lookup unit and adding one object are both O(1) in expectation.

5 PERFORMANCE EVALUATION

In this section, we show the performance of Smash using an implemented prototype system and
simulations. We compare Smash with SmashSimple, Ceph v12.2.0 [1] and a recent work MapX
[40]. We also compare Smash with a directory-based version SmashSimple, a baseline solution that
supports flexible placement. The difference between SmashSimple and Smash is that SmashSimple
uses the Cuckoo hashing table as the main data structure used in lookup units. Full object IDs and
data positions are stored as key-value pairs to support fully flexible placement. Ceph is a classic
object storage system whose placement and lookup algorithm is CRUSH [43], which is a hybrid
hashing-based scheme as described in Section 1. MapX is an extension of CRUSH, which maps
storage nodes added to the system at different times into different layers. Getting/putting new
objects into different layers with varied timestamps can reduce data movement or migration as the
storage system expands. Note that both Ceph and MapX use Bluestore [2] (based on RocksDB [3])
to maintain local indices on each node. Each object’s ID and block address are maintained in the
LSM-tree-based database for metadata access.

5.1 Methodology

Hardware. The testbed consists of eight servers from a public cloud CloudLab [8]. Each server
is equipped with two Intel E5-2630 v3 8-core CPUs at 2.40 GHz, 128GB ECC Memory, one Intel
DC S3500 480 GB 6G SATA SSDs, and a dual-port Intel X520-DA2 10Gb NIC. These machines run
Ubuntu 18.04 LTS with Linux kernel 4.15. In fact, Smash can run on much cheaper nodes with
weaker resources.

Testbed configuration. We denote the eight servers as S, Sy, .., Ss, S7. S serves as the server to
host the monitor and maintenance units, Sy, .., S¢ serve as storage nodes and S; serves as clients.
Smash places the lookup units evenly on the 6 storage nodes, although in the design there is no
limit to the number of lookup units running simultaneously on each storage node as long as its
resource permits. To test Ceph and MapX, we use Sy as the administrator and monitor of the system,
which monitors the nodes’ status. We use ceph-deploy to build the testing system first. For MapX,
we separate the storage nodes {5, S,, S3} and {S,, S5, S¢} into two different layers. The number
of placement groups is set to 128 as recommended in [40]. For Ceph and MapX, we use the C++
interfaces released in librados [1] to implement the operations, including putting, getting, updating,
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Fig. 6. DRAM cost comparison

and deleting objects. In addition, we set the number of copies of each object in each storage system
to 3. We set that each object ID has 320 bits and a shard ID has 20 bits unless otherwise stated.

Workloads. We use both uniform and Zipfian distribution object query workloads and the
Zipfian workload is modeled after real-world access patterns observed at Facebook [9]. The queried
objects in uniform workload are generated uniformly randomly without any bias. Correspondingly,
the Zipfian workload is generated with a biased parameter a (<1), containing a few popular objects.
These kinds of workloads are used in recent works [28, 32] for benchmarking the key-value storage
systems. In the evaluations, the client (S7) will generate and store 10 thousand objects first and put
them to the storage nodes. The contents of the objects are generated randomly. In the following
evaluations, each operation (such as Put and Get) is conducted at least 1000 times with different
objects in different locations. Each set of experiments is run for at least five times and the average
performance is reported. In addition, half of the objects are with each of the two layers with different
timestamps in MapX.

5.2 DRAM cost

Since we decouple Smash’s metadata layer into maintenance units and lookup units, they can
run in different nodes with heterogeneous hardware. Memory-efficient lookup units could be
put on any node independently, serving for object requests. For Ceph and MapX, we show the
DRAM cost of the local lookup engine in Ceph/MapX with the assumption that storage nodes only
have DRAM as the fast-accessing memory layer. We also compare Smash with a directory-based
version SmashSimple. The difference between SmashSimple and Smash is that SmashSimple uses
the Cuckoo hashing table as the main data structure used in lookup units. Full object IDs and data
positions are stored as key-value pairs to support fully flexible placement.

We first compare the DRAM cost per node by varying the average size of objects — and hence
the number of objects per node. Each node has a storage capacity of 4TB and the key length is 40
Bytes according to the results in [9]. The object size varies from 16KB to 1MB, because in practical
key-value applications such as those from Facebook and Twitter [9, 46], the sizes of most values
are much smaller than 1MB, where around 30% of the values in the ETC workload of Facebook are
smaller than 4KB [9]. Smash can even support smaller value sizes than 16KB but other methods
could exhaust DRAM. Compared to SmashSimple, Smash can reduce the DRAM cost per node by
80%. Specifically, when the value size is 16KB, the DRAM cost is reduced from over 20GB to less
than 5GB per node. When the value size is 64KB, the DRAM cost is reduced from 4.8GB to 1.1GB
per node. The DRAM cost of Ceph is also significantly higher than that of Smash.

As shown in Fig. 6b, we vary the number of objects in one shard from 4M to 32M to show the
DRAM cost per shard. In our default setting, the number of shards is equal to the number of nodes.
Hence the DRAM cost per shard is also equal to the DRAM cost per node in this setting. We find that
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Smash can always achieve over 70% lower DRAM cost compared to others. Hence Smash achieves a
smaller DRAM cost than existing methods.

Fig. 6¢ shows the DRAM cost of the active maintenance unit by varying the number of objects
in each shard, a. Even with 32M objects per shard, the DRAM cost is no more than 1.8GB. The
monitor needs an extra 100 to 400MB. Hence the server of Smash does not to be very powerful.
5.3 Latency of storage operations
In this subsection, we show the testbed evaluation results of storage operation latency, including Put,
Get, Modify, and Delete, under different distribution workloads. We first put 10 thousand objects
in the cluster, and then the client issues 4000 operations for putting/getting/modifying/deleting
objects with a replication factor of 3. In addition, to demonstrate that multiple lookup units can
run simultaneously on different machines together in Smash, we show the performance of Smash
with running one and two lookup units respectively.

Put. Fig. 7 shows the cumulative distribution (CDF) of Put latency for these three methods under
different workloads. Fig. 7a shows their latency under the uniform workload. Fig. 7b shows their
latency under the Zipfian workload. Fig. 7c shows their average and 95% tail latency under the
Zipfian workload. We find that Smash’s latency is lower than that of Ceph and MapX. Note that
these methods include different optimization stages and implementation details. For example, Ceph
needs to perform cluster health status check. Both Ceph and MapX map objects to PGs first and
then to nodes, which is a more time-consuming process. In Smash, the monitor maintains a heap
for the load status of each disk, and then the storage objects and replicas can be placed directly
into the lowest-loaded nodes. Hence it is unclear that Smash’s latency is definitely shorter than
that of Ceph and MapX, but it is safe to conclude that all of them have short and similar latency
in operations. SmashSimple also achieves similar results as Smash with a Cuckoo hashing table.
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Smash with two lookup units performs better than that with a single lookup unit, however, their
performance is similar.

Get. Fig. 8 shows the CDF of Get latency under the uniform (Fig. 8a) and Zipfian (Fig. 8b)
workloads and showing the average and 95% tail latency (Fig. 8c). Again, Smash achieves the
smallest average and tail latency compared to Ceph and MapX, although all of them are quite
fast. Ceph and MapX have similar Get latency. Their latency below the 30th percentile is smaller
than that of Smash. Note that in practice the latency of all methods could be shorter due to DRAM
caching but we do not enable caching in this set of experiments. However, Ceph and MapX have
relatively long tail latency. The main reason is the iterations of calling the “select’ function of
CRUSH. In Smash, the trailing delay shown in the picture is mainly caused by the fallback table
of the lookup unit structure. The results for SmashSimple are similar to those of Smash, with
SmashSimple slightly faster than Smash in high-percentile results.

Modify. Fig. 11 shows the Modify latency of Smash and SmashSimple compared to Ceph and
MapX. The results are very similar to those of Put in Fig. 7, because both operations need to write
new object contents to the storage. The latency of both Smash and SmashSimple are very close and
with similar values of Ceph and MapX.

Delete. Fig. 9 shows the CDF of Delete latency under the uniform workload — the Zipfian
workload makes almost no difference hence the results are not shown here. Smash performs an
object deletion in less than 1 ms on average, whereas Ceph and MapX have latency greater than 10
ms. An object deletion of Smash is effective as soon as the maintenance unit receives the request
and stores the request. The removal of the corresponding entry from the lookup unit can be done
immediately. The object deletion from the stored disk can be delayed. The system may even mark
the block as empty and a future object could overwrite the block. On the other hand, Ceph and
MapX need to spend time on cluster health checking, which is a time-consuming process.
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# Objects | Smash | MapX | Ceph
1000 0.02s | 22.3s | 69.3s
2000 0.03s | 53.0s | 115.4s

Table 4. Convergence time for adding one node.

5.4 Recovery after node addition and failure

One important problem of classic object storage is when a node addition or removal happens,
objects need to be relocated or replicated to make the system converge to a consistent state that
satisfies hashing results. We evaluated the convergence time of the testbed under node additions
and removals. In the beginning, we put all objects onto the storage nodes and then reduce or
increase the number of nodes. Then the cluster needs to relocate or replicated affected objects. We
compare the convergence time of the three methods, by varying the number of objects.

Node failure. The system contains six nodes that store objects. We make a node fail from the
system. The monitor server detects this event and triggers the recovery process. It assigns the
objects of the failed node to other nodes and asks the nodes with another copy of those objects
to send a copy of each object to the new location. In the end, every object still has three copies
stored in the system. We record the time for this process to finish. For Ceph (same with MapX),
if we just use the released API to handle a node failure, Ceph will make extra optimizations (e.g.,
“health check”) while storing more copies of the objects. To make a fair comparison with Smash, we
dump the IDs of all objects in the failed node. Then the server uses this list to put the objects to
other nodes based on the CRUSH algorithm. We record the time taken to complete this task.

Figure 10 shows the convergence time of the three methods to reach a consistent state under a
different number of distinct objects stored in the cluster. When there are 1000 distinct objects and
each object has three copies, every node stores around 500 objects. From the results, we find Smash
takes only less than one-third time to converge, compared with Ceph and MapX. For all methods,
processing each object on the failed node consists of two parts: 1) finding a new location for every
object and 2) then putting a new copy for every object. Part 2 takes the same time for all methods.
Hence the difference was due to Part 1. Due to the full flexibility of placement, Smash can easily
decide the new locations of these objects. However, Ceph needs to map the objects to PGs and
then to physical nodes. If a conflict occurs (e.g., a copy of the object is already stored in the target
node), the “select” function needs to be run iteratively. When the number of distinct objects in the
cluster is 2000, we can see that the difference in convergence time between Smash and Ceph/MapX
Increases.

Node addition. We initialize the system with five storage nodes and then add one node to the
system. Smash does not need to move stored objects to the new node unless the existing nodes are
overloaded. Ceph and MapX require data migrations to maintain load balance and meet the new
hashing-based mapping rules. From the paper of MapX [40] we know that in a large cluster, adding
one node will affect about 10% of the existing PGs, and the new PG-node mapping needs to be
re-established. The time required to converge to a consistent state of the three methods can be seen
from the table 4. Smash takes the shortest time because it does not need to relocate stored objects.
The time required for Smash is mainly composed of 1) the storage node registers to the monitor
and 2) the monitor changes its current state and notifies other units in the system, which takes
less than a second. MapX needs to place the added node under a new layer, which affects about
half of PGs. The number of objects moved in MapX is much smaller than that in Ceph, thus the
convergence time of MapX is shorter than that of Ceph, but still orders of magnitudes higher than
that of Smash. Note that although Smash does not relocate the stored objects when a new node
joins, Smash can still achieve load balance by setting the new node with a high weight in future
node selection for new objects.
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5.5 Benefit from flexible placement: reduced traffic

We demonstrate one of the benefits of Smash’s flexible placement, in particular, from object locality.
We run two sets of experiments. In the first set, we set the optimization goal as minimizing Put and
Get latency. In the second set, we set the optimization goal as minimizing long-distance network
traffic, such as inter-rack and inter-datacenter traffic. It is a well-known design goal of data and
virtual machine placement in datacenters [10], because long-distance network traffic could cause
congestion at upper-level switches or routers and thus affect the performance of the entire network.

We build the testbed with eight machines in three different clusters of CloudLab running in
Wisconsin, Utah, and South Carolina, respectively, as shown in Figure 12a. We set a workload
such that each client has a particular group of objects to put and get. Smash can place objects
close to their clients. As shown in Figure 12b, both Ceph and Smash have high latency due to
their unawareness of object locality and high inter-cluster traffic. Smash can put objects arbitrarily
according to the application requirements. Hence its latency is much shorter.

We run a set of simulations to show the advantages of Smash in minimizing long-distance network
traffic. We use the traffic workload using the traffic generator by Mellanox [4], which is based on
the traffic characteristics from Facebook [35]. We simulate a network topology of n,; datacenters;
each datacenter includes n, clusters, each cluster includes n, racks, and each rack includes nj, nodes.
We classify four types of traffic in a generated workload: 1) intra-rack (with a, flows), the source
and destination are in the same rack; 2) intra-cluster (with @, flows), the source and destination are
in the same cluster but not the same rack; 3) intra-DC (with a4 flows), the source and destination
are in the same datacenter but not the same cluster; and 4) inter-DC (with a, flows), the source and
destination are not in the same datacenter. Each flow is to get one object. Also the capacity for a
particular host, the number of objects it can store is f of the number of all objects. We test three
values of f: §, = ::Jf;;f;l e = "’;E::’] Pa= ""(;:“’) . We use a greedy bin-packing algorithm
to place the object close to the client that wants to retrieve it. Obviously, inter-DC is the most
expensive and non-preferred type of traffic, followed by intra-DC, and intra-cluster. Intra-rack
traffic is the most preferred.

The results are shown in Figure 13; we find Smash can significantly reduce the amount of inter-DC
traffic compared to Ceph. Ceph cannot optimize long-distance traffic. Depending on the values of g,
Smash can also reduce intra-DC and intra-cluster traffic. When we use f;, all flows are intra-track.

5.6 Benefit from flexible placement: load balancing

We evaluate Smash and CRUSH on loading balancing for a cluster with 7200 storage nodes. We
generate obj_num objects with different hot values (the hotness ranges in [0, 100]), and assign
them with hashing algorithms shown by CRUSH in Ceph. Smash can move objects to specific
storage nodes based on the hot values with the greedy algorithm to make all nodes have similar
and balanced sums of hot values with small variances.
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We define the load balancing metric as the normalized 90th percentile value among the sums of
hot values of the storage nodes in the cluster. We further normalized the hot values by setting the
90th sum of hot values in CRUSH as 1. Fig. 14a shows the load balancing metric by changing the
number of objects per node from 500K to 4M. The 90th sum of hot values in Smash is always lower
than that of CRUSH, varying from 77% to 86%, showing better load balancing. In addition, we vary
the number of storage nodes from 2880 to 7200 and show the comparison in Fig. 14b. When the
number of storage nodes increases, the difference between the load balancing metrics also increases,
indicating better load balancing for Smash. Note that Smash is able to support any algorithm for
data migration and load balancing and here we only apply a simple greedy algorithm.

5.7 Varying system settings
Vary the number of nodes. We vary the number of nodes in our testbed from 5 to 7. Figure 15a
shows the latency for Get operations of Ceph and Smash with different numbers of nodes. In this
set of experiments, we do not apply any optimization of object locality. Smash always achieves low
and stable latency, because the speed of the algorithm running for the lookup units is not affected
by system size. Ceph’s average latency is also stable, but the latency has a significant variance.
Vary the number of object copies. We vary the number of copies of the same object in the
testbed from 2 to 4. A larger number of replicas usually bring more complexity to lookup unit
synchronization under object modification. We evaluated the relationship between the number
of copies and the latency of the Modify operation — the other operations are not impacted by the
number of replicas. We can see from Figure 15b that when we increase the number of replica copies
stored in Smash, the Modify latency increases correspondingly but very slightly. However, Smash is
very quick to process Modify operations even with four copies, indicating its fast synchronization
among lookup units.
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6 RELATED WORK
Object storage [6, 42] is a type of storage systems that manage data as objects, where files are
converted into one or more objects and stored on distributed storage nodes. This work discusses a
placement and lookup method of general distributed storage but uses object storage as a study case.
Many file systems use ceniral directories to store data-to-location mappings [14, 20, 25, 30, 34],
where the ‘location’ can be the network address of a storage node. A directory needs to be run in
the DRAM of one or more servers to support instant queries and these servers are called metadata
servers in many file systems. Some object storage systems also apply this approach. Amazon S3
[33] allows each user puts its objects to a bucket and maintains the full object-to-bucket mappings.
Lustre [15] and DAOS [29] are both object storage replying on meta servers to tell object locations.
For large-scale object storage, the resource overhead for the directory is huge and hard to be
replicated to avoid becoming a single point of failure. There are two main reasons: 1) the number
of objects is big and 2) the size of each key is also long, even on the same scale of the object [9, 46].
Hence storing key-location mappings in the directory would cost a massive amount of DRAM
space (e.g., > 400GB for 10 billion keys).

To avoid the scalability bottleneck on the central directory, many object stores use hashing to
determine the object locations. Hence clients get object locations by calculation instead of lookups.
OpenStack Swift uses consistent hashing [22] to determine the object locations. SoMeta [39] uses a
Distributed Hash Table (DHT) [38] to manage metadata objects across multiple servers. Hashing
determines object locations based on a pseudo-random and deterministic function rather than
application requirements.Hence hashing fails to meet these application requirements. CRUSH [43]
is the hashing-based placement and lookup method used in Ceph [1, 36, 42], an open-source object
storage system. CRUSH aims to mitigate the problems caused by simple hashing, including load
imbalance, managing failure domains, and high data migration cost in response to the addition and
removal of nodes, using a “cluster map’. However, it still cannot completely solve these problems
and does not meet other application requirements such as data locality. Hybrid approaches [40, 41]
add some flexibility of object locations based on practical concerns such as load balancing, but they
still cannot achieve full control of object locations. Storage systems exploit flexible data placement
on other layers of the storage stack. For instance, SSDs utilize the flash-translation layer (FTL) as a
level of indirection to enable load-balancing [27] and to increase the lifetime of storage systems
[18, 21, 31]. These techniques are orthogonal to Smash as they address such problems only on the
device layer but not on the storage-cluster level.

7 CONCLUSION

This paper presents Smash, a novel placement and lookup method for large-scale storage systems.
Compared to existing object storage such as Ceph (CRUSH) and MapX which uses hash values
to place objects, the key advantage of Smash is to achieve fully flexible placement, which allows
the system to optimize the object locations based on application requirements. Smash needs very
little DRAM resource and the per-node DRAM cost is lower than that of CRUSH and MapX. We
implement Smash using a testbed running in a public cloud and demonstrate its advantages by
comparing it with existing work. Our future work will focus on applying Smash in other scenarios
such as edge computing.
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