IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 9, SEPTEMBER 2023

11283

Surrogate Modeling for Bayesian Optimization
Beyond a Single Gaussian Process

Qin Lu™, Member, IEEE, Konstantinos D. Polyzos ', Student Member, IEEE, Bingcong Li'?, Member, IEEE,
and Georgios B. Giannakis ', Fellow, IEEE

Abstract—Bayesian optimization (BO) has well-documented
merits for optimizing black-box functions with an expensive eval-
uation cost. Such functions emerge in applications as diverse as
hyperparameter tuning, drug discovery, and robotics. BO hinges
on a Bayesian surrogate model to sequentially select query points
so as to balance exploration with exploitation of the search space.
Most existing works rely on a single Gaussian process (GP) based
surrogate model, where the kernel function form is typically pres-
elected using domain knowledge. To bypass such a design process,
this paper leverages an ensemble (E) of GPs to adaptively select
the surrogate model fit on-the-fly, yielding a GP mixture posterior
with enhanced expressiveness for the sought function. Acquisition
of the next evaluation input using this EGP-based function pos-
terior is then enabled by Thompson sampling (TS) that requires
no additional design parameters. To endow function sampling
with scalability, random feature-based kernel approximation is
leveraged per GP model. The novel EGP-TS readily accommodates
parallel operation. To further establish convergence of the proposed
EGP-TS to the global optimum, analysis is conducted based on the
notion of Bayesian regret for both sequential and parallel settings.
Tests on synthetic functions and real-world applications showcase
the merits of the proposed method.

Index Terms—Bayesian optimization, Gaussian processes,
ensemble learning, Thompson sampling, Bayesian regret analysis.

I. INTRODUCTION

NUMBER of machine learning and artificial intelli-

gence (AI) applications boil down to optimizing an
‘expensive-to-evaluate’ black-box function, including hyperpa-
rameter tuning [1], drug discovery [2], and policy optimization
in robotics [3]. As in hyperparameter tuning, lack of analytic
expressions for the objective function and overwhelming evalu-
ation cost discourage grid search, and adoption of gradient-based
solvers. To find the global optimum under a limited evaluation
budget, Bayesian optimization (BO) offers a principled frame-
work by leveraging a statistical model to guide the acquisition
of query points on-the-fly [4], [5].
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While BO can automate the selection of the best-performing
machine learning model along with its optimal hyperparameters,
it still necessitates domain-specific expert knowledge to design
both the surrogate model and the acquisition function [1]. In the
Gaussian process (GP) based surrogate model, one has to select
the kernel type and the corresponding hyperparameters. Also,
decision has to be made on the selection from the available
acquisition functions, and the associated design parameters if
there is any. Minimizing such design efforts so as to automate
BO is especially appealing for modern Al tasks. Given that
in many setups BO is inherently time-consuming, parallelizing
function evaluations to reduce convergence time is also of utmost
importance. Further, rigorous analysis is desired to establish
convergence of BO algorithms to the global optimum. To address
the aforementioned desiderata, the goal of the present work is to
develop a BO method that entails the least tuning efforts, accom-
modates parallel operation, and enjoys convergence guarantees.

A. Related Works

Prior art is outlined next to contextualize our contributions.

Ensemble BO: Several choices are available for the surro-
gate model, acquisition function, and acquisition optimizer for
BO [4]. Without prior knowledge of the problem at hand, com-
bining the merits of different options can intuitively robustify
performance. As pointed out in the 2020 black-box optimiza-
tion challenge, ensembling methods can empirically boost BO
performance for hyperparameter tuning [6]. In a broader sense,
the ensemble rule has been applied to BO in different contexts,
including high-dimensional input [7], and meta learning [8]. In
the basic BO setup, combining acquisition functions has been
explored for a single GP-based surrogate model in a principled
way [9], [10]. The complementary setting of an ensemble of
(GP) surrogate models with a given acquisition function has not
been touched upon.

Thompson Sampling (TS) and Regret Analysis for BO: Since
its invention by [11], TS has not received much attention in
the bandit community until the past decade that its empirical
success [12] and theoretical guarantees [13] have been well
documented. In the context of BO, TS has been recently explored
under different settings, including high-dimensionality [14],
inputs with categorical variables [15], [16], as well as distributed
learning [17], [18]. Without additional design parameters, TS is
very attractive for automated machine learning. Convergence of
TS for BO has been recently established using regret analysis
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both in the Bayesian [13], [17], and in the frequentist setting [19],
[20]. Although TS has been investigated with a mixture prior
for linear bandits [21], its counterpart in BO with the associated
regret analysis has not been studied so far.

Parallel BO: To reduce convergence time of BO approaches,
parallel function evaluations at distributed computing resources
is well motivated. Coupled with upper confidence bound [22]
and expected improvement [23] based acquisition rules, this
parallel operation typically relies on additional hyperparameters
or selection rules to ensure the diversity of query points at differ-
ent locations. On the other hand, TS-based parallel processing
necessitates no additional design as in the sequential setting [18],
and enjoys rigorous convergence guarantees [17]. Moreover,
parallel BO has also been investigated for input spaces with
high dimensions [7] as well as categorical variables [15].

Kernel Selection for GPs: Discovery of the form of the kernel
function has been considered for conventional GP learning; see,
e.g., [24], [25], [26], [27]. These approaches usually operate in
the batch mode and rely on a large number of samples, thus
rendering them inapplicable for BO where data are not only
acquired online, but also scarce due to the expensive evaluation
cost. While an online kernel selection scheme has been put
forth for prediction-oriented tasks using a candidate of GP mod-
els [28], it entails additional design of the acquisition function
before being applied to the BO context. How to automatically
select the kernel function for the GP model in BO is still
unexplored.

B. Contributions

Relative to the aforementioned previous works, the contribu-
tions of this work are summarized in the following four aspects.
cl) Rather than a single GP surrogate model with a pres-
elected kernel function for BO in previous works, an
ensemble (E) of GPs is leveraged here to adaptively select
the fitted model for the sought function by adjusting the
per-GP weight on-the-fly. Capitalizing on the random
feature (RF) based approximation per GP, acquisition of
the next query input is facilitated by TS with scalability

and no additional design parameters.

c2) The resulting EGP-TS approach readily accommodates
parallel function evaluation (a)synchronously.
Convergence of the novel EGP-TS approach to the global
maximum is established by sublinear Bayesian regret for
both the sequential and parallel settings.

c4) Tests on synthetic functions and real-world applications,

including hyperparameter tuning for three machine learn-
ing models and robot pushing tasks, demonstrate the
merits of EGP-TS relative to the single GP-based TS,
and alternative ensemble approaches.

Relation With [28]: The EGP function model has been con-
sidered in our previous work [28] for supervised learning tasks.
However, its adaptation to the BO context here is novel and well
motivated for the purpose of kernel selection that is important
in practice. Coping with limited data in BO, this work differs
from [28] in the following directions.

i) Unlike [28] that relies on a large dataset of passively
labelled samples, the novel EGP-based BO entails extra

c3)
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design of acquisition functions, which select query points
actively. Two novel EGP-based acquistion functions are
devised and tested, namely, EGP-TS and EGP-EL

ii) Although random feature-based approximation has been
used also by [28], it serves a different purpose here.
In [28], where the number of samples is large, the RF
approximation alleviates the computational complexity of
updating the GP model; whereas in the current BO context
with limited labelled data, RFs are motivated to conduct
function sampling with scalability in the TS-based acqui-
sition function.

iii) An extra weight and model reinitializaiton is needed each
time the kernel hyperparameters are updated using all data
acquired (cf. lines 1015 in Algorithm 1).

iv) Building on the novel EGP-TS approach, Bayesian regret
analysis has been conducted to guarantee convergence to
the global optimum. The analysis is novel and nontrivial
to deal with the additional challenge brought by the EGP
prior (cf. the proof sketch following Theorem 1).

Notation: Scalars are denoted by lowercase, column vec-

tors by bold lowercase, and matrices by bold uppercase fonts.
Superscripts | and ~! denote transpose, and matrix inverse,
respectively; while Oy stands for the V x 1 all-zero vector;
Iy for the N x N identity matrix, and N (x; i, K) for the
probability density function (pdf) of a Gaussian random vector
x with mean p, and covariance K.

II. PRELIMINARIES

Consider the following optimization problem

X, = argmax f(X), (1)
xedX

where X is the feasible set for the d x 1 optimization variable
x, and the objective f(x) is black-box with analytic expression
unavailable and is often expensive to evaluate. This mathematical
abstraction characterizes a variety of application domains. When
tuning hyperparameters of machine learning models with x col-
lecting the hyperparameters, the mapping to the validation accu-
racy f(x) is not available in closed form, and each evaluation is
computationally demanding especially for deep neural networks
and large data sizes [1]. For example, it takes 4 days to train
BERT-large on 64 TPUs [29]. The lack of analytic expression
discourages one from leveraging conventional gradient-based
solvers to find x,. Exhaustive enumeration is also inapplicable
given the expensive evaluation cost. Fortunately, BO offers a
theoretically elegant solution by judiciously selecting query
pairs for a given evaluation budget [4], [5].

In short, BO relies on a statistical surrogate model to ex-
tract information from the evaluated input-output pairs Dy =
{(xr,vr)}_, soas to select the next query input X, , 1. Specifi-
cally, this procedure is implemented iteratively via two steps, that
is: §7) Obtain p( f(x)|D; ) based on the surrogate model; and, 52)
Find X, ,; = arg max,_y a(x|D;) based on p( f(x)|D;). Here,
the so-termed acquisition function «v, usually available in closed
form, is designed to balance exploration with exploitation of the
search space. There are multiple choices for both the surrogate
model and the acquisition function, see, e.g., [4], [5]. Next, we
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will outline the GP based surrogate model, which is the most
widely used in BO, and TS for the acquisition function.

A. GP-Based Surrogate Model and TS for Acquisition

GPs are established nonparametric Bayesian approaches to
learning functions in a sample-efficient manner [30]. This
sample efficiency makes it extremely appealing for surro-
gate modeling in BO when function evaluations are expen-
sive. Specifically, to learn f(-) that links the input x, with
the scalar output y, as x, — f(X;) — y-, a GP prior is as-
sumed on the unknown f as f ~ GP(0, k(x,x')), where x(-, -)
is a positive-definite kernel (covariance) function measuring
pairwise similarity of any two inputs. Then, the joint prior
pdf of function evaluations f; := [f(x1),..., f(x¢)]" at inputs
X, = [X1,...,%¢|"(Vt) is Gaussian distributed as p(f;|X;)
= N(f;; 0¢, K¢), where K; is at x ¢ covariance matrix whose
(7,7")th entry is [K¢] - = cov(f(X+), f(Xr)) := K(Xr, Xr7).
The value f(x;) is linked with the noisy output y, via the per-
datum likelihood p(y:|f(xr)) = N(ur; f(x:),02), where o2
is the noise variance. The function posterior pdf after acquiring
input-output pairs D; is then obtained according to Bayes’ rule
as [30]

p(f(%)[Dy) = N(f(x); fe(x), 02(x)),

where the mean and variance are expressed via k;(x):=
[P‘C(XI, X) "t H(th)]-r a.ﬂd yt = [yl e yt]T as

)

fe(x) =k (%) (K¢ + 02L) " ye
o2(x) = K(x,x) — k] (x)(K; + 02L,) "k, (x).

(32)
(3b)

With the function posterior pdf at hand, one readily selects
the next evaluation point x;y; using TS, where the function
maximizer X, in (1) is viewed as random. Specifically, TS
selects the next query point by sampling from the posterior
pdf p(x.|Dy) = [ p(x.|f(x))p(f(x)|D)df (x). Upon approx-
imating this integral using a sample from the function posterior
p(f(x)|D;), the next query is found as

Xp1 = argmax fo(x), fi(x) ~p(f(x)|De) . @)

xeX

This random sampling procedure nicely balances exploration
and exploitation. Implementation of sampling a function from
the GP posterior p(f(x)|D;) can be realized by discretizing
the input space X [17], leveraging the RF based parametric
approximant [10], [31], or more recently relying on sparse GP
decomposition for efficiency [32].

Specifically, RF-based approximation leverages the spectral
properties of (commonly used) stationary kernels to convert
nonparametric GP learning into a parametric one, yielding [31],
[33]

f(x) =0y (x)8, 8 ~N(8;0:p,0513p)

[sin(v{ x), cos(v{ X), ... .,sin(v 5x), cos(v ;)]

(5)

By (X) = 715

b
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where {v;}2 | are drawn i.i.d. from 7z (v) — kernel &’s nor-
malized spectral density, and o7 is the magnitude of & (cf. Ap-
pendix A in the supplementary file, available online).

Henceforth, the function posterior pdf will be captured by
p(6|D;) = N(8; 6, 3;), based on which TS will select the next
query point as

Xe+1 = argmax ¢y (x)0;, 0, ~ p(6]D,). (6)
xXeX

It is worth mentioning that the mean 6‘; and covariance matrix

¥; can be updated efficiently in a recursive Bayes manner with

the inclusion of each new (input, evaluation) pair.

III. ENseEMBLE GPs WITH TS FOR BO

The performance of BO approaches depends critically on the
chosen surrogate model. While most existing works rely on a
single GP with preselected kernel form, we here leverage an
ensemble (E) of M GPs, each relying on a kernel function
selected from a given dictionary K := {x!,..., kM }. Set K can
be constructed with kernels of different types and different hy-
perparameters. Specifically, each GP m € M :={1,...,M}
places a unique prior on f as f|m ~ GP(0, k™ (x,x')). Taking
a weighted combination of the individual GP priors, yields the
EGP prior of f(x) given by

M M
F(x)~ Y wgGP0,™(x,X)), Y wi'=1, (7

m=1 m=1

where wyj' := Pr(i = m) is the prior probability that assesses
the contribution of GP model m. Here, the latent variable 1
is introduced to indicate the contribution from GP m. While
this non-Gaussian EGP prior (7) has been advocated for con-
ventional prediction-oriented tasks in [28], the novelty here is
its adaptation for BO along with the extra design step needed
for query selection. Besides EGP for BO, we will employ
TS-based acquisition function, which again, relies on sampling
from p( f(x)|D;). Coupled with the EGP prior (7), this posterior
pdf is expressed via the sum-product rule as

M
p(f(x)|De) = Y Pr(i = m[De)p(f(x)li = m, Dy), (8)

m=1
which is a mixture of posterior GPs with per-GP weight wi"
:= Pr(i = m|Dy) given by
9

where p(D;|i = m) is the marginal likelihood of the acquired
data D; for GP m. As with sampling from a Gaussian mixture
(GM) distribution, drawing a sample f¢(x) from (8) is imple-
mented by the following two steps

me ~ CAT(M,we), fi(x) ~ p(f(x)]i = me, Dy),

wi® o< Pr(i = m)p(Dili = m) = wi'p(D|i = m),

(10)

where CAT' (M, w;) represents a categorical distribution that
assigns one of the values from M with probabilities w;
= [l w7,

There are several choices for the function sampling step (10)
in the novel EGP-TS as mentioned in Section II-A. Here, we will
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adopt the random feature (RF) based method since it can not only
efficiently draw the function path f;(x) that is differentiable
with respect to x, but also accommodate incremental updates
of wi™ (9) and p(f(x)|i = m, D;) across iterates, as elaborated
next.

A. RF-Based EGP-TS

When the kernels in the dictionary are shift-invariant, the
RF vector ¢y (x) per GP m can be formed via (??) by first
drawing i.i.d. random vectors {v}”}f:l from 7*(v), which is
the spectral density of the standardized kernel ™. Let 073, be the
kernel magnitude so that ™ = o2, k™. The generative model
for the sought function and the noisy output y per GP m can be
characterized through the 2D x 1 vector 8™ as

p(8™) = N(8™;02p,04m12p)
p(F(xe)|i =m, 0™) = 6(f(x¢) — P (x¢)0™)
p(yel0™, %) = N(yg; 7 (x,)0™,0%) . (11)

This parametric form readily allows one to capture the func-
tion posterior pdf per GP m via p(6™|D;) = N'(6™; 6, , £™),
which together with the weight w]™", approximates the EGP func-
tion posterior (8). Next, we will describe how RF-based EGP-TS
selects the next evaluation input x; 1, and propagates the EGP
function pdf by updating the set {w]"*, 87", X", m € M} from
slot to slot.

Given D, acquisition of X; 41 ishobtained as the maximizer

of the RF-based function sample f;(x) based on (10), whose
detailed implementation is given by

Xepr = argmax fy(x), where fy(x) = 67" ()6,
XE

my ~ CAT (M, wy), ét ~ p(6™¢|Dy),

which can be solved using gradient-based solvers because the
objective is available in an analytic form. Upon acquiring the
evaluation output y;; for the selected input x; 1, the updated
weight wit; := Pr(i = m|Dy, Xt 1, y¢41) can be obtained per
GP m via Bayes’ rule as

(12)

- Pr(i = m|Dy, Xe11)p(yes1|Xer1,2 = m, Dy)
p(yer1]Xeq1, D)

PN (yer 15 97011 (07 )°)

M ! rgral ’

m&d1ﬁ“ﬁf(yH4;y24kA0ﬁ1”J2)
where the sum-product rule allows one to obtain the
per-GP predictive likelihood as p(yit1)|i = m, Di, Xer1)
= fp(yt+1|9maxt+1)P(9m|Dt)d9m = N(yes1; ?ﬂlw

- A~ AT
(J_:]jtllt)2) with g1, = ¢ (x41)0, and (@) =
@V (Xe41) 2T T (Xe41) + 07
Further, the posterior pdf of 8™ can be propagated in the

recursive Bayes fashion as

_ p(0™|Di)p(ye+1/6™, X1 11)
P(Yit1|Xes1,72 =m, Dy)

, o (13)

p(9m|Dt+1)

m

—N@* 0,525, (14)
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m
t+1

AT AT = .
9t+1 =8, -+ (Jﬁm) 22?‘:’?(}(1:4—1)(%1-1 - yﬂm) (15a)

ft1 =20 — (05 10) “Z0 BT (Xe41)7 " (Xe1) 7
(15b)

where the updated mean 6, , , and covariance matrix X, are

(Re)initialization: In accordance with existing BO implemen-
tations, EGP-TS initializes with a small number (#) of evalua-
tion pairs Dy, to obtain kernel hyperparameter estimate vy, per
GP m by maximizing the marginal likelihood. The weight w;)
is then obtained via (9) using &;". As proceeding, the kernel
hyperparameters per GP are updated every few iterations using
all the acquired data, and subsequently the weights are reinitial-
ized via the batch form (9) using the updated hyperparameters.
Between updates of hyperparameters, EGP-TS leverages (13)
and (14) to incrementally propagate the function posterior pdf.
Please refer to Algorithm 1 for the detailed implementation of
(sequential) EGP-TS.

B. Parallel EGP-TS

As with the single GP-based TS [17], EGP-TS can readily
accommodate parallel implementation for both synchronous and
asynchronous settings without extra design. Suppose there are K’
computing centers/workers that conduct function evaluations in
parallel. In the synchronous setup, K query points are assigned
for the workers to evaluate simultaneously by implementing (10)
K times. After all workers obtain the evaluated outputs, the EGP
function posterior is then updated using the K input-output pairs.
As for the asynchronous case, whenever a worker finishes her/his
job, the EGP posterior will be updated and the next evaluation
point will be acquired. Note that the asynchronous setup is
very similar to the sequential one except that multiple function
evaluations are performed at the same time; see Algorithm 2 in
the supplementary file, available online, for details. Algorithm 1
contains the implementation of synchronous parallel EGP-TS
when K > 1.

The following two remarks are in order.

Remark 1 (EGP With Other Acquisition Functions): Besides
TS, the EGP surrogate model can be coupled with other exist-
ing single GP-based acquisition functions, including the well-
known expected improvement (EI) [34] and upper confidence
bound (UCB) [35]. The most direct implementation per iteration
is to first draw the model index m; based on the weights w, as
in (10), and then proceed with the conventional EI/UCB acqui-
sition rule for GP m;. Results for this preliminary EGP-EI are
presented in Appendix E, available online. Instead of sampling
one GP model per iteration, one could alternatively build on the
GP mixture pdf to devise the EI or UCB based acquisition rule.
Further investigation along this direction is deferred to our future
agenda.

Remark 2 (Relation With Fully Bayesian GP-Based BO):
When the dictionary consists of kernel functions of the same
type, the EGP prior amounts to a pseudo Bayesian GP model,
where the kernel hyperparameters are chosen from a finite set.
This EGP-based psendo Bayesian model achieves a “sweet spot™
between the Bayesian and non-Bayesian treatment of GP hyper-
parameters, where the former entails specifying a reasonable
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Algorithm 1: EGP-TS.
1: Input: Kernel dictionary K, number D of RFs, number
K of workers, and w* = 1/M Vm
2: Initialization:
3: Randomly evaluate ¢; points to obtain D, ;
4:form=1,2,...,M do
5: Obtain kernel hyperparameters estimates cy;, by
maximizing the marginal iikelihood
6: Draw D random vectors {v"}2 , from 77(v) using

G
7:  Obtain wi?, Gt ,and X7 based on(9) and(??);
8: end for
9:fort=1tp,to+1,...do
10: if Reinitialization then
11: form=1,2,...,M do
12: Obtain &;" by marginal likelihood maximization
using Dy;
13: Draw D random vectors {v"}2 | from 77(v)
using &;";
14: Obtain wi™, 9:“ and X}" based on(9) and(?7?);
15: end for
16: endif
17: fork=1,2,...,K do
18: Sample mt based on pmf Wi
19:  Sample 9 from N (6; m £
20:  Obtain X}, ; = arg max 63 qur (x);
xeX
21:  Evaluate X}, to obtain yy, ;:

22:  end for m

23: Update {w];,0, 1, 271} With {Xg, 1,y e
based on(13) and (14);

24: Dgpr =D U{XFy,uf 1 8

25: end for

prior and also needs demanding MCMC sampling. In addition,
the proposed EGP-TS framework not only accommodates differ-
ent types of kernels, but also enjoys the upcoming convergence
guarantees relative to fully Bayesian GP-based BO.

IV. BAYESIAN REGRET ANALYSIS

To establish convergence of the proposed EGP-TS algorithm
to the global optimum, analysis will be conducted via the notion
of Bayesian regret over T slots, that is defined as

T
BR(T) = Y Elf(x.) -

t=1

f(xe)], (16)

where the expectation is over all random quantities, including
the function prior, the observations, and the sampling procedure.
Unlike previous works that sample the function from a single
GP prior [13], [17], here we draw f from the EGP prior (7) as

my ~CAT(M, wo), f(x) ~ GP(0, k™ (x,X)).

This EGP prior presents additional challenge to the regret
analysis. Towards addressing this challenge, we will adapt the
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techniques in [21], where TS with a mixture prior is studied for
linear bandits, but not in the BO context.

To proceed, we will need the following assumption and inter-
mediate lemmas.

Assumption 1 (Smoothness of a GP Sample Path [36]): 1f
x € X C [0,1]¢ is compact and convex, there exist constants
a,b, L > 0 such that for any f(x) ~ GP(0, k™ (x,x'))

Pr | sup
z;

Lemma 1 (Maximum Information Gain (MIG) [35]): Let
I™(f;y4) represent the Shannon mutual information one can
gain about the function f ~ GP(0,x™) using observations y 4
evaluated at finite subset A :={xy,...,xr} C X. For any
m € M, the MIG for commonly used kernels can be upper
bounded by

A = L) £ ﬂ.e_(L/b)Q,Vj = {1, o ,d}
3

= max I™(f;ya) <O(T°),0<c<1,

ACX,JA|=T meM

where O ignores polylog factors.

Lemma 2 (Ratio of Posterior Variances [22]): Let y 4 and
¥ denote the observations when evaluating f ~ GP(0, k™)
at A and B, which are finite subsets of A’. With ¢’}'(x) and
o'y g(X) representing the posterior standard deviation of the
GP conditioned on .4 and .A U B, there exists px > 1 so that
the following holds for |B| < K

(07 (x))” < px (0%s(X))?, ¥x € X,me M.

As stated in [35], Assumption 1 is satisfied for various com-
monly used stationary kernels that are four times differentiable,
including Gaussian kernels and Matém ones with parameter
v > 2, which implicitly allows EGP-TS to draw functions with
scalability using RFs as in the preceding section. The MIG
in Lemma 1 plays an important role in the regret bound. It
is an information-theoretic measure quantifying the statistical
difficulty of BO [13], [35]. Lemma 2 will be useful in deriving
the regret in the parallel setup. After making these comments,
we are ready to present a Bayesian regret upper bound pertinent
to EGP-TS in the sequential setting.

Theorem 1: Under Assumption 1, the cumulative Bayesian
regret (16) of EGP-TS over T slots, is bounded by

BR(T) < e1A/MTe+ log T + 20,4/ MT log T + e3,

where the constants ¢; = (2 + v/d)(2/log(1 + 0,,%)!/? and ¢y
:=6MB + (72d)/6 + v/2rM/12 (B is a constant given in
Lemma 3 in Appendix B, available online) are not dependent
onT.

Proof Sketch: The detailed proof of Theorem 1 is deferred to
Appendix B, available online. The key step in the proof builds on
the connection with UCB based approaches, that is manifested
via decomposing the Bayesian regret (16) as

T T
=Y E[f(x.) — U™ (x)]+ D E[U™ (%) — f(x4)],

BR, (T) BRA(T)

BR(T)
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Fig.4. The best validation accuracy (so far) versus the number of function evaluations on Breast Cancer, Transportation, Iris, and Wine datasets
(from left to right) for the NN hyperparameter tuning task. Dictionary has 4 kernels with distinct forms: RBF with(out) ARD and Matérn with v = 3/2,5/2.

where U™(x) := u™,(x) + BL/%0™ , (x) with 3, specified by
(17) in Appendix B, available online, is a UCB for f(x) under
GP m. This decomposition of BR(T') holds since {m,, x; } and
{m.,x.} are i.i.d. and U™ (x) is deterministic conditioned on
D,_1, yielding [13], [21],

B [U7™ (%e)] = B [U™ (x4)], VE.

Then, the Bayesian regret bound of EGP-TS can be estab-
lished by upper bounding BR,(T) and BRy(T'). Since f ~
GP(0, k™), the former can be conveniently bounded based on
related works that rely on a single GP [13], [17]. Specifically,
BR1(T) is proved to be upper bounded by a constant, because

the probability that f(x,) is larger than U;™*(x.) across all the
slots is low [17].

To further bound BR>(T') involving the extra latent variable
m; sampled from the EGP posterior (cf. (10)), we adapt the
technique in [21] that constructs a confidence set C; for the
latent variable such that m, € C; holds with high probability;
see Lemma 4 in Appendix B, available online. It turns out that
BR>(T') can also be bounded by the sum of posterior standard
deviations, which further yields the upper bound given by the
MIG along the lines of [35].

The proof of Theorem 1 in Appendix B, available online,
involves an additional discretization step of X" per step ¢, in
order to cope with the continuous feasible set X
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The following two theorems further establish the cumulative
Bayesian regret bounds of parallel EGP-TS in the asynchronous
and synchronous settings, whose proofs are deferred to Ap-
pendix C— D, available online.

Theorem 2 (Asynchronously Parallel Setting): For K work-
ers conducting parallel function evaluations asynchronously,
EGP-TS under Assumption 1 incurs the following cumulative
Bayesian regret over T' function evaluations

BR*Y(T) < e1/prxe MTe log T + 20/ MT logT + 3.

Theorem 3 (Synchronously Parallel Setting): For K workers
performing 7" function evaluations synchronously, the cumula-
tive Bayesian regret of EGP-TS under Assumption 1 is bounded

by
BRT) < (K —1)y/dlog(K — 1) + 20,/ MTlog T
+eca+esv/ preMTeH logT

+ ey / MTH log(T + K — 1),

where the two constants are given by ez :=2(2/log(1+
0,2)1/2, and ¢4 := (2d/log(1 + 0;2)'/2.

The first term of the regret bound in Theorem 2 is , /px times
its counterpart in Theorem 1 for the sequential setting. It shall be
easily verified that Bayesian regret bounds of parallel EGP-TS
become equivalent to that in the sequential setting when K =1
with p; = 1. Note that the regret bounds for parallel EGP-TS
here are for the number of evaluations, that will typically exceed
the bound in the sequential setup. This can be certainly the
other way around if the evaluation time is of interest [17]. In
all the three settings, the cumulative Bayesian regret bounds
of EGP-TS boil down to O(y/MTet!1logT) after ignoring
irrelevant constants, which is sublinear in the number of evalu-
ations when 0 < ¢ < 1. Hence, EGP-TS enjoys the diminishing
average regret per evaluation as 1" grows, hereby establishing
convergence to the global optimum.

V. NUMERICAL TESTS

In this section, the performance of the proposed EGP-TS will
be tested on a set of benchmark synthetic functions, two robotic
tasks, and the hyperparameter tuning tasks of three machine
learning models. The competing baselines are GP-EI [34], the
default method for many traditional BO problems, and TS-based
methods, including GP-TS with a preselected kernel type, fully
Bayesian GP-TS, as well as two ensemble approaches, which
are BanditBO [15], and EXP3BO [16]. It is worth mentioning
that the latter two, combining multi-armed bandits and BO, are
originally designed for inputs with categorical variables, but are
adapted as ensemble methods here with each “arm” referring to
a GP model with the same input variables.

The kernel hyperparameters per GP for all the TS-based
methods other than fully Bayesian GP-TS are obtained by
maximizing the marginal likelihood using sklearn. GP-EI
is implemented using BoTorch with the ARD kernel, whose
hyperparameters are refitted each iteration. The fully Bayesian
GP model hinges on a pre-defined kernel type where the kernel
hyperparameters are assumed to be random variables. In the
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present work, the RBF kernel is considered and a uniform
prior is assumed for the amplitude arg, characteristic lengthscale
and noise variance o2, within intervals [1, 100], [1073, 103] and
[0.1,0.3] respectively. The fully Bayesian GP-TS proceeds by
first drawing a sample of the kernel hyperparameters using GPy -
Torch and Pyro Python packages, based on which function
sampling is conducted. Existing kernel selection methods for
conventional GP learning operate in batch mode using a large
number of samples, hence being not suitable for the low-data
BO setting. For initialization in all the methods, the first 10
evaluation pairs are randomly selected and used to obtain the
kernel hyperarameters per GP by maximizing the marginal like-
lihood. In EGP-TS, the per-GP prior weight is set as uniform, i.e.,
w{® = 1/M ¥m. Unless stated otherwise, the hyperparameters
are refitted every 50 iterations for EGP-TS, and every iteration
for the rest of the baselines. RF approximation with 50 spectral
features is leveraged by all the TS-based approaches for fair-
ness in comparison. All the experiments are repeated 10 times,
where the average performance and the standard deviation of all
competing approaches are reported.

Additional results concerning ablation studies of the EGP-TS
approach, runtime comparison, and the parallel setting are de-
ferred to Appendix B in the supplementary file, available online.

A. Tests on Synthetic Functions

We tested the competing methods on a suite of standard
synthethic functions for BO, including Ackley-5 d, Za-
kharov, Drop-wave, as well as Eggholder, where the
latter two are challenging functions with many local optima.
The performance metric per slot £ is given by the simple regret
(SR), defined as SR(t) := f(x.) —max;¢q1,.. ¢ f(Xr). First,
to explore the effect of the kernel functions in the (E)GP model,
we tested GP-TS with the kernel function being RBF with
and without auto-relevance determination (ARD), and Matérn
kernels with v = 3/2,5/2. For all the ensemble methods, the
kernel dictionary is comprised of the aforementioned four kernel
functions. It is evident from Fig. 1 that the form of kernel
function plays an important role in the performance of GP-TS.
Combining different kernel functions, EGP-TS not only yields
substantially improved performance relative to GP-TS counter-
parts, but also requires the least design efforts on the choice of
the kernel function. In addition, EGP-TS achieves lower simple
regret than BanditBO and EXP3BO. Although GP-El is superior
to GP-TS baselines on Zakharov function, EGP-TS yields
better performance relative to the former, what demonstrates
the benefit of ensembling GP models. Upon fixing the kernel
type as RBF without ARD and constructing the dictionary as 11
RBF functions with lengthscales given by {10°}¢_ ,, EGP-TS
is also compared with fully Bayesian GP-based TS in addition
to the aforementioned baselines. Still, EGP-TS outperforms all
competitors as shown in Fig. 2.

B. Robot Pushing Tasks

The second experiment concerns a practical task in robotics,
where a robot adjusts its action so as to push an object towards
a given goal location. By minimizing the distance between the
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Dictionary has 4 kernels with distinct forms: RBF with(out) ARD and Matérn with v = 3/2,5/2.

target location and the end position of the pushed object, we
tested two scenarios with 3 and 4 input variables following [37].
The former optimizes the 2-D position of the robot and the
push duration, and the latter entails optimizing an additional
push angle. We used the github codes' from [37] to generate
the movement of the object pushed by the robot. Each scenario
was repeated for 10 randomly selected goal locations, and the
average performance of the competing methods are depicted in
Fig. 3. Adaptively selecting kernel function from the dictionary
with 4 distinct forms (that is, RBF with(out) ARD, and Matérn
with v = 3/2,5/2), the proposed EGP-TS outperforms all the
competitors, including GP-EI, GP-TS with a preslected kernel,
and the other two ensemble methods, as shown in Fig. 3(a). The
superior performance of EGP-TS when the kernel function is
fixed as RBF is also shown in Fig. 3(b), what is in accordance
with Fig. 2. It is worth highlighting that EGP-TS not only
outperforms fully Bayesian GP-TS in simple regret, but also
runs much faster.

C. Hyperparameter Tuning Tasks

The last test deals with hyperparameter tuning tasks for three
classification models, including a 2-layer FNN with ReL.U ac-
tivation function, support vector machine (SVM), and gradient
boosting (GB). Note that although the FNN architecture does not
yield the state-of-the-art classification performance, it suffices

!nttps://github.com/zi-w/Max-value- Entropy-Search

TABLE I
FEASIBLE VALUES OF THE HYPERPARAMETERS FOR DIFFERENT
CLASSIFICATION MODELS

Model | Hyperparameter |  Range
No. of neurons at Layer 1 [2,100]
FNN No. of neurons at Layer 2 [2,100]
Learning rate [1076,1071)
Batch size [22 S 26]
C [0.1, 100]
M ¥ [0.0001, 10]
Learning rate [0.1, 10]
GB Subsample ratio [0.1, 0.99]
Max. features ratio [0.1, 0.99]

to be used to evaluate different BO methods. We tested all the
competing baselines on Breast cancer [38], Iris [39],
Transportation [40], as well as Wine [41] datasets. For
all the datasets, 70% of the data are used as the training set,
and the remaining are used as the validation set based on which
the classification accuracy is calculated. The hyperparameters of
the FNN consist of the number of neurons per layer, the learning
rate, and the batch size. As for SVM, the values of C' and ~ are
to be tuned. For GB, the hyperparameters include the learning
rate, subsample ratio, and the ratio of maximum features. Table I
summarizes the feasible values of the hyperparameters of the
three methods. For each set of hyperparameters, the evaluated
validation accuracy is obtained as the average of 10 independent
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runs on a given dataset. In FNN training, the number of epochs
is chosen to be 20 and the optimizer used is Adam.

Figs. 4,5, 6,7, 8, and 9 depict the best validation accuracy (so
far) of the competing methods versus the number of iterations
for these three classification models. Apparently, EGP-TS with
different kernel types or RBF kernels of different lengthscales
is shown to outperform the competitors in most of the cases,
demonstrating the robustness of the EGP model across tasks.

D. Preliminary Results for EGP-EI

Here, we couple the EGP surrogate with the EI acquisition
rule [34], yielding the novel EGP-EI approach. In line with
the proposed EGP-TS, one could first select a GP model by
random sampling based on the weights w;, and then implement
the EI acquisition function based on the chosen GP model. To
benchmark the performance of this advocated EGP-EI, com-
parison has been made relative to GP-EI with a preselected
kernel function. We use BoTorch to implement both EGP-EI
and GP-EI with kernel hyperparameters updated every iteration
and without RF approximation. As shown in Figs. 10 and 11,
EGP-EI outperforms GP-EI in three out of the four synthetic
functions and both of the robotic tasks — what demonstrates the
benefits accompanied with the more expressive EGP model for
the EI acquisition function. Rather than sampling a single GP
from the EGP, future work includes investigation of the EI rule
based on the GP mixture function model (cf. Remark 1).

VI. CONCLUSION

This work introduced a non-Gaussian EGP prior with adaptive
kernel selection for the sought black-box function in BO. Capi-
talizing on the RF approximation per GP, acquisition of the sub-
sequent query point is effected via TS, which bypasses the need
for design parameters and can readily afford parallel implemen-
tation. Convergence of the proposed EGP-TS algorithm has been
established by sublinear cumulative Bayesian regret in both the
sequential and parallel settings. Numerical tests demonstrated
the merits of EGP-TS relative to existing alternatives. Future
work includes investigation of other acquisition functions based
on the novel EGP surrogate model, as well as analysis via the
notion of frequentist regret.

VII. PROOFs
A. Proof of Theorem 1

Before performing the Bayesian regret analysis for EGP-TS,
the following lemma will be first presented.

Lemma 3 (Supremum of a GP Sample Path [42]): If f ~
GP(0,x™) is a continuous sample path for any m € M, then
E[||f||loc] = B < oo, and further

max|f(x.) — f(x)| <2B..

Lemma 3 holds when kernels are twice differentiable - what
is readily satisfied under Assumption 1.

To bound the cumulative Bayesian regret of EGP-TS, we
will rely on its link with the corresponding upper confidence
bound algorithm in [13]. Conditioned on GP model m and
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past data D;_;, the high probability upper confidence bound
for f(x) is given by U"(x) := p™,(x) + 511/203"31(}{), where
B¢ = 2log(t?|X;|). Here, X; is obtained by discretizing each
dimension of X using n; = t>daby/7 equally spaced grids.
Thus, |X;| = (n;)?, and

Bt = 4(d + 1) log t + 2dlog(dab\/7) = dlogt . (17)

With [x]; representing the closest point to x in Ay, it can be
easily verified that

[[x — ]l € d/ne, VxeEX. (18)
Consider next the following decomposition

v i
BR(T) := Y E[f(x.) — f(%:)]

@ D OE[f(x) — F(J]+ D) E[f(xde — U™ ((x)6)]

\. " \ ’

:=T1.1 ::T!‘Z
T
4 Z]E (U™ (Beele) — Ug™([xe]e)]
t=1
A
T
4 Z]E (U7 ([xele) — f([xele)]
t=1
) - ’
T
—i—Z]E[f([Kt]t)—f(Xt)] - (19)
t=1
—A,

Since {x;,m,} and {x,,m,} are identically distributed given
D;_1, the fact that U™ (x) is a deterministic function of D;_4
yields Az = 0[13], [21].

Next, we will provide an upper bound for A; and A5 following

the proof in [17]. Letting Lnax = sup  sup|22)|, the
j={1,...,d} xeX ?
union bound under Assumption 1 implies that

Pr(Lgax > ¢) < dae /%’

which allows us to obtain

£ ~ F(001) < ELIx ~ elt] < Bl ]

® i Pr(Lpmax > c)de < E/ dae= ¢/ dc
Ng Je=0 Nt Je=0

_ y/md%ab d

- 2n, 22

where (a) results from (18), and (b) utilizes for Lyax > 0 the
equality E[Lmax] = [, Pr(Lmax > c)dec. Hence, A; and As
are bounded by

(20)
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Further, A5 can be upper bounded as

Az <Y EI(f(e) > U™ (1x:]0) [F (e — U™ (Bedo)l]

i=1

Z Y S EM(fx) > U ) [f(x) - U]

t=1 meM xcX;
44

Sp V) b iz
t=1 meM xeiX; Qﬂ—tzlxd

—
o

_ V2rM
\/27rt2|£f' |~ 12

SZT:ZZ @)

t=1 meMxcX;

where, since  f(x) —U™(x)|D;1 ~ N (— ﬁlmcr;“l(x)
(6™,(x))?), (a) holds using the identity E[rI(r > 0)] =
F=exp(—4) if r ~ N(p,02) and 1 < 0. Tnequality (b) is
simply due to o7, (x) < 1.

The last step is to upper bound A4, by constructing a con-
fidence set C; for the latent state per slot ¢ so that m, €
C; holds with high probability [21]. We will replace [x];
by x; for notational brevity, given that the following re-
sul[ holds for both cases. Consider Ct ={meM:GI'<

ony/N, log T}, where N, = S5 T(m, = m), and

t—1

P =Y Ime =m) (LP(x) — %) . (22)
T=1

Here, L"(x) = pu*;(x) — nof™;(x) with n=2/TogT is a
lower confidence bound for f(x) conditioned on model m. For
later use, we will first present the following two lemmas, whose
proofs are deferred to Sections VII-A1 and VII-A2.

Lemma 4: 1t holds that Pr(m, ¢ C;|D; ) < 2MT- !Vt €
= i R A

Lemma 5: Tt holds that E[p;™
M,x; e X teT.

The following decomposition will be applied towards bound-
].I'lg A4

(x¢) — f(x¢)] <2B,Vm €

T
Ay=E lz (U™ (x:) — F‘;T1(Kt))‘|

t=1

J i
+E [Z (1™ (%) — f(xt))l
=1

'F
< Y E[B o7 ()] + Y E[2BI(m; ¢ Cy)]

1 t=1

" - v

=Aya

M=

{ =+
I

-
=Ayq

T
+ Y E (0l (%) — £(x)) I(me €C)]  (23)
t=1

7

v
2=A4__;;

where the last inequality holds based on Lemma 5.

11293

As m, and m; are identically distributed given D;_; [13],
[21], Lemma 4 allows A4 3 to be readily bounded by

T

Ay3=2B) Ell(m, ¢C,)] <4MB. (24)
t=1
Meanwhile, we have that
T
Agp =) B [( (%) — LT (%)) I(my € Cr)]
t=1
+ZE[ ) — ye) I(me € Cy)]
4 5]
Z ot (xe)] + Y E[Gi 1 +2MB
=1 meM
T
Z Elno™ ()] + > E[20n/N7*logT| +2 MB
=1 meM
(e) T
< Z Elno™, (x¢)] + 200,/ MTlogT +2MB .
- (25)

where, with ¢, being the last slot that m is selected, (a)
holds by leveraging the definition of G}  and bounding the
L (X) —ygm by 2B; (b) comes from the definition of Cy;
an&l;“(c) leverages Cauchy-Schwarz inequality to yield

Z\/W< MZN{I":\/_

m=1

(26)

Putting together the bounds for A; — A5, the cumulative
Bayesian regret of EGP-TS over T evaluations is bounded by

T
BR(T) < (n+87?) Z Elo7" (%)) + 20ny/MTlogT

\/EM
6 MB+ — 27
+ + 6 2 27
where the first term can be bounded with 7" :={t € T : m,

=m} and T),, := | 71| as

Z lof2 (xe)] < ZE Z oty (Xe)

t=1 m=1 teT"
(@) M ;I ) M T 5 1/2
2y [z amxn] oSk (Tmz (o4 x0) )
m=1 t=1 m=1 t=1
1/2 (qy M 14e 1/2
< Z QTmW < Z ﬂ—'m
log (1+0.2) £ \log(1 40,2
© ( 2MTe /2
Pl (e
2 (werrom) @)

where (a) holds since o{"(x) decreases as ¢ grows; (b) is due
to the Cauchy-Schwarz inequality; (c) leverages Lemmas 5.3
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and 5.4 of [35] that bound the sum of posterior variances via the
MIG; (d) follows upon bounding ~r,, using Lemma 1; and, (e)
holds upon utilizing the following inequality based on Cauchy-
Schwarz inequality

M M 1/2
Z (’_I"‘rln‘-i-c)lf2 < (M Z Té]—i—c)
m=1

m=1
M ke
M)
m=1

Upon plugging in (28) into (27), Theorem 1 holds with n
= 2/logT and B)/? ~ \/dlogT.
1) Proof for Lemma 4: For m, € M, define the following
event at slot ¢
& = {If(x) — pZ1 (%) < noyy (%)}

the collection of which over T slots is £]7 := N, & . With
& representing its complement, it follows that

<> Y E[EIEM]

t=1 meM

1/2

= (MT*+e)

(29)

T
=3 3 E[Pre (1604 (0) - £ > nof1 ()]
t=1meM

(a)

< Mt (30)

where (a) comes from the inequality Pr(|r| > ) < e /2 with
St m m =

r = Uy (x) — F(X)|/01(X) ~ N(0,1) and = 2y/TogT.
Since n; = f(xXr) — yr ~N(0,02), {n;}rerm is then a

martingale difference sequence w.r.t. {D; }rc7m, where T™

i=fr|m=m7e Ly tH

G I(&r)

= Y (LP(xr) = y) U f(xr) = p 1 (%0)| < Moy 4 (x7))
TET™

= Y (@) — 9T (xe) < Fx) < S e
TET™ TET™

(31)

Foranym € Mandt € T, = |T/"|is random and takes value
from {1,...,t — 1}. For any u, Azuma’s inequality yields

Pri (G I(ETy) = 20n+/ulogT)

Z nr > 2opy/ulogT | <exp(—2logT) =

TeT™

< Pr

based on which, we arrive at

i—1
Pry(m. ¢C) < Y > Pr(GP > 20n/ulogT)

meM u=1

< Z SE [Pl‘t—l (G?H(E;?T) > 20y ulogT)]

meM u=1

1/2
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+Pr(E) < 2MT . (32)

thus finalizing the proof of Lemma 4.
2) Proof for Lemma 5: Since {x;,m:} and {x,,m.} are
identically distributed conditioned on D;_1, it holds that

Bl (%¢)] = E[E; 1 [ (xe)]]
= B[Er [y (x)]] = Bl ()] -
Further, the identity E; 4 [y (x.)] = E;_1[f(x.)] with f ~
GP(0, k™), yields the following result
B [p" (xe) — f ()]
=E [i (%e) — pi (%) + p (%)
—f(x) + (%) — F(x2)]
=E[f(x.) — f(x:)] <2B
where, thanks to Lemma 3, the last inequality holds.

B. Proof of Theorem 2

For the asynchronous parallel setting, the upper confidence
bound for the t¢th function evaluation is given by

O™ (x) = pl (%) + 6 %0m (%)

where D;_; contains all the acquired data before evaluation
index t is assigned. Here, |D;_{| =t — K for t > K, and
|D¢_1| =0fort < K.

Leveraging a decomposition similar to that in (19), A;—As
and A; could be derived as in Section A. Upon replacing the
subscript ¢ — 1 of z and o by D;_1, the term A4 can be bounded
as in (23), that is

(33)

Ay % ZE(ﬁt/%n)om (%) +200y/MT1og T + 6M B
t=1

(34)
where the first term can be further bounded based on Lemma 2
and (28) as

Z E[(8;% + n)op: , (xo)] S (82 +n) Z Elpi*o7

2o MTeH log T\ /2
S(2+\/E)( log (1+0;2) '

Thus, the cumulative Bayesian regret for parallel EGP-TS in the
asynchronous setup can be established as in Theorem 2.

(35)

C. Proof of Theorem 3

The proof of Theorem 3 entails introducing

VI x) =l () + 8.5 e (x) (36)

based on which the cumulative Bayesian regret can be decom-
posed after using (33) as (cf. (19))

T
BRY(T) := ZIE[f(x*) — f(xe)]

t=1
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T T
- D E[f(x) — F(xo)] + D E [f([x]e — T ([x]0)]
t=1 =1

s -

-
=C =Cy

T
+ D E [0 (pole) — V™ (b))
t=1

s

:=Cg

T
+ Y B () — V™ ()]
t=1

7

:=C¢

g Z B V™ ([xele) — F([xe)e)]

s

v

I=C5

T
+ D E[f(fal) — f(xo)] - @7

t=1

2=165
As with the proof of Theorem 1, it follows that
2 /5

Ci=0Cs < 1—2d Cy=0, C3< Q_I—ZM (38)

Next, we will further bound C5 and Cs, starting with

Z Byl ar_iElo™ (Ix.]:)]

T-K+1

= Z,e”z [om ([x.)e)

T-K
+ > B Elogr (%) — o7 ([x]0)]
=K

Q- 182,

where (a) holds since o ([X.]t) < o7 % ([X.]¢), and 0 <
a0 <.

Lastly, C5 can be bounded as
T
Cs =E |3 (V™ (xe) — e, (x2))
t=1
+E |3 (upe, (xe) — £lx)

i=1

M“*

T
E[B[% 10/ (x:)] + Y E[2BI(m, & Ct)]
t=1

i=1

+ i [(F‘n, (xe) — (Xt)) I(m; C;)]
=1

[)3;14{?( 1025 (Xe) + mopt | (xe)]

+ 20, MTlogT +6MB

IIM"-]

11295

~

1/2
B 210 (%) + mppl 2o ™, (%))

<D _El

+ 20,/ MT1logT +6MB

which, based on the derivation of (28), and the bounds of other
factors, yields the regret bound in Theorem 3.

(39)
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