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ABSTRACT
Higher-order link prediction (HOLP) seeks missing links
capturing dependencies among three or more network nodes.
Predicting high-order links (HOLs) can for instance reveal
hyperlinks in the structure of drug substance and metabolic
networks. Existing methods either make restrictive assump-
tions regarding the emergence of HOLs, or, they rely on
reduced dimensionality models of limited expressiveness. To
overcome these limitations, the HOLP approach developed
here leverages distribution similarities across embeddings
as captured by a learnable probability metric. The intuition
underpinning the novel approach is that sets of nodes whose
embeddings are less similar in distribution, are less likely to
be connected by a HOL. Specifically, nonlinear dimension-
ality reduction is effected through a Gaussian process latent
variable model that yields nodal embeddings, and also learns
a data-driven similarity function (kernel). This kernel forms
the core of a maximum mean discrepancy probability metric.
Tests on benchmark datasets illustrate the potential of the
proposed approach.

Index Terms— Link prediction, probability metrics,
Gaussian processes

1. INTRODUCTION

Link prediction refers to the task of predicting edges (links)
missing from a graph [13, 20, 10]. These edges may exist,
yet remain unobserved due to e.g., privacy concerns; or, they
may appear in the future, in the case of temporally evolving
graphs [8].

An edge represents an interaction between two nodes. A
hyperedge on the other hand, connects three or more nodes,
thereby providing a natural representation for the higher-order
dependencies amongst them [18]. Higher-order link predic-
tion aims at predicting hyperedges [24, 25]. As a motivat-
ing example, consider drug substance networks, where sub-
stances are represented by nodes, and a drug can be viewed
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as the (hyper) edge connecting the substances present in the
drug. As it is typical for a drug to contain more than two sub-
stances, limiting the prediction scope to edges undermines the
potential of forecasting the emergence of new effective drugs.
Prior works. HOLP approaches can be categorized into in-
formal scoring, supervised, and unsupervised learning meth-
ods. Informal scoring methods assume that a particular net-
work characteristic, such as the number of common neighbors
across nodes comprising a potential HOL, is a good predictor
of hyperedge presence [9]. As real-world networks can de-
scribe disparate phenomena, it is possible that such network
characteristics are not clear HOL indicators of the network at
hand. Supervised methods pose HOLP as a classification task
of ‘present’ versus ‘absent’ hyperedges [24, 21]. Observed
hyperedges belong to the ‘present’ class; while unobserved
hyperedges do not necessarily belong to the ’absent’ class;
that is, there are no labeled training samples for the ‘absent’
class. Since training a classifier without samples from both
classes is not an option, these approaches resort to artificially
generated ‘absent hyperedges,’ meaning sets of vertices as-
sumed not to be connected by a hyperedge. The generation
mechanism employed introduces assumptions on hyperedge
formation and inherently biases the learned (predictor) model.

Unsupervised HOLP approaches rely on generalized ma-
trix factorization and matching (MFM) [25]. Although the
resultant algorithms do not place assumptions on HOL forma-
tion, they model embeddings as a linear function of the data
employed in the MFM. In addition, all candidate hyperedges
are required to be available during the training phase.

To overcome the limitations of existing approaches, our
novel approach starts with nonlinear nodal embeddings, and
relies on a distribution similarity metric among these em-
beddings to predict HOLs. The premise is that sets of nodes
whose embeddings are less similar in distribution are less
likely to be connected by a hyperedge. Unlike informal
scoring and supervised approaches, we make no mechanistic
assumptions with regards to hyperedge formation. Instead,
the distribution similarity is assessed using the maximum
mean discrepancy (MMD) metric that relies on a kernel
function [6]. The latter is learned jointly with the nodal em-
beddings by means of a nonlinear dimensionality reduction
approach, namely the Gaussian process latent variable modelIC
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(GPLVM) [11]. To score a candidate hyperedge, we consider
the possible partitions of its constituent nodes into pairs of
sets, compute the MMD of the sets of embeddings corre-
sponding to said sets of nodes, and average over partitions.
Contributions. The use of distribution similarity based on
a learnable MMD metric for HOLP are key novelties of this
contribution. Unsupervised learning of scoring functions for
candidate hyperedges and similarity functions for nodal em-
beddings, is also novel. HOLP alternatives are either super-
vised (see e.g., [21] for an approach relying on neural net-
works) or, in the case of MFM methods, they can only provide
scores for candidate hyperedges at the training stage (instead
of scoring functions); and they additionally rely on fixed (lin-
ear) similarity functions in the space of nodal embeddings.
Finally, it is worth mentioning the related problem of simpli-
cial closure prediction [2], where hyperedges of fixed cardi-
nality are assumed, alongside with additional constraints on
hyperedge formation [1]. Notwithstanding, these modeling
assumptions are not made in the HOLP approach here.

Notation. Scalar [A]ij denotes the (i, j)-th entry of the ma-
trix A, superscript > denotes transposition, and I stands for
the identity matrix; |·| denotes set cardinality, ∅ the empty set,
and 1{·} is the indicator function. The binomial coefficient
is given by

(
n
k

)
, the probability of the event A is denoted by

Pr{A} and bac stands for the largest integer less than or equal
to a. Finally, N (x;µ, σ2) represents the value, at x, of the
probability density function of a Gaussian random variable
with mean µ and variance σ2.

2. PRELIMINARIES

Consider an undirected hypergraph G := (V, Eo), where V is
the set of vertices, and Eo denotes the set of observed edges
linking pairs of vertices, as well as hyperedges that by defini-
tion connect three or more vertices. The ambitious goal here
is to predict the set Eu of unobserved hyperedges that do not
necessarily involve subsets of vertices with fixed cardinality.
Given a set Ec of candidate hyperedges, a HOLP approach as-
signs a score S(e) per hyperedge e ∈ Ec, with the premise
that higher scores are assigned to candidate hyperedges e that
are considered more likely to be present.

The structure of the hypergraph G can be represented us-
ing the incidence matrix H ∈ {0, 1}|V|×|Eo|, where [H]ij =
1{i ∈ ej}, that is [H]ij = 1, if vertex i is involved in (hy-
per) edge ej ∈ Eo, and [H]ij = 0 otherwise [3].

3. GPLVM FOR NODAL EMBEDDINGS

Although H describes the structure of G, working directly
with H can be challenging for large-scale hypergraphs and
a large number of observed hyperedges. Instead, one can
rely on some form of the adjacency matrix A ∈ R|V|×|V|
obtained from H, as in e.g., [25]. Here, we will rely on

A := D−1/2v HWD−1e H>D−1/2v , where W is a diagonal
weight matrix with diagonal entries [W]mm := w(em); while
Dv is a diagonal vertex degree matrix with diagonal entries
[Dv]nn :=

∑
{e∈Eo |n∈e} w(e); and likewise for the edge de-

gree matrix having diagonal entries [De]mm := |em|; see
also [26]. In temporally evolving hypergraphs, the weight
w(e) can represent the number of times the (hyper) edge e
is observed in Eo.

To enable HOLP, the adjacency matrix A is commonly as-
sumed to have a latent low-dimensional structure [25]. Since
the i-th column ai of A describes the association of vertex
i with the remaining vertices j 6= i, we will leverage the
structure of A by obtaining per vertex i a low-dimensional
embedding xi ∈ Rd of ai ∈ R|V|, where d� |V|.

Specifically, the j-th entry of ai will be expressed using a
Gaussian process latent variable model (GPLVM)1 [11] as

[ai]j = fj(xi) + εij (1)

where fj is a nonlinear function modeled using a Gaussian
process (GP) prior, and {εij} are independent and identi-
cally distributed from N (0, σ2

ε) [23]. The covariance of the
said prior is captured by a kernel κθ , where θ collects the
kernel hyperparameters. With f j := [fj(x1) . . . fj(x|V|)]

>,
the GP prior over functions fj is tantamount to a multi-
variate Gaussian p(f j |X; θ) = N (f j ;0,Kθ), where X :=
[x1, . . . ,x|V|]

> collects the nodal embeddings viewed as ran-
dom vectors, and the kernel matrix Kθ is formed with (l,m)-
th entry κθ(xl,xm). Letting F := [f1, . . . , f |V|], Bayes rule
implies p(A,F|X; θ, σ2

ε) = p(A|F,X;θ, σ2
ε)p(F|X; θ),

where the form of p(A|F,X;θ, σ2
ε) follows from (1) and

p(F|X; θ) =
∏|V|
j=1 p(f j |X; θ). Having p(A,F|X;θ,σ2

ε)
marginalized over F, and supposing independence, we obtain

p(A|X; θ, σ2
ε) =

|V|∏
j=1

N (aj ;0,Kθ + σ2
εI). (2)

The probability density function (pdf) in (2) along with
the prior p(X) =

∏|V|
i=1N (xi;0, I) and Bayes rule, yield

the likelihood p(A,X;θ, σ2
ε). The latter enables learning the

wanted embeddings and relevant hyperparameters as [11]

{X, θ̂, σ̂2
ε} = argmin

χ,θ,σ2
ε

− log p(A|χ;θ, σ2
ε)− log p(χ) (3)

where the estimated embeddings in (3) turn out to further en-
joy maximum-a-posteriori optimality [11].

Remark 1. In addition to low-dimensional nodal embed-
dings, (3) also learns kernel hyperparameters that specify a
similarity function among embeddings. Both will be of ben-
efit to the distribution comparison task that will emerge in

1Although here we will rely on the prototypical GPLVM, several variants
thereof exist; see e.g., [22].
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the ensuing section, which deals with the development of our
novel HOLP approach.

Remark 2. The Gaussian pdfs in (3) involve inversion of
|V| × |V| covariance matrices. If the cubic complexity of
such inversions cannot be afforded, low-complexity approxi-
mants are available using either inducing points [12] or ran-
dom spectral features [7].

4. MMD FOR HOLP

Our idea is to view HOLP as a distribution similarity assess-
ment in the space of embeddings. Intuitively, we expect the
formation of a hyperedge to be less likely when the embed-
dings of its constituent vertices are less similar in distribution.
More concretely, let e := {v1, . . . , vk} be a candidate hyper-
edge, and S := {xv1 , . . . ,xvk} the set of associated nodal
embeddings. Consider now an arbitrary partitioning of e into
two sets πA and πB , with e = πA ∪ πB and πA ∩ πB = ∅.
Let also SA := {xv | v ∈ πA}, and similarly for SB be the
corresponding sets of embeddings. We are interested in com-
paring the distributions from which the sample sets SA and
SB are drawn from. Although there are multiple ways of par-
titioning S into two sets, let us for now focus on comparing
an arbitrary pair of sets, and defer the discussion on how com-
parisons across partitions can be leveraged to yield a score for
the candidate hyperedge e.

Aiming to assess similarity of distributions, we will rely
on the maximum mean discrepancy (MMD) metric [5, 6].
This (multivariate) integral probability metric is known to per-
form well even when the sample sets (here SA and SB) are
relatively small [4]. For a space of functions F , the MMD
between pdfs p and q with respect to F is defined as

MMD(p, q,F) := sup
f∈F

Ep[f(Xp)] − Eq[f(Xq)] (4)

where the random variables Xp, Xq are drawn from p and q,
respectively, and with sup denoting the supremum. We can
now turn our attention to the space F . A reasonable req-
uisite is for (4) to define a metric. This in turn poses the
requirement that MMD(p, q,F) = 0 if and only if p = q.
It can be shown that choosing F to be a unit ball in a uni-
versal reproducing kernel Hilbert space (RKHS) H, namely
F := {f |‖f‖H ≤ 1}, satisfies this requirement [6]. We will
adhere to this choice hereafter. Selecting F amounts to se-
lecting κ; see e.g., [19]. We will revisit the selection of κ in
the sequel, but for now let us suppose that κ is given.

Consider now that the sets SA and SB comprise samples
drawn from some arbitrary pdfs p and q, respectively. An
empirical estimate of MMD(p, q,F) is given by [6]

MMD(SA,SB ,F) =

 1

|πA|2
∑
i∈πA

∑
j∈πA

κ(xi,xj) (5)

− 2

|πA||πB |
∑
i∈πA

∑
j∈πB

κ(xi,xj) +
1

|πB |2
∑
i∈πB

∑
j∈πB

κ(xi,xj)

 1
2

.

It can be shown that the estimator in (5) converges at a rate
ofO(1/

√
|πA|+ |πB |) to MMD(p, q,F) [6]. Notice that (5)

explicitly highlights the reliance of the probability metric on
the kernel choice. To better illustrate this dependence, con-
sider the squared exponential automatic relevance determina-
tion (SE-ARD) kernel [23]

κ(x,x′) ∝ exp

(
−1

2

d∑
m=1

(xm − x′m)2

σ2
m

)
(6)

that is widely used in the context of GPs, and it can be shown
to be universal [16]. We will rely on the SE-ARD kernel here-
after. If we let σ1 = σ2 = . . . = σd := σ, and have σ → 0,
the MMD tends to zero (cf. (5)) regardless of the locations
of the embeddings contained in the sets. More generally, it
can be shown that the convergence properties of the empirical
MMD depend on the choice of the kernel; see [6, Thm. 8] for
rigorous statements.

It should be evident that choosing the kernel appropriately
is critical to the quality of the probability metric obtained.
The kernel selected by the GPLVM is a natural choice. We
will thus set κ ≡ κθ̂ hereafter, where θ := [σ2

1 , . . . , σ
2
d] for

the SE-ARD kernel.
We can now introduce our scoring function for candidate

hyperedges. However, we first need to formally describe the
assignment of samples to sets. Returning to our candidate
hyperedge e = {v1, . . . , vk}, let g := [gv1 , . . . , gvk ] be the
set membership indicator vector, that is gvl = 0, if vl ∈ πA,
and gvl = 1, if vl ∈ πB . Clearly, different values of g result
in different sample sets. To make the connection explicit in
our notation, let SAg denote the set SA under the assignment
described by g, and similarly for SBg . By letting |SAg | =⌊
k
2

⌋
:= kA, we will consider splits of (roughly) equal size.

There are k̃ :=
(
k
kA

)
different set membership indicator

vectors g(1), . . . ,g(k̃). Using the latter, our score for the can-
didate hyperedge e is given by

S(e) = −1

k̃

k̃∑
l=1

MMD(SA
g(l)

,SB
g(l)

,F)

where the negative sign is introduced to conform with the con-
vention of higher scores being assigned to more likely candi-
dates. In a nutshell, our score reflects the average similarity
(negative of ‘distance’) across the possible splits of observa-
tions into pairs of sets.
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Fig. 1: AUCs for hyperedge prediction on the (a) tags-ask-ubuntu and (b) Email-Enron datasets. Comparison of the
proposed HOLP approach against HPRA [9], CMM [25], HPLSF [24], Katz index and number of common neighbors.

5. NUMERICAL TESTS

In order to assess the performance of our novel approach,
tests were performed on a) the first |V| = 200 vertices of the
tags-ask-ubuntu dataset; b) the Email-Enron dataset
and c) the first |V| = 200 vertices of the Email-Eu dataset.
Regarding a), nodes correspond to tags and each hyperedge
connects the tags associated with a single question on the
Stack Exchange website; and with respect to b) and c), nodes
correspond to employees and a hyperedge connects employ-
ees participating in a single (multi-recipient) email exchange;
see [2] for detailed description of these datasets.

A number of competing HOLP alternatives were consid-
ered, including coordinated matrix minimization (CMM) [25],
that is perhaps the most representative method of its class;
the recently proposed hyperedge prediction using resource
allocation (HPRA) method [9]; the supervised hyperlink pre-
diction using latent social features (HPLSF) approach [24];
as well as higher-order generalizations of popular link pre-
diction scores, such as the Katz index and the number of
common neighbors; see also [25] for a detailed description.

With regards to the proposed approach, the dimensional-
ity of the embeddings was d = 10, and the SE-ARD kernel
was used. For CMM, all hyperparameters were set as per [25],
and we report the best results across the embedding dimen-
sionalities considered therein, that is {10, 20, 30}.

As in e.g., [15], the set of unobserved hyperedges Eu was
obtained by (randomly) removing 10% of the hyperedges
from each dataset. In order to assess hyperedge prediction
performance, our candidate set Ec in the testing phase should
also include ‘absent hyperedges.’ It is worth stressing that Ec
is used here only for evaluation purposes. We relied on the
clique negative sampling (CNS) scheme of [17], which is a
higher-order counterpart of the widely used approach of [14],
to generate the ‘absent hyperedge’ set Ea with |Ea| = 2|Eu|.
Our test set is finally obtained as Ec = Eu ∪ Ea.

The area under the curve (AUC), that is also known as
receiver operating characteristic curve, was used as perfor-
mance metric for the hyperedge prediction task; see also
e.g., [15]. The results are depicted using box plots in Figs. 1

and 2, and correspond to the distribution of AUCs obtained
across 11 trials. The lower, middle, and upper horizontal
lines of each box correspond to the value of AUC below
which 25%, 50% and 75% of the trials resulted in. The 25%
line is also known as the first quartile, the 50% line as the
second quartile (median), and the 75% line as the third quar-
tile. The horizontal lines below (above) each box correspond
to the minimum (maximum) AUC value across trials.

These boxes demonstrate that the novel HOLP approach
achieves the highest AUC in all three datasets. The proposed
approach not only outperforms alternatives at predicting true
hyperedges, but also it does so consistently across all datasets.
This can be attributed to the adaptation abilities that the learn-
able nature of the metric brings.

6. CONCLUSIONS

The present work introduced a novel method for higher-order
link prediction, that approaches this challenging task from
a distribution similarity viewpoint. A learnable probability
metric is introduced for assessing the similarity across nodal
embeddings, that in effect yields a score for the presence of
candidate hyperedges. By combining the merits of GPLVMs
with MMD metrics an expressive model emerges, without
the need for assumptions on hyperedge formation. Tests on
benchmark datasets demonstrated the superior performance
of the novel approach relative to existing alternatives.
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Fig. 2: AUCs for HOLP on the Email-Eu dataset.
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