JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

Noisy Label Detection and Counterfactual
Correction

Wenting Qi, Student member, IEEE, Charalampos Chelmis, Member, IEEE

Abstract—Data quality is of paramount importance to the
training of any machine learning model. Recently proposed
methods for noisy learning focus on detecting noisy labeled data
instances by using a fixed loss value threshold, and exclude de-
tected noisy data instances in subsequent training steps. However,
a predefined, fixed loss value threshold need not be optimal, and
excluding the detected noisy data instances can hurt the size
of the training set. In this article, we propose NDCC, a new
method that automatically selects a loss threshold to identify
noisy labeled data instances, and uses counterfactual learning to
repair them. To the best of our knowledge, NDCC is the first
work to explore the use of counterfactual learning in the noisy
learning domain. We demonstrate the performance of NDCC on
Fashion—-MNIST and CIFAR-10 datasets under a variety of label
noise environments. Experimental results show the superiority of
the proposed method compared to the state—of-the-art, especially
in the presence of severe label noise.

Impact Statement—The accuracy of machine learning models
depends on training data quality. Quite unsurprisingly then,
it drops dramatically (up to 53% in our experiments) as the
percentage of noisy labels increases. The method presented here
is shown to maintain high performance even in the presence
of highly corrupted data (i.e., 80% noisy labels) by performing
joint noisy detection and correction. Specifically, the proposed
method increases the accuracy rate of noisy label detection (up
to 25%), while achieving a high noisy correction rate (up to 72%).
When presented with severe label noise (i.e., 80% noisy labels),
the proposed method lowers the noise rate to 52.5%. Beyond
improving the accuracy of machine learning models that are
trained with noisy label data, this research highlights the need
to treat (as opposed to discard) noisy label instances during the
training process.

Index Terms—data quality, noisy learning, deep learning

I. INTRODUCTION

ACHINE learning models have been applied in a wide

range of applications, including, but not limited to,
traffic prediction [1], face recognition [2], product recom-
mendation [3] and online fraud detection [4]. Deep neural
networks, one of the most popular branches of machine
learning, have achieved remarkable performance to a variety
of tasks due in part, to large quantities of human—annotated
data [5], [6]. However, the label annotation process is labor—
intensive, and often introduces label noise for reasons includ-
ing insufficient information for low quality data, subjectivity in
the labeling process, and limited number of expert annotators

Manuscript received (date to be filled by Editor). This material is based
upon work supported by the National Science Foundation.

C. Chelmis is with the Department of Computer Science, University at
Albany, SUNY, NY, 12222 USA (e-mail: cchelmis@albany.edu).

W. Qi is with the Department of Computer Science, University at Albany,
SUNY, NY, 12222 USA (e-mail: wqi@albany.edu).

This paragraph will include the Associate Editor who handled your paper.

due to budgetary constraints [7]. After the completion of
the data labeling process, identifying and correcting wrong
labels is resource— and time—consuming. Furthermore, over—
parameterized machine learning models, such as Deep Neural
Networks, can overfit on noisy data instances by memorizing
them during training [8], [9]. Learning and assessing machine
learning models using noisy labels can result in biases and
misleading accuracy reporting, with potentially detrimental
results, such as wrong disaster diagnosis [10] or perpetuating
biases in resource allocation (e.g., loan application) [11]. There
are two common types of noise, namely: feature noise and
label noise [12]. In this work, we focus on label noise which
has been shown to be more harmful than feature noise [13].
To facilitate training a learning model over a noisy dataset,
one commonly adopted approach is noise sample selection
[14], which distinguishes the noisy from clean data instances
during the training process, then excludes noisy instances from
the training process [15]-[17]. In line with prior art, this work
leverages loss to distinguish between noisy from clean data
instances (i.e., data instances exhibiting low loss value being
more likely to be clean) [18], [19]. The challenge is how
to quantify the loss value during the training process. [20]
ranks the loss value for all data instances and pre—sets the
loss threshold with a specific noise rate (NR) to identify noisy
data instances as those whose loss value is lower than the
threshold. The main problem with that approach is twofold:
(i) in the real-world, the noise rate is hard to estimate a
priori, and (ii) different choices of loss functions have different
impacts on the loss value ranking. To overcome these issues,
we use peer loss [21] in loss value evaluation for noisy label
detection. Specifically, peer loss is the loss value computed by
substituting the current label with other possible labels in the
label set, and does not require knowledge of the noise rate.
Furthermore, since the comparison is among the same data
instance with different label values, different loss functions do
not affect the comparison result. [21] sets peer loss threshold to
0 to distinguish the noisy from clean data instances. However,
our experiments (See Figure 4) show that 0 may not always
be the optimal peer loss threshold. This article proposes an
automated threshold selection method to overcome this issue.
Upon detecting suspected noisy labeled data instances, these
instances are typically excluded from the training process
[22]. However, for small or severely noisy labeled datasets,
excluding noisy data can dramatically reduce the size of
the training set, to the point it becomes useless for training
purposes. Furthermore, despite having noisy labels, the feature
values of noisy labeled data instances are clean and could still
be useful for training. This work is the first to explore the

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

feasibility of correcting noisy labeled data instances by find-
ing the true label using counterfactual learning. Specifically,
for each detected noisy labeled instance, counterfactual data
instances are computed for all possible labels. The label that
achieves the minimum value of counterfactual score is then
selected as the true label (refer to Section IV-B for detailed
explanation and examples).

This work focuses on training a robust learning model in
the presence of noisy labeled data in the training set, through
detecting and correcting noisy labeled data instances. A new
framework is proposed to (i) identify potentially noisy labeled
data instances in the training set, (ii) estimate the true label of
each detected noisy labeled data instance through counterfac-
tual data generation, and (iii) output a robust learning model
and revised dataset (i.e., with corrected labels). We evaluate the
ability of the proposed framework to handle varying degrees of
noisy labeled data using two benchmark datasets. In summary,
the main contributions of this article are:

o Proposing a novel method for automating the selection of
the noisy peer loss threshold in the noisy label detection.

« Introducing a practical approach for identifying noisy
labeled data in the training process, and estimating the
most probable true label for each detected noisy data
instance using counterfactual learning.

« Demonstrating the superiority of the proposed solution
against baselines using benchmark datasets under differ-
ent noisy environments.

To ensure the reproducibility of our work, we will make
the source code of our method available on GitHub upon
acceptance of this manuscript.

II. RELATED WORK

With the increase of complexity and scale of datasets, the
possibility of including unreliable labels or noisy labels also
increases. Training machine learning models with noisy labels
significantly impacts their prediction performance. For this
reason, a large variety of deep learning models for robust
learning in noisy data environments has already been devel-
oped [23], [24]. For instance, the loss function—based approach
in [23] minimizes the risk for unseen clean data with the
presence of noisy labels in the training data. However, such
loss function—based approaches are restricted to a particular
framework, and thus, lack adaptability. Some methods (e.g.,
[16], [21], [22], [24]) focus on selecting the true labeled
instances from a noisy labeled dataset to mitigate the negative
influence of noisy data instances. For instance, [21] uses peer
loss to select clean data instances by fixing the loss threshold
to 0. However, the optimal loss threshold may not always be
fixed or predetermined. Instead of using a fixed threshold, this
work learns the loss threshold for noisy labeled data instances
detection during the training process itself.

After detecting suspected noisy labeled data instances, many
methods (e.g., [16], [22], [24]) exclude such instances in
subsequent training steps. However, dropping suspected noisy
label data instances can result in a diminished training set,
and wastes the clean features of noisy labeled samples. [17]
assigns more weight on clean data instances than on suspected

noisy data instances. At the same time, mistreating noisy data
instances as clean can lead to a highly inaccurate model. We
instead propose a counterfactual based method to correct the
labels of suspected noisy labeled data instances. Counterfac-
tual learning has been widely explored in explainable machine
learning to shed light into how/why the output of a machine
learning model would change if the input (i.e., features) were
to change [25], [26]. Specifically, [27] leverages counterfactual
learning to produce example—based explanations by feature
perturbation. Feature perturbation may lead to different pre-
diction results given a learning model; data instances with
perturbed feature values (in our case labels) are considered
counterfactual [28]. To the best of our knowledge, this work
is the first to incorporate counterfactual learning directly into
noisy learning.

III. PRELIMINARIES AND PROBLEM STATEMENT
A. Notation

Let D = (X,Y) denote a clean training dataset and
D = (X,Y)" a noisy dataset. N is the total number of data
instances in D and D (ie., X = {x;}¥), and x; € X
is an M dimensional feature vector. The total number of
classes in both Y and Y are K, and j denotes the class
index. The label of x; is denoted as y; € B¥X with value
1 at entry j indicating belonging to the jth class, otherwise
0. For example, for K = 5, y; = [0,1,0,0,0] indicates that
x; belongs to Class 2. The task is to train a model f using
D, since the clean dataset D is unavailable, to predict the true
label y of previously unseen data instances. Let denote the
predicted outcome. To minimize the influence of noisy data on
the model performance, we propose strategies to detect noisy
data instances, and assign them with the most likely true label
while learning f. We leverage counterfactual learning to search
for the most likely true label for each noisy data instance.
Specifically, each noisy data instance is associated with K
counterfactual data instances (X],y7), each is generated for
each labels y7, where j € 1,2,3,.., K. By comparing the
counterfactual properties (see Section IV-B) with (xi, 5724') and
each (x/,y7), we find the most likely true label y7; and
substitute the noisy label with the most likely true label y7.
Table I summarizes the notation used hereafter.

B. Problem Statement

The goal of this work is to learn a robust classifier f
over a noisy labeled dataset by minimizing the influence
of noisy labeled data instances during training. To achieve
this goal, we split the problem into three sub—problems: (i)
learn a classifier f that accurately maps X to Y, (ii) detect
noisy labeled data instances, and (iii) assign the most likely
true label to suspected noisy labeled data instances through
counterfactual learning. For clarity, clean data instances refer
to data instances with correct labels; noisy data instances refer
to data instances with wrong labels; and observed labels can
be either clean or noisy.

Data instances in D are either clean or noisy labeled. Same with Y.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

NDCC

Clean Pretrai)

ean Pretrain Y Noisy Data X, ——

Model (g / \ =
Noisv Dataset \ Clean Data X
D=(x7Y)

Section IV -A
Fig. 1. Visualization of NDCC.
TABLE I

EXPLANATION OF MAIN SYMBOLS USED IN THIS ARTICLE.

Symbol | Description
N Total number of data instances. (A data instance is
denoted by index %)
M Total number of features for each data instance. (A
feature is denoted by index m)
K Total number of classes
i jth class
D Noisy dataset
Dpre Clean pretrained dataset in Algorithms 1 and 3
D Revised dataset
Xn/Xc | Detected noisy/clean dataset in Algorithm 3
he/hn Objective function for noise detection/correction

g Pre—trained model obtained by training with Dy
in Algorithms 1 and 3

f(W) Learning model with weight matrix W € RE XM
l Categorical cross entropy loss
5({ Counterfactual data of x; with target label j
y; Counterfactual label when considering target label
7 for x;
¥i Noisy label vector of x;
yi Noisy label of x; with label j
bi Indicator of data instance ¢ being clean or noisy
Tpre Training epoch for pre—train model g in Algorithms
1 and 3
T.r Counterfactual search epoch in Algorithms 2 and 3
Ty Training epoch in Algorithm 3 step 25
T Training epoch for NDCC in Algorithm 3

IV. PROPOSED FRAMEWORK

We propose Noisy label Detection and Counterfactual
Correction (NDCC), a novel framework for training a robust
classifier over a noisy labeled dataset. The objective function
of NDCC follows:

N
argmin » _ ¢ihe(W,x;) + (1 = ¢i)hn (W, &]). (1)
Wi =1

¢ is the noisy labeled data instanced indicator, and dist
denotes Euclidean distance. The detailed expression and ex-
planations for h,, and h. are provided in Sections IV-A and
IV-B, respectively, and the rationale for combining the above
two objective functions is provided in Section IV-C. Overall,
the problem in Eq. (1) can be viewed as a combinatorial
optimization problem, which is difficult to solve directly.
We therefore solve Eq. (1) by alternatively searching for the
optimal solutions of W and %!. The convexity is proven in
Appendix A. In each searching round, we accomplish the
alternative search in two steps, as follows: (i) noisy label
calibration (i.e., search solutions for %), which requires noisy

Revised Dataset

D = (X,7)
2 o Training
XY i i
T X Y) learning Find Trained
Model (f)
Most possible true model f
label ? for X,,
Section IV -B

label detection (Section IV-A) and label correction by coun-
terfactual generation (Section IV-B), and (ii) model training
(i.e., search solutions for W).

Figure 1 provides a high level view of NDCC. Initially,
the noisy dataset D = (X,Y) is provided as input to the
noisy label detection module, which then outputs suspected
noisy label data instances (X,,,Y), and sets the noisy indicator
¢ = 0 for each x; € X,;, and 1 for each z; € X .. Therefore,
dihe(W) in Equation (1) reflects the loss for clean data
instances, whereas (1 — ¢;)h,(W,%;) reflects the loss for
noisy labeled data instances. The label counterfactual correc-
tion module assigns each x; € X,, with the most likely true
label y;, then substitutes D with the label-revised dataset 15
to be used in subsequent rounds of training f(1/). Note that
D can be updated multiple times through the training process,
as additionally noisy labeled data instances are identified.

A. Noisy Label Detection (h.)

Loss can identify noisy labeled data instances [15], [19],
[29]. Specifically, [15] pointed out that the loss of clean data
instances is expected to be lower than that of noisy labeled
data instances, mainly because noisy labeled data instances are
often outliers with respect to the distribution of clean data, and
the learning model tends to make predictions different from the
noisy labels. Experiment results presented in Figure 2 support
this claim by showing that the loss value for a large number
of noisy labeled data instances is higher than that of clean
data instances, even under different noisy environments (i.e.,
symmetric? and asymmetric noise?).

0.16 4 Class
ﬁ =3 Clean
Noisy

Loss Loss

(a) Symmetric noise, NR = 0.4 (b) Asymmetric noise, NR = 0.4
Fig. 2. Loss value distribution for CIFAR—-10 with respect to different noisy
environments. x—axis represents the loss score, and y—axis represents the
frequency of a particular loss score in the z—axis.

2The true label flips to all other labels with equal probability.
3 A noisy label is generated by flipping the true label j to class j + 1 [21].

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

The question then is hoe to determine a loss threshold to
distinguish between clean and noisy labeled data instances.
A relative “large” or “small” loss can be manually specified
by inspecting the overall loss value distribution. However,
a classifier cannot automatically determine whether the loss
score is “large” or “small” without knowing the overall loss
value distribution. Furthermore, having a pre—set and fixed
loss threshold is impractical, as the loss distribution may vary
across different classification tasks. Additionally, the correct
labels of noisy data instances are usually unavailable, making
it impossible to pre—select a suitable loss threshold.

Of particular relevance to this problem, [30] proposed peer
loss defined Lpy, = I(f(W,x;),y:)—1(f(W,x;),y]), where
I(f(W,x;),y;) is the loss with respect to given label y;, and
I(f(W,x;),y7) is the loss with respect to a possible random
label y?/ differing from y;. Based on the peer loss, [21] defined
the loss value threshold, which takes all possible label values
into consideration in order to locate data instances with high
loss for further distinguishing the noisy labeled data instances.
Inspired by this idea, the objective function for detecting noisy
labeled data instances is defined as [21]:

KZ f(W,x;),

where f is the learning model, with parameters W,
I(f(W xZ)(¥i) denotes the loss value of the observed label,
and - ZJ LW, x5), L) is the average loss value of
all possible K labels. The experimental results in Figure 3
confirms that the peer loss of the majority of the clean data
instances is smaller than that of noisy labeled data instances.

he(W,x;) = 1(f(W, x1), ¥, @)

0030 ,’r\\ Class 0035 w‘/\w
[=3 Clean | \
0025 [Noisy 00304 / |
|
[[
1 [
0020 / | 0025 / |

0.020

Density
Density

0,015 /

0.010
/ 0.010
0005 4 0005

0000 r 0.000 T T T
-40 -20 0 20 -40 -20 0 20
Loss Loss.

(a) Symmetric noise, NR = 0.4 (b) Asymmetric noise, NR = 0.4

Fig. 3. Peer loss value (i.e., computed by Eq. (2)) distribution for CIFAR-10
with respect to different noisy environments. z—axis corresponds to peer loss
score, and y—axis corresponds to frequency with respect to particular peer
loss score in x—axis.

1) Auto Noisy Threshold Selection Criterion: After com-
puting h., the following question is how to use it to detect
noisy labeled data instances. [21] sets O as the loss threshold
to distinguish the clean and the noisy labeled data instances.
Specifically, data instances whose h. > 0 are considered to be
noisy labeled. This is because the loss of the observed label y;
is larger than the average loss of the other possible labels y;
[21]. However, 0 need not be the optimal loss value threshold.
For instance, Figure 4 shows the peer loss of 1,000 randomly
selected data instances in CIFAR-10, under symmetric noise
(NR = 0.1). The red dot line (peer loss threshold of 0) is
evidently not optimal — the black dot line can detect more
noisy labeled data instances.

20

Peer Loss

Fig. 4. Peer loss value distribution for random selected 1,000 data instances
in CIFAR-10 under symmetric noise (NR = 0.1). z—axis corresponds to peer
loss score, and y—axis corresponds to each data instance.

006 //\
\ Class

— Clean
00 / \ Noisy

Density
_—

=0 -0 -l 0)
Loss

Fig. 5. Peer loss value distribution without pre—trained model with random
selected 1,000 data instances in CIFAR—-10 under symmetric noise (NR = 0.1).
x—axis corresponds to peer loss score, and y—axis corresponds to frequency
with respect to particular peer loss score in x—axis.

This work proposes to automate the peer loss threshold
selection. Specifically, we wish to select noisy labeled data
instances whose loss is large but not exactly larger than its
average label loss threshold, as shown in Figure 4.

Before elaborating our proposed method, we note that using
a randomly initialized deep neural network as a starting point
can lead to erroneous loss estimation. For instance, Figure 5
shows that the loss of clean and noisy data instances may
overlap. Erroneous loss estimation can lead to missdetection
of clean instances as noisy (and visa versa), introducing even
more noisy labeled data instances into the training dataset.
Therefore, the starting point of a classification model is crucial.
Inspired by [31], which showed that a small portion of clean
labels improves the model robustness in noisy detection, we
pre—train a model g (see Section V-A3 for a detailed discussion
on g), using a small portion of data instances, denoted as D,
in which labels are guaranteed to be accurate. In the real-
world, a small portion of clean data instances can be obtained
using pre—annotation by experts [32].

We leverage this small portion of clean data instances to
auto—detect and revise noisy data instances in the overall train-
ing set. Specifically, we first calculate k. of each data instance
in Dy, using g and denote it as l,.. Next, since having
knowledge of the type of noise present in the training dataset
is unrealistic, we randomly select 10% of the data instances in
Dy, and artificially introduce noise by randomly switching
their label to a different one. The noisy version of the pre—train
dataset is denoted as me, = Dmequre, where D;re (Dpre
is the set of clean (noisy) data in D),.. Next, we calculate h.
on f)pre and record the loss as [,,,. The difference between [,
and lpy, (i.e., laiff = lpc—lpn) is used to define the loss varying
area D,, = {Xi‘ldiff (Xl) < minxqebgw ldiff(Xq),VXi €

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

ﬁp,.s}. The rationale for calculating D, is that D, may
contain the majority of noisy data instances, since lg;rs is
smaller for noisy data instances compared with clean data
instances because of higher [,,. As illustrated by Figure 6,
the absolute value of the loss difference l4;¢5 for noisy data
instances is higher than the clean data instances.

In subsequent steps in the training process (i.e., without
using Dpre), we have no prior indication about which data
instances are clean or noisy. Figure 7 shows that noisy data
instances are more likely to reside in D,s, in a real training
experiment with D. This observation lets us estimate the peer
loss threshold by calculating the average loss, as follows:

1 _
thr = B > he(Wg,%;),x; € D, 3)
where W denotes the parameters of the clean pre—trained
model g. The auto-learning noisy selection process is sum-
marized in Algorithm 1, in which the initial starting threshold
thr is set to 0, as per [21].

1000
Class
.

o
8

Noisy

Data Index
@
3
3

™

ns

L Nude.

q/.

&
5
o

50 40 30 20
Laigy

Fig. 6. Pre-train experiment with ﬁp,‘e. x—axis corresponds to [g; ff»and
y—axis corresponds to each data instance. The red circled data instances
define the upper bound of D, .

Data Index

laiss Layy

(a) First training round (b) Second training round

0 30 20 10 0 10 4 30 20 10 0 10
Laigy Lais

(c) Third training round (d) Fourth training round

Fig. 7. Test Dps on training simulation with D in different learning rounds.
x—axis corresponds to loss score, and y—axis corresponds to frequency with
respect to particular loss score in x—axis. The training around corresponding
to T in algorithm 3.

B. Noisy Label Correction h,,

The noisy label correction process is designed to pair the
noisy labeled data instances with their most likely true label
using counterfactual learning. Counterfactual learning is used
to explain algorithmic decisions by feature perturbation [27],

Algorithm 1 Dis Computation
Input: Clean pre—trained model g, clean data subset D).,
input noise rate 7, learning epoch T},

1: Select the number of | D), | x 7, data instances from D,
and randomly re—assign them with other labels which are
different from their original ones.

2: Output the loss value [, by Eq. 2 with ¢

3: Training data instances in me with clean pre—train model
g for T}, learning epochs and output the trained model g

4: Output the loss value [, by Eq. 2 with g

: Compute lgifr = lpe — lpn

: Set the smallest value of l4; ¢y of the clean data instances
as the loss value threshold for D,

Output: Dis

N W

Algorithm 2 Counterfactual Data Generation

Input: (x;,9;), target label set ¥ = {1,2,...7,..K},
T,y maximum epoch number, learning model
f(W), and counterfactual starting point set

j K
{xifu’:?gfo'”’xéfo’ e T}
1: Set optimal counterfactual set X .y = ()

2: for each j € Y do

3 Set) 7, as the counterfactual starting point and ¢ =1

4. while (f(W, xift) =y’ and t <T.p) do

5: Optimize the loss using 7, 7, and x; based on Eq. (4)

6 t=t+1

7: end while

8 Return counterfactual data z, £ that minimizes the loss

of Eq. (4) as x]
9: Add x] into Xf
10: end for '
Output: Output X7 in Xy which achieves the minimal value
of h,, and the corresponding value of h,,(x])

[28], [33]. This work generates a counterfactual data instance
with other possible labels for each detected noisy labeled data
instance (x;,¥;) € X,,. Specifically, the noisy label detection
module in IV-A provides the loss for each data instance,
as shown in Figure 8(a). In this example, data instance 2
has the highest loss of 0.9. Thus, (x2,¥2) is suspected to
be noisy labeled. The true label ys for x, belongs to the
label set Y = {A, B,C'}. We consider the noisy label B as
a viable label candidate because the noise detection module
may make a wrong detection by treating clean data instances
as noisy. Therefore, the target counterfactual data instances

. ~Aj=A ~j=A ~j=B ~j=B ~j=C ~j=C
include (%5~ 7, 93" "), (X5 7,93 7). (X3, 93).

The following question is how to generate the counterfactual
data instances for a detected noisy labeled data instance.
One commonly used counterfactual generation criterion is the
Proximity Score [33] which evaluates the distance between
the counterfactual data %] and the original feature vector
x;. A smaller distance between the data instance x; and its
counterfactual data instance X represents a higher probability

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

+* Step — 1: Find counterfactual start point

Data
Index

0 0.1

Loss | Original
label

A @
Detected

Instance 3 02 X)

Data Index = Min Loss

0 0.1

Original Possible label » @ x
label Counterfactual start point: ;i) \
[() " e[
Selected start Flert)=a e
A . points for each v
tabel with G
minimum loss
b 4
,,,,,,,, - o= o s mmmmmmmmmmm e
N
s \
i ! .
1 ! I
1 ! I
1 : "
| i !
1 ! L //" '
ifv 1 ! i _ <L \
1 ! - I
1 ! 5
. ! xX @ c i
! | XX K % !
1 ! b 4 X 1
i : % Xo)
’
’ N Data instance 2's true label: 3 Ll

(a) Example for loss value

Fig. 8. Diagram to show the steps of counterfactual noisy label correction.

that the true label of x; is the target class* j for %J. The
proximity measure has the following form:

hn = dist(%),%;),

“4)

where dist denotes Euclidean distance. This work first selects
the data instance with the minimum loss value (i.e., high-
est confidence of correct classification) as the counterfactual
starting point (i.e.,)2‘24,)223 , and)220) for each possible
label, as illustrated in Figure 8(b) step—1. Next, we minimize
the proximity score by perturbing the feature values of X
(.e., %4, %8 , and %X§) and forcing it to get closer to the
target noisy data instance. However, without any limitation,
x] will eventually be equal to x;, achieving a proximity score
of 0. To tackle this issue, we add a stopping criterion for
the counterfactual data instance generation process by using
a validity sore. Specifically, Validity Score [27] measures
the degree of validity of a counterfactual data instance. A
higher validity value represents higher confidence (e.g., a
lower loss) of the predictor outputting the target label y7 for
the counterfactual data instance %], with X being absolutely
valid if the prediction outcome is the same as the target label
(ie., f(x!) = y)). In our work, we take the validity score
as our stopping criterion and set it as 1 (i.e., highest value)
to guarantee the generated counterfactual data instance X
belongs to the particular class j. Taking label A in Figure
8(b) as an example, after perturbing the feature of X4 for # 4
times, we obtain the counterfactual data instance fcé“t K which
triggers the stopping criterion because f (}AciA) # A. The final
output counterfactual data instance for label A is i’é“t o (i.e.,
f(#4) = A). The same process is carried out for labels
B and label C. After obtaining all the valid counterfactual
data instances, the most likely true label for the noisy data
instance x; is determined to be the label of the counterfactual
data instance with the smallest proximity score. The overall
noisy label correction process is described in Algorithm 2.

4In counterfactual learning, the generated data instance can be classified
into a particular class (i.e., target class) by the learning model.

(b) Example for counterfactual label searching

C. NDCC Algorithm

Algorithm 3 describes the process of learning a model from
potentially noisy labeled data based on Eq. (1). Initially, a
pre—trained model g is used to generate D,y for automatically
selecting the loss threshold in each following learning round
(step 2). Then, potentially noisy labeled data instances in D =
(X,Y) are detected (steps 6 — 14). The most likely true label
for each noisy data instance is determined using counterfactual
label correction, and the dataset is updated with the revised
labels (steps 19 — 23). The revised dataset (step 24) is used to
train model f (step 25). The noisy loss threshold for the next
iteration is determined using the trained model f (step 27 —
—29). The algorithm terminates when reaches the maximum
training epoch T' or the dataset is no longer updated.

V. EVALUATION
A. Experiment Setting

1) Datasets: To measure the efficiency of the proposed
NDCC framework, we evaluate it on two widely used bench-
mark datasets [34]-[36].

CIFAR-10 [37]: Image dataset in the CIFAR family. The
size of the training set and the test set are 50, 000 and 10, 000.
Each data instance is a 32 x 32 x 3 colorful image, associated
with 10 classes (i.e., airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck). Fashion-MNIST [38]: Real-world
image dataset collected from Zalando’s article. The training set
contains 60, 000 data instances and the test set contains 10, 000
data instances. Each data instance is a 28 x 28 grayscale image,
associated with a label from 10 classes (i.e., t-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot).

2) Noise Environments: Both benchmark datasets are clean,
or with a negligible number of noisy labeled data instances
[22]. To evaluate the effectiveness of NDCC in noisy labeled
environments, we consider two types of noise: (i) Symmetric
Noise: the true label flips to all other labels with equal prob-
ability. The symmetric noise simulates the label noise caused
by a random mistake in the labeling process; (ii) Asymmetric
Noise: a noisy label is generated by flipping the true label to
the next class (i.e., label i < i+1;mod K) [21]. In both cases,
7 denotes the noise rate. We consider 7 € {0.2,0.4,0.6,0.8}

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Algorithm 3 NDCC

Input: Noisy dataset D, pre—train clean dataset Dpre, pre—
train clean model g, learning model f, pre—set learning
epoch T),.., maximum epoch for learning model 7,
maximum epoch for counterfactual searching 7.y, and
learning round 7'

1: t < 1, thr; < 0, Wy, Dt(—D

2: Compute the noisy loss region Dy using Algorithm 1

3: Calculate I,., by Eq. 2 with g for each x; € DY)

4; while (¢t < T and D equals to D*') do

5: /*Noise Detection Section*/

6. for x; € D! do

7: XLXE«+0

8

9

Calculate h.(x;, W) using Equation (2)
if hc(Xi7 Wt) < th?"t then

10: Set ¢! < 1, and add x; into X!
11: else

12: Set ¢! + 0, and add x; into X!
13: end if

14: end for

15: if X! = X!7! and t >= 2 then

16: break

17 end if

18: /*Noise Correction Section*/

19: Select data instances with minimum value of h,, for
each label and set these as counterfactual starting points
{x}jfo,mzfg...,xifo, ...,xgco}

20: for Each x; € X} do

21: Output X/ and h,, (%) using algorithm 2

22: Update label of x; with j

23: end for

24: Get label revised dataset as D't1

25: Train the learning model f(W,) with updated D' for
T, epochs by minimizing the cross entropy loss and
output f(Wyi1)

26: /*Updating Loss Threshold*/

27: Calculate I!,, by Eq. 2 with f(W,41) for x; € D

28 Caleulate I, ; = lpe, — I, for x; in D'*!

29: Aggregate data instances whose [, f¢; 1s inside D, and
compute thr,y1 by Eq. (3)

300 t+t+1

31: end while

Output: f(Wy) and DT

to evaluate NDCC on scenarios involving a variable number
of noisy labeled data instances (ranging from small to large).

3) Experimental Setup: All experiments use ResNet34 and
the following hyper—parameter values: mini—batch size (32),
number of training epochs (90), optimizer (AdamW [39]),
learning rate (0.01). In NDCC, we set 7' = 3 and 7,, = 30
in Algorithm 3 to ensure that the overall number of training
epochs for NDCC is the same as with the baseline methods
(i.e., 90). The counterfactual training epoch 7.y in Algorithm
2 is set to 50. In both CIFAR-10 and Fashion—-MNIST
experiments, we randomly select 2,000 data instances as the
clean pre—trained dataset D)., and use D,,.. to train g with

the following hyper—parameters: mini—batch size (32), number
of training epochs (50), optimizer (AdamW), learning rate
(0.01). Among the rest of the data instances, we randomly
select 10,000 data instances as the training set D. We use the
default test set for both CIFAR-10 and Fashion—-MNIST.

4) Baselines: CE (Cross Entropy) uses cross entropy loss,
and has no particular strategy for handling noisy labeled
data instances. CE—Clean uses solely clean data instances for
training, and thus achieves the theoretical best performance.
CORES (Confidence Regularized Sample Sieve) [21] uses
peer loss to detect suspected noisy labeled data instances with-
out unsupervised training. AUM (Area Under the Margin)
[22] uses the AUM statistic to exploit the differences between
the clean and noisy labeled data instances. AUM excludes the
detected noisy data instances from the training process. NN-
Correction (Nearest neighbor noisy label correction) [40]
uses the same noisy detection module as NDCC, but noise
label correction is performed using k—nearest neighbors.

B. Complexity Analysis

1) s Computation: The noisy threshold selection com-
prises three steps. Np,.. denotes the number of the data
instances in Dp,., and N,,.. < N. K denotes the total number
of classes. First, random re—sign the noisy label to random
selected data instances (e.g., |Dpre| X 7,) and output the loss
value as shown in Algorithm 1 steps: 1-2, with the complexity
of O(Npre7p). Next, the complexity for training pre—trian
model with ResNet can be estimated as O(Np..whCpk?dc),
C}, is the number of channels, w and h are the width and
height of the input data, k£ is the size of the filter, d is
the spatial dimension of the filters, ¢ denotes the number
of filter, respectively (i.e., Algorithm 1 steps: 3). Final, the
loss difference lq;¢¢ is calculated and Dns is computed, with
the complexity of ONy.. + 1. Thus, the complexity of ,
computation is O(N,,..whCp,k?dc).

2) Counterfactual Data Generation: In implementing
NDCC, we use counterfactual data for label correction. Let
N, s denotes the input data instances for counterfactual label
correction. For each data instances, the complexity for generate
counterfactual data instance is O(wh) in each iteration, as
shown in Algorithm 8 steps:5—6. Therefore, with maximum
T, learning epochs for total number of V,, data instances,
the overall complexity for counterfactual data generation is
O(NpswhTey).

3) NDCC: In implementing NDCC, we use counterfactual
data for label correction. Let N, denotes the input data
instances for counterfactual label correction. For each data
instances, the complexity for generate counterfactual data
instance is O(wh) in each iteration, as shown in Algorithm 8
steps:5—6. Therefore, with maximum 7.y learning epochs for
total number of N, data instances, the overall complexity for
counterfactual data generation is O(N,swhTcy).

4) Evaluation Metrics: We divide the evaluation process
into three parts: (i) noise detection, (ii) noise correction, and
(iii) overall accuracy on the clean test set under different types
of label noise in the training set.

Recall X, denotes the accumulated detected noisy data set
with respect to all learning rounds 7', and D is the noisy

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

TABLE 11
TRUE DETECTION RATE X g; (HIGHER IS BETTER)

Fashion-MNIST CIFAR-10
Method/NS Environment (7) Sym Asym Sym Asym
02 04 06 038 02 04 06 038 02 04 06 038 02 04 06 03
CORES 056 055 057 059 051 050 056 057 0.60 058 061 059 0.64 061 062 057
NDCC 076 075 075 0.77 0.67 0.68 072 0.74 0.80 081 0.81 0.84 078 076 0.78 0.82
TABLE IIT
WRONG DETECTION RATE X+ (LOWER IS BETTER)
Fashion-MNIST CIFAR-10
Method/NS Environment Sym Asym Sym Asym
02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
CORES 013 007 0.02 0.01 013 009 0.5 0.03 018 0.0 0.9 007 020 0.4 0.9 0.3
NDCC 0.17 0.15 007 0.04 0.16 0.14 0.13 0.09 026 0.17 0.14 0.04 0.27 0.21 0.17 0.09
TABLE IV
COUNTERFACTUAL TRUE CORRECTION RATE X, (HIGHER IS BETTER)
Fashion-MNIST CIFAR-10
Method/NS Environment Sym Asym Sym Asym
02 04 06 038 02 04 06 038 02 04 06 038 02 04 06 08
NN-correction 024 0.11 0.04 0.01 0.19 0.12 005 0.02 028 0.13 004 0.04 022 0.09 0.04 0.01
NDCC 0.62 061 059 0.60 0.57 055 054 056 068 070 072 071 0.67 0.65 0.68 0.70
TABLE V
DECREASED NOISY RATE d- (LOWER IS BETTER)
Fashion-MNIST CIFAR-10
Method/NS Environment Sym Asym Sym Asym
02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
CORES 007 0.6 022 023 006 014 019 023 008 017 022 024 0.09 0.8 021 023
NN-correction 0.02 001 -0.03 -0.02 001 001 -003 -0.02 001 003 -0.03 -0.01 002 -002 -002 -0.02
NDCC 0.08 021 030 038 0.06 018 027 035 0.06 017 029 044 007 016 026 042

input data set. Let X denote the true noisy data set. We
introduce the following score to evaluate noise detection per-

. . XaNX 5
formance: (i) True detection rate: X ;; = M measures

. . . . X5l
the ratio of truly identified noise data instances; (ii) Wrong
detection rate: X;, = % measures the ratio of

misidentified clean data instances as noisy; (iii) Miss detection
rate: X4, = % measures the ratio of noisy data
instances identified asD clean. In Section V-C, we only discuss
Xat and X gy, since Xy, can be directly derived from Xy

by Xgm =1 — Xg.

In noise correction, we check whether NDCC can correctly
assign the true labels to corresponding detected noisy data
instances. Let X, denote the data set where NDCC correctly
pair detected noisy data instances with their true labels, and
X, denote the detected noisy data instances that are assigned
wrong labels. We define the following two scores: (i) True
counterfactual label correction rate X, f. = ||§r|‘ and (ii)
False counterfactual label correction rate X, fo = ‘\);I‘

Finally, we measure the decreased noisy labeled rate
d, after applying the noisy label detection of baselines and
NDCC, and test the accuracy of each trained learning model
f. d; for CORES is computed as d, = 7 — 1% where

~D |X dm

- |D|—=|Xn|’
|D| — | X,,| denotes the number of currently available training
data instance, excluding the detected noisy data instances, and
| X0 | Xwd + | X 5| Xam denotes the remaining miss detected

noisy data instances. d. for NDCC and NN—Correction is
defined as:d, = 7 — IXB‘X””’]y'X"‘XC-f“’ , where | X,,| X, is

seen as noisy data instance because of correction failure.

C. Experiments Results

1) Noisy Label Detection: We begin by comparing NDCC
and CORES. Table II and III show the true and wrong
detection rates, X4 and X, for CORES and NDCC. A
larger value of X4 and smaller value of Xy, indicate better
performance, as the goal is to detect as many true noisy
labeled data instances as possible, while keeping the number
of wrong detections low. Compared with CORES, NDCC'’s
true detection rate X 4; increases almost three times more than
Xaw, 1llustrating that automatically selecting the loss threshold
is beneficial, as opposed to using a fixed threshold, as in [21].

2) Noisy Label Correction: We next measure the effective-
ness of NDCC’s counterfactual label correction module by
comparing the label correction results between NN—Correction
and NDCC. Table IV shows that, for both Fashion-MNIST
and CIFAR-10, NDCC'’s chc is much higher than NN-
Correction, especially as 7 increases. The performance of NN—
Correction is unsatisfactory because clusters become unreli-
able in the presence of noisy labeled data instances. Instead,
NDCC’s superiority is confirmed with a stable chc score,
even in severe noisy environments (i.e., 7 = 0.6, 0.8). Finally,
Table V shows the decreased noisy rate that different methods
achieve. NDCC outperforms all baselines in all noisy environ-
ments across both datasets.

3) Overall Evaluation: Table VI shows the accuracy of
NDCC and the baselines. CE, which does not at all perform
noisy detection, is expected to be the least performing method.
CE—Clean intentionally uses only clean data instances for
training, and is therefore expected to perform ideally. For
both Fashion—-MNIST and CIFAR-10, NDCC outperforms
the baselines when noise becomes severe (i.e., 7 > 0.6)
in both asymmetric and asymmetric case. Figures 9(b) and

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE
TABLE VI
EXPERIMENTS RESULT OF TEST ACCURACY.
Fashion-MNIST CIFAR-10
Method/NS Envir t Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
CE 0.63 049 028 0.11 058 042 027 012 052 041 026 0.12 059 043 027 0.12
CORES 071 065 056 0.39 075 069 0.64 048 0.67 062 052 041 0.69 0.65 056 042
AUM 075 0.69 058 035 079 071 0.63 041 0.68 0.63 055 037 071 065 057 036
NN-Correction 0.63 045 022 0.10 0.60 043 025 0.12 0.54 040 0.19 0.09 0.60 037 021 0.09
NDCC 072 065 059 052 075 070 0.65 0.54 0.65 060 0.56 0.49 0.67 063 0.58 0.51
CE-Clean 078 076 0.69 0.64 0.81 077 072 0.65 070 066 0.60 0.55 073 069 0.64 057

. As
R - AN ~
Wl A Iy

)
X -
v A5
SN v
I\Ar—(y\]l\\,\/ «’*\II\ \'p
v

Accuracy

-= CE
CE-Clean
CORES
NN-Correction
7 — NDCC

0 20 40 60 80
Epoch

(a) Symmetric noise, NR = 0.2

uy,\/ g e
(A ZTRSN

|) ’
X A ‘1»\‘,/ \,\z,\,
PEATARRTS 4 - A
(S V17 A A N INAN
’ KNG A Paa SN N v
Y VAN ALY \Il v v

Accuracy

-- cE
CE-Clean

H —~ CORES

021 — = NN-Correction

7 — NDCC

0 20 40 60 80

Epoch

(c) Asymmetric noise, NR = 0.2

Fig. 9.

9(d) in particular, show that NSCF achieves close to the best
performance, which would only be achievable if all training
data instances were clean. In light noisy environments (i.e.,
7 < 0.4), the performance of NDCC is close to AUM, the
best performing baseline. Figures 9(a) and 9(c) show that
both NDCC and CORES perform similarly to CE-Clean. The
reason is that clean data instances comprise a large portion
of training data instances under small noisy rate environment.
However, compared with NN—Correction and CE, the accuracy
of NDCC is higher, illustrating the effect of neither dealing
with noisy labeled instances at all (i.e., CE) as well as
using a naive label correction approach (i.e., NN—Correction).
In summary, the experimental results confirm that NDCC
can both effectively detect (and correct) noisy labeled data
instances, and train robust classifiers even in the presence of
sever label noise in the training set.

VI. CONCLUSION

We presented a new method for robust learning in the
presence of noisy labeling data. Specifically, we proposed
an automatic noisy peer loss threshold selection method to
separate noisy labeled data instances from clean data instances.
We additionally proposed to leverage counterfactual learning
to correct detected noisy labeled data instances by pairing them
with their most likely true labels. Our experimental results
show the superiority of the proposed approach as compared
with the state of the art, particularly in severe label noise

-= CE

CE-Clean
—=— CORES
== NN-Correction
— NDCC

o~

LASSSPZNPNRRARRITIEN X M R

0 20 40 60 80

(b) Symmetric noise, NR = 0.8

06
-— CcE

CE-Clean
CORES Nt
NN-Correction pihay, \
— NDCC 4

0.5

o
~

=)
w

Accuracy

o
N

’ N
B o=\, N noa "
- ~ A S
v WV e Y O A PR e v

/
v

=)
N
\
[N
¢
)
2
3
e
>

0 20 40 60 80

(d) Asymmetric noise, NR = 0.8

Test accuracy plots with increasing learning epochs in CIFAR-10 dataset with noise rate (NR) equals 0.2 (left column) and 0.8 (right column).

environments.

In future work, we wish to reduce our method’s dependency
on a pre—trained model with carefully labeled training data.
Even though this is a commonly adopted strategy in noisy
learning, we believe that eliminating the need for manual
annotation and human inspection can benefit noisy learning by
allowing models to be trained on less circumscribed domains
(e.g., car financing) that are much “messier” than domains with
clear ground truth (e.g., computer vision or natural language
processing). We additionally wish to evaluate the scalability of
our proposed approach using larger and more diverse datasets.

REFERENCES

[11 H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 5668-5675.

G. Guo and N. Zhang, “A survey on deep learning based face recogni-
tion,” Computer vision and image understanding, vol. 189, p. 102805,
2019.

H. Tuinhof, C. Pirker, and M. Haltmeier, “Image-based fashion product
recommendation with deep learning,” in International Conference on
Machine Learning, Optimization, and Data Science. Springer, 2018,
pp. 472-481.

Z. Zhang, X. Zhou, X. Zhang, L. Wang, and P. Wang, “A model based
on convolutional neural network for online transaction fraud detection,”
Security and Communication Networks, vol. 2018, 2018.

M. M. Kamani, S. Farhang, M. Mahdavi, and J. Z. Wang, “Targeted data-
driven regularization for out-of-distribution generalization,” in Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 882-891.

(2]

[3]

(5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

Y. Tang, F. Borisyuk, S. Malreddy, Y. Li, Y. Liu, and S. Kirshner,
“Msuru: Large scale e-commerce image classification with weakly
supervised search data,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 2518-2526.

L. Cai and Y. Zhu, “The challenges of data quality and data quality
assessment in the big data era,” Data science journal, vol. 14, 2015.
C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107-115, 2021.

D. Arpit, S. Jastrzundefinedbski, N. Ballas, D. Krueger, E. Bengio, M. S.
Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-
Julien, “A closer look at memorization in deep networks,” in Proceedings
of the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17. JMLR.org, 2017, p. 233-242.

K. Huang, H.-G. Stratigopoulos, and S. Mir, “Fault diagnosis of analog
circuits based on machine learning,” in 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010). 1EEE, 2010,
pp. 1761-1766.

R. Fu, Y. Huang, and P. V. Singh, “Crowds, lending, machine, and bias,”
Information Systems Research, vol. 32, no. 1, pp. 72-92, 2021.

B. Frénay and M. Verleysen, “Classification in the presence of label
noise: a survey,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 5, pp. 845-869, 2013.

X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,”
Artificial intelligence review, vol. 22, no. 3, pp. 177-210, 2004.

H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from
noisy labels with deep neural networks: A survey,” IEEE Transactions
on Neural Networks and Learning Systems, 2022.

W. Shin, J.-W. Ha, S. Li, Y. Cho, H. Song, and S. Kwon, “Which
strategies matter for noisy label classification? insight into loss and
uncertainty,” arXiv e-prints, pp. arXiv—2008, 2020.

J. Huang, L. Qu, R. Jia, and B. Zhao, “O2u-net: A simple noisy label
detection approach for deep neural networks,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
3326-3334.

J. Cao, S. Kwong, and R. Wang, “A noise-detection based adaboost
algorithm for mislabeled data,” Pattern Recognition, vol. 45, no. 12, pp.
4451-4465, 2012.

P. Chen, B. B. Liao, G. Chen, and S. Zhang, “Understanding and
utilizing deep neural networks trained with noisy labels,” in International
Conference on Machine Learning. PMLR, 2019, pp. 1062-1070.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” arXiv preprint arXiv:1804.06872, 2018.
N. M. Miiller and K. Markert, “Identifying mislabeled instances in clas-
sification datasets,” in 2019 International Joint Conference on Neural
Networks (IJCNN). 1IEEE, 2019, pp. 1-8.

H. Cheng, Z. Zhu, X. Li, Y. Gong, X. Sun, and Y. Liu, “Learning
with instance-dependent label noise: A sample sieve approach,” in
International Conference on Learning Representations, 2021.

G. Pleiss, T. Zhang, E. Elenberg, and K. Q. Weinberger, “Identifying
mislabeled data using the area under the margin ranking,” Advances
in Neural Information Processing Systems, vol. 33, pp. 17 044-17 056,
2020.

A. Ghosh, H. Kumar, and P. S. Sastry, “Robust loss functions under label
noise for deep neural networks,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 31, no. 1, 2017.

E. Malach and S. Shalev-Shwartz, “Decoupling” when to update” from”
how to update”,” Advances in neural information processing systems,
vol. 30, 2017.

S. Verma, J. Dickerson, and K. Hines, “Counterfactual explanations for
machine learning: A review,” arXiv preprint arXiv:2010.10596, 2020.
J. Hartford, G. Lewis, K. Leyton-Brown, and M. Taddy, “Deep iv:
A flexible approach for counterfactual prediction,” in International
Conference on Machine Learning. PMLR, 2017, pp. 1414-1423.

S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the gdpr,”
Harv. JL & Tech., vol. 31, p. 841, 2017.

W. Qi and C. Chelmis, “Improving algorithmic decision—-making in the
presence of untrustworthy training data,” in 202/ IEEE International
Conference on Big Data (Big Data). 1EEE, 2021, pp. 1102-1108.

J. Huang, L. Qu, R. Jia, and B. Zhao, “O2u-net: A simple noisy
label detection approach for deep neural networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

Y. Liu and H. Guo, “Peer loss functions: Learning from noisy labels
without knowing noise rates,” in International Conference on Machine
Learning. PMLR, 2020, pp. 6226-6236.

A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie,
“Learning from noisy large-scale datasets with minimal supervision,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 839-847.

D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted
data to train deep networks on labels corrupted by severe noise,”
Advances in neural information processing systems, vol. 31, 2018.

R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency,
2020, pp. 607-617.

T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from
massive noisy labeled data for image classification,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 2691-2699.

Y. Heng, Z. Gao, Y. Jiang, and X. Chen, “Exploring hidden factors
behind online food shopping from amazon reviews: A topic mining
approach,” Journal of Retailing and Consumer Services, vol. 42, pp.
161-168, 2018.

R. K. Ando, T. Zhang, and P. Bartlett, “A framework for learning
predictive structures from multiple tasks and unlabeled data.” Journal
of Machine Learning Research, vol. 6, no. 11, 2005.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification.” Journal of machine learning
research, vol. 10, no. 2, 2009.

Charalampos Chelmis , Assistant Professor in
Computer Science at the University at Albany, State
University of New York, and Director of the Intelli-
gent Big Data Analytics, Applications, and Systems
(IDIAS) Lab, conducts research on data—intensive
computing involving high—dimensional and/or inter-
related data, and social good applications. He has
served and is serving as Co—Chair, TPC member
or reviewer in numerous international conferences
and journals including TheWebConf, ASONAM, and
ICWSM. He is currently Associate Editor of Social

Network Analysis and Mining Journal (SNAM), and has served as Guest
Editor for the Encyclopedia of Social Network Analysis and Mining. He
earned his Ph.D. and M.Sc. degrees in Computer Science in 2013 and 2010,
respectively from the University of Southern California, and B.S. in Computer
Engineering and Informatics from the University of Patras, Greece in 2007.

Wenting Qi , received the B.S. degree in automation
from the Beijing University of Technology, China
in 2017, and earned M.S. degree in Electrical Engi-
neering from the University of Southern California
in 2019, Los Angeles, CA, USA. She is currently
working towards the Ph.D. degree in Computer
Science at the University at Albany, Albany, NY,
USA. Her research interests include noisy detection,
hierarchical classification, and explainable machine
learning.

APPENDIX

We show that the optimal solutions for W and X can
be acquired in an iterative manner by alternating search,
according to Equation 1 and the following lemma.

Lemma 1: The optimal solution found by minimizing W
first and then minimizing X; is the same as the optimal solution
found by jointly minimizing W, X;.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 11

The parameters W of the learning model and the optimal
counterfactual data instance X; with respect to x; are inde-
pendent. The global optimum X; is unknown and pre—existed,
and we wish to use learning model with parameters W to find
it. Therefore, the simultaneously obtained optimal solutions
are W* and %}. Global minimum g(W* X{) satisfies the
following equation:

g(W",%7) < minmin g(W,). 5)

Because for any X;, ming, g(W, X;) < g(W*, %),

min H\l}%/_n g(W, %) < ming(W* %;) (6)
and
min g(W*, %;) < g(W*, X{). (7

Combining Equations (6) and (7), we get
minnin g(W, %) < g(W*, %{). (8
Finally, comparing Equations (5) and (8), we get
g(W", %) = minmin g(W, %) ©)
Using Lemma 1, instead of showing g(W,%;) is convex

for W and X; simultaneously, we can show that g(W, %;) is
convex with respect to W and X; separately.

