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Noisy Label Detection and Counterfactual

Correction
Wenting Qi, Student member, IEEE, Charalampos Chelmis, Member, IEEE

AbstractÐData quality is of paramount importance to the
training of any machine learning model. Recently proposed
methods for noisy learning focus on detecting noisy labeled data
instances by using a fixed loss value threshold, and exclude de-
tected noisy data instances in subsequent training steps. However,
a predefined, fixed loss value threshold need not be optimal, and
excluding the detected noisy data instances can hurt the size
of the training set. In this article, we propose NDCC, a new
method that automatically selects a loss threshold to identify
noisy labeled data instances, and uses counterfactual learning to
repair them. To the best of our knowledge, NDCC is the first
work to explore the use of counterfactual learning in the noisy
learning domain. We demonstrate the performance of NDCC on
Fashion±MNIST and CIFAR±10 datasets under a variety of label
noise environments. Experimental results show the superiority of
the proposed method compared to the state±of±the±art, especially
in the presence of severe label noise.

Impact StatementÐThe accuracy of machine learning models
depends on training data quality. Quite unsurprisingly then,
it drops dramatically (up to 53% in our experiments) as the
percentage of noisy labels increases. The method presented here
is shown to maintain high performance even in the presence
of highly corrupted data (i.e., 80% noisy labels) by performing
joint noisy detection and correction. Specifically, the proposed
method increases the accuracy rate of noisy label detection (up
to 25%), while achieving a high noisy correction rate (up to 72%).
When presented with severe label noise (i.e., 80% noisy labels),
the proposed method lowers the noise rate to 52.5%. Beyond
improving the accuracy of machine learning models that are
trained with noisy label data, this research highlights the need
to treat (as opposed to discard) noisy label instances during the
training process.

Index TermsÐdata quality, noisy learning, deep learning

I. INTRODUCTION

MACHINE learning models have been applied in a wide

range of applications, including, but not limited to,

traffic prediction [1], face recognition [2], product recom-

mendation [3] and online fraud detection [4]. Deep neural

networks, one of the most popular branches of machine

learning, have achieved remarkable performance to a variety

of tasks due in part, to large quantities of human±annotated

data [5], [6]. However, the label annotation process is labor±

intensive, and often introduces label noise for reasons includ-

ing insufficient information for low quality data, subjectivity in

the labeling process, and limited number of expert annotators
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due to budgetary constraints [7]. After the completion of

the data labeling process, identifying and correcting wrong

labels is resource± and time±consuming. Furthermore, over±

parameterized machine learning models, such as Deep Neural

Networks, can overfit on noisy data instances by memorizing

them during training [8], [9]. Learning and assessing machine

learning models using noisy labels can result in biases and

misleading accuracy reporting, with potentially detrimental

results, such as wrong disaster diagnosis [10] or perpetuating

biases in resource allocation (e.g., loan application) [11]. There

are two common types of noise, namely: feature noise and

label noise [12]. In this work, we focus on label noise which

has been shown to be more harmful than feature noise [13].

To facilitate training a learning model over a noisy dataset,

one commonly adopted approach is noise sample selection

[14], which distinguishes the noisy from clean data instances

during the training process, then excludes noisy instances from

the training process [15]±[17]. In line with prior art, this work

leverages loss to distinguish between noisy from clean data

instances (i.e., data instances exhibiting low loss value being

more likely to be clean) [18], [19]. The challenge is how

to quantify the loss value during the training process. [20]

ranks the loss value for all data instances and pre±sets the

loss threshold with a specific noise rate (NR) to identify noisy

data instances as those whose loss value is lower than the

threshold. The main problem with that approach is twofold:

(i) in the real±world, the noise rate is hard to estimate a

priori, and (ii) different choices of loss functions have different

impacts on the loss value ranking. To overcome these issues,

we use peer loss [21] in loss value evaluation for noisy label

detection. Specifically, peer loss is the loss value computed by

substituting the current label with other possible labels in the

label set, and does not require knowledge of the noise rate.

Furthermore, since the comparison is among the same data

instance with different label values, different loss functions do

not affect the comparison result. [21] sets peer loss threshold to

0 to distinguish the noisy from clean data instances. However,

our experiments (See Figure 4) show that 0 may not always

be the optimal peer loss threshold. This article proposes an

automated threshold selection method to overcome this issue.

Upon detecting suspected noisy labeled data instances, these

instances are typically excluded from the training process

[22]. However, for small or severely noisy labeled datasets,

excluding noisy data can dramatically reduce the size of

the training set, to the point it becomes useless for training

purposes. Furthermore, despite having noisy labels, the feature

values of noisy labeled data instances are clean and could still

be useful for training. This work is the first to explore the
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feasibility of correcting noisy labeled data instances by find-

ing the true label using counterfactual learning. Specifically,

for each detected noisy labeled instance, counterfactual data

instances are computed for all possible labels. The label that

achieves the minimum value of counterfactual score is then

selected as the true label (refer to Section IV-B for detailed

explanation and examples).

This work focuses on training a robust learning model in

the presence of noisy labeled data in the training set, through

detecting and correcting noisy labeled data instances. A new

framework is proposed to (i) identify potentially noisy labeled

data instances in the training set, (ii) estimate the true label of

each detected noisy labeled data instance through counterfac-

tual data generation, and (iii) output a robust learning model

and revised dataset (i.e., with corrected labels). We evaluate the

ability of the proposed framework to handle varying degrees of

noisy labeled data using two benchmark datasets. In summary,

the main contributions of this article are:

• Proposing a novel method for automating the selection of

the noisy peer loss threshold in the noisy label detection.

• Introducing a practical approach for identifying noisy

labeled data in the training process, and estimating the

most probable true label for each detected noisy data

instance using counterfactual learning.

• Demonstrating the superiority of the proposed solution

against baselines using benchmark datasets under differ-

ent noisy environments.

To ensure the reproducibility of our work, we will make

the source code of our method available on GitHub upon

acceptance of this manuscript.

II. RELATED WORK

With the increase of complexity and scale of datasets, the

possibility of including unreliable labels or noisy labels also

increases. Training machine learning models with noisy labels

significantly impacts their prediction performance. For this

reason, a large variety of deep learning models for robust

learning in noisy data environments has already been devel-

oped [23], [24]. For instance, the loss function±based approach

in [23] minimizes the risk for unseen clean data with the

presence of noisy labels in the training data. However, such

loss function±based approaches are restricted to a particular

framework, and thus, lack adaptability. Some methods (e.g.,

[16], [21], [22], [24]) focus on selecting the true labeled

instances from a noisy labeled dataset to mitigate the negative

influence of noisy data instances. For instance, [21] uses peer

loss to select clean data instances by fixing the loss threshold

to 0. However, the optimal loss threshold may not always be

fixed or predetermined. Instead of using a fixed threshold, this

work learns the loss threshold for noisy labeled data instances

detection during the training process itself.

After detecting suspected noisy labeled data instances, many

methods (e.g., [16], [22], [24]) exclude such instances in

subsequent training steps. However, dropping suspected noisy

label data instances can result in a diminished training set,

and wastes the clean features of noisy labeled samples. [17]

assigns more weight on clean data instances than on suspected

noisy data instances. At the same time, mistreating noisy data

instances as clean can lead to a highly inaccurate model. We

instead propose a counterfactual based method to correct the

labels of suspected noisy labeled data instances. Counterfac-

tual learning has been widely explored in explainable machine

learning to shed light into how/why the output of a machine

learning model would change if the input (i.e., features) were

to change [25], [26]. Specifically, [27] leverages counterfactual

learning to produce example±based explanations by feature

perturbation. Feature perturbation may lead to different pre-

diction results given a learning model; data instances with

perturbed feature values (in our case labels) are considered

counterfactual [28]. To the best of our knowledge, this work

is the first to incorporate counterfactual learning directly into

noisy learning.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

Let D = (X,Y ) denote a clean training dataset and

D̃ = (X, Ỹ )1 a noisy dataset. N is the total number of data

instances in D and D̃ (i.e., X = {xi}
N
i=1), and xi ∈ X

is an M dimensional feature vector. The total number of

classes in both Y and Ỹ are K, and j denotes the class

index. The label of xi is denoted as yi ∈ B
K with value

1 at entry j indicating belonging to the jth class, otherwise

0. For example, for K = 5, yi = [0, 1, 0, 0, 0] indicates that

xi belongs to Class 2. The task is to train a model f using

D̃, since the clean dataset D is unavailable, to predict the true

label y of previously unseen data instances. Let ȳ denote the

predicted outcome. To minimize the influence of noisy data on

the model performance, we propose strategies to detect noisy

data instances, and assign them with the most likely true label

while learning f . We leverage counterfactual learning to search

for the most likely true label for each noisy data instance.

Specifically, each noisy data instance is associated with K

counterfactual data instances (x̂j
i , ŷ

j
i ), each is generated for

each labels ŷ
j
i , where j ∈ 1, 2, 3, ..,K. By comparing the

counterfactual properties (see Section IV-B) with (xi, ỹi) and

each (x̂j
i , ŷ

j
i ), we find the most likely true label ŷ

j
i and

substitute the noisy label with the most likely true label ŷ
j
i .

Table I summarizes the notation used hereafter.

B. Problem Statement

The goal of this work is to learn a robust classifier f

over a noisy labeled dataset by minimizing the influence

of noisy labeled data instances during training. To achieve

this goal, we split the problem into three sub±problems: (i)

learn a classifier f that accurately maps X to Y , (ii) detect

noisy labeled data instances, and (iii) assign the most likely

true label to suspected noisy labeled data instances through

counterfactual learning. For clarity, clean data instances refer

to data instances with correct labels; noisy data instances refer

to data instances with wrong labels; and observed labels can

be either clean or noisy.

1Data instances in D̃ are either clean or noisy labeled. Same with Ỹ .
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Algorithm 3 NDCC

Input: Noisy dataset D̃, pre±train clean dataset D̃pre, pre±

train clean model g, learning model f , pre±set learning

epoch Tpre, maximum epoch for learning model Tn,

maximum epoch for counterfactual searching Tcf , and

learning round T

1: t← 1, thr1 ← 0, Wt, D̃t ← D̃

2: Compute the noisy loss region D̃ns using Algorithm 1

3: Calculate lpci by Eq. 2 with g for each xi ∈ D̃t)

4: while (t ≤ T and D̃t equals to D̃t−1) do

5: /*Noise Detection Section*/

6: for xi ∈ D̃t do

7: Xt
c, X

t
n ← ∅

8: Calculate hc(xi,Wt) using Equation (2)

9: if hc(xi,Wt) ≤ thrt then

10: Set ϕt
i ← 1, and add xi into Xt

c

11: else

12: Set ϕt
i ← 0, and add xi into Xt

n

13: end if

14: end for

15: if Xt
n = Xt−1

n and t >= 2 then

16: break

17: end if

18: /*Noise Correction Section*/

19: Select data instances with minimum value of hn for

each label and set these as counterfactual starting points

{x1
cf0

, x2
cf0

..., x
j
cf0

, ..., xK
cf0
}

20: for Each xi ∈ Xt
n do

21: Output x̂
j
i and hn(x̂

j
i ) using algorithm 2

22: Update label of xi with j

23: end for

24: Get label revised dataset as D̃t+1

25: Train the learning model f(Wt) with updated D̃t for

Tn epochs by minimizing the cross entropy loss and

output f(Wt+1)
26: /*Updating Loss Threshold*/

27: Calculate ltpni
by Eq. 2 with f(Wt+1) for xi ∈ D̃t+1

28: Calculate ltdiffi = lpci − ltpni
for xi in D̃t+1

29: Aggregate data instances whose ltdiffi is inside D̃ns and

compute thrt+1 by Eq. (3)

30: t← t+ 1
31: end while

Output: f(WT ) and D̃T

to evaluate NDCC on scenarios involving a variable number

of noisy labeled data instances (ranging from small to large).

3) Experimental Setup: All experiments use ResNet34 and

the following hyper±parameter values: mini±batch size (32),

number of training epochs (90), optimizer (AdamW [39]),

learning rate (0.01). In NDCC, we set T = 3 and Tn = 30
in Algorithm 3 to ensure that the overall number of training

epochs for NDCC is the same as with the baseline methods

(i.e., 90). The counterfactual training epoch Tcf in Algorithm

2 is set to 50. In both CIFAR±10 and Fashion±MNIST

experiments, we randomly select 2, 000 data instances as the

clean pre±trained dataset Dpre, and use Dpre to train g with

the following hyper±parameters: mini±batch size (32), number

of training epochs (50), optimizer (AdamW), learning rate

(0.01). Among the rest of the data instances, we randomly

select 10, 000 data instances as the training set D. We use the

default test set for both CIFAR±10 and Fashion±MNIST.

4) Baselines: CE (Cross Entropy) uses cross entropy loss,

and has no particular strategy for handling noisy labeled

data instances. CE±Clean uses solely clean data instances for

training, and thus achieves the theoretical best performance.

CORES (Confidence Regularized Sample Sieve) [21] uses

peer loss to detect suspected noisy labeled data instances with-

out unsupervised training. AUM (Area Under the Margin)

[22] uses the AUM statistic to exploit the differences between

the clean and noisy labeled data instances. AUM excludes the

detected noisy data instances from the training process. NN±

Correction (Nearest neighbor noisy label correction) [40]

uses the same noisy detection module as NDCC, but noise

label correction is performed using k±nearest neighbors.

B. Complexity Analysis

1) ns Computation: The noisy threshold selection com-

prises three steps. Npre denotes the number of the data

instances in Dpre, and Npre < N . K denotes the total number

of classes. First, random re±sign the noisy label to random

selected data instances (e.g., |Dpre| × τp) and output the loss

value as shown in Algorithm 1 steps: 1±2, with the complexity

of O(Npreτp). Next, the complexity for training pre±trian

model with ResNet can be estimated as O(NprewhChk
2dc),

Ch is the number of channels, w and h are the width and

height of the input data, k is the size of the filter, d is

the spatial dimension of the filters, c denotes the number

of filter, respectively (i.e., Algorithm 1 steps: 3). Final, the

loss difference ldiff is calculated and D̃ns is computed, with

the complexity of ONpre + 1. Thus, the complexity of ns

computation is O(NprewhChk
2dc).

2) Counterfactual Data Generation: In implementing

NDCC, we use counterfactual data for label correction. Let

Nns denotes the input data instances for counterfactual label

correction. For each data instances, the complexity for generate

counterfactual data instance is O(wh) in each iteration, as

shown in Algorithm 8 steps:5±6. Therefore, with maximum

Tcf learning epochs for total number of Nns data instances,

the overall complexity for counterfactual data generation is

O(NnswhTcf ).
3) NDCC: In implementing NDCC, we use counterfactual

data for label correction. Let Nns denotes the input data

instances for counterfactual label correction. For each data

instances, the complexity for generate counterfactual data

instance is O(wh) in each iteration, as shown in Algorithm 8

steps:5±6. Therefore, with maximum Tcf learning epochs for

total number of Nns data instances, the overall complexity for

counterfactual data generation is O(NnswhTcf ).
4) Evaluation Metrics: We divide the evaluation process

into three parts: (i) noise detection, (ii) noise correction, and

(iii) overall accuracy on the clean test set under different types

of label noise in the training set.

Recall Xn denotes the accumulated detected noisy data set

with respect to all learning rounds T , and D̃ is the noisy
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TABLE II
TRUE DETECTION RATE Xdt (HIGHER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment (τ ) Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CORES 0.56 0.55 0.57 0.59 0.51 0.50 0.56 0.57 0.60 0.58 0.61 0.59 0.64 0.61 0.62 0.57
NDCC 0.76 0.75 0.75 0.77 0.67 0.68 0.72 0.74 0.80 0.81 0.81 0.84 0.78 0.76 0.78 0.82

TABLE III
WRONG DETECTION RATE Xwt (LOWER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CORES 0.13 0.07 0.02 0.01 0.13 0.09 0.05 0.03 0.18 0.10 0.09 0.07 0.20 0.14 0.09 0.03

NDCC 0.17 0.15 0.07 0.04 0.16 0.14 0.13 0.09 0.26 0.17 0.14 0.04 0.27 0.21 0.17 0.09

TABLE IV
COUNTERFACTUAL TRUE CORRECTION RATE X̂cfc (HIGHER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

NN-correction 0.24 0.11 0.04 0.01 0.19 0.12 0.05 0.02 0.28 0.13 0.04 0.04 0.22 0.09 0.04 0.01
NDCC 0.62 0.61 0.59 0.60 0.57 0.55 0.54 0.56 0.68 0.70 0.72 0.71 0.67 0.65 0.68 0.70

TABLE V
DECREASED NOISY RATE dτ (LOWER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CORES 0.07 0.16 0.22 0.23 0.06 0.14 0.19 0.23 0.08 0.17 0.22 0.24 0.09 0.18 0.21 0.23
NN-correction 0.02 0.01 -0.03 -0.02 0.01 0.01 -0.03 -0.02 0.01 0.03 -0.03 -0.01 0.02 -0.02 -0.02 -0.02

NDCC 0.08 0.21 0.30 0.38 0.06 0.18 0.27 0.35 0.06 0.17 0.29 0.44 0.07 0.16 0.26 0.42

input data set. Let XD̃ denote the true noisy data set. We

introduce the following score to evaluate noise detection per-

formance: (i) True detection rate: Xdt =
|Xn∩XD̃|

|XD̃| measures

the ratio of truly identified noise data instances; (ii) Wrong

detection rate: Xdw =
|Xn∩(D̃−XD̃)|

|Xn|
measures the ratio of

misidentified clean data instances as noisy; (iii) Miss detection

rate: Xdm =
(|D̃−Xn)∩XD̃|

|XD̃| measures the ratio of noisy data

instances identified as clean. In Section V-C, we only discuss

Xdt and Xdw, since Xdm can be directly derived from Xdt

by Xdm = 1−Xdt.

In noise correction, we check whether NDCC can correctly

assign the true labels to corresponding detected noisy data

instances. Let X̂r denote the data set where NDCC correctly

pair detected noisy data instances with their true labels, and

X̂w denote the detected noisy data instances that are assigned

wrong labels. We define the following two scores: (i) True

counterfactual label correction rate X̂cfc = |X̂r|
|Xn|

, and (ii)

False counterfactual label correction rate X̂cfw = |X̂w|
|Xn|

.

Finally, we measure the decreased noisy labeled rate

dτ after applying the noisy label detection of baselines and

NDCC, and test the accuracy of each trained learning model

f . dτ for CORES is computed as dτ = τ −
|XD̃|Xdm

|D̃|−|Xn|
, where

|D̃| − |Xn| denotes the number of currently available training

data instance, excluding the detected noisy data instances, and

|Xn|Xwd + |XD̃|Xdm denotes the remaining miss detected

noisy data instances. dτ for NDCC and NN±Correction is

defined as:dτ = τ −
|XD̃|Xdm+|Xn|X̂cfw

|D̃|
, where |Xn|X̂cfw is

seen as noisy data instance because of correction failure.

C. Experiments Results

1) Noisy Label Detection: We begin by comparing NDCC

and CORES. Table II and III show the true and wrong

detection rates, Xdt and Xdw, for CORES and NDCC. A

larger value of Xdt and smaller value of Xdw indicate better

performance, as the goal is to detect as many true noisy

labeled data instances as possible, while keeping the number

of wrong detections low. Compared with CORES, NDCC’s

true detection rate Xdt increases almost three times more than

Xdw, illustrating that automatically selecting the loss threshold

is beneficial, as opposed to using a fixed threshold, as in [21].

2) Noisy Label Correction: We next measure the effective-

ness of NDCC’s counterfactual label correction module by

comparing the label correction results between NN±Correction

and NDCC. Table IV shows that, for both Fashion±MNIST

and CIFAR±10, NDCC’s X̂cfc is much higher than NN±

Correction, especially as τ increases. The performance of NN±

Correction is unsatisfactory because clusters become unreli-

able in the presence of noisy labeled data instances. Instead,

NDCC’s superiority is confirmed with a stable X̂cfc score,

even in severe noisy environments (i.e., τ = 0.6, 0.8). Finally,

Table V shows the decreased noisy rate that different methods

achieve. NDCC outperforms all baselines in all noisy environ-

ments across both datasets.

3) Overall Evaluation: Table VI shows the accuracy of

NDCC and the baselines. CE, which does not at all perform

noisy detection, is expected to be the least performing method.

CE±Clean intentionally uses only clean data instances for

training, and is therefore expected to perform ideally. For

both Fashion±MNIST and CIFAR±10, NDCC outperforms

the baselines when noise becomes severe (i.e., τ ≥ 0.6)

in both asymmetric and asymmetric case. Figures 9(b) and
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APPENDIX

We show that the optimal solutions for W and x̂ can

be acquired in an iterative manner by alternating search,

according to Equation 1 and the following lemma.

Lemma 1: The optimal solution found by minimizing W

first and then minimizing x̂i is the same as the optimal solution

found by jointly minimizing W, x̂i.
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The parameters W of the learning model and the optimal

counterfactual data instance x̂i with respect to xi are inde-

pendent. The global optimum x̂i is unknown and pre±existed,

and we wish to use learning model with parameters W to find

it. Therefore, the simultaneously obtained optimal solutions

are W∗ and x̂∗
i . Global minimum g(W∗, x̂∗

i
) satisfies the

following equation:

g(W∗, x̂∗
i ) ≤ min

x̂i

min
W

g(W, x̂i). (5)

Because for any x̂i, minx̂i
g(W, x̂i) ≤ g(W∗, x̂i),

min
x̂i

min
W

g(W, x̂i) ≤ min
x̂i

g(W∗, x̂i) (6)

and

min
x̂i

g(W∗, x̂i) ≤ g(W∗, x̂∗
i ). (7)

Combining Equations (6) and (7), we get

min
x̂i

min
W

g(W, x̂i) ≤ g(W∗, x̂∗
i ). (8)

Finally, comparing Equations (5) and (8), we get

g(W∗, x̂∗
i ) = min

x̂i

min
W

g(W, x̂i) (9)

Using Lemma 1, instead of showing g(W, x̂i) is convex

for W and x̂i simultaneously, we can show that g(W, x̂i) is

convex with respect to W and x̂i separately.


