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AbstractÐMost supervised classification methods assume per-
fect training data, although this is not usually the case in the real±
world. Meanwhile, counterfactual data generation approaches
have emerged as a way to provide post±hoc explanation of deci-
sions made by classification models. However, such approaches
highly rely on the classification model output since different
outputs lead to alternative, or even contradicting explanations.
This work proposes a plug±and±play framework to learn a robust
classification model in the presence of noisy labeled data and
provide actionable suggestions for undesirable decisions (e.g.,
loan application rejection) made by a given classification model.
The framework’s generalizability is demonstrated by considering
alternative noisy label detection and counterfactual explanation
methods, as well as diverse supervised classification models. The
framework’s superiority against several baselines is demonstrated
using three benchmark datasets.

Index TermsÐCounterfactual explanations, data quality, so-
cially important data science, supervised learning

I. INTRODUCTION

Learning accurate classifiers becomes increasingly crucial

as supervised classification models are widely being applied to

human±related domains, including but not limited to, disease

diagnosis [1] and loan application assessment [2]. One of the

critical factors in building a precise classification model is

training data quality [3]. However, most classification algo-

rithms implicitly assume perfect training data [4]. Unfortu-

nately, in the real±world, training data quality cannot be taken

for granted [5]. For example, in homelessness service provi-

sion (e.g., [6]), individuals are often assigned to shelters not

necessarily based on their need, but based on availability and

capacity constraints. Supervised classification models trained

on unreliable data can lead to biased classifications [7], with

potentially detrimental consequences, including misdiagnosing

a disease and delaying treatment [8].

When training data is suspected to be noisy, machine learn-

ing models are instructed to either ignore noisy training data

instances or be robust to noise. Recent works on detecting and

filtering label noise from training data [9] result in potentially
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unnecessary data loss (i.e., dropping suspected noisy samples)

which can lead to either an overfitted model or a totally

unusable training dataset when the noise ratio is high. Note

that noisy data can refer to either noisy labels or noisy feature

values. Label noise is considered to be more harmful [10].

Therefore, we specifically focus on supervised learning in the

presence of noisy labeled data instances.

Regardless of training data quality, making accurate clas-

sifications is often not enough; ªexplainingº the output of a

classification model [11], or offering actionable suggestions

for improvement [12] are crucial in algorithmic decision±

making involving humans. Furthermore, in the explanation

generation process, constraints should be considered in feature

perturbation process and feature value distribution, including

immutable features and feature directionality (e.g., a high

education degree cannot be usually revoked), for realistic

suggestions to be made.

Learning a classification model with noisy training data

hurts the ability to offer correct or unbiased explanations of

decisions made by the classification model. This is because

noisy training data can affect the training process by introduc-

ing noise to the data distribution, shifting the model classifi-

cation boundary, which in turn influences and even reverses

classification output. However, provided ªexplanationsº are

directly dependent on the classification model output. When

wrong classification results are used to generate corresponding

ªexplanationsº, inaccurate suggestions can be made. Thus,

identifying noisy data is key to offering accurate explanations.

This work focuses on improving algorithmic decision±

making in the presence of noisy label training data, while at

the same time offering actionable suggestions for undesirable

decisions. In summary, its main contributions are:

• Generalizing our previously presented approach for clas-

sification with counterfactual data generation [13] into

a plug±and±play framework designed to improve super-

vised classification model reliability in the presence of

noisy labeled training data, while offering counterfactual

explanations for undesirable decisions.

• Demonstrating the generalizability of the proposed frame-

work by considering numerous state±of±the±art methods
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for noisy label detection, classification, and counterfac-

tual explanation generation.

• Evaluating the proposed framework through extensive ex-

perimentation and performance analysis under increasing

levels of noise on three real±world datasets.

II. RELATED WORK

Numerous methods have been proposed to detect noisy

labels. Ensemble±based methods [14], [15] leverage multiple

classification models to decide a label. If prediction results

are inconsistent with the observed label, the corresponding

data instances are dropped. However, such methods train each

classifier without excluding the noisy training data. Local

learning methods assume that noisy labeled data tend to differ

from their neighbors’ labels [16]. Our own cluster centroid±

based method leverages both ensemble and local learning for

noisy labeled data detection [13].

The explainability of classification models can be broadly

divided into model explanation, and outcome explanation (i.e.,

post±hoc explanation) [17]. Model explanation aims to shed

light into the internal logic of a model and strives for transpar-

ent and global explanation in terms of the original model [18].

However, model explainability is tailored to specific learning

model structures. Outcome explanations focus on explaining

a specific prediction given by a classification model [19].

One of the widely used methods in this category, generates

explanations through feature importance [20]. Recently, [21]

proposed example±based explanations by feature perturbation.

Feature perturbation, as a means to generate counterfactual

data, may lead to different prediction results given a learning

model. A comprehensive survey of counterfactual data gen-

eration methods for explainable classification is provided by

[22]. Different from existing counterfactual data generation

methods [22], the ACDG method discussed here incorporates

realistic constraints (e.g., directional perturbation for features)

into the counterfactual data generation. Besides, all methods

in [22] assume the input training data to be free of noise. We

believe our work to be the first in bridging the gap between

post±hoc explainability of classification models, and training

robust classifiers in the presence of noisy labeled training data.

III. PRELIMINARIES AND PROBLEM STATEMENT

Let DT = (X,Y ) denote the noisy training dataset, and

N be the total number of data instances (i.e., X = {xi}
N
i=1

).

Each data instance x ∈ X is associated with a feature d in

a K−dimensional feature vector, and a corresponding noisy

binary label y ∈ {0, 1}, one of which (e.g., y = 0) may be

undesirable (e.g., loan application is rejected). Given DT and

a noisy label detection method (NLD), the task is to learn a

highly accurate supervised classification model, C, to predict

the label (i.e., class) of previously unseen data.

Let ȳ denote the predicted outcome of C for instance x.

By comparing y with ȳ, the training data can be divided into

four subsets, namely, the true positive set X11, false positive

set X01, true negative set X00, and false negative set X10.

In addition to ensuring a highly accurate model C is learned

despite the presence of noise in the training data, we wish to

obtain realistic counterfactual data xcf using a counterfactual

explanation generation model (CEG), ∀x ∈ X00 that can lead

to C(xcf ) = 1. Let the generated counterfactual data pair be

denoted as (xcf , yy=1).
The key difference between this problem setting and that

of standard supervised classification is that we inherently

address the problem of noisy labeled data instances in both

the training dataset and counterfactual data generated during

testing. Therefore, original data (x, y) and counterfactual data

(xcf , yy=1) belong to one of two sets: correctly labeled set

(Xr, Yr), and noisy labeled set (Xw, Yw).

IV. CLASSIFICATION WITH COUNTERFACTUAL DATA

GENERATION IN THE PRESENCE OF NOISY LABELS

We propose CGEP , a plug±and±play framework for im-

proved Classification with counterfactual data GEneration in

the Presence of noisy labels. CGEP comprises three compo-

nents: (i) noisy label detection, (ii) supervised classification

model, and (iii) counterfactual data generation. The noisy

label detection module (Section V) is used for detecting noisy

labeled data instances. The counterfactual data generation

module (Section VI) is used to generate counterfactual data

for those data instances with undesirable label assigned by

the classification model.

Initially, the input dataset is passed to the noisy label

detection component, where noisy labeled data instances are

identified. The result of this process is a filtered dataset, which

is then used to train a classification model. The predictions

of the classification model are inspected, and data instances

with undesirable predictions are passed into the counterfactual

generation module in order to obtain corresponding counter-

factual data, which would achieve desirable predictions. The

generated counterfactual data instances are inspected by the

noisy label detection module to ensure that generated data

indeed follows the original data distribution.

V. NOISY LABEL DETECTION MODULE

We demonstrate CGEP’s ability to incorporate different

noisy label detection methods by considering a number of

such methods as described below. These methods are selected

because they are (i) suited for numerical datasets1, (ii) de-

coupled from the classification model2, and can therefore be

included in our plug±and±play framework, and (iii) represent

broad noise detection strategies (e.g., ensembles; local learning

methods; combination of ensembles and local learning).
1) Cluster Centroids±based Noisy Label Detection (CED)

[13]: Introduced in our own work [13], CED is designed to

identify data instances with desirable (or undesirable) labels

as noisy if their distance to the centroid of the desirable class

is larger (or smaller) than the distances to the centroid of the

undesirable class.

1Methods specifically tailored to image datasets (e.g., [23], [24]) are not
included in our analysis).

2Approaches, such as [25], that perform joint noisy data detection and
classification model learning, are incompatible with our framework, but are
considered as baselines for evaluation purposes.



2) Ensemble Filter (EF) [15]: EF divides the input dataset

into n folds, and for each fold n, trains multiple classification

models on the remaining n−1 folds. Using the trained models,

it decides whether the data instances in the excluded fold are

noisy labeled or not. Each classification model is constructed

of several base detectors (i.e., classifiers). If the majority of

base detectors cannot classify the data instances correctly, the

data instances are flagged as noisy labeled.

3) Iterative±partitioning Filter (IPF) [26]: IPF divides the

training dataset into subsets, and learns classification rules for

each subset separately. Data instances are evaluated by all

classification rules, and flagged as noisy if more than half

rules predict a label that differs from the original.

4) Automatically Pre±select noisy labeled Data Instances

(IMICD) [27]: IMICD begins by learning a classification

model using all training data instances. The trained model

is then used to obtain predicted labels for the training data

instances, at which point the inner product score of the two

labels is computed. Instances are then sorted by their inner

product score in ascending order, and the top data instances

within an a prior specified error ratio are labeled as noisy.

5) Reprocessing Instances that should be Misclassified

(PRISM) [28]: PRISM is a filtering method that removes

instances for which labels predicted by a classification model

do not match their original label from the input dataset

before passing the ªcleanº dataset to the learning model.

PRISM identifies data instances as mislabeled if none out of

classification models can correctly classify it.

6) Complete Random Forest±based Class Noise Filter

(CNF) [29]: CNF detects noisy labeled data instances based

on the idea that such data instances are more likely to be

surrounded by data instances whose labels don’t match that of

the instance under question.

VI. COUNTERFACTUAL DATA GENERATION

We consider multiple state±of±the±art counterfactual data

generation methods for CGEP’s counterfactual data generation

module. All methods, excluding the actionable counterfactual

data generator (ACDG) that was introduced in our own prior

work [13], have been experimentally evaluated as part of

a comprehensive survey [11]. Instead of listing all works

included in [11], we specifically focus on those methods that

treat each feature independently, similarly to ACDG.

1) Actionable Counterfactual Data Generator (ACDG)

[13]: ACDG formulates counterfactual data generation as an

optimization problem incorporating validity [21], proximity

[12] and actionability [13] constraints.

2) Contrastive Explanations Model (CEM) [30]: Given a

feed forward neural network, CEM identifies both pertinent

positive (PP) features as well as pertinent negative (PN)

features to achieve the desired class. To find both PP and PN

features, CEM optimizes separate functions using the projected

fast iterative shrinkage±thresholding algorithm [31]. For a fair

comparison, we focus on PP counterfactuals generated by

CEM, since our goal involves counterfactual data generation

only for the desirable class.

3) Diverse Counterfactual Explanations (DICE) [12]:

DICE generates multiple explanations for each input data

instance by incorporating proximity, diversity and validity

constraints, in similar spirit to our ACDG approach, into the

counterfactual generation objective function.

4) Actionable Recourse (AR) [32]: AR evaluates (i) the

ability of a linear learning model to generate counterfactuals

subject to a target class for all data instances; (ii) the difficulty

to generate valid counterfactuals across all data instances; and

(iii) the disparity of generated counterfactual for similar data

instances towards a target label.

5) Wachter [21]: This approach generates counterfactual

data by minimizing an objective function comprising the same

validity and proximity constraints as in ACDG. Different from

Wachter, ACDG incorporates multiple real±world constraints

to generate realistic counterfactual data instances.

VII. EXPERIMENTS

We conduct comprehensive experiments on three real±world

datasets to explore the effectiveness of the proposed plug±

and±play framework with the noisy label and counterfactual

data generation methods described in Sections V and VI.

The code for all baselines is publicly available. The majority

of the baselines are available in Python 3.8 with PyTorch

1.9.0, whereas some baselines (i.e., EF, IPF, and PRISM) are

available in R. The proposed framework has been implemented

in Python 3.8 with PyTorch 1.9.0. For a fair comparison, the

same training and testing datasets are used by all methods. All

experiments were conducted on an iMac running macOS Big

Sur with 3.8 GHz 8±core intel Core i7 processor and 16 GB

2667 MHz DDR4 memory.

A. Datasets

We use the real±world, publicly available datasets, that

are widely used in counterfactual data generation evaluation

for binary classification [17] as follows. Adult±Income [33]

records individual±level information to predict individual an-

nual income. Bank±Marketing [34] comprises detailed bank±

marketing records related to campaigns of a Portuguese bank-

ing institution. German±Credit [35] records the background

information of clients who have applied for a loan.

B. Baselines

For comparison, we consider baselines as follows. XGBoost

(Xgboost) [36] has been shown to be the most robust to noisy

labeled data [37]. Naive Bayes (NB) [38] has been shown

to suffer the most from noisy labeled data compared with

other classification models, including Decision Tree, Logistic

Regression, Random Forest, KNN, and Adaboost [37]. Peer

Loss (PL) [25] facilitates training of a classification model

with noisy label data without knowing the noise rate. We

consider two versions of PL: (i) PL-Default (i.e., peer loss

with the default setting of neural network used in [25]); and (ii)

PL±NN (i.e., peer loss with network architecture and settings

described in Section VII-C2).







data used to train such models becomes critical. This work

proposed a plug±and±play framework to learn a robust su-

pervised classification model in the presence of noisy labeled

data, while at the same time providing actionable suggestions

for undesirable decisions made by the classification model.

Extensive experimental evaluation results shed light into the

framework’s ability to incorporate alternative noisy label de-

tection methods and counterfactual explanation approaches.

The framework’s superiority against several baselines. We

hope that by proposing this framework, more effective meth-

ods will be developed to address the challenges associated

with quality issues in the datasets used to train explainable

machine learning models.
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