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Abstract—Most supervised classification methods assume per-
fect training data, although this is not usually the case in the real-
world. Meanwhile, counterfactual data generation approaches
have emerged as a way to provide post-hoc explanation of deci-
sions made by classification models. However, such approaches
highly rely on the classification model output since different
outputs lead to alternative, or even contradicting explanations.
This work proposes a plug-and-play framework to learn a robust
classification model in the presence of noisy labeled data and
provide actionable suggestions for undesirable decisions (e.g.,
loan application rejection) made by a given classification model.
The framework’s generalizability is demonstrated by considering
alternative noisy label detection and counterfactual explanation
methods, as well as diverse supervised classification models. The
framework’s superiority against several baselines is demonstrated
using three benchmark datasets.

Index Terms—Counterfactual explanations, data quality, so-
cially important data science, supervised learning

I. INTRODUCTION

Learning accurate classifiers becomes increasingly crucial
as supervised classification models are widely being applied to
human-related domains, including but not limited to, disease
diagnosis [1] and loan application assessment [2]. One of the
critical factors in building a precise classification model is
training data quality [3]. However, most classification algo-
rithms implicitly assume perfect training data [4]. Unfortu-
nately, in the real-world, training data quality cannot be taken
for granted [5]. For example, in homelessness service provi-
sion (e.g., [6]), individuals are often assigned to shelters not
necessarily based on their need, but based on availability and
capacity constraints. Supervised classification models trained
on unreliable data can lead to biased classifications [7], with
potentially detrimental consequences, including misdiagnosing
a disease and delaying treatment [8].

When training data is suspected to be noisy, machine learn-
ing models are instructed to either ignore noisy training data
instances or be robust to noise. Recent works on detecting and
filtering label noise from training data [9] result in potentially
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unnecessary data loss (i.e., dropping suspected noisy samples)
which can lead to either an overfitted model or a totally
unusable training dataset when the noise ratio is high. Note
that noisy data can refer to either noisy labels or noisy feature
values. Label noise is considered to be more harmful [10].
Therefore, we specifically focus on supervised learning in the
presence of noisy labeled data instances.

Regardless of training data quality, making accurate clas-
sifications is often not enough; “explaining” the output of a
classification model [11], or offering actionable suggestions
for improvement [12] are crucial in algorithmic decision—
making involving humans. Furthermore, in the explanation
generation process, constraints should be considered in feature
perturbation process and feature value distribution, including
immutable features and feature directionality (e.g., a high
education degree cannot be usually revoked), for realistic
suggestions to be made.

Learning a classification model with noisy training data
hurts the ability to offer correct or unbiased explanations of
decisions made by the classification model. This is because
noisy training data can affect the training process by introduc-
ing noise to the data distribution, shifting the model classifi-
cation boundary, which in turn influences and even reverses
classification output. However, provided “explanations” are
directly dependent on the classification model output. When
wrong classification results are used to generate corresponding
“explanations”, inaccurate suggestions can be made. Thus,
identifying noisy data is key to offering accurate explanations.

This work focuses on improving algorithmic decision—
making in the presence of noisy label training data, while at
the same time offering actionable suggestions for undesirable
decisions. In summary, its main contributions are:

o Generalizing our previously presented approach for clas-
sification with counterfactual data generation [13] into
a plug—and-play framework designed to improve super-
vised classification model reliability in the presence of
noisy labeled training data, while offering counterfactual
explanations for undesirable decisions.

o Demonstrating the generalizability of the proposed frame-
work by considering numerous state—of—the—art methods
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for noisy label detection, classification, and counterfac-
tual explanation generation.

o Evaluating the proposed framework through extensive ex-
perimentation and performance analysis under increasing
levels of noise on three real-world datasets.

II. RELATED WORK

Numerous methods have been proposed to detect noisy
labels. Ensemble—based methods [14], [15] leverage multiple
classification models to decide a label. If prediction results
are inconsistent with the observed label, the corresponding
data instances are dropped. However, such methods train each
classifier without excluding the noisy training data. Local
learning methods assume that noisy labeled data tend to differ
from their neighbors’ labels [16]. Our own cluster centroid—
based method leverages both ensemble and local learning for
noisy labeled data detection [13].

The explainability of classification models can be broadly
divided into model explanation, and outcome explanation (i.e.,
post—hoc explanation) [17]. Model explanation aims to shed
light into the internal logic of a model and strives for transpar-
ent and global explanation in terms of the original model [18].
However, model explainability is tailored to specific learning
model structures. Outcome explanations focus on explaining
a specific prediction given by a classification model [19].
One of the widely used methods in this category, generates
explanations through feature importance [20]. Recently, [21]
proposed example—based explanations by feature perturbation.
Feature perturbation, as a means to generate counterfactual
data, may lead to different prediction results given a learning
model. A comprehensive survey of counterfactual data gen-
eration methods for explainable classification is provided by
[22]. Different from existing counterfactual data generation
methods [22], the ACDG method discussed here incorporates
realistic constraints (e.g., directional perturbation for features)
into the counterfactual data generation. Besides, all methods
in [22] assume the input training data to be free of noise. We
believe our work to be the first in bridging the gap between
post-hoc explainability of classification models, and training
robust classifiers in the presence of noisy labeled training data.

III. PRELIMINARIES AND PROBLEM STATEMENT

Let Dy = (X,Y) denote the noisy training dataset, and
N be the total number of data instances (i.e., X = {z;}¥ ).
Each data instance x € X is associated with a feature d in
a K —dimensional feature vector, and a corresponding noisy
binary label y € {0,1}, one of which (e.g., y = 0) may be
undesirable (e.g., loan application is rejected). Given D and
a noisy label detection method (NLD), the task is to learn a
highly accurate supervised classification model, C, to predict
the label (i.e., class) of previously unseen data.

Let i denote the predicted outcome of C for instance x.
By comparing y with g, the training data can be divided into
four subsets, namely, the true positive set X, false positive
set Xo1, true negative set Xyo, and false negative set Xig.
In addition to ensuring a highly accurate model C' is learned

despite the presence of noise in the training data, we wish to
obtain realistic counterfactual data x.y using a counterfactual
explanation generation model (CEG), Vz € X that can lead
to C(zqr) = 1. Let the generated counterfactual data pair be
denoted as (zqf, yYy=1)-

The key difference between this problem setting and that
of standard supervised classification is that we inherently
address the problem of noisy labeled data instances in both
the training dataset and counterfactual data generated during
testing. Therefore, original data (z,y) and counterfactual data
(cf,Yy=1) belong to one of two sets: correctly labeled set
(X, Y.), and noisy labeled set (X, Yy)-

IV. CLASSIFICATION WITH COUNTERFACTUAL DATA
GENERATION IN THE PRESENCE OF NOISY LABELS

We propose CGEP, a plug—and—play framework for im-
proved Classification with counterfactual data GEneration in
the Presence of noisy labels. CGEP comprises three compo-
nents: (i) noisy label detection, (ii) supervised classification
model, and (iii) counterfactual data generation. The noisy
label detection module (Section V) is used for detecting noisy
labeled data instances. The counterfactual data generation
module (Section VI) is used to generate counterfactual data
for those data instances with undesirable label assigned by
the classification model.

Initially, the input dataset is passed to the noisy label
detection component, where noisy labeled data instances are
identified. The result of this process is a filtered dataset, which
is then used to train a classification model. The predictions
of the classification model are inspected, and data instances
with undesirable predictions are passed into the counterfactual
generation module in order to obtain corresponding counter-
factual data, which would achieve desirable predictions. The
generated counterfactual data instances are inspected by the
noisy label detection module to ensure that generated data
indeed follows the original data distribution.

V. NoisYy LABEL DETECTION MODULE

We demonstrate CGEP’s ability to incorporate different
noisy label detection methods by considering a number of
such methods as described below. These methods are selected
because they are (i) suited for numerical datasets', (ii) de-
coupled from the classification model?, and can therefore be
included in our plug—and-play framework, and (iii) represent
broad noise detection strategies (e.g., ensembles; local learning
methods; combination of ensembles and local learning).

1) Cluster Centroids—based Noisy Label Detection (CED)
[13]: Introduced in our own work [13], CED is designed to
identify data instances with desirable (or undesirable) labels
as noisy if their distance to the centroid of the desirable class
is larger (or smaller) than the distances to the centroid of the
undesirable class.

'Methods specifically tailored to image datasets (e.g., [23], [24]) are not
included in our analysis).

2 Approaches, such as [25], that perform joint noisy data detection and
classification model learning, are incompatible with our framework, but are
considered as baselines for evaluation purposes.



2) Ensemble Filter (EF) [15]: EF divides the input dataset
into n folds, and for each fold n, trains multiple classification
models on the remaining n—1 folds. Using the trained models,
it decides whether the data instances in the excluded fold are
noisy labeled or not. Each classification model is constructed
of several base detectors (i.e., classifiers). If the majority of
base detectors cannot classify the data instances correctly, the
data instances are flagged as noisy labeled.

3) Iterative—partitioning Filter (IPF) [26]: TPF divides the
training dataset into subsets, and learns classification rules for
each subset separately. Data instances are evaluated by all
classification rules, and flagged as noisy if more than half
rules predict a label that differs from the original.

4) Automatically Pre—select noisy labeled Data Instances
(IMICD) [27]: IMICD begins by learning a classification
model using all training data instances. The trained model
is then used to obtain predicted labels for the training data
instances, at which point the inner product score of the two
labels is computed. Instances are then sorted by their inner
product score in ascending order, and the top data instances
within an a prior specified error ratio are labeled as noisy.

5) Reprocessing Instances that should be Misclassified
(PRISM) [28]: PRISM is a filtering method that removes
instances for which labels predicted by a classification model
do not match their original label from the input dataset
before passing the “clean” dataset to the learning model.
PRISM identifies data instances as mislabeled if none out of
classification models can correctly classify it.

6) Complete Random Forest-based Class Noise Filter
(CNF) [29]: CNF detects noisy labeled data instances based
on the idea that such data instances are more likely to be
surrounded by data instances whose labels don’t match that of
the instance under question.

VI. COUNTERFACTUAL DATA GENERATION

We consider multiple state—of—the—art counterfactual data
generation methods for CGEP’s counterfactual data generation
module. All methods, excluding the actionable counterfactual
data generator (ACDG) that was introduced in our own prior
work [13], have been experimentally evaluated as part of
a comprehensive survey [11]. Instead of listing all works
included in [11], we specifically focus on those methods that
treat each feature independently, similarly to ACDG.

1) Actionable Counterfactual Data Generator (ACDG)
[13]: ACDG formulates counterfactual data generation as an
optimization problem incorporating validity [21], proximity
[12] and actionability [13] constraints.

2) Contrastive Explanations Model (CEM) [30]: Given a
feed forward neural network, CEM identifies both pertinent
positive (PP) features as well as pertinent negative (PN)
features to achieve the desired class. To find both PP and PN
features, CEM optimizes separate functions using the projected
fast iterative shrinkage—thresholding algorithm [31]. For a fair
comparison, we focus on PP counterfactuals generated by
CEM, since our goal involves counterfactual data generation
only for the desirable class.

3) Diverse Counterfactual Explanations (DICE) [12]:
DICE generates multiple explanations for each input data
instance by incorporating proximity, diversity and validity
constraints, in similar spirit to our ACDG approach, into the
counterfactual generation objective function.

4) Actionable Recourse (AR) [32]: AR evaluates (i) the
ability of a linear learning model to generate counterfactuals
subject to a target class for all data instances; (ii) the difficulty
to generate valid counterfactuals across all data instances; and
(iii) the disparity of generated counterfactual for similar data
instances towards a target label.

5) Wachter [21]: This approach generates counterfactual
data by minimizing an objective function comprising the same
validity and proximity constraints as in ACDG. Different from
Wachter, ACDG incorporates multiple real-world constraints
to generate realistic counterfactual data instances.

VII. EXPERIMENTS

We conduct comprehensive experiments on three real-world
datasets to explore the effectiveness of the proposed plug—
and-play framework with the noisy label and counterfactual
data generation methods described in Sections V and VI.
The code for all baselines is publicly available. The majority
of the baselines are available in Python 3.8 with PyTorch
1.9.0, whereas some baselines (i.e., EF, IPF, and PRISM) are
available in R. The proposed framework has been implemented
in Python 3.8 with PyTorch 1.9.0. For a fair comparison, the
same training and testing datasets are used by all methods. All
experiments were conducted on an iMac running macOS Big
Sur with 3.8 GHz 8—core intel Core i7 processor and 16 GB
2667 MHz DDR4 memory.

A. Datasets

We use the real-world, publicly available datasets, that
are widely used in counterfactual data generation evaluation
for binary classification [17] as follows. Adult-Income [33]
records individual-level information to predict individual an-
nual income. Bank-Marketing [34] comprises detailed bank—
marketing records related to campaigns of a Portuguese bank-
ing institution. German—Credit [35] records the background
information of clients who have applied for a loan.

B. Baselines

For comparison, we consider baselines as follows. XGBoost
(Xgboost) [36] has been shown to be the most robust to noisy
labeled data [37]. Naive Bayes (NB) [38] has been shown
to suffer the most from noisy labeled data compared with
other classification models, including Decision Tree, Logistic
Regression, Random Forest, KNN, and Adaboost [37]. Peer
Loss (PL) [25] facilitates training of a classification model
with noisy label data without knowing the noise rate. We
consider two versions of PL: (i) PL-Default (i.e., peer loss
with the default setting of neural network used in [25]); and (ii)
PL-NN (i.e., peer loss with network architecture and settings
described in Section VII-C2).



C. Experimental Setup

1) Noisy Label Detection: In noisy label detection exper-
iments, we pre—split each dataset into training and testing
sets with a ratio of 3:1. In the training set, we add label
noise by randomly flipping the label of each data instance
with noise rate 7 = %,T € {0.1,0.2,0.4,0.6,0.8}. EF, IPF,
and PRISM are available in R as part of the “NoiseFiltersR”
package, while CNF and IMICD are implemented in Python.
K Nearest Neighbor (KNN) is used to test the effectiveness
of these methods in “filtering” the original, noisy dataset.
The choice of KNN is based on experimental results in [37],
which demonstrated that KNN is only moderately robust to
label noise, as compared with other learning models, such as
XGBoost (best), and Naive Bayes (worst).

2) Counterfactual Data Generation: In counterfactual data
generation experiments, the training set remains free of noise.
The CARLA [22] implementations of CEM, Wachter, AR,
and DICE methods in Python are used. Wachter, CGEP, AR,
and DICE are based on PyTorch, while CEM is based on
TensorFlow. For ACDG, we use the AdamW optimizer [39],
which is implemented in PyTorch [40], with a learning rate
of 0.01, to minimize the loss function. We set eg = 0.1 and
Tc = 30. Finally, a feed—forward neural network with three
hidden layers is used for classification, with the number of
neurons in each layer being 64, 32, and 2 accordingly.

3) Overall Framework Evaluation: To evaluate the overall
framework, we pre—split each dataset into training and testing
sets with a ratio of 3:1. Label noise is introduced in the training
set by randomly flipping the label of each data instance
with noise rate 7 € {0,0.1,0.3,0.5,0.7,0.9}. Note that since
counterfactual explanations are dependent on the classification
output, we evaluate the impact of the classification model on
the counterfactual data generation module separately.

D. Evaluation Metrics

1) Noisy Label Detection: We divide noisy label detection
evaluation into two parts, namely detection performance anal-
ysis, and evaluation of classifiers trained on filtered data. We
need to consider two questions: (i) how many of all detected
noisy labeled data instances are truly noisy, and (ii) with
respect to all noisy labeled data instances in the training set,
how many of them are detected from noise detection methods.

Therefore, inspired by [27], we define NS — Precision =
#TrueN Sdetection _ _ #TrueN Sdetection
#AlIN Sdetection and NS — Recall = #AlIN Sdatainstances*

Different from [27], the estimated noise rate is not included
in these evaluation metrics, providing a stricter evaluation
environment since the overall noisy label ratio is hidden
from detection methods. We evalnate the classifiers’ train
> i1 (Wi=gi=D)+(yi=%:=0)) .
and test accuracy separately as ~ in
corresponding sets. To account for imbalanced datasets, we
additionally report Fl-score= 2 x recisionzrecall
precision+recall
2) Counterfactual Data Generation: We evaluate coun-
terfactual data generation methods’ accuracy, true positive
rate and proximity. Specifically, classification accuracy is
computed using predictions based on generated counterfac-

tual data. True positive rate (TPR) is defined as TPR =

+— CED « IPF
EF +- CNF

PRISM
IMICD
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Fig. 1. NS-Precison and NS—Recall with respect to Adult-Income (top),
Bank—Marketing (middle), and German—Credit (bottom) datasets, accordingly.

M and is used to measure the overall validity
rate for generated counterfactual data instances based on
the classification model. The higher the true positive rate,
the better the performance. When Accuracy = TPR, all
data instances with undesirable class in the original dataset
have been substituted with “valid” counterfactual data with
desirable label. Proximity evaluates the distance between coun-
terfactual data and the original data instance vector. In general,
counterfactual data with low proximity is preferred as they are
considered to be more actionable.

3) Overall CGEP Framework: Given fixed noisy label
detection and classification modules, we evaluate CGEP using
accuracy on clean testing data.

E. Evaluation Results

1) Noisy Label Detection: Fig. 1 shows the noisy label
detection evaluation results. PRISM, EF, and IPF follow a
similar trend with respect to NS — Recall, exhibiting higher
recall when 7 < 0.5. Conversely, when 7 > 0.5, i.e., when
noise becomes severe, recall drops sharply. Majority voting
does not help in such regime since most base classifiers’ ac-
curacy degrades when trained with data containing high levels
of noise. With respect to N.S — Precision, IPF outperforms
PRISM and EF, as well as the rest of the methods, when noise
is moderate or low. Conversely, when 7 > 0.5, CED and
IMICD outperform IPF. Overall, CED seems to be the best
performing method when accounting for both NS — Recall
and NS — Precision across noise rates. Nevertheless, accord-
ing to NS — Precision and NS — Recall, CED is a good
choice in severe label noise (i.e., when 7 > 0.5) considered
poor performance of PRISM when 7 < 0.5. In summary, IPF
is the best choice when noise is lower than 50%.

2) Counterfactual Data Generation: Fig. 2(a) shows how
the proposed ACDG, as well as the baselines fair with respect
to true positive rate in the training set. CEM and DICE
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converge more quickly (i.e., within less training epochs) than
other methods, indicating that the validity rate of generated
counterfactuals is increasing with each epoch. DICE slightly
outperforms CEM in the Adult-Income and Bank—-Marketing
datasets. We attribute this to DICE generating multiple coun-
terfactuals for each data instance, leading to higher probability
of a valid counterfactual candidate.

Nevertheless, true positive rate alone is not enough to justify
which counterfactual generation method is supreme. Proximity
(see Fig. 2(b)) help demonstrate the cost of a high validity rate,
which translates into a larger number of perturbed features
and greater distance between the counterfactual vectors and
original data instances accordingly. CEM and DICE’s high
proximity can also be attributed to the one—hot encoding
of categorical features, which leads to independent perturba-
tion of such features. Intuitively, when proximity is smaller,
counterfactual explanations can be considered to be more
“actionable”, since less things need to be changed to achieve
to the desirable class. In this sense, ACDG appears to be a
better choice among the candidate methods.

3) Overall CGEP Framework: To quantify the effect of
noisy labels on our plug—and-play framework when using
either CED or IPF, we compare its performance with other
classification models (i.e., Xgboost, NB and NN without noisy
label detection). We used feed forward neural network (FNN)

for classification model in CGEP, as we have shown it to be a
good choice in our own prior work [13], and [22] used FNN to
drive the counterfactual generation process. We also compare
CGPE to the peer loss baseline (see Section VII-B), which is
specifically designed for learning in a noisy environment.

Fig. 3 shows that naively training a classification model (i.e.,
Xgboost, NB, NN) with noisy labeled data leads to a dramatic
accuracy degradation with increasing noise rate. Generating
counterfactual explanations would be futile when inaccurate
classification models are used, since explanations would be
meaningless in this case. In contrast, the classification model
is more robust under the CGEP framework, as indicated in
Fig. 3. Instead of struggling to learn class specific features
with highly corrupted training data (which may be impossible,
as label quality in this regime is close to random), CGED
(both NN-CED and NN-IPF) correctly identifies and restores
noisy labels before proceeding to train a highly accurate NN
classification model. In summary, CGEP is superior to other
standalone classification models as well as state—of—the—art
methods designed to address noise in the learning process,
particularly so in highly noisy environments.

VIII. CONCLUSION

As automated classification and algorithmic decision—
making models become part of everyday life, the quality of



data used to train such models becomes critical. This work
proposed a plug—and—-play framework to learn a robust su-
pervised classification model in the presence of noisy labeled
data, while at the same time providing actionable suggestions
for undesirable decisions made by the classification model.
Extensive experimental evaluation results shed light into the
framework’s ability to incorporate alternative noisy label de-
tection methods and counterfactual explanation approaches.
The framework’s superiority against several baselines. We
hope that by proposing this framework, more effective meth-
ods will be developed to address the challenges associated
with quality issues in the datasets used to train explainable
machine learning models.
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