Robust Learning with Noisy Label Detection and
Counterfactual Correction

Wenting Qi
Department of Computer Science
University at Albany, SUNY
Albany, New York, USA
wqi@albany.edu

Abstract—Data quality is of paramount importance in the
training process of any machine learning model. Recently pro-
posed methods for noisy learning focus on detecting noisy labeled
data instances by using a fixed loss value threshold, and exclude
detected noisy data instances in subsequent training steps. How-
ever, a predefined, fixed loss value threshold may not always
be optimal, and excluding the detected noisy data instances can
hurt the size of the training set. In this paper, we propose a
new method, NDCC, that automatically selects a loss threshold
to identify noisy labeled data instance, and uses counterfactual
learning to repair them. To the best of our knowledge, NDCC is
the first work to explore the feasibility of using counterfactual
learning in the noisy learning domain. We demonstrate the per-
formance of NDCC on Fashion-MNIST and CIFAR-10 datasets
under a variety of label noise environments. Experimental results
show the superiority of the proposed method compared to the
state—of—the-art, especially in the presence of severe label noise.

Index Terms—data quality, noisy learning, deep learning

I. INTRODUCTION

Machine learning models have been applied in a wide range
of applications, including, but not limited to, traffic prediction
[1], face recognition [2] and product recommendation [3].
Deep neural networks have achieved remarkable performance
to a variety of tasks due in part, to large quantities of human—
annotated data [4]. However, the label annotation often intro-
duces label noise. Furthermore, over—parameterized machine
learning models, such as Deep Neural Networks, can overfit on
noisy data instances by memorizing them during training [5],
[6]. Learning and assessing machine learning models using
noisy labels can result in biases and misleading accuracy
reporting, with potentially detrimental results. There are two
common types of noise, namely: feature noise and label noise
[7]. In this work, we focus on label noise which has been
shown to be more harmful than feature noise [8].

To train a model with a noisy dataset, one commonly
adopted approach is noise sample selection [9], which dis-
tinguishes the noisy from clean data instances, then excludes

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS-1737443 and 11S-1850097.
*Corresponding author.
Both authors contributed equally.

Charalampos Chelmis*f
Department of Computer Science
University at Albany, SUNY
Albany, New York, USA
cchelmis @albany.edu

noisy instances from the training process [10]. In line with
prior art, this work leverages loss to distinguish between noisy
from clean data instances (i.e., data instances exhibiting low
loss value being more likely to be clean) [11]. The challenge
is how to quantify the loss value during the training process.
[12] ranks the loss value for all data instances and pre—sets the
loss threshold with a specific noise rate (NR) to identify noisy
data instances as those whose loss value is lower than the
threshold. The main problem with that approach is twofold:
(i) in the real-world, the noise rate is hard to estimate a priori,
and (ii) different choices of loss functions result in different
loss value rankings. To overcome these issues, we use peer loss
[13] for noisy label detection. [13] sets peer loss threshold to
0 to distinguish the noisy from clean data instances. However,
our experiments (See Figure 1) show that 0 may not always
be the optimal peer loss threshold. We therefor propose an
automated threshold selection method to overcome this issue.

Upon detecting suspected noisy labeled data instances, these
instances are typically excluded from the training process
[14]. However, for small or severely noisy labeled datasets,
excluding noisy data can dramatically reduce the size of
the training set, to the point it becomes useless for training
purposes. Furthermore, despite having noisy labels, the feature
values of noisy labeled data instances are clean and could
still be useful for training. We believe this work to be the
first to explore the feasibility of correcting noisy labeled
data instances by finding the true label using counterfactual
learning. Specifically, for each detected noisy labeled instance,
counterfactual data instances are computed for all possible
labels. The label that achieves the minimum value of counter-
factual score is then selected as the true label (refer to Section
IV-B for detailed explanation and examples).

This work focuses on training a robust learning model
in the presence of noisy labeled data in the training set,
through detecting and correcting noisy labeled data instances.
In summary, the main contributions of this paper are:

« Proposing a novel method for automating the selection of
the noisy peer loss threshold in the noisy label detection.
« Introducing a practical approach for identifying noisy
labeled data in the training process, and estimating the

978-1-6654-8045-1/22$31.00 © 2022 IEEE

most probable true label for each detected noisy data
instance using counterfactual learning.

« Demonstrating the superiority of the proposed solution
against baselines using benchmark datasets under differ-
ent noisy environments.

To ensure the reproducibility of our work, our method avail-
able at https://github.com/IDIASLab/NDCC.

II. RELATED WORK

With the increase of complexity and scale of datasets, the
possibility of including unreliable labels or noisy labels also
increases. Training machine learning models with noisy labels
significantly impacts their prediction performance. For this
reason, a large variety of deep learning models for robust
learning in noisy data environments has already been devel-
oped [15], [16]. For instance, the loss function—based approach
in [15] minimizes the risk for unseen clean data with the
presence of noisy labels in the training data. However, such
loss function—based approaches are restricted to a particular
framework, and thus, lack adaptability. [13] uses peer loss
to select clean data instances by fixing the loss threshold to
0. However, the optimal loss threshold may not always be
fixed or predetermined. Instead of using a fixed threshold, this
work learns the loss threshold for noisy labeled data instances
detection during the training process itself.

After detecting suspected noisy labeled data instances, many
methods (e.g., [16]) exclude such instances in subsequent
training steps. However, dropping suspected noisy label data
instances can result in a diminished training set, and wastes
the clean features of noisy labeled samples. [17] assigns more
weight on clean data instances than on suspected noisy data
instances. At the same time, mistreating noisy data instances
as clean can lead to a highly inaccurate model. We instead
propose a counterfactual based method to correct the labels of
suspected noisy labeled data instances. Counterfactual learning
has been widely explored in explainable machine learning.
Specifically, [18] leverages counterfactual methods to produce
example—based explanations by feature perturbation. Feature
perturbation may lead to different prediction results given a
learning model; data instances with perturbed feature values
(in our case labels) are considered counterfactual [19]. To the
best of our knowledge, this work is the first to incorporate
counterfactual learning into noisy learning.

III. PRELIMINARIES

Let D = (X,Y) denote a clean training dataset and
D = (X,Y)! a noisy dataset. N is the total number of data
instances in D and D (ie., X = {x;}¥,), and x; € X
is an M dimensional feature vector. The total number of
classes in both Y and YV are K , and j denotes the class
index. The label of x; is denoted as y; € BYX with value
1 at entry j indicating belonging to the jth class, otherwise
0. For example, for K = 5, y; = [0,1,0,0,0] indicates that
x; belongs to Class 2. The task is to train a model f using

IData instances in D are either clean or noisy labeled. Same with Y.

b, since the clean dataset D is unavailable, to predict the true
label y of previously unseen data instances. Let 4 denote the
predicted outcome. To minimize the influence of noisy data on
the model performance, we propose strategies to detect noisy
data instances, and assign them with the most likely true label
while learning f. We leverage counterfactual learning to search
for the most likely true label for each noisy data instance.
Specifically, each noisy data instance is associated with K
counterfactual data instances (%X!,y7), each is generated for
each labels y7, where j € 1,2,3,.., K. By comparing the
counterfactual properties (see Section IV-B) with (x;,y;) and
each (x/,y]), we find the most likely true label y; and
substitute the noisy label with the most likely true label y7.

IV. PROPOSED FRAMEWORK

We propose Noisy label Detection and Counterfactual
Correction (NDCC), a novel framework for training a robust
classifier over a noisy labeled dataset. The objective function
of NDCC follows:

N
argmin Y ¢ihe(W,x;) + (1= ¢:)hn(W, %)), (1)
W& =1

where
K
he(Wx0) = 1 (W, x0),50) = ¢ S USW.x0),37), @)
j=1

and
ho (W, &%) = dist(x;, %),

. 3
st F(W,%]) =) ©

¢ is the noisy labeled data instanced indicator, and dist
denotes Euclidean distance. The detailed explanations for
Egs. (2) and (3) are provided in Sections IV-A and IV-B,
respectively. Overall, the problem in Eq. (1) can be viewed
as a combinatorial optimization problem, which is difficult
to solve directly. We therefore solve Eq. (1) by alternatively
searching for the optimal solutions of W and X.

Initially, the noisy dataset D = (X,Y) is provided as input
to the noisy label detection, which then outputs suspected
noisy label data instances (X, }7), and sets the noisy indicator
¢ = 0 for each x; € X,,, and 1 for each z; € X.. Therefore,
dihe(W) in Equation (1) reflects the loss for clean data
instances, whereas (1 — ¢;)h,(W,%;) reflects the loss for
noisy labeled data instances. The label counterfactual correc-
tion module assigns each x; € X,, with the most likely true
label y;, then substitutes D with the label-revised dataset 15,
to be used in subsequent rounds of training f(7/). Note that
D can be updated multiple times through the training process,
as additionally noisy labeled data instances are identified.

A. Noisy Label Detection (h.)

Loss can identify noisy labeled data instances [10], [11].
Specifically, [10] pointed out that the loss of clean data
instances is expected to be lower than that of noisy labeled
data instances, mainly because noisy labeled data instances are

often outliers with respect to the distribution of clean data, and
the learning model tends to make predictions different from
the noisy labels.

The question then is how to determine a loss threshold to
distinguish between clean and noisy labeled data instances.
Of particular relevance to this problem, [20] proposed peer
loss defined Lpy, = I(f(W,x;),y:) —I(f(W,x;),y;), where
I(f(W,x;),y;) is the loss with respect to given label y;, and
I(f(W,x3),y7) is the loss with respect to a possible random
label y?/ differing from y;. Based on the peer loss, [13] defined
the loss value threshold, which takes all possible label values
into consideration in order to locate data instances with high
loss for further distinguishing the noisy labeled data instances.
Inspired by this idea, the objective function for detecting noisy
labeled data instances is defined as [13]:

1 K

he(W.xi) = 1(f(W,x31),51) = 2= > _(1(f(W,xi).¥]), 4)
j=1
where f is the learning model, with parameters W,
I(f(W, XQ’ ¥i) denotes the loss value of the observed label,
and % > =1 (l(f(W,x;),y7) is the average loss value of all
possible K labels.

1) Auto Noisy Threshold Selection Criterion: After com-
puting h., the following question is how to use it to detect
noisy labeled data instances. [13] sets O as the loss threshold
to distinguish the clean and the noisy labeled data instances.
Specifically, data instances whose h. > 0 are considered to be
noisy labeled. This is because the loss of the observed label g;
is larger than the average loss of the other possible labels vy
[13]. However, 0 need not be the optimal loss value threshold.
For instance, Figure 1 shows the peer loss of 1,000 randomly
selected data instances in CIFAR-10, under symmetric noise
(NR = 0.1) (i.e., symmetric’> and asymmetric noise?). The red
dot line (peer loss threshold of 0) is evidently not optimal —
the black dot line can detect more noisy labeled data instances.

Data Index

Peer Loss

Fig. 1. Peer loss value distribution for random selected 1,000 data instances
in CIFAR-10 under symmetric noise (NR = 0.1). z—axis corresponds to peer
loss score, and y—axis corresponds to each data instance.

This work proposes to automate the peer loss threshold
selection. Specifically, we wish to select noisy labeled data
instances whose loss is large but not exactly larger than its
average label loss threshold, as shown in Figure 1.

2The true label flips to all other labels with equal probability.
3 A noisy label is generated by flipping the true label j to class j + 1 [13].

Density
—

-0 -0 -0 0 10 2
Loss

Fig. 2. Peer loss value distribution without pre—trained model with random
selected 1,000 data instances in CIFAR—-10 under symmetric noise (NR = 0.1).
z—axis corresponds to peer loss score, and y—axis corresponds to frequency
with respect to particular peer loss score in z—axis.

Before elaborating our proposed method, we note that using
a randomly initialized deep neural network as a starting point
can lead to erroneous loss estimation. For instance, Figure 2
shows that the loss of clean and noisy data instances may
overlap. Erroneous loss estimation can lead to missdetection
of clean instances as noisy (and visa versa), introducing even
more noisy labeled data instances into the training dataset.
Therefore, the starting point of a classification model is crucial.
Inspired by [21], which showed that a small portion of clean
labels improves the model robustness in noisy detection, we
pre—train a model g (see Section V-A3 for a detailed discussion
on g), using a small portion of data instances, denoted as D,
in which labels are guaranteed to be accurate. In the real-
world, a small portion of clean data instances can be obtained
using pre—annotation by experts [22].

We leverage this small portion of clean data instances to
auto—detect and revise noisy data instances in the overall train-
ing set. Specifically, we first calculate h. of each data instance
in Dy, using g and denote it as l,.. Next, since having
knowledge of the type of noise present in the training dataset
is unrealistic, we randomly select 10% of the data instances in
Dy, and artificially introduce noise by randomly switching
their label to a different one. The noisy version of the pre—train
dataset is denoted as ﬁp,,e = DgreUD;}re, where D;re (D;olre
is the set of clean (noisy) data in Dpre. Next, we calculate A,
on Dpre and record the loss as [,,,. The difference between [,
and lm (i.e., laiff = lpc—Ipp) is used to define the loss varying
area Dps = {X;|laifr(x;) < minxqugre laifr(xq),Vx; €
f)pre}. The rationale for calculating INDM is that Dns may
contain the majority of noisy data instances, since lg s is
smaller for noisy data instances compared with clean data
instances because of higher [,,. As illustrated by Figure 3,
the absolute value of the loss difference l4;¢ for noisy data
instances is higher than the clean data instances.

In subsequent steps in the training process (i.e., without
using DWC), we have no prior indication about which data
instances are clean or noisy. Our experiments indicate that
noisy data instances are more likely to reside in D, in a real
training experiment with D. This observation lets us estimate
the peer loss threshold by calculating the average loss, as

follows:

1 -
thr = —— Z}lc(wgﬁxi):xi € DnS’)

ns i

where W denotes the parameters of the clean pre—trained
model g. The initial starting threshold thr is set to 0, as per
[13].

Data Index
@
3
3

Lairy

Fig. 3. Pre-train experiment with ijre. r—axis corresponds to Ig; ff»and
y—axis corresponds to each data instance. The red circled data instances
define the upper bound of D,,s.

B. Noisy Label Correction h,,

The noisy label correction process is designed to pair the
noisy labeled data instances with their most likely true label
using counterfactual learning. Counterfactual learning is used
to explain algorithmic decisions by feature perturbation [19],
[23]. This work generates a counterfactual data instance with
other possible labels for each detected noisy labeled data
instance (x;,y;) € X,. Specifically, the noisy label detection
module in IV-A provides the loss for each data instance.

The following question is how to generate the counterfactual
data instances for a detected noisy labeled data instance.
One commonly used counterfactual generation criterion is the
Proximity Score [23] which evaluates the distance between
the counterfactual data %] and the original feature vector
x;. A smaller distance between the data instance x; and its
counterfactual data instance X; represents a higher probability
that the true label of x; is the target class* j for x!. The
proximity measure has the following form:

hn = dist(X],x;), (6)

where dist denotes Euclidean distance. This work first selects
the data instance with the minimum loss value (i.e., high-
est confidence of correct classification) as the counterfactual
starting point (i.e., x5, X2 , and %5) for each possible
label, as illustrated in Figure ?? step—1. Next, we minimize
the proximity score by perturbing the feature values of X!
(.., X4, x5, and x§) and forcing it to get closer to the
target noisy data instance. However, without any limitation,
x] will eventually be equal to x;, achieving a proximity score
of 0. To tackle this issue, we add a stopping criterion for
the counterfactual data instance generation process by using
a validity sore. Specifically, Validity Score [18] measures
the degree of validity of a counterfactual data instance. A
higher validity value represents higher confidence (e.g., a

“In counterfactual learning, the generated data instance can be classified
into a particular class (i.e., target class) by the learning model.

lower loss) of the predictor outputting the target label yf for
the counterfactual data instance %7, with X being absolutely
valid if the prediction outcome is the same as the target label
(ie., f(x!) = y)). In our work, we take the validity score
as our stopping criterion and set it as 1 (i.e., highest value)
to guarantee the generated counterfactual data instance X

belongs to the particular class j.

C. NDCC Algorithm

Initially, a pre—trained model g is used to generate ﬁm for
automatically selecting the loss threshold in each following
learning round. Then, potentially noisy labeled data instances
in D = (X,Y) are detected. The most likely true label for
each noisy data instance is determined using counterfactual
label correction, and the dataset is updated with the revised
labels. The revised dataset is used to train model f. The noisy
loss threshold for the next iteration is determined using the
trained model f. The algorithm terminates when the maximum
training epoch, 7', is reached, or the dataset is no longer
updated.

V. EVALUATION
A. Experiment Setting

1) Datasets: We evaluate the proposed NDCC framework
on two widely used benchmark datasets [24].

CIFAR-10 [25]: Image dataset in the CIFAR family. The
size of the training set and the test set are 50, 000 and 10, 000.
Each data instance is a 32 x 32 x 3 colorful image, associated
with 10 classes (i.e., airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck). Fashion-MNIST [26]: Real-world
image dataset collected from Zalando’s article. The training set
contains 60, 000 data instances and the test set contains 10, 000
data instances. Each data instance is a 28 X 28 grayscale image,
associated with a label from 10 classes (i.e., t-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot).

2) Noise Environments: Both benchmark datasets are clean,
or with a negligible number of noisy labeled data instances
[14]. To evaluate the effectiveness of NDCC in noisy labeled
environments, we consider two types of noise: symmetric
and asymmetric. In both cases, 7 denotes the noise rate.
We consider 7 € {0.2,0.4,0.6,0.8} to evaluate NDCC on
scenarios involving a variable number of noisy labeled data
instances (ranging from small to large).

3) Experimental Setup: All experiments use ResNet34 and
the following hyper—parameter values: mini—batch size (32),
number of training epochs (90), optimizer (AdamW [27]),
learning rate (0.01). In NDCC, we set 7' = 3 and T,, = 30
to ensure that the overall number of training epochs for
NDCC is the same as with the baseline methods (i.e., 90).
The counterfactual training epoch T, is set to 50. In both
CIFAR-10 and Fashion—-MNIST experiments, we randomly
select 2,000 data instances as the clean pre—trained dataset
Dpyre, and use Dy, to train g. Among the rest of the data
instances, we randomly select 10,000 data instances as the
training set D. We use the default test set for both CIFAR-10
and Fashion—-MNIST.

TABLE I
TRUE DETECTION RATE X 4; (HIGHER IS BETTER)

Fashion-MNIST CIFAR-10
Method/NS Environment (7) Sym Asym Sym Asym
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
CORES 056 055 057 059 051 050 056 057 0.60 058 061 0.59 064 061 062 057
NDCC 076 075 075 0.77 0.67 0.68 072 0.74 0.80 081 081 0.84 078 0.76 0.78 0.82
TABLE I R
COUNTERFACTUAL TRUE CORRECTION RATE chc (HIGHER IS BETTER)
Fashion-MNIST CIFAR-10
Method/NS Environment Sym Asym Sym Asym
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
NN-correction 024 011 0.04 001 0.19 012 005 0.02 028 0.13 004 004 022 009 0.04 001
NDCC 0.62 0.61 059 0.60 057 055 054 0.56 0.68 070 0.72 0.71 0.67 0.65 0.68 0.70
TABLE III
DECREASED NOISY RATE dr (LOWER IS BETTER)
Fashion-MNIST CIFAR-10
Method/NS Environment Sym Asym Sym Asym
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
CORES 0.07 016 022 023 0.06 0.14 019 023 0.08 017 022 024 0.09 018 021 023
NN-correction 0.02 001 -003 -0.02 0.01 001 -0.03 -0.02 0.01 003 -0.03 -0.01 0.02 -0.02 -0.02 -0.02
NDCC 0.08 021 030 038 0.06 018 027 035 0.06 017 029 044 0.07 016 026 042
TABLE IV
EXPERIMENTS RESULT OF TEST ACCURACY.
Fashion-MNIST CIFAR-10
Method/NS Envir t Sym Asym Sym Asym
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
CE 0.63 049 028 0.11 058 042 027 0.12 052 041 026 0.12 059 043 027 0.12
CORES 0.71 0.65 0.56 0.39 075 0.69 0.64 048 0.67 0.62 052 041 0.69 0.65 056 042
AUM 0.75 0.69 058 035 079 071 0.63 041 068 0.63 055 037 071 0.65 057 036
NN-Correction 0.63 0.45 022 0.10 060 043 025 0.12 054 040 0.19 0.09 0.60 037 021 0.09
NDCC 0.72 0.65 059 0.52 075 070 0.65 0.54 065 0.60 056 049 0.67 0.63 058 0.51
CE-Clean 0.78 0.76 0.69 0.64 081 0.77 072 0.65 0.70 0.66 0.60 0.55 073 0.69 0.64 0.7

4) Baselines: CE (Cross Entropy) uses cross entropy loss,
and has no particular strategy for handling noisy labeled
data instances. CE—Clean uses solely clean data instances for
training, and thus achieves the theoretical best performance.
CORES (Confidence Regularized Sample Sieve) [13] uses
peer loss to detect suspected noisy labeled data instances with-
out unsupervised training. AUM (Area Under the Margin)
[14] uses the AUM statistic to exploit the differences between
the clean and noisy labeled data instances. AUM excludes the
detected noisy data instances from the training process. NN—
Correction (Nearest neighbor noisy label correction) [28]
uses the same noisy detection module as NDCC, but noise
label correction is performed using k—nearest neighbors.

5) Evaluation Metrics: We divide the evaluation process
into three parts: (i) noise detection, (ii) noise correction, and
(iii) overall accuracy on the clean test set under different types
of label noise in the training set.

Recall X,, denotes the accumulated detected noisy data set
with respect to all learning rounds 7', and D is the noisy input
data set. Let X 5 denote the true noisy data set. We introduce
the following score to evaluate noise detection performance:
(i) True detection rate: X, = ‘X;iXDl measures the ratio

of truly identified noise data instancgs; (ii) Miss detection
_ (\Df‘Xn)ﬁXD\

rate: X, T measures the ratio of noisy data
. . . D . .
instances identified as clean. In Section V-B, we only discuss

Xat, since Xy =1 — Xgs.

In noise correction, we check whether NDCC can correctly
assign the true labels to corresponding detected noisy data
instances. Let X, denote the data set where NDCC correctly
pair detected noisy data instances with their true labels,
and X,, denote the detected noisy data instances that are
assigned wrong labels. We define the True counterfactual
label correction rate X,; = ||§: “.

Finally, we measure the decreased noisy labeled rate
d, after applying the noisy label detection of baselines and
NDCQC, and test the accuracy of each trained learning model

f. d; for CORES is computed as d, = 7 — gﬂ%’ where

|D| — | X,,| denotes the number of currently available training
data instance, excluding the detected noisy data instances, and
| X | Xwd + | X | Xam denotes the remaining miss detected
noisy data instances. d, for NDCC and NN-Correction is
defined as:d, = 7 — ‘XD‘X”“”ly'X"‘X"f“’ , where |X,n|chw is

seen as noisy data instance because of correction failure.

B. Experiments Results

1) Noisy Label Detection: We begin by comparing NDCC
and CORES. Table I shows the true detection rates X4, for
CORES and NDCC. A larger value of Xy indicates better
performance, as the goal is to detect as many true noisy
labeled data instances as possible. Compared with CORES,

NDCC’s true detection rate X4, is obvious higher, illustrating
that automatically selecting the loss threshold is beneficial, as
opposed to using a fixed threshold, as in [13].

2) Noisy Label Correction: We next measure the effective-
ness of NDCC’s counterfactual label correction module by
comparing the label correction results between NN—Correction
and NDCC. Table II shows that, for both Fashion-MNIST
and CIFAR-10, NDCC’s chu is much higher than NN-
Correction, especially as 7 increases. The performance of NN-
Correction is unsatisfactory because clusters become unreli-
able in the presence of noisy labeled data instances. Instead,
NDCC’s superiority is confirmed with a stable chc score,
even in severe noisy environments (i.e., 7 = 0.6, 0.8). Finally,
Table III shows the decreased noisy rate that different methods
achieve. NDCC outperforms all baselines in all noisy environ-
ments across both datasets.

3) Overall Evaluation: Table IV shows the accuracy of
NDCC and the baselines. CE, which does not at all perform
noisy detection, is expected to be the least performing method.
CE—Clean intentionally uses only clean data instances for
training, and is therefore expected to perform ideally. For
both Fashion-MNIST and CIFAR-10, NDCC outperforms the
baselines when noise becomes severe (i.e., 7 > 0.6) in both
asymmetric and asymmetric case.

VI. CONCLUSION

We presented a new method for robust learning in the
presence of noisy labeling data. Specifically, we proposed
an automatic noisy peer loss threshold selection method to
separate noisy labeled data instances from clean data instances.
We additionally proposed to leverage counterfactual learning
to correct detected noisy labeled data instances. Our experi-
mental results show the superiority of the proposed approach
as compared with the state—of—the—art, particularly in severe
label noise environments.

In future work, we wish to reduce our method’s dependency
on a pre—trained model with carefully labeled training data.
Even though this is a commonly adopted strategy in noisy
learning, we believe that eliminating the need for manual
annotation and human inspection can benefit noisy learning by
allowing models to be trained on less circumscribed domains.

REFERENCES

[11 H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 5668-5675.

[2] G. Guo and N. Zhang, “A survey on deep learning based face recogni-
tion,” Computer vision and image understanding, vol. 189, p. 102805,
2019.

[3] H. Tuinhof, C. Pirker, and M. Haltmeier, “Image-based fashion product
recommendation with deep learning,” in International Conference on
Machine Learning, Optimization, and Data Science. Springer, 2018,
pp. 472-481.

[4] M. M. Kamani, S. Farhang, M. Mahdavi, and J. Z. Wang, “Targeted data-
driven regularization for out-of-distribution generalization,” in Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 882-891.

[5] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107-115, 2021.

[6]

[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

D. Arpit, S. Jastrzundefinedbski, N. Ballas, D. Krueger, E. Bengio, M. S.
Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-
Julien, “A closer look at memorization in deep networks,” in Proceedings
of the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17. JMLR.org, 2017, p. 233-242.

B. Frénay and M. Verleysen, “Classification in the presence of label
noise: a survey,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 5, pp. 845-869, 2013.

X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,”
Artificial intelligence review, vol. 22, no. 3, pp. 177-210, 2004.

H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from
noisy labels with deep neural networks: A survey,” IEEE Transactions
on Neural Networks and Learning Systems, 2022.

W. Shin, J.-W. Ha, S. Li, Y. Cho, H. Song, and S. Kwon, “Which
strategies matter for noisy label classification? insight into loss and
uncertainty,” arXiv e-prints, pp. arXiv—2008, 2020.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” arXiv preprint arXiv:1804.06872, 2018.
N. M. Miiller and K. Markert, “Identifying mislabeled instances in clas-
sification datasets,” in 2019 International Joint Conference on Neural
Networks (IJCNN). 1EEE, 2019, pp. 1-8.

H. Cheng, Z. Zhu, X. Li, Y. Gong, X. Sun, and Y. Liu, “Learning
with instance-dependent label noise: A sample sieve approach,” in
International Conference on Learning Representations, 2021.

G. Pleiss, T. Zhang, E. Elenberg, and K. Q. Weinberger, “Identifying
mislabeled data using the area under the margin ranking,” Advances
in Neural Information Processing Systems, vol. 33, pp. 17044-17 056,
2020.

A. Ghosh, H. Kumar, and P. S. Sastry, “Robust loss functions under label
noise for deep neural networks,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 31, no. 1, 2017.

E. Malach and S. Shalev-Shwartz, “Decoupling” when to update” from”
how to update”,” Advances in neural information processing systems,
vol. 30, 2017.

J. Cao, S. Kwong, and R. Wang, “A noise-detection based adaboost
algorithm for mislabeled data,” Pattern Recognition, vol. 45, no. 12, pp.
4451-4465, 2012.

S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the gdpr,”
Harv. JL & Tech., vol. 31, p. 841, 2017.

W. Qi and C. Chelmis, “Improving algorithmic decision—making in the
presence of untrustworthy training data,” in 2021 IEEE International
Conference on Big Data (Big Data). 1EEE, 2021, pp. 1102-1108.

Y. Liu and H. Guo, “Peer loss functions: Learning from noisy labels
without knowing noise rates,” in International Conference on Machine
Learning. PMLR, 2020, pp. 6226-6236.

A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie,
“Learning from noisy large-scale datasets with minimal supervision,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 839-847.

D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted
data to train deep networks on labels corrupted by severe noise,”
Advances in neural information processing systems, vol. 31, 2018.

R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency,
2020, pp. 607-617.

Y. Heng, Z. Gao, Y. Jiang, and X. Chen, “Exploring hidden factors
behind online food shopping from amazon reviews: A topic mining
approach,” Journal of Retailing and Consumer Services, vol. 42, pp.
161-168, 2018.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification.” Journal of machine learning
research, vol. 10, no. 2, 2009.

