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AbstractÐData quality is of paramount importance in the
training process of any machine learning model. Recently pro-
posed methods for noisy learning focus on detecting noisy labeled
data instances by using a fixed loss value threshold, and exclude
detected noisy data instances in subsequent training steps. How-
ever, a predefined, fixed loss value threshold may not always
be optimal, and excluding the detected noisy data instances can
hurt the size of the training set. In this paper, we propose a
new method, NDCC, that automatically selects a loss threshold
to identify noisy labeled data instance, and uses counterfactual
learning to repair them. To the best of our knowledge, NDCC is
the first work to explore the feasibility of using counterfactual
learning in the noisy learning domain. We demonstrate the per-
formance of NDCC on Fashion±MNIST and CIFAR±10 datasets
under a variety of label noise environments. Experimental results
show the superiority of the proposed method compared to the
state±of±the±art, especially in the presence of severe label noise.

Index TermsÐdata quality, noisy learning, deep learning

I. INTRODUCTION

Machine learning models have been applied in a wide range

of applications, including, but not limited to, traffic prediction

[1], face recognition [2] and product recommendation [3].

Deep neural networks have achieved remarkable performance

to a variety of tasks due in part, to large quantities of human±

annotated data [4]. However, the label annotation often intro-

duces label noise. Furthermore, over±parameterized machine

learning models, such as Deep Neural Networks, can overfit on

noisy data instances by memorizing them during training [5],

[6]. Learning and assessing machine learning models using

noisy labels can result in biases and misleading accuracy

reporting, with potentially detrimental results. There are two

common types of noise, namely: feature noise and label noise

[7]. In this work, we focus on label noise which has been

shown to be more harmful than feature noise [8].

To train a model with a noisy dataset, one commonly

adopted approach is noise sample selection [9], which dis-

tinguishes the noisy from clean data instances, then excludes
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noisy instances from the training process [10]. In line with

prior art, this work leverages loss to distinguish between noisy

from clean data instances (i.e., data instances exhibiting low

loss value being more likely to be clean) [11]. The challenge

is how to quantify the loss value during the training process.

[12] ranks the loss value for all data instances and pre±sets the

loss threshold with a specific noise rate (NR) to identify noisy

data instances as those whose loss value is lower than the

threshold. The main problem with that approach is twofold:

(i) in the real±world, the noise rate is hard to estimate a priori,

and (ii) different choices of loss functions result in different

loss value rankings. To overcome these issues, we use peer loss

[13] for noisy label detection. [13] sets peer loss threshold to

0 to distinguish the noisy from clean data instances. However,

our experiments (See Figure 1) show that 0 may not always

be the optimal peer loss threshold. We therefor propose an

automated threshold selection method to overcome this issue.

Upon detecting suspected noisy labeled data instances, these

instances are typically excluded from the training process

[14]. However, for small or severely noisy labeled datasets,

excluding noisy data can dramatically reduce the size of

the training set, to the point it becomes useless for training

purposes. Furthermore, despite having noisy labels, the feature

values of noisy labeled data instances are clean and could

still be useful for training. We believe this work to be the

first to explore the feasibility of correcting noisy labeled

data instances by finding the true label using counterfactual

learning. Specifically, for each detected noisy labeled instance,

counterfactual data instances are computed for all possible

labels. The label that achieves the minimum value of counter-

factual score is then selected as the true label (refer to Section

IV-B for detailed explanation and examples).

This work focuses on training a robust learning model

in the presence of noisy labeled data in the training set,

through detecting and correcting noisy labeled data instances.

In summary, the main contributions of this paper are:

• Proposing a novel method for automating the selection of

the noisy peer loss threshold in the noisy label detection.

• Introducing a practical approach for identifying noisy

labeled data in the training process, and estimating the
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most probable true label for each detected noisy data

instance using counterfactual learning.

• Demonstrating the superiority of the proposed solution

against baselines using benchmark datasets under differ-

ent noisy environments.

To ensure the reproducibility of our work, our method avail-

able at https://github.com/IDIASLab/NDCC.

II. RELATED WORK

With the increase of complexity and scale of datasets, the

possibility of including unreliable labels or noisy labels also

increases. Training machine learning models with noisy labels

significantly impacts their prediction performance. For this

reason, a large variety of deep learning models for robust

learning in noisy data environments has already been devel-

oped [15], [16]. For instance, the loss function±based approach

in [15] minimizes the risk for unseen clean data with the

presence of noisy labels in the training data. However, such

loss function±based approaches are restricted to a particular

framework, and thus, lack adaptability. [13] uses peer loss

to select clean data instances by fixing the loss threshold to

0. However, the optimal loss threshold may not always be

fixed or predetermined. Instead of using a fixed threshold, this

work learns the loss threshold for noisy labeled data instances

detection during the training process itself.

After detecting suspected noisy labeled data instances, many

methods (e.g., [16]) exclude such instances in subsequent

training steps. However, dropping suspected noisy label data

instances can result in a diminished training set, and wastes

the clean features of noisy labeled samples. [17] assigns more

weight on clean data instances than on suspected noisy data

instances. At the same time, mistreating noisy data instances

as clean can lead to a highly inaccurate model. We instead

propose a counterfactual based method to correct the labels of

suspected noisy labeled data instances. Counterfactual learning

has been widely explored in explainable machine learning.

Specifically, [18] leverages counterfactual methods to produce

example±based explanations by feature perturbation. Feature

perturbation may lead to different prediction results given a

learning model; data instances with perturbed feature values

(in our case labels) are considered counterfactual [19]. To the

best of our knowledge, this work is the first to incorporate

counterfactual learning into noisy learning.

III. PRELIMINARIES

Let D = (X,Y ) denote a clean training dataset and

D̃ = (X, Ỹ )1 a noisy dataset. N is the total number of data

instances in D and D̃ (i.e., X = {xi}
N
i=1), and xi ∈ X

is an M dimensional feature vector. The total number of

classes in both Y and Ỹ are K, and j denotes the class

index. The label of xi is denoted as yi ∈ B
K with value

1 at entry j indicating belonging to the jth class, otherwise

0. For example, for K = 5, yi = [0, 1, 0, 0, 0] indicates that

xi belongs to Class 2. The task is to train a model f using

1Data instances in D̃ are either clean or noisy labeled. Same with Ỹ .

D̃, since the clean dataset D is unavailable, to predict the true

label y of previously unseen data instances. Let ȳ denote the

predicted outcome. To minimize the influence of noisy data on

the model performance, we propose strategies to detect noisy

data instances, and assign them with the most likely true label

while learning f . We leverage counterfactual learning to search

for the most likely true label for each noisy data instance.

Specifically, each noisy data instance is associated with K

counterfactual data instances (x̂j
i , ŷ

j
i ), each is generated for

each labels ŷ
j
i , where j ∈ 1, 2, 3, ..,K. By comparing the

counterfactual properties (see Section IV-B) with (xi, ỹi) and

each (x̂j
i , ŷ

j
i ), we find the most likely true label ŷ

j
i and

substitute the noisy label with the most likely true label ŷ
j
i .

IV. PROPOSED FRAMEWORK

We propose Noisy label Detection and Counterfactual

Correction (NDCC), a novel framework for training a robust

classifier over a noisy labeled dataset. The objective function

of NDCC follows:

argmin
W,x̂

j
i

N∑

i=1

ϕihc(W,xi) + (1− ϕi)hn(W, x̂
j
i ), (1)

where

hc(W,xi) = l(f(W,xi), ỹi)−
1

K

K∑

j=1

l(f(W,xi), y
j
i ), (2)

and

hn(W, x̂
j
i ) = dist(xi, x̂

j
i ),

s.t. f(W, x̂
j
i ) = j,

(3)

ϕ is the noisy labeled data instanced indicator, and dist

denotes Euclidean distance. The detailed explanations for

Eqs. (2) and (3) are provided in Sections IV-A and IV-B,

respectively. Overall, the problem in Eq. (1) can be viewed

as a combinatorial optimization problem, which is difficult

to solve directly. We therefore solve Eq. (1) by alternatively

searching for the optimal solutions of W and x̂
j
i .

Initially, the noisy dataset D̃ = (X, Ỹ ) is provided as input

to the noisy label detection, which then outputs suspected

noisy label data instances (Xn, Ỹ ), and sets the noisy indicator

ϕ = 0 for each xi ∈ Xn, and 1 for each xi ∈ Xc. Therefore,

ϕihc(W) in Equation (1) reflects the loss for clean data

instances, whereas (1 − ϕi)hn(W, x̂i) reflects the loss for

noisy labeled data instances. The label counterfactual correc-

tion module assigns each xi ∈ Xn with the most likely true

label ŷi, then substitutes D̃ with the label±revised dataset D̂,

to be used in subsequent rounds of training f(W ). Note that

D̂ can be updated multiple times through the training process,

as additionally noisy labeled data instances are identified.

A. Noisy Label Detection (hc)

Loss can identify noisy labeled data instances [10], [11].

Specifically, [10] pointed out that the loss of clean data

instances is expected to be lower than that of noisy labeled

data instances, mainly because noisy labeled data instances are







TABLE I
TRUE DETECTION RATE Xdt (HIGHER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment (τ ) Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CORES 0.56 0.55 0.57 0.59 0.51 0.50 0.56 0.57 0.60 0.58 0.61 0.59 0.64 0.61 0.62 0.57
NDCC 0.76 0.75 0.75 0.77 0.67 0.68 0.72 0.74 0.80 0.81 0.81 0.84 0.78 0.76 0.78 0.82

TABLE II
COUNTERFACTUAL TRUE CORRECTION RATE X̂cfc (HIGHER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

NN-correction 0.24 0.11 0.04 0.01 0.19 0.12 0.05 0.02 0.28 0.13 0.04 0.04 0.22 0.09 0.04 0.01
NDCC 0.62 0.61 0.59 0.60 0.57 0.55 0.54 0.56 0.68 0.70 0.72 0.71 0.67 0.65 0.68 0.70

TABLE III
DECREASED NOISY RATE dτ (LOWER IS BETTER)

Fashion±MNIST CIFAR±10

Method/NS Environment Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CORES 0.07 0.16 0.22 0.23 0.06 0.14 0.19 0.23 0.08 0.17 0.22 0.24 0.09 0.18 0.21 0.23
NN-correction 0.02 0.01 -0.03 -0.02 0.01 0.01 -0.03 -0.02 0.01 0.03 -0.03 -0.01 0.02 -0.02 -0.02 -0.02

NDCC 0.08 0.21 0.30 0.38 0.06 0.18 0.27 0.35 0.06 0.17 0.29 0.44 0.07 0.16 0.26 0.42

TABLE IV
EXPERIMENTS RESULT OF TEST ACCURACY.

Fashion±MNIST CIFAR±10
Method/NS Environment Sym Asym Sym Asym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CE 0.63 0.49 0.28 0.11 0.58 0.42 0.27 0.12 0.52 0.41 0.26 0.12 0.59 0.43 0.27 0.12
CORES 0.71 0.65 0.56 0.39 0.75 0.69 0.64 0.48 0.67 0.62 0.52 0.41 0.69 0.65 0.56 0.42
AUM 0.75 0.69 0.58 0.35 0.79 0.71 0.63 0.41 0.68 0.63 0.55 0.37 0.71 0.65 0.57 0.36

NN-Correction 0.63 0.45 0.22 0.10 0.60 0.43 0.25 0.12 0.54 0.40 0.19 0.09 0.60 0.37 0.21 0.09
NDCC 0.72 0.65 0.59 0.52 0.75 0.70 0.65 0.54 0.65 0.60 0.56 0.49 0.67 0.63 0.58 0.51

CE-Clean 0.78 0.76 0.69 0.64 0.81 0.77 0.72 0.65 0.70 0.66 0.60 0.55 0.73 0.69 0.64 0.57

4) Baselines: CE (Cross Entropy) uses cross entropy loss,

and has no particular strategy for handling noisy labeled

data instances. CE±Clean uses solely clean data instances for

training, and thus achieves the theoretical best performance.

CORES (Confidence Regularized Sample Sieve) [13] uses

peer loss to detect suspected noisy labeled data instances with-

out unsupervised training. AUM (Area Under the Margin)

[14] uses the AUM statistic to exploit the differences between

the clean and noisy labeled data instances. AUM excludes the

detected noisy data instances from the training process. NN±

Correction (Nearest neighbor noisy label correction) [28]

uses the same noisy detection module as NDCC, but noise

label correction is performed using k±nearest neighbors.

5) Evaluation Metrics: We divide the evaluation process

into three parts: (i) noise detection, (ii) noise correction, and

(iii) overall accuracy on the clean test set under different types

of label noise in the training set.

Recall Xn denotes the accumulated detected noisy data set

with respect to all learning rounds T , and D̃ is the noisy input

data set. Let XD̃ denote the true noisy data set. We introduce

the following score to evaluate noise detection performance:

(i) True detection rate: Xdt =
|Xn∩XD̃|

|XD̃| measures the ratio

of truly identified noise data instances; (ii) Miss detection

rate: Xdm =
(|D̃−Xn)∩XD̃|

|XD̃| measures the ratio of noisy data

instances identified as clean. In Section V-B, we only discuss

Xdt, since Xdm = 1−Xdt.

In noise correction, we check whether NDCC can correctly

assign the true labels to corresponding detected noisy data

instances. Let X̂r denote the data set where NDCC correctly

pair detected noisy data instances with their true labels,

and X̂w denote the detected noisy data instances that are

assigned wrong labels. We define the True counterfactual

label correction rate X̂cfc = |X̂r|
|Xn|

.

Finally, we measure the decreased noisy labeled rate

dτ after applying the noisy label detection of baselines and

NDCC, and test the accuracy of each trained learning model

f . dτ for CORES is computed as dτ = τ −
|XD̃|Xdm

|D̃|−|Xn|
, where

|D̃| − |Xn| denotes the number of currently available training

data instance, excluding the detected noisy data instances, and

|Xn|Xwd + |XD̃|Xdm denotes the remaining miss detected

noisy data instances. dτ for NDCC and NN±Correction is

defined as:dτ = τ −
|XD̃|Xdm+|Xn|X̂cfw

|D̃|
, where |Xn|X̂cfw is

seen as noisy data instance because of correction failure.

B. Experiments Results

1) Noisy Label Detection: We begin by comparing NDCC

and CORES. Table I shows the true detection rates Xdt, for

CORES and NDCC. A larger value of Xdt indicates better

performance, as the goal is to detect as many true noisy

labeled data instances as possible. Compared with CORES,



NDCC’s true detection rate Xdt is obvious higher, illustrating

that automatically selecting the loss threshold is beneficial, as

opposed to using a fixed threshold, as in [13].
2) Noisy Label Correction: We next measure the effective-

ness of NDCC’s counterfactual label correction module by

comparing the label correction results between NN±Correction

and NDCC. Table II shows that, for both Fashion±MNIST

and CIFAR±10, NDCC’s X̂cfc is much higher than NN±

Correction, especially as τ increases. The performance of NN±

Correction is unsatisfactory because clusters become unreli-

able in the presence of noisy labeled data instances. Instead,

NDCC’s superiority is confirmed with a stable X̂cfc score,

even in severe noisy environments (i.e., τ = 0.6, 0.8). Finally,

Table III shows the decreased noisy rate that different methods

achieve. NDCC outperforms all baselines in all noisy environ-

ments across both datasets.
3) Overall Evaluation: Table IV shows the accuracy of

NDCC and the baselines. CE, which does not at all perform

noisy detection, is expected to be the least performing method.

CE±Clean intentionally uses only clean data instances for

training, and is therefore expected to perform ideally. For

both Fashion±MNIST and CIFAR±10, NDCC outperforms the

baselines when noise becomes severe (i.e., τ ≥ 0.6) in both

asymmetric and asymmetric case.

VI. CONCLUSION

We presented a new method for robust learning in the

presence of noisy labeling data. Specifically, we proposed

an automatic noisy peer loss threshold selection method to

separate noisy labeled data instances from clean data instances.

We additionally proposed to leverage counterfactual learning

to correct detected noisy labeled data instances. Our experi-

mental results show the superiority of the proposed approach

as compared with the state±of±the±art, particularly in severe

label noise environments.
In future work, we wish to reduce our method’s dependency

on a pre±trained model with carefully labeled training data.

Even though this is a commonly adopted strategy in noisy

learning, we believe that eliminating the need for manual

annotation and human inspection can benefit noisy learning by

allowing models to be trained on less circumscribed domains.
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