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Extensive research in well-studied animal models underscores the importance of
commensal gastrointestinal (gut) microbes to animal physiology. Gut microbes have
been shown to impact dietary digestion, mediate infection, and even modify behavior
and cognition. Given the large physiological and pathophysiological contribution
microbes provide their host, it is reasonable to assume that the vertebrate gut
microbiome may also impact the fitness, health and ecology of wildlife. In accordance
with this expectation, an increasing number of investigations have considered the
role of the gut microbiome in wildlife ecology, health, and conservation. To help
promote the development of this nascent field, we need to dissolve the technical
barriers prohibitive to performing wildlife microbiome research. The present review
discusses the 16S rRNA gene microbiome research landscape, clarifying best
practices in microbiome data generation and analysis, with particular emphasis on
unique situations that arise during wildlife investigations. Special consideration is
given to topics relevant for microbiome wildlife research from sample collection to
molecular techniques for data generation, to data analysis strategies. Our hope is that
this article not only calls for greater integration of microbiome analyses into wildlife
ecology and health studies but provides researchers with the technical framework
needed to successfully conduct such investigations.

microbiome, 16S rRNA gene, ecology, wildlife, methodology, review

1. Introduction

The advent of high-throughput DNA sequencing technologies has facilitated transformations
in our understanding of the microbial biosphere. Until recently, the majority of microbial diversity
was unseen, unidentified, and unstudied. Our newfound ability to interrogate the genomic
information of microbes in situ has unlocked new understanding about the vast diversity of the
microbial biosphere, the ecological distribution of microbes, and their linkage to key ecosystem
services. One of the most rapidly accelerating areas of understanding that high throughput
sequencing has unlocked is that of the integral role that microbes play in vertebrate (patho)
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physiological mechanisms. While a relatively small number of
infectious, easily culturable microbes have been intensively studied,
environmental DNA sequencing has revealed an extensive diversity of
uncultured host associated microorganisms and has begun to uncover
the complex interaction of commensals, mutualists, pathobionts, and
pathogens that live in association with their vertebrate host (See Box 1
for definitions).

In particular, the community of microorganisms that occupies the
gastrointestinal tract, and their genes, collectively referred to as the gut
microbiome, can play a central role in myriad aspects of vertebrate
biology, including: digestion (Hanning and Diaz-Sanchez, 2015; Miller
et al.,, 2020), metabolism (Koropatkin et al., 2012), growth (Yan et al.,
2016), immune modulation (Thaiss et al., 2016; Levy et al., 2017; Sylvia
and Demas, 2018) and pathogen defense (Khosravi and Mazmanian,
2013). In addition, gut microbiomes have been associated with
neurological development (Lu et al., 2018) and behavior (Ezenwa et al.,
2012; Archie and Tung, 2015; Lu et al., 2018), including mate selection
(Sharon et al., 2010; Najarro et al., 2015; Rosenberg et al., 2018), thereby
influencing selective advantages, such as mating success (Brucker and
Bordenstein, 2013; Hird, 2017). The gut microbiome comprises a diverse
set of microbial taxa, including bacteria, archaea, microbial eukaryotes
and viruses, the composition of which can affect host physiology, where
even low abundant taxa may be disproportionately impactful to their
host. Diverse factors have been found to influence the gut microbiota
community composition including diet, stress, and exposure to
pollutants. Severely altered microbial community composition, or
dysbiosis, has the potential to influence normal vertebrate homeostatic
mechanisms, thereby manifesting patterns of microbial imbalance with

10.3389/fmicb.2023.1092216

clinical signs of disease. Various diseases have been found to associate
with dysbiosis including increased susceptibility to infectious diseases
(Bandera et al., 2018), malnutrition (Kumar et al., 2018), autoimmune
diseases (de Oliveira et al., 2017; Wei et al., 2020), cardiometabolic
disorders (Morel et al., 2020), and behavioral or cognitive impairments
(Frohlich et al., 2016; Noble et al., 2017; Sylvia and Demas, 2018). The
relationship between the gut microbiome and host physiology is
bidirectional; alterations in host physiology can affect the composition
of the gut microbiome such as in the case of increased intestinal
inflammation, which can differentially impede the growth of gut
microbiota (Kamada et al., 2013; Halfvarson et al., 2017; Spiga and
Winter, 2019) and vice versa.

The intimate association between the gut microbiome and host
physiology has motivated recent efforts to consider the gut microbiome
in the context of wildlife health, conservation, and management. Indeed,
high-throughput DNA sequencing has already identified potential
pathogenic bacteria in wildlife, thereby increasing our ability to monitor
and mitigate zoonotic disease outbreaks (Galan et al., 2016).
Understanding the possible influence of host-associated taxa on the
evolution of a species is increasingly important to studies on wild
vertebrates, particularly where insights could result in management
protocols and extinction mitigation strategies for threatened species
(West et al., 2019). However, our current knowledge of microbiomes is
mostly limited to studies based on humans and model animal systems
(Hird, 2017), with the majority of research focusing on the human gut
microbiome (Davenport et al., 2017). This fact is problematic from a
conservation standpoint because results from model animal systems are
not necessarily representative of wildlife systems. A number of studies

BOX 1 Definitions.

a-diversity

A measure of the diversity of the microbial community within a sample

Amplicon

Chain Reaction (PCR)

A piece of DNA or RNA that can be the source or the product of a natural or artificial replication or amplification event, such as Polymerase

p-diversity

A measure of the similarity in terms of sample features (microbial composition) between pairs of samples

Chimeras Amplicons that form from two different biological sequences, often occurring as a result of misreading a sample
Clade A group of organisms believed to all have descended from a common ancestor

Commensals Organisms in a relationship where one benefits, while the other is unaffected

Contigs Shorter reads assembled into longer sequences based on matching overlapping regions

Degenerate primers

Primers in which a few bases are altered so that the primer will cover all the possible nucleotide combinations in the target protein; useful

for amplifying the same gene (phylogenetic marker gene) from different organisms

Ecophylogenetics A fusion of ecology with evolutionary history to determine how monophyletic lineages distribute with respect to ecologic metadata
parameters of interest.

Mate pairs Two fragments distal to each other in a genome and opposite in orientation that are produced during library preparation

Microbiome The community of microorganisms (such as bacteria, fungi and viruses) and their genes, that inhabit a particular environment

Microbiota The microorganisms that usually inhabit an environment, such as a plant or the human body

Mock communities

Sets of cells, genomes, or amplicons with known ratios that are used as controls to account for stochastic variation in microbiome studies

within a sample

Monophyletic lineage Descended from a common ancestor

Mutualists Organisms in a relationship where both organisms benefit

Pathobionts Organisms that can cause harm or promote pathology under certain genetic and/or environmental conditions

Pathogens An agent that can cause disease, which could be a bacterium, virus or fungus.

PCR Polymerase Chain Reaction (PCR) is a technique used in molecular biology to rapidly make up to a billion copies of a DNA gene target
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have shown the influence of captivity on the vertebrate gut microbiome
(McKenzie et al, 2017) including fish (Dhanasiri et al, 2011),
lizards(Kohl et al., 2017), parrots (Xenoulis et al., 2010), Antarctic seals
(Nelson et al.,, 2013), chimpanzees (Uenishi et al., 2007), grizzly bears
(Schwab et al., 2009), Tasmanian devils (Cheng et al., 2015), European
wild rabbits (Funosas et al., 2021) and Namibian cheetah (Wasimuddin
Menke et al., 2017). These differences between captive and wild gut
microbiomes could have implications for wildlife management strategies
such as captive breeding and species reintroduction programs. As a
result, a growing number of studies have sought to characterize and
evaluate the gut microbiome of wildlife populations (Couch et al., 2020,
2021; Sabey et al, 2020) with the objective of determining if the
microbiome can serve as a useful resource for monitoring and managing
the health of wild populations.

Owing to the often elusive, potentially dangerous nature or
threatened/protected status of many wildlife species, the ability to obtain
sufficient samples to make a meaningful contribution to the field can
be a major limiting factor and constraint in many wildlife microbiome
investigations. As such, wildlife microbiome investigations often
coincide with samples being collected as part of veterinary inspections
(Menke et al., 2015), or ad hoc collections from rehabilitated species [see
DeCandia et al., 2019 for a skin microbiome investigation in three canid
species]. The elusiveness of many wildlife species adds further
complexity in that the exact time of fecal sample deposition is unknown,
and exposure can lead to changes in microbial communities present in
the sample (Menke et al., 2015). One potential caveat to account for this
could be to conduct a small study of the target population, leaving fecal
samples of known age exposed to the surrounding environment and
sampling them at regular intervals to assess changes in microbiome
changes over time. Menke et al. (2015) showed in two ungulate species
in Namibia (giraffe and springbok) that microbiome composition
changed little with environmental exposure over time, except for periods
of moisture or light drizzle. In their case, the intermittent rain showers
in a sense reactivated the microbial growth which had seemingly ceased
owing to the hot desert conditions (Menke et al., 2015).

Another shortcoming of many wildlife microbiome investigations
to date is the lack of repeated measures and longitudinal project designs.
Primarily, this would be due to the logistics and costs involved in not
only capturing and tagging or observing specific individuals within a
population, but also the long-term investment required to resample the
same individual over time (including telemetry equipment and
personnel time). Moreover, if deposition of the fecal sample is not
witnessed, genotyping may be necessary to confirm that the collected
sample belongs to the target animal. These may be additional project and
personnel costs that should be incorporated into wildlife microbiome
investigation designs. Despite this, the inclusion of longitudinal time-
series data tracking changes in gut microbiome composition will allow
researchers to address questions such as whether the gut microbiomes
of individuals within a population will respond synchronously or
asynchronously to shifting environmental resources (Bjork et al., 2022).
Human research suggests that the gut microbiome can change rapidly
in response to environmental change, often with individual health and
fitness consequences (Bjork et al., 2019). As such, longitudinal studies
detecting differences in synchronicity of gut microbiome response to
changing environmental resources could elucidate shared microbiota-
associated traits, such as differences in susceptibility to disease (Bjork
etal, 2022). Furthermore, longitudinal studies will allow researchers to
determine the impact that host population structure and sociality has
on individual gut microbiome composition (Murillo et al., 2022).
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The progress and inferences made from many human microbiome
studies, owe their success largely to efforts such as the Human
Microbiome Project (HMP) dedicated to characterizing the human
microbiome at 5 different body sites (Turnbaugh et al., 2007).
Consequently, many of the gut bacteria for humans have been sequenced
and classified taxonomically, with sequences stored in searchable
databases (Turnbaugh et al., 2007; Hamady and Knight, 2009; Wylie
et al., 2012). The same is not necessarily true for wildlife (Couch and
Epps, 2022). For some species, this problem may not be as drastic as
often wildlife species will have a well-studied domesticated counterpart
[e.g., with ruminants such as domestic cattle vs. African buffalo (Couch
etal, 2021) or domestic sheep vs. Desert bighorn sheep (Couch et al.,
2020)] where many gut bacterial taxa may be shared, allowing for greater
precision when taxonomically annotating 16S rRNA gene sequences
from these host species. While this lack of referential taxonomic
classification for less-studied wildlife species may challenge initial
investigations (Couch and Epps, 2022), this limitation could also
be viewed as a timely opportunity to describe and characterize the
taxonomic diversity of these less well studied systems.

Efforts to characterize the gut microbiome involve a variety of
techniques that must be accurately implemented to ensure meaningful
outcomes. Perhaps the most common approach used to classify
microbial taxa is the sequencing of universally conserved, taxonomically
diagnostic phylogenetic marker genes, the most characterized of such
genes being the small subunit ribosomal RNA (16S rRNA) gene or 16S
rDNA. By sequencing the 16S rRNA genes of the various taxa that
comprise an archaeal and bacterial microbial community with high-
throughput sequencing technology, researchers can quickly and
inexpensively determine which organisms comprise the community,
quantify biodiversity, and measure the phylogenetic relatedness of
these organisms.

While this approach is powerful, it requires the implementation of
several key steps prior to bioinformatic analysis. First, biological
specimens, such as environmental or host-associated samples (e.g.,
feces), that contain microorganisms need to be collected and preserved
in ways that avoid contamination or bias. The DNA from the organisms
that comprise each sample is then simultaneously extracted to enable
DNA-based inferences of community composition. As a result, DNA
extraction techniques that are biased in the efficiency with which the
cells are lysed can vyield biased interpretations of community
composition. Moreover, degenerate primers are often used to amplify
through PCR a specific genomic locus (e.g., hypervariable regions of the
16S rRNA gene) from each of the genomes present in the sample. Here,
biases can result from the selection of primer or PCR conditions. Finally,
after the PCR amplicons are sequenced, a variety of bioinformatic
approaches can be used to analyze the sequences and test hypotheses,
but different approaches may reveal different patterns in the
resulting data.

The specific analytical approaches used can, in some cases,
dramatically impact conclusions. Therefore, to maximize the impact
of the addition of microbiome research to wildlife population
studies and to assist researchers wishing to embark on a
microbiome-based investigation, we have reviewed and summarized
the state of knowledge on various study parameters, including:
PCR, mock
communities and batch effects, hypervariable region selection,

sample storage and preservation techniques,
sequencing platforms, and bioinformatic pipelines, and how

different decisions at each stage can affect inferences about the
bacterial communities of interest. While prior reviews have clarified

frontiersin.org


https://doi.org/10.3389/fmicb.2023.1092216
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Combrink et al. 10.3389/fmicb.2023.1092216

best practices in a more general sense (see Knight et al. (2018) and  we focus our discussion specifically around points of consideration
Quince et al. (2017)), or have focused on domestic livestock  forincorporating 16S rRNA gene analyses into wildlife investigations
(Weinroth et al., 2022) and companion animals (Jarett et al., 2021),  (See Figure 1 and Supplementary Decision Tree Flowchart).

Sample Collection & Storage +  Sterile sample collection
) -80°C techniques critical
N 9}1% ¢ Where fresh samples need to be
y ) transported prior to DNA
° oF —_— — extraction, appropriate storage
®e ° hd cooling / freezing media and conditions should be
® o used to preserve microbial

buffers composition

DNA Extraction

Wﬁ

Hypervariable Region Selection & Library Preparation

* Use of all-inclusive kits recommended

* Choice of kit depends on required DNA yield and purity and
biomass of samples

* Mechanical lysis should be included to improve DNA yield
(especially for Gram positive bacteria)

* Region V3-V4 and V4-V6 are most representative of full
length 16S phylogenies

primer ¢ Region V4 is comparably the most suitable choice in terms of:
—— * Representative of full length 16S species richness (with
hypervariable V5-V6 & V7-V8)

« Taxonomic classification at the Genus level

* Similar community profile to shotgun metagenomics
¢ Region V2-V3 had higher resolution for lower ranked taxa

(genus & species)

region

primer

PCR techniques

¢ Use of smallest amount of starting DNA (10-50mg)
maximizes DNA yield

* Number of PCR cycles (20-30 recommended)

* Use of high-fidelity DNA polymerases recommended

Sequencing Technology

Influenced by:

> CTAAGAGCTCAGTCGATCGAGTAGCTAGCTC *  Short-versus Long-read length
CAGTACGATCGATCGATCGATCGATCGATCGAT * Cost per sample )
CGATCGATCGACTGC * Scale of the project and sample size

* Taxonomic resolution
¢ Errorrates

Biolnformatics

ASV-based pipelines OTU-based pipelines

* Various pipelines are available that include important
DA2 USEARCH-UNOISE3 preprocessing steps — adaptor removal, quality trimming

- and chimera removal — as well as sequence alignment and
&i‘lmQQ OTU/ASV pipelines taxonomy assignment.
%:
USEARCH-UPARSE ) Mothur

Phylogenetic Tree Construction

Improved by :

* Sequence length (longer sequences are preferred)

* Quality of sequence alignment

* Sequences trimmed to the same start and end
regions

'

FIGURE 1
Points of consideration in 16S rRNA gene analyses of wildlife gut microbiome investigations
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2. Sample collection and preservation
techniques

After designing well controlled and powered studies, microbiome
investigations begin by collecting biological specimens. In the case
of gut microbiome investigations, this typically involves obtaining a
fecal sample from the individual hosts being studied in part because
stool samples provide non-invasive access to the gut microbiome. In
some systems, tissue biopsies (e.g., in tranquilized animals) or
collection of lumenal contents of specific regions of the
gastrointestinal tract (e.g., in fistulated or necropsied animals) are
possible. Regardless, all samples must be collected using sterile
techniques to avoid contamination by the researcher. Additionally,
samples need to be preserved and stored to mitigate subsequent
microbial growth. Here, we discuss points of consideration regarding
gut microbiome sample collection and preservation (summarized in
Supplementary Table 1).

Many ecological studies require the use of environmental and host-
associated samples containing microbial biomass to be collected long
before DNA extraction. For non-invasively obtained fecal samples,
collection should be as soon as possible after defecation (Amato et al.,
2013). Changes in sample microbial composition, particularly the ratio
of anaerobic to facultative aerobic and aerobic bacteria have been shown
to occur with increased time of exposure of samples to the external
environment (Menke et al., 2015). Care should also be taken during
collection and processing, to exclude those parts of a sample that may
have been contaminated by the ground or surrounding environment
(Amato et al.,, 2013). An array of preservation techniques has been
developed to stabilize microbial DNA to ensure more accurate detection
of microbial taxa at a later date. Several studies have assessed the impact
of preservation on the accuracy of estimates of patterns in microbiome
variation, including sample and community composition [a- and
B-diversity (See Supplementary Table 1)]. a-diversity measures the
diversity of the microbial community within a sample, whereas
B-diversity is a measure of the similarity in terms of sample features
(microbial composition) between pairs of samples (Knight et al., 2018).
Some studies have shown little effect of preservation method on
a-diversity measures (Chen et al., 2019; Moossavi et al., 2019) and
several studies attribute the largest difference in microbial community
composition to inter-sample or inter-subject variation (Carruthers et al.,
2019; Chen et al., 2019; Moossavi et al., 2019; Lim et al., 2020). However,
choice of storage method may affect frequencies of bacteria more than
their presence/absence (Song et al., 2016).

Microbiome preservation methods can be grouped into three main
categories, being cold storage, buffer solutions and dry storage / card
preservation. It is important to note that each preservation and storage
method produces unique inherent biases in 16S rRNA gene-based
studies and as such no perfect procedure exists. Storing samples in
temperature-controlled environments can reduce variation in microbial
communities that can occur over time. Generally, —80°C storage of
biological and environmental samples or cryopreservation is regarded
as the highest fidelity storage temperature or “gold standard” to preserve
DNA quality and ensure accurate microbial community profiles
(Tzeneva et al., 2009; Lauber et al., 2010; Bahl et al., 2012; Choo et al.,
2015; Fouhy et al., 2015; Vandeputte et al., 2017; Carruthers et al., 2019;
Chen et al,, 2019; Moossavi et al., 2019; Marotz et al., 2021). Applying
cryopreservation techniques in a field situation could be difficult,
although it may be feasible if one can obtain liquid nitrogen or dry ice
at or near one’s field site.
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Storage temperature has been shown to affect abundance-weighted
B-diversity (Song et al., 2016). Relative abundance estimates have also
been shown to vary by sample storage temperature ranging from —80°C
to approximately 25°C (Roesch et al., 2009; Lauber et al., 2010; Bahl
et al, 2012; Choo et al, 2015; Gorzelak et al, 2015). Some gut
microbiome studies in humans have reported significant shifts in the
abundance of the phyla Firmicutes and Bacteroidetes between samples
stored at different temperatures (Bahl et al., 2012; Gorzelak et al., 2015).
Variation in the ratios of these phyla may obscure biologically
meaningful results because the ratio of Bacteriodetes to Firmicutes in
fecal samples is often evaluated as an indicator of host health (Ley et al.,
2005; Koliada et al., 2017). Conversely, other studies have found that
there are no significant differences between the relative abundance of
major phyla in gut microbiome samples stored in differing temperatures
without buffers or subjected to two thaw cycles (Dominianni et al., 2014;
Bassis et al., 2017).

The effects of storage temperature on microbial communities may
also be biome specific. Although minimal variation in microbial
community composition has been associated with storage temperatures
for human oral (Luo et al., 2016), skin (Lauber et al., 2010) and vaginal
microbiome samples (Bai et al., 2012) stored in buffer solutions, the
converse is true for free-living soil communities. The community
composition of soil samples stored at room temperature for up to 14 days
was mostly unaffected (Lauber et al., 2010); however, air-dried soil
samples stored for 3 months exhibited significant differences in richness
and diversity of bacterial profiles compared to samples stored at —80°C
(Tzeneva et al., 2009).

Some preservation solutions (OMNIgene.GUT buffer and Whatman
FTA cards) were shown to result in lower compositional changes in
freshly sampled fecal samples compared to others (RNAlater, 70%
ethanol and 95% ethanol), however Whatman FTA cards consistently
produced higher diversity values (Song et al., 2016). Another study
showed that samples preserved in OMNIgene.GUT were more similar
to cold-stored samples, generally considered to stabilize DNA, than
replicates stored in RNAlater, Tris-EDTA, or at room-temperature
(Chooetal,, 2015). When cooling is unavailable, card-based preservation
methods such as fecal occult blood test (FOBT) or Whatman FTA cards
may be better choices than buffer solutions (Dominianni et al., 2014;
Sinha et al., 2016; Song et al,, 2016). However, according to the
manufacturer, OMNIgene.GUT can preserve microbial composition at
ambient temperature for 60days (Doukhanine et al., 2016). Recent
studies showed that OMNIgene.GUT maintained microbiome profiles
for 21 days (Lim et al., 2020) and preserved p-diversity weighted unifrac
stability for 48 h at room temperature (Liang et al., 2020). In a study on
rats, Ma et al. (2020) found MGIEasy to be superior for DNA
concentration than OMNIgene.GUT and LongSee at ambient
temperature. Another study showed NBgene.GUT to be as effective as
OMNIgene.GUT at preserving the relative abundance of dominant and
functional bacteria in human stool samples compared to frozen controls
(Park et al., 2020). Similarly, Chen et al. (2019) showed Norgen Biotek
to be comparable to OMNIgene.GUT, CURNA, DNA Genotek HEMA
and RNAlater buffer
microbial composition.

solutions in maintaining p-diversity

Use of RNAlater, however, may result in decreased DNA purity and
lower microbial diversity (Dominianni et al., 2014), higher variation in
microbial communities with heat (Song et al., 2016), and reduced DNA
yields (Gorzelak et al., 2015). Preservation in 70% ethanol was found
least effective at stabilizing community structure and yielded similar
results to using no preservative measures (Song et al, 2016).
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Consequently, if ethanol preservation is used, concentrations of at least
95% should be used to reduce preservation biases, particularly where
freezing is unavailable and for prolonged sample storage in ambient or
sub-optimal conditions (Hale et al., 2015; Song et al., 2016).

Additional considerations when selecting between available
preservation techniques include potential for conducting further
analyses and whether the study is longitudinal in nature. For example,
samples stored in RNAlater can be used for downstream transcriptomic
investigations and samples stored in ethanol can be used for
metabolomics studies (Sinha et al., 2016). Should multiple molecules
need to be extracted from a single sample, preservation using a fixative
suitable to various types of molecules (such as 95% ethanol) may
be preferable (Song et al., 2016). Marotz et al. (2021) showed 95%
ethanol to be an effective storage preservation method for several weeks
at room temperature. For studies following individuals or populations
over time with repeated sampling to measure changes in microbiome
communities, it is imperative that the same sampling protocol and
sample storage preservation methods be employed to avoid confounding
differences in community composition with sample preservation
techniques. Therefore, the sample preservation method should consider
planned analyses, future sample collections from the same individuals
or populations, and potential future uses of samples to investigate the
biological question(s) of interest.

In summary, based on the findings of our literature search (See
Supplementary Table 1), when samples cannot be processed shortly after
collection, storage of microbial samples using OMNIgene.GUT buffer
solution, >95% ethanol, cryopreservation or freezing at a maximum
temperature of —80°C yields the most stability in microbial community
composition. New preservation methods that enter the market may yield
similar or improved results. Due to the diversity of DNA preservation
methods employed in conjunction with temperature storage, it is
difficult to disentangle absolute guidelines. Further work should
be conducted to elucidate the effects of sample preservation and long-
term storage strategy on the integrity of microbial community DNA
across different microbiomes. However regardless of methodology,
we stress the importance of preservation consistency across samples to
reduce batch effects.

3. DNA extraction

Once samples have been preserved and stored, the next goal is
extraction of the greatest yield and purest quality of DNA possible.
Choice of DNA extraction method can influence both the concentration
and quality of the DNA obtained from the assay (Nechvatal et al., 2008).
Here, we discuss the effects of different DNA extraction methods (e.g.,
enzymatic vs. mechanical cell lysis) on DNA purity and yield
(summarized in Supplementary Table 2).

In the age of high-throughput sequencing, biotech companies have
engineered all-inclusive kits to expedite extractions and standardize
methodology. Depending on the extraction method, researchers have
reported varying yields of DNA (Nechvatal et al., 2008) and purity of
nucleic acids (Gerasimidis et al., 2016; Szopinska et al., 2018). DNA yield
and purity have been shown to result in differing community diversity
and abundance estimates. Yet despite improvements, and regardless of
method, biases are introduced during DNA extraction (Yuan et al., 2012;
Brooks et al., 2015) and must be considered in study design.

Fecal microbiome samples will reasonably contain a certain amount
of undigested raw food remains, which will differ based on dietary
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preferences, and which may be of particular concern to wildlife
microbiome investigations. Chloroplast and mitochondrial sequences
included in the extraction could result in off-target amplification and
could impact the resulting microbiome profile. In certain cases where it
is vitally important for researchers to determine the relative
contributions of diet to the diversity and composition of the fecal
microbiome compared to other factors under study, similar methods
that are utilized to identify microbial taxa can be used to identify dietary
constituents. For herbivorous animals, the internal transcribed spacers
of the nuclear ribosomal loci can be used to identify various plant
species in a given fecal sample (Iwanowicz et al., 2016), for carnivorous
animals, sequencing the partial mitochondrial control region can
identify mammalian prey species (Shi et al., 2021), and for insectivorous
animals, sequencing mitochondrial cytochrome oxidase subunitl can
similarly identify insect prey species (Esnaola et al., 2018). For carnivores
insectivores, these methods could be coupled with a variety of direct
examination methods for determining diet from fecal samples (Klare
etal., 2011).

An additional aspect for consideration is that depending on the
physical properties of the microorganisms present in the sample, DNA
extractions that only incorporate standard chemical lysis may be unable
to access DNA from the whole microbial community. Organisms such
as Mycobacterium spp. and Bacillus can form spores which contain thick
cell walls that require mechanical lysis techniques to recover DNA
(Kuske et al., 1998; Vandeventer et al., 2011). Mechanical lysis via bead
beating has been shown to reduce biases during DNA extraction that
affect downstream community calculations of richness and relative
abundance estimations due to the inability to access DNA from subsets
of bacterial and archaeal populations (Kuske et al., 1998; Carrigg et al.,
2007; de Boer et al., 2010; Salonen et al., 2010; Smith et al., 2011; Yuan
et al., 2012). Furthermore, while there are a multitude of different
options for mechanical lysis, 0.1 mm silica beads have improved the
recovery of Gram positive bacteria during DNA extractions without
negatively impacting Gram negative organisms (de Boer et al., 2010).

Choice of DNA extraction method affects the overall DNA
concentration obtained from samples, although conflicting evidence
exists as to which method and kit recovers the most accurate and highest
quality DNA. In human fecal samples, use of the QIAamp DNA Stool
Kit (QIAGEN) for DNA extractions was shown to produce higher
average DNA yields than extractions using the MoBio Fecal Kit (now
owned by QIAGEN) (Nechvatal et al., 2008). Similarly, Szopinska et al.
(2018) found that the QIAamp DNA Stool Mini Kit yielded greater DNA
concentrations and higher DNA purity compared to the MoBio
PowerFecal DNA Kit (now owned by QIAGEN). Additionally, use of the
QIAamp DNA Stool Mini Kit for extracting DNA produces better
nucleic acid purity, greater sequencing yield, longer reads after quality
trimming, and higher OTU-level diversity than phenol-chloroform or
chaotropic salt based DNA extractions, yet lower double stranded DNA
yield than chaotropic salt DNA extractions (Gerasimidis et al., 2016).

Based on the above studies, the QIAamp DNA Stool and Stool Mini
Kits would be obvious choices for DNA extraction kits (See
Supplementary Table 2). However, Bahl et al. (2012) found that the
PowerSoil DNA Isolation Kit (now owned by QIAGEN) resulted in
higher DNA yield than the QIAamp DNA Stool Kit. Furthermore, Panek
etal. (2018) found that the MP Biomedicals Fast DNA Spin kit for feces
outperformed both the QITAamp DNA Stool Mini Kit and PowerSoil
DNA Isolation Kit in terms of DNA yield and purity. A third study,
comparing five commercial kits, highlighted the QIAsymphony Virus/
Bacteria Midi Kit as producing the highest quality DNA, and along with
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the Zymo ZR Fecal DNA MiniPrep Kit, produced the highest DNA
yields and bacterial diversity (Claassen et al., 2013). The PowerSoil DNA
Isolation Kit, however, has been found to be more effective than the
QIAamp DNA Stool Kit for low bacterial biomass samples (Veldsquez-
Mejia et al., 2018) and was the kit selected for research conducted by the
Human Microbiome Project (Huttenhower et al., 2012) as well as the
Earth Microbiome Project (Thompson et al., 2017; Caporaso et al., 2018).

Another consideration is that estimates of relative abundance for
microbial taxa may be biased by DNA extraction method (Yuan et al.,
2012; Wesolowska-Andersen et al., 2014; Brooks et al., 2015; Velasquez-
Mejia et al., 2018). For example, use of the MoBio PowerSoil DNA
Isolation Kit resulted in an increased number of Firmicutes and
Actinobacteria and a decrease in Bacteroidetes compared to samples
extracted using a QIAamp DNA Stool mini Kit (Veldsquez-Mejia et al.,
2018). The choice of extraction kit may also be influenced by the target
microorganism(s). Menu et al. (2018) showed that the EZ1 (Qiagen) kit
yielded higher concentrations on nucleic acids and lower levels of
contaminants than the QIAamp DNA Stool Mini Kit, for pathogenic
eukaryotes (5 protozoa and 1 microsporidium).

One drawback for all sequence-based assessments of microbial
communities is that the data are inherently compositional and very
often highly sparse, which can lead to spurious correlations between
taxon abundances and metrics of interest or between taxon abundances
themselves, when using traditional statistical methods. Others have
provided an overview of the various tools for dealing with both the
compositional and sparse nature of microbiome data (Tsilimigras and
Fodor, 2016; Gloor et al., 2017). Beyond statistical tools, researchers may
want to quantify absolute counts of bacterial cells/genomes to properly
scale counts from sequencing. Again, there are a number of options for
researchers including various microscopy, flow cytometry, and
PCR-based methods for targeting all cells, only live cells (at the time of
sample collection), or even specific taxa that may be of relevance to the
study system (Jespers et al., 2012; Wang et al., 2021).

In summary, we recommend mechanical lysis if this is not already
integrated into the kit protocol to maximize microbial diversity
recovered from samples and minimize taxa-specific biases during DNA
extraction. It is difficult to identify a single optimal DNA extraction
method, as some studies claim that the choice of kit significantly impacts
the resulting microbial profiles (Maukonen et al., 2012), whereas others
report that the ability to isolate bacteria was reproducible across all kits
tested (Claassen et al., 2013; Greathouse et al., 2019). Additionally,
we stress that a single method of DNA extraction should be executed for
all samples within a given study to negate inter-sample biases.

4. Mock communities

Sources of error and bias can occur at any stage of the microbiome
investigation, including technical variation inadvertently introduced by
the researcher. One way to assess this bias is to include mock microbial
communities in the research design. Mock communities are a defined
set of cells, genomes, or amplicons with known ratios that are used as
controls to account for stochastic variations that occur during the
various preparatory steps of microbiome studies (Yeh et al., 2018).
Additionally, mock communities used at the onset of a study can help
detect primer bias toward important and abundant clades (Parada et al.,
2016). Mock communities help to ensure that “normal” sequencing
occurs and not “aberrant, meaning that sequences may be up to
two-fold greater or lower than they would be in a “normal” run
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indicating a loss of precision. In these “aberrant” runs taxa abundance
may be greatly misrepresented and sequences of rarer taxa may be lost
completely (Yeh et al., 2018). When selecting a mock community to use,
the researcher is given three choices for mock community type and can
create their own or purchase a commercially available one.

Mock communities may be: 16S sequence copies, genomic, or whole
cel. 16S and genomic communities can be used somewhat
interchangeably provided the researcher is cognizant that the number of
168S copies per genome is variable between taxa, even between those that
are closely related (Stoddard et al., 2015). On the other hand, a researcher
may elect to use whole cell mock communities to additionally control
for DNA extraction variability. Mock communities should be included
in analyses along with other samples. For genetic material, mock
communities can be included from the PCR step, whereas whole cell
mock communities should be used from the DNA extraction step. Once
the decision between genetic material versus whole cell mock
communities has been made, there are then two options to source the
mock community. Mock communities can be made de novo by the
researcher or a pre-made mock community may be purchased from
several suppliers including American Type Culture Collection (ATCC)
and Zymo Research. When choosing which mock community to use,
the most important consideration is that it contains the clades with
characteristics of interest for the purposes of the study (i.e., gram-
positives, gram-negatives, gammaproteobacteria, fungi, archaea, GC
rich sequences, etc.). Preliminary data on the microbiome in question
may be needed to determine which taxa should be included in the mock
community. Additionally, mock communities can be selected or
constructed to contain genetically distinct 16S rRNA genes which can
be filtered out during data analysis to prevent contamination of samples
with sequences from the mock community. We recommend using mock
communities that contain sequences related to the most abundant,
significant, and ubiquitous organisms in the microbiome community of
interest, as well as any organisms that are of interest to the researcher,
such as low abundance but omnipresent organisms.

5. Batch effects

Bias resulting from technical variation introduced by the researcher
is practically unavoidable in microbiome studies. Such unwanted
variation will be referred to here as “batch effects”” In an ideal situation,
researchers would account for possible effects with experimental and
protocol design from the start of a study. Where possible, biological
variation of interest should not be conflated with sampling regimes,
differences in protocol, or, when dealing with large numbers of samples,
sub-setting of samples for processing. Researchers should try to ensure
that factors such as age/sex/genetics of their samples, sampling location/
time, kit type/processing time, etc. (Wang and Lé Cao, 2020) do not
overlap to large degrees with the actual biological variation they are
testing in their experiments. If, however, such conflation is unavoidable
due to the nature of the study system, there are a number of post hoc
statistical computational methods that have been developed for dealing
with such batch effects, specifically for microbiome data (Gibbons et al.,
2018; Ma et al., 2020; Wang and Lé Cao, 2020).

Regardless of the study system, batch effects from sample processing
can and should be accounted for by all researchers, and minimized
where possible (Chen et al., 2019). When sub-setting samples for
processing, it is important to include roughly equal proportions of
samples representing the biological variation of interest in each
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subsample and to randomize the samples across plates or racks of tubes.
Processing samples in this way can not only reduce the general batch
effects that might arise from accidental technical variations between
subsets but can help minimize the impact of both well-to-well and
background contamination, which are known problems with both plate
and tube-based methods of microbiome sample processing (Minich
etal., 2019).

6. Hypervariable region selection

In 16S rRNA gene studies, following DNA extraction, specific
subregions of interest within the 16S rRNA gene need to be amplified
using the polymerase chain reaction (PCR). Although high throughput
DNA sequencing has allowed us to produce 107-10° sequences per run,
the technical limitations of the most commonly applied sequencing
platforms result in short length reads (100-400bp; Schloss, 2010) of the
16S gene, which is approximately 1,500 bp in length. Within this gene
there are nine so-called hypervariable regions (V1-V9) that manifest
relatively higher mutation rates, flanked by relatively conserved regions
of DNA. These hypervariable regions are useful to sequence because
they provide resolved insight into the divergence between relatively
closely related microbial taxa, while the conserved sequences flanking
these hypervariable regions make for useful PCR priming sites to
amplify 16S genes of diverse taxa (Baker et al., 2003). However, an
important question is often raised: which hypervariable region(s) should
be targeted in a 16S rRNA gene sequence survey? In this section,
we discuss how the selection of different hypervariable regions influence
downstream microbiome analysis results (summarized in
Supplementary Table 3). However, we note that the growing trend of
long-read sequencing and shotgun metagenomics may mitigate the need
to prioritize specific hypervariable regions in the near future
(Sharpton, 2014).

Rates of nucleotide conservation and hypervariable region length
vary, consequently dictating the efficacy of each region to differentiate
between taxa. Researchers have extensively considered how the use of
DNA sequences from the different hypervariable regions impact study
outcomes, such as phylogeny-based measurements, taxonomic
classification rates, and community diversity metrics. Phylogenies
reconstructed using V4-V6 region sequences (Yang et al., 2016) and V3/
V4 sequences (Ragan-Kelley et al., 2013) are most representative of full-
length 16S phylogenies while V2, V8 (Yang et al.,, 2016) and V9 (Ragan-
Kelley et al., 2013) were found least similar to the full-length phylogenies
(see Supplementary Table 3). Bukin et al. (2019) found the V2-V3 region
to be preferable to the V3-V4 region in terms of classification for lower
ranked taxa (genus and species) using samples from an aquatic
environment. However, across sampling environments, the V4 region
sequences, on average, have been shown to be best at annotating
sequences with genus level taxonomic labels (Soergel et al., 2012) and
the most accurate when using simulation and mock community data
(Liu et al., 2020).

B-diversity metrics applied to 16S data have been shown to be robust
to primer and sequencing platform selection (Tremblay et al., 2015). Of
those tested (V4, V6-V8, and V7-V8), the V4 hypervariable region
sequences most closely resembled community profiles obtained using
shotgun sequencing (sequencing of random DNA strands; Tremblay
et al., 2015). Similarly, in another study, simulated V4, V5-V6, and
V6-V7 hypervariable region fragments most closely estimated full-
length 16S sequence species richness (Youssef et al., 2009).
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In addition to the particular variable region of interest sequenced,
the primer sequence itself can lead to biases during amplification. For
example, the Earth Microbiome Project 16S Illumina Amplicon
Protocol' specifically modifies the V4 515F - 806R primer pair
(Caporaso etal.,, 2011) to enable longer amplicon (e.g., the V4 V5 region
using 515F-926R; Quince et al., 2011; Parada et al., 2016) as well as
addition of degeneracy to forward and reverse primers to decrease bias
against particular microbial lineages (Apprill et al., 2014; Parada et al.,
2016). Use of the original primer pairs resulted in decreased detection
ability of particular microbial lineages such as Crenarachaeota and
Alphaproteobacterial clades (e.g., SARI1). Similarly, Chen et al. (2019)
found an inability of the degenerate primer 27f-YM to detect the
majority of Bifidobacteriales, and other studies have demonstrated how
primer choice can influence relative abundance estimations (Tremblay
etal., 2015; Liu et al., 2020).

/. Polymerase chain reaction based
library preparation

In many microbiome studies (and metabarcoding in general), PCR
serves a dual purpose: it amplifies a genomic locus of interest to ensure
there is a sufficient amount of DNA to sequence and it prepares the
DNA for sequencing on a DNA sequencing platform (i.e., library
preparation). However, errors can be introduced during PCR that affect
downstream analyses. These errors are often difficult to detect (Goodrich
etal, 2014) and can be compounded with each additional amplification
cycle. This section highlights techniques employed to reduce potential
errors during PCR.

Potential PCR errors could arise from poor DNA polymerase
fidelity, resulting in substitutions, insertions, and deletions of base pairs,
as well as off-target primer binding. Consequently, these errors could
potentially produce chimeras arising from incompletely extended
sequences annealing to another sequence. Such errors can significantly
impact estimation of microbial community diversity and composition.

Further sources of error potentially affecting the efficacy of the PCR
reaction could result from the choice of PCR reagents, such as the
specific Taq enzyme used, or could relate to the properties of the samples
themselves, which will vary in the amount of PCR inhibitors present and
carried through downstream DNA extraction reactions. One solution
to this would be to fine-tune the amount of DNA utilized in the reaction,
such as reducing the concentration of a DNA aliquot that contains large
amounts of PCR inhibitors or increasing the concentration of DNA if
initial reactions fail. To account for these complications, researchers can
follow established reputable protocols, such as the Earth Microbiome
Project 16S Illumina amplicon protocol (Caporaso et al., 2018), which
includes the use of DNA extraction kits known to both effectively
remove PCR inhibitors while applying seemingly robust reagents that
reliably amplify the specified amount of DNA.

Minimizing the number of PCR cycles and using high fidelity DNA
polymerases (such as KAPA) has been shown to help alleviate the
formation of chimeras, nucleotide polymorphisms, and compositional
biases in microbial communities (Gohl et al., 2016; Sze and Schloss,
2019). Using mock communities, Sze and Schloss (2019) demonstrated
that the number of PCR cycles is of primary importance, with

1 https://earthmicrobiome.org/protocols-and-standards/16s/
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polymerase choice being secondary. When comparing the efficacy of
various polymerases, after clustering sequences to reduce noise and with
30 cycles of PCR amplification, KAPA polymerase had the lowest error
rate followed by Phusion, Q5, Accuprime, and Platinum, although
Accuprime generated the fewest chimeras (Sze and Schloss, 2019). As
additional cycles of PCR were conducted, Shannon diversity index
generally increased and bacterial communities became more even (Sze
and Schloss, 2019). For this reason, Sze and Schloss (2019) caution
against comparing data created under differing PCR conditions.
Another study found that beyond 20 cycles of PCR, KAPA polymerase
outperformed Q5 and Taq both in having the lowest nucleotide error
rate and least number of chimeric sequences (Gohl et al., 2016).
Additionally, reducing the amount of starting material (to between 10
and 50 mg wet weight fecal samples) used in PCR increases DNA yield
(Ariefdjohan et al., 2010), and decreases the percentage of chimeric
reads detected after DNA sequencing (D’Amore et al., 2016). Sample
biomass has also been shown to be the most important factor in
determining representative microbial composition (Villette et al., 2021).
We recommend using high fidelity DNA polymerases and minimizing
the number of PCR cycles and amount of starting DNA used to mitigate
any potential errors arising from the PCR process.

Previous best practice also suggested that, to minimize bias, it is
advisable to conduct triplicate PCRs per sample (Goodrich et al., 2014).
In a recent study spanning hundreds of samples from different
environments, results from single PCR reactions were found similar to
pooled results from triplicate runs (Marotz et al., 2019). This suggests
that owing to the improved processivity and fidelity of DNA
polymerases, the need for triplicate runs may be obsolete, substantially
reducing costs (Marotz et al., 2019). The authors do add a caveat to this
claim, however, stating that prior tests should be run for the specific
sample environment prior to abandoning conventional wisdom (Marotz
etal., 2019).

8. Sequencing technology

Following DNA extraction and amplification, the genes present in
each sample need to be sequenced. Next generation sequencing (NGS)
employs parallel sequencing technology and as the technology evolves,
so too does the number of commercially available NGS platforms. In
this section, we explore the current options available to researchers and
the advantages and disadvantages associated with each.

DNA sequencing has evolved from the original 2D gel
electrophoresis (1975), Sanger sequencing (1977), and more recently
Roche 454 (2004-2012). Illuminas (~2007) HiSeq and MiSeq
sequencing platforms have quickly become the sequencing standard,
producing a higher quantity and quality of reads than Roche 454
(Caporaso et al., 2012). The two Illumina sequencers (HiSeq and MiSeq)
can be distinguished from each other by scale of operation, cost, and
read length. MiSeq machines deliver rapid smaller scale sequencing
while the HiSeq reduces the cost per sample by enabling higher
parallelization at the expense of time and sequence length (Caporaso
etal, 2012). MiSeq and HiSeq have both been shown to produce low
variability across lanes in a single run and similar quality reads
(Caporaso et al., 2012). Taking advantage of the higher quantity of reads,
dual-index paired-end primers have enabled MiSeq reads to attain
similar error rates to Roche 454 GS-FLX Titanium while increasing
read-depth by 10-fold (Kozich et al., 2013). Unfortunately, MiSeq is
currently limited to short read sequencing of roughly 300 nucleotides.
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Attempts to increase read length of MiSeq generally resulted in reduced
overlap between read pairs (Schloss et al., 2016).

While Illuminas HiSeq/MiSeq platforms limited researchers to
short hypervariable regions of the 16S gene, emerging long-read
sequencing technologies such as PacBio and Oxford Nanopore hold the
potential to transform 16S investigations by offering access to full-length
16S gene sequence reads. When applied to 16S rRNA gene amplicon
sequencing, these platforms resolve circular consensus sequences (CCS)
and unique molecular identifiers (UMI; Callahan et al., 2019; Karst et al.,
2021), which are relatively long 16S sequences than typically obtained
by Illumina platforms. These longer read 16S sequences provide more
information about the genomic composition of each sequenced
molecule and are more likely to receive better resolved taxonomic
annotations to the level of genus or species (Schloss et al., 2016;
Pootakham et al., 2017) and produce phylogenies more similar to those
reconstructed using full-length genes (Ragan-Kelley et al., 2013). One
limitation of long-read sequencing technologies that has reduced their
adoption is concern surrounding their higher sequencing error rates
compared to short read technologies. Rapid improvements to these
technologies, however, are leading to the development of new informatic
solutions targeted at reducing long-read errors. For example, after
conducting read filtering and quality control, PacBio (P6-C4 chemistry)
can produce sequences with error rates of around 0.03% (Schloss et al.,
2016; Wagner et al, 2016). Another potential effect of long-read
sequencing is on the improved accuracy of estimates of species richness
(Jeong et al.,, 2021). One study found that MiSeq V1-V2 sequences have
elevated species richness estimates compared to PacBio full-length
sequences from the same sample (Wagner et al., 2016). However, when
the full-length PacBio sequences were truncated to simulate V1-V2
reads, there was an increase in species diversity indicating that short
read sequencing may result in an overestimation of species diversity
(Wagner et al,, 2016). In addition, the use of full length sequences
including all hypervariable regions, improved classification of the
majority of sequences at the species level (Johnson et al., 2019; Jeong
etal., 2021).

As new sequencing platforms are developed and chemistries
improve, the per nucleotide error rates resulting from sequencing error
will likely decrease. Currently, a large factor in platform selection resides
in cost, wherein HiSeq is often the cheapest in per sample cost, followed
by MiSeq and then PacBio. Unfortunately, read length and read quality
are proportional to cost (Amir et al., 2017). Longer read platforms tend
to sequence a smaller number of molecules from the community, and as
a result tend to require higher costs to characterize the diversity of the
overall community as compared to short read (but high volume)
platforms. These long read approaches hold great potential for advancing
16S analyses, but our recommendation is to focus their application
toward specific questions (e.g., phylogenetic inference of the abundant
taxa across communities) unless comprehensive characterization of a
community is not a critical priority. Therefore, the selection of a
sequencing platform should be based on experimental need. The
following sections which discuss downstream bioinformatic analyses
may provide additional insight into which sequencing platform should
be utilized.

9. Bioinformatics

DNA sequencers produce “raw” reads which must be subject to
computational quality control prior to analysis. During this
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bioinformatic cleanup process, there exist numerous software options,
each designed to produce optimal results for differing scenarios. To
guide wildlife investigators with their selection of bioinformatic
analyses, this section provides an overview of important steps in 16S
gene sequence processing pipelines, and highlights examples of stand-
alone and popular all-inclusive methods (See Supplementary Table 4).

First, sequencing adaptors must be removed from raw amplicon
reads [using for example, cutadapt (Martin, 2011), trimmomatic (Bolger
et al,, 2014) or Skewer (Jiang et al., 2014)]. Reads are then quality
trimmed [e.g., Cutadapt (Martin, 2011) or TRIMMOMATIC (Bolger
etal., 2014)], to filter or truncate error-prone read sequences prior to
analysis. Following this, reads are typically subject to paired-end
assembly [e.g., PANDAseq (Masella et al., 2012)], which merges mate
pairs into longer 16S rRNA gene contigs. Chimeras are then identified
and removed from the set of reads [e.g., UCHIME (Edgar et al., 2011),
DECIPHER (Wright et al., 2012), or the chimera removal functions in
DADA2 (Callahan et al., 2016)].

After these quality filtering steps, sequences can be assigned into
operational taxonomic units (OTUs), which are clusters of sequences
that are thought to be closely related. This can occur in two general ways:
de novo (e.g., similarity-based and model-based) and reference-based
(e.g., open-reference and closed-reference). Although OTUs can
be created in different ways, studies have demonstrated that de novo
methods, which do not rely on information from a database, outperform
reference-based clustering that leverages database-dependent taxonomy
binning (Schloss and Westcott, 2011; Westcott and Schloss, 2015;
Schloss, 2016). Furthermore, for comparisons between different de novo
based methods that use sequence similarity to cluster sequences into
OTUs, average neighbor clustering — which averages the differences
between pairs of sequences — was found to be the most robust method
(Schloss and Westcott, 2011; Schloss, 2016). Additionally, when OTU
clustering was applied to human twin gut microbiomes, de novo
clustering identified a higher number of heritable OTUs between twin
pairs than other approaches (Jackson et al., 2016), which improved the
power of the analysis.

DADA2 (Callahan et al., 2016) and Deblur (Amir et al., 2017)
provide an alternative de novo clustering approach that does not rely on
sequence similarity to assign sequences to OTUs. Rather, these
approaches resolve differences between reads that result from
sequencing error to resolve the total set distinct biological sequence
variants observed in the data. In so doing, these approaches identify
specific amplicon sequence variants (ASVs) that preserve fine-scale
variation between sequences, which may be lost during sequence
similarity based OTU clustering. However, this approach may be subject
to sensitivities that obscure detection of singleton OTUs (i.e., those with
only one representative sequence in the data set; Callahan et al., 2016).
In an analysis incorporating three denoising pipelines (DADA2, Deblur
and UNOISE3), Nearing et al. (2018) showed with mock community
data, that the number of ASVs produced varied considerably across the
pipelines, with DADA?2 finding the most ASV's when using real datasets.
These discrepancies could have a significant effect on a-diversity
metrics. However, the three packages gave consistent per-sample
microbial compositions, a result echoed by Glassman and Martiny
(2018) who found pB-diversity patterns to be robust to the OTU
clustering procedure implemented. Despite the differences in ASV
count, researchers should also evaluate the financial costs and time
constraints associated with the choice of denoising software. DADA2
and Deblur are both open-source and freely available, whereas
UNOISE3 is closed-source, but is by far the fastest in terms of analysis
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run time (1,200 times and 15 times the speed of DADA2 and Deblur,
respectively; Nearing et al., 2018).

It is also worth mentioning that UNOISE3 and DADA2 produce
ASV output that depends on the input given pool of samples as
compared to Deblur, which using a denoising algorithm based on a
reference set (Amir et al., 2017). This ensures that all sequences from
different samples are denoised independently when considering all other
samples in the run. In contrast UNOISE3 and DADA2, denoise based
on the current sample pool, and therefore denoise profiles are also a
function of the samples that are present (Amir et al., 2017).

Once ASVs or OTU-clustered representative sequences have been
produced, they are aligned to enable comparisons between the
sequences, assign taxonomy, or construct phylogenetic trees. Three
primary algorithms that are commonly used in nucleotide alignments:
de novo pairwise, de novo multiple sequence, and profile-based
alignments each offer differing levels of speed and accuracy (Schloss,
2009). Before or after alignment, sequences can be taxonomically
annotated using SILVA (Yarza et al., 2008), Greengenes (DeSantis et al.,
2006), or Ribosomal Database Project (RDP, Cole et al., 2009) 16S rRNA
gene sequence databases. Each 16S database contains sequences with
varying levels of alignment quality and phylogenetic diversity (Schloss,
2010) that result in environment-specific taxonomic classification
accuracy. For example, SILVA-based taxonomic classification classifies
human fecal microbiomes and soil samples with greater accuracy than
Greengenes or RDP while RDP-based taxonomic classification better
classifies mouse feces (Schloss et al., 2016).

As noted above, it is increasingly appreciated that the nature of
microbiome data is compositional (Gloor et al., 2017; Silverman et al.,
2017; Weiss et al., 2017) with most studies comparing the relative
abundances of taxa (Silverman et al.,, 2017). Traditional statistical
methods assume that the nature of sequencing data is ecological (Gloor
etal., 2017), with reads/sample being comparable to biological sampling
effort (Weiss et al., 2017; Pannoni et al., 2022). Within one sequencing
run, the library size total number of reads per sample can vary by orders
of magnitude (McMurdie and Holmes, 2014; Weiss et al., 2017) and
often contain many zeros (Weiss et al., 2017). As such, numerous
methods to normalize microbiome data have been developed to reduce
statistical artifacts produced during analysis and address the
compositional nature of the data. Some normalization techniques are
mentioned below, but this is not discussed extensively in this review, as
this area of microbiome research is constantly evolving and currently
there is no consensus as to the best method for library normalization
(Pannoni et al., 2022).

Two widely used well-known methods include normalizing using
proportions and rarefaction (McKnight et al., 2019). Normalizing using
proportions involves dividing the reads in each individual OTU or ASV
by the total number of reads in the sample, whereas rarefaction
randomly subsamples each sample to the lowest read depth of all
samples (McKnight et al., 2019). These methods are seemingly losing
favor. For example, rarefaction, leads to the loss of available valid data
(McMurdie and Holmes, 2014) and purportedly has a high false
discovery rate (Lin and Peddada, 2020). Normalizing using proportions
has been criticized as it does not account for heteroskedasticity in the
data (Weiss et al., 2017; McKnight et al., 2019). However, rarefaction,
compared to other methods based on presence or absence, has been
shown to better cluster samples based on biological origin (Weiss et al.,
2017). Similarly, McKnight et al. (2019) showed in a study investigating
the best normalization methods for microbiome data from an ecological
viewpoint, that both normalization of proportions and rarefaction were
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useful for producing more accurate comparisons among communities,
with normalization by proportions found to be the best method overall.
Other methods, such as Compositional Data Analysis [CoDA; See
Tsilimigras and Fodor (2016) for a review of some CoDA methods],
variance stabilization transformation (VST; McMurdie and Holmes,
2014) and more recently, Analysis of Compositions of Microbiomes with
Bias Correction (ANCOM-BC; Lin and Peddada, 2020) all have certain
analytical advantages and disadvantages (Pannoni et al., 2022). It is
important that investigators follow the current literature to determine
the potential advantages and pitfalls of newly developed methodologies
to ascertain the best solution for their data analysis.

While bioinformaticians can implement these procedures through
custom software pipelines to string together these vital informatic
processes, there exist several software packages that expedite these steps
and bring added uniformity between studies. Of the most commonly used
software suites, QIIME (Caporaso et al., 2010) is OTU-based, while
DADA?2 (Callahan et al., 2016) and most recently QIIME 2 (Bolyen et al.,
2019) produce ASVs. Mothur (Schloss et al., 2009) allows the user to
choose either an OTU-clustering or ASV approach, depending on
preference. A recent review of 6 different pipelines, three OTU-based
(QIIME-uClust, mothur & USEARCH-UPARSE) and three ASV-based
(DADA2, QIIME2-Deblur & USEARCH-UNOISE3), showed that the
ASV-based pipelines had higher specificity (low production of spurious
results) than OTU-based pipelines (Prodan et al., 2020). Within the
ASV-based pipelines tested, USEARCH-UNOISE3 performed best overall
with both high sensitivity (ability to accurately detect true OTUs/ASVs)
and good specificity. DADA2 was recommended for studies on closely
related strains owing to its high sensitivity and best resolution. Conversely,
the QIIME-uclust pipeline was not recommended owing to there being
many spurious OTUs and inflated a-diversity values (Prodan et al., 2020).
In the end, regardless of the sequencing technology and software selection,
inclusion of quality trimming, error correction and read assembly can
significantly reduce substitution errors (Schirmer et al., 2015).

The output from these pipelines or software platforms is a matrix
relating features (taxa or genes) to the samples (Knight et al., 2018).
Generally, microbial community diversity can be measured
quantitatively (assessing how relative abundance of taxa is associated
with changes in the microbial community) or qualitatively (e.g.,
presence / absence). We have not delved into higher level analyses (such
as «- and p-diversity, PERMANOVA, unweighted and weighted Unifrac)
in this review. For a succinct review and more information on these
analyses, please consult Knight et al. (2018). As many of these analyses
require a phylogenetic tree, we have reviewed phylogenetics and the
construction of phylogenetic trees.

10. Phylogenetics and
ecophylogenetics

Once sequences are processed, filtered, and clustered into OTUs or
ASVs, phylogenies can be reconstructed from alignments of
representative sequences of each OTU or ASV, providing additional
insights into microbial communities. Microbial phylogenetic trees allow
for the calculation of evolutionarily informed measures of microbial
B-diversity (Lozupone and Knight, 2005), and identification of
phylogenetic signal (Gaulke et al., 2018). If considering a diverse set of
hosts, combination of microbial and host phylogeny can be used to test
for co-phylogenetic signals, as well as for modeling of host traits
(Washburne et al., 2017). Microbial phylogenetic trees have been shown
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to vary based on gene, region, sequence length, alignment, diversity, and
reconstruction method. To draw meaningful conclusions from these
tools which rely on phylogenies, researchers must be aware of the
methodological sources of phylogenetic error that may impact
their results.

Phylogenetic reconstruction using different hypervariable regions
of the 16S gene will yield differing levels of taxonomic resolution which
vary by taxonomic lineage. For example, the 16S rRNA gene is known
to be unable to differentiate between species within Bacteroidaceae and
Bifidobacteriaceae (Moeller et al., 2016) and no hypervariable region
was able to recapture the same set of diversity when compared to the full
length 16S rRNA gene (Johnson et al., 2019). Thus, alternative markers
should be used when taxa of biological interest are known to have poor
separation with 16S gene sequences. Longer sequences are better able to
recapitulate full-length genetic variation (Schloss, 2010), increase the
proportion of correct trees (Graybeal, 1998), improve branch-length
calculations (Rosenberg and Kumar, 2003), and more accurately
represent the phylogenetic distance of full-length phylogenies (Ragan-
Kelley et al., 2013). However, due to potentially uninformative stretches
within genes, analyzing the appropriate region(s) of a gene that yield
discriminatory power between taxa has a greater effect on phylogenetic
inferences than increasing sequence length (Martin et al., 1995). In
addition, and to increase phylogenetic accuracy, it is critical to trim
sequences to the same starting and ending regions, as different regions
of genes do not mutate at uniform rates (Schloss, 2010). The ability of
different 16S hypervariable regions to compute community diversity
metrics is discussed in a prior section.

Other limitations of phylogenetic reconstruction using the 16S gene
include limitations of using the 16S marker rRNA gene itself. For example,
it has been shown that while very rare, it is possible for the 16S gene to
be horizontally transmitted between species (Wang and Zhang, 2000;
Acinas et al., 2004; Kitahara and Miyazaki, 2013; Tian et al.,, 2015). There
is also evidence to suggest heterotachy (lineage-specific evolutionary
rates) within the 16S gene, resulting in complications of phylogenetic
interpretation. Despite these limitations, however, the 16S rRNA gene has
been used for over 30years to define phylogenetic relationships of
microorganisms (Woese, 1987). In the future longer read technologies
may allow for phylogenetic reconstruction using full length sequences or
sets of core housekeeping genes shared across many genomes.

There are two main flavors of phylogenetic tree construction: (1)
sequence placement approaches onto a phylogenetic reference tree, and
(2) de-novo phylogenetic tree construction. Sequence placement
approaches effectively use a reference phylogenetic tree to “place”
sequences into phylogenetic context with some measure of certainty.
Various algorithms exist which utilize different underlying statistical
frameworks to map sequences to reference trees such as maximum
likelihood [e.g., Evolutionary Placement Algorithm (Berger et al., 2011)
and pplacer (Matsen et al., 2010)] or Hidden Markov Models [e.g., SATé-
enabled phylogenetic placement (Janssen et al, 2018)]. De-novo
phylogenetic tree approaches build a novel tree from sequences using a
variety of phylogenetic reconstruction methods to model evolutionary
relationships from sequences. The relatively short sequence obtained
upon resolving ASV or OTU (e.g., 150 nucleotides) fragments in
combination with the fact that the 16S gene is relatively highly conserved
across microbes, present the problem that they may not contain sufficient
phylogenetic signal to reproduce an accurate phylogenetic tree. Various
strategies, such as inclusion of full-length reference sequences, have been
shown to allow for more accurate phylogenetic tree construction despite
this limitation (O’Dwyer et al., 2015; Gaulke et al., 2018).
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There are four primary types of denovo phylogenetic reconstruction
methods that model evolutionary relationships from aligned sequences:
distance, parsimony, maximum likelihood, and Bayesian inference.
Distance-based methods such as neighbor joining (Saitou and Nei,
1987) or minimum-evolution (Rzhetsky and Nei, 1992) rely on a
distance matrix composed of all taxa, whereas maximum parsimony
methods minimize the number of evolutionary events predicted in the
final phylogeny (Felsenstein, 2004). Both maximum likelihood and
Bayesian inference employ probability-based statistical approaches to
determine the optimal tree. Maximum likelihood methods determine
the tree that has the highest probability of depicting evolutionary history
based on the likelihood function, while Bayesian inference uses
posterior probabilities to optimize topology (Svennblad et al., 2006).

The accuracy of the reconstruction method depends on substitution
rate, number of sites, and number of taxa (Rosenberg and Kumar, 2001,
2003). Of note within phylogenetic construction of sequences is that it
is essential to ensure that artificial sequences (e.g., adaptors used for
sequencing, amplicon primer regions) are removed prior to phylogenetic
tree assembly since inclusion can lead to spurious associations between
sequences (Arnold et al., 2022; Davis et al., 2022). Generally, maximum
likelihood and Bayesian methods reconstruct phylogenies most
accurately, followed by maximum parsimony and neighbor-joining,
respectively (Rosenberg and Kumar, 2001; Ogden and Rosenberg, 2006;
Price etal.,, 2010). Currently, some of the most popular software used in
microbiome studies for phylogenetic tree reconstruction are FastTree2
(Price et al., 2010) RaxML (Stamatakis et al., 2012; Stamatakis, 2014)
using maximum likelihood methods, and BEAST (Drummond and
Rambaut, 2007) for Bayesian-based tree construction. Recently released
RaxML-NG (Kozlov et al., 2019) and IQ-TREE2 (Minh et al., 2020)
appear promising as they boast a number of improvements including
the accuracy of maximum likelihood with greatly reduced computational
time compared to prior options.

While different methods of phylogenetic tree reconstruction will
provide varying levels of accuracy, phylogenies in general are highly
dependent on the quality of sequence alignment. Morrison and Ellis
(1997) found that sequence alignments accounted for more phylogenetic
variation than choice of tree-building method. Schloss (2009, 2010) has
conducted extensive studies that demonstrate differences in alignment
quality between full-length 16S databases that are commonly used for
reference-based alignment and found that poor quality alignments
inflate phylogenetic diversity. As a result, the lower quality variable
region alignments in the Greengenes database predict higher genetic
diversity, richness, and phylogenetic diversity than alignments using the
SILVA and RDP databases (Schloss, 2010). Errors in topology from poor
alignments also become magnified in phylogenies with shallow diversity
(Ogden and Rosenberg, 2006) and both sequence diversity and the
number of lineages have been shown to impact phylogenetic accuracy
[reviewed in Hillis et al., 2003 and Nabhan and Sarkar, 2012].

With the exception of common community level p-diversity
metrics (e.g., unifrac), typical microbial analyses remain largely
phylogenetically unaware. A consequence of phylogenetic-agnostic
approaches is that meaningful patterns between microbial
communities and ecological covariates are lost. Ecophylogenetics is a
burgeoning field seeking a unified analytical framework of microbial
evolutionary history (i.e., phylogeny) and ecological community
patterns. In combination, ecophylogenetics is able to link evolutionary
related groups of microbes to ecosystem services of interest (Mouquet
etal., 2012; Gaulke et al., 2018). Ecology and evolution are inherently
linked with one another; evolution results in diversification of
monophyletic microbial lineages, or clades, within a community which
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interact with ecological ecosystem parameters. In turn, ecological
parameters create selection of microbial lineages, influencing
microbial community composition and providing opportunity for
microbial functional specialization and speciation events.

Vast opportunity exists to apply microbial ecophylogenetic methods
within a wildlife and disease ecology setting to (1) determine how
microbial clades are selected for based on host (e.g., host immune status,
parasitic burden) and environmental parameters (e.g., population
fragmentation, anthropogenic factors) and (2) understand how radiation
of microbial clades within a host impacts community assembly and host
fitness (e.g., host energy balance, disease susceptibility; Prosser et al.,
2007). Monophyletic clades, clades which contain descendants all from
a common ancestor, that are highly prevalent across individuals
represent lineages which may hold conserved traits key to microbial
actions on host physiology. Conserved microbial traits within the
lineage may also facilitate the clade’s distribution across hosts. For
example, identification of a microbial clade strongly associated with host
fitness provides novel hypotheses about conserved microbial traits
which influence host success within a particular environment.
Conserved clades may be important candidate lineages to pinpoint for
conservation management monitoring and preservation strategies.

The ClaaTU workflow is an open-source tool that has been
developed to aid microbiome researchers in ecophylogenetic analysis to
identify Cladal Taxonomic Units, which collectively manifest an
association with ecological parameters of interest (Gaulke et al., 2018;
Couch et al., 2020; Sharpton et al.,, 2021). ClaaTU is a brute-force
algorithm that conducts a root-to-tip traversal of a phylogenetic tree
assembled from microbial sequences derived from a set of microbial
communities (e.g., the OTU output table from DADA2). ClaaTU
considers every lineage within a phylogeny to identify the ecological
distribution of monophyletic groups of taxa within the samples of
interest. Finally, a phylogenetically informed permutation test
determines if a given clade is more prevalent than expected by chance
across a set of samples, indicating ecological conservation.

Overall, maximizing the accuracy of phylogenetic analyses is
complex and requires researchers to understand how each decision in
their analyses may affect potential conclusions. Generally, to improve
phylogenetic accuracy the most important considerations are the gene
region of interest and the alignment algorithm. Secondarily, tree
reconstruction method, sequence length, number of lineages, and
diversity between lineages influence phylogenetic accuracy. Additional
considerations must be made if conducting clade-based analyses due to
their dependence on rooted phylogenies.

11. Conclusion

The incorporation of the 16S rRNA gene into the analytical
repertoire of wildlife investigators has provided powerful, inexpensive
insights into gut microbial communities and expanded our
understanding of their role in wildlife ecology, health and potentially
even population dynamics. However, the procurement of samples in the
field can be costly, often including travel to remote sensitive areas or the
capture and handling of animals (Cattet et al., 2008), in some cases
threatened species. Thus, it is imperative that wildlife veterinarians and
researchers wishing to embark on a study that includes 16S rRNA gene
analyses have a thorough understanding of the numerous sources of
error that can compromise studies, the various options available to avoid
these errors, and how different choices affect research outcomes. While
studies are calling for a standardized protocol to aid comparisons across
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microbiome research (Greathouse et al., 2019), to the best of our
knowledge, there is currently no universal consensus regarding the best
methodological approach for microbiome analyses, possibly due to the
fact that different studies manifest different goals and constraints.
We can regardless look at the research summarized here to zero-in on
major points for consideration and derive recommendations of practice.

For a wildlife researcher, perhaps the most critical element in a
microbiome study is the use of as-sterile-as-possible sample collection
techniques in the field, thereby reducing the risk of cross-contamination
of samples. Extracting DNA from fresh fecal samples circumvents
potential storage and preservation effects, although in the event of
delayed sample processing, cold storage or cryopreservation at —80°C
without a buffer is considered the gold standard at reducing potential
changes to the microbial community composition (Vandeputte et al.,
2017; Carruthers et al., 2019; Moossavi et al., 2019; Marotz et al., 2021).
In cases where freezing may not be an option, such as if samples need to
be transported internationally where preservation methods require
buffer solutions, it is important to know the limitations of supplies and
sample storage conditions. Many of the buffer solutions have only been
tested in temperature-controlled laboratories and may fare differently in
more extreme environments. Furthermore, choice of buffer solution
should consider the long-term storage of samples should transport
between sample collection site and storage destination be delayed, such
as could happen if samples are delayed at customs or during shipping.
These recommended sample collection and storage methods do not
inherently consider their potential effect on other uses of the samples.
For example, to study the transcriptome or metabolome it is critical to
either snap freeze or preserve samples in a suitable buffer that maintains
the integrity of the RNA (Camacho-Sanchez et al.,, 2013). Thus, when
designing a gut microbiome study, and sample collection and storage
protocols, the potential future uses for samples should be considered.

When extracting DNA from samples, the use of kit-based DNA
extraction methods may be preferable to researchers new to the field, as
owing to their consistency of approach, they can reduce variability and
improve cross-study comparisons. To account for potential sources of
experimental contamination, we suggest the inclusion of negative controls
with all sample sets that are ultimately subjected to DNA sequencing and
analysis, especially when processing low biomass communities. Moreover,
the use of mock communities can serve as a strong quality control to
identify error-driven outliers within samples (Bender et al., 2018) and to
quantify kit or batch effects. We also stress that mechanical lysis should
be integrated to ensure that maximum diversity within the community is
captured. Following DNA extraction, optimal primer selection may
be microbial community specific, but our review of current best practice
suggests that reads that include portions of the V4 hypervariable region
appear to frequently provide improved discriminatory power.

Finally, during bioinformatic processing, we suggest careful
attention be paid during the various pre-processing steps (see Figure 1).
While excellent bioinformatic pipelines exist to help streamline
bioinformatic analyses of these data, we recommend that researchers
new to the field collaborate with bioinformaticians that can help ensure
that these pipelines are appropriately applied to their data of interest. It
would also be prudent for researchers to work through these pipelines
using standardized data sets, such as those in the Earth Microbiome
Project (Caporaso et al., 2018) or the Microbiome Quality Control
Protocols (Sinha et al.,, 2017), to assist with understanding the techniques
and interpretation of the results (Knight et al., 2018). Should researchers
wish to embark on a meta-analysis, it is imperative that they are
cognizant of and analytically correct for study-effects that may diminish

Frontiers in Microbiology

13

10.3389/fmicb.2023.1092216

cross-study comparisons (Armour et al., 2019). Ultimately, we stress that
methodological consistency between samples within a study is of
paramount importance to reduce sample-specific effects.

In this paper, we have outlined several broad recommendations and
key considerations to assist wildlife researchers in designing suitable gut
microbiome studies. Although this is not a definitive guide, owing to the
constant improvement of techniques and software available, we hope
that this paper will prove a useful resource to wildlife researchers hoping
to incorporate microbiome analyses into their research design.
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