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ABSTRACT

Optimizing a black-box function that is expensive to eval-
uate emerges in a gamut of machine learning and artificial
intelligence applications including drug discovery, policy op-
timization in robotics, and hyperparameter tuning of learning
models to list a few. Bayesian optimization (BO) provides
a principled framework to find the global optimum of such
functions using a limited number of function evaluations. BO
relies on a statistical surrogate model to actively select new
query points, that is typically captured by a Gaussian process
(GP). Unlike most existing approaches that hinge on a single
GP surrogate model with a pre-selected kernel function that
may confine the expressiveness of the sought function espe-
cially under the limited evaluation budget, the present work
puts forth a weighted ensemble of GPs as a surrogate model.
Building on the advocated Gaussian mixture (GM) posterior,
the EGP framework adapts to the most fitted surrogate model
as data arrive on-the-fly, offering a richer function space. For
the acquisition of next evaluation points, the EGP-based pos-
terior is coupled with an adaptive expected improvement (EI)
criterion to balance exploration and exploitation of the search
space. Numerical tests on a set of benchmark synthetic func-
tions and two robotic tasks, demonstrate the impressive bene-
fits of the proposed approach.

Index Terms— Bayesian optimization, Gaussian pro-
cesses, ensemble learning, expected improvement, adaptive
learning

1. INTRODUCTION

In machine learning and artificial intelligence, several ma-
jor tasks boil down to optimizing a function. When the an-
alytic expression of the function is known, plain-vanilla op-
timization techniques can be applied depending on the na-
ture of the optimization function; e.g convexity and nonlin-
earities. Nonetheless, these methods may not be applicable
in practical settings where the function is unknown and/or
each function evaluation is costly, such as hyperparameter
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tuning [1], robotics [2, 3], sensor networks [4], and drug dis-
covery [5] to name a few. Bayesian optimization (BO) pro-
vides a principled framework to efficiently and effectively op-
timize a black-box function capitalizing on a statistical surro-
gate model for the black-box function that enables the sequen-
tial acquisition of new query points [6,7]. Gaussian processes
(GPs) are widely adopted as a surrogate model in various BO
settings due to their ability to learn a non-parametric func-
tion with data efficiency and additional uncertainty quantifi-
cation [8].

Building on the GP surrogate model, there exist several
acquisition criteria or acquisition functions (AFs) to select
query points on-the-fly, including expected improvement
(EI) [9], Thomson sampling (TS) [10], upper confidence
bound (UCB), [11], and entropy search (ES) [12]. The
present work will focus on the EI criterion because of its
well-documented merits in balancing exploration and ex-
ploitation of the search space [7, 9]. In [1], the ‘EI per
second’ criterion is adopted that aims to acquire new query
points that are not only closer to the global optimum solu-
tion(s) but are also quick to evaluate. To effectively handle
highly noisy observations and constrained BO problems, the
work in [13] introduces a constrained EI criterion that is
efficiently optimized via quasi-Monte Carlo approximation.
To further reduce convergence time, the EI criterion can be
coupled with a parallel operation with function evaluations
distributed at different computing resources, where extra hy-
perparameters or selection rules are needed to guarantee the
acquisition of diverse query points at different locations [14].
Albeit interesting, these approaches use a single GP surrogate
model whose performance hinges on a pre-selected kernel
function that may confine function space expressiveness.

Kernel selection is a critical component of GP surrogate
models in BO. Several existing approaches to discover the
form of the kernel function typically operate in a batch mode
and require a large number of data which may become pro-
hibitive in the BO context where data points are scarce due to
costly evaluations, and are acquired in an online fashion; see
e.g., [15–17]. Without any prior information about the BO
problem at hand, selecting the form of the kernel function is
a nontrivial task. Alternatively, one can resort to ensemble
methods by combining the benefits of different approaches,
that have markedly improved the empirical performance inIC
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hyperparameter tuning tasks [18] and different contexts such
as high-dimensional inputs [19]. Ensembling rules have been
used for combining different acquisition criteria for BO given
a single GP surrogate model [20, 21], but the complementary
setup of adopting an ensemble of surrogate models given a
specific AF for BO has not been explored in existing liter-
ature. Although a recently developed GP-based online ker-
nel selection framework is used for conventional prediction-
oriented and graph-guided learning tasks [22–24], the notion
of GP ensembles for the BO context, where extra design of
the acquisition step is necessitated, has not been touched upon
yet.
Contributions. To ensure a richer function space than that of
a single GP with a pre-selected kernel function, the present
work puts forth a weighted ensemble (E) of GPs as the sur-
rogate model for BO that sequentially adjusts to the proper
model fit by judiciously updating the per-GP weight as new
data arrive on-the-fly. The novel EGP-based surrogate model
is coupled with an adaptive and properly adjusted EI-based
acquisition criterion to effectively balance exploration and ex-
ploitation of the search space. Numerical tests on synthetic
benchmark functions and two robotic tasks, corroborate the
benefits of the advocated EGP-EI approach compared to the
single GP-based EI counterparts.

2. PRELIMINARIES

Let us consider the following optimization problem

x∗ = argmax
x∈X

f(x) (1)

where X denotes the set comprising all feasible values of the
d × 1 optimization variable x, and f(x) is a black-box ob-
jective function whose analytic expression is unknown and/or
is expensive to evaluate. For instance, in the hyperparameter
tuning task of machine learning models where x consists of
all the hyperparameters to be tuned and f(x) represents the
mapping from x to the validation accuracy, the latter cannot
be expressed analytically and each evaluation is computation-
ally costly, especially for large data sizes and deep learning
architectures [1]. Since f is not expressed analytically, plain
vanilla gradient-based methods are not suitable for obtain-
ing x∗ and due to the expensive function evaluations, an ex-
haustive enumeration is impractical. To overcome these chal-
lenges, BO judiciously selects query pairs for a given evalua-
tion budget in a data-efficient manner [6, 7].

Capitalizing on input-output evaluation pairs collected at
Dt := {(xτ , yτ )}tτ=1, BO typically leverages a statistical
surrogate model for f , to obtain the next query input xt+1.
Building on this surrogate model, the so-termed acquisition
function α(·), often given in closed form, is employed to bal-
ance exploration and exploitation of the search space. Specif-
ically, each iteration of the BO process alternates between the
following steps

s1. Obtain p(f(x)|Dt) based on the surrogate model;

s2. Obtain xt+1=argmax
x∈X

αt+1(x|Dt) given p(f(x)|Dt).

Although there exist several choices for both the surrogate
model and the acquisition function, we will focus on the
widely adopted GP-based surrogate model and the EI acqui-
sition function with well-documented benefits; see e.g [6, 7].

2.1. GP-based surrogate model and EI acquisition

GPs offer a nonparametric Bayesian approach to learn an un-
known function along with its corresponding probability den-
sity function (pdf) in a sample-efficient manner, which is of
great interest in the BO setting where each function evalua-
tion is expensive. To learn the function f(·) that maps the
input vector xτ to the scalar output yτ as xτ → f(xτ ) →
yτ , a GP prior is postulated on f as f ∼ GP(0, κ(x,x′))
where κ(·, ·) is a positive-definite kernel function that cap-
tures the pairwise similarity between x and x′. This implies
that the random vector ft := [f(x1), . . . , f(xt)]

⊤ compris-
ing all function evaluations at Xt := [x1, . . . ,xt]

⊤
(∀t) is

Gaussian distributed as ft ∼ N (ft;0t,Kt) with Kt denoting
the t × t kernel (covariance) matrix whose (m,m′) entry is
[Kt]m,m′ = cov(f(xm), f(xm′)) := κ(xm,xm′) [8].

Focusing on the regression task, yτ can be expressed as
yτ = f(xτ ) + nτ (∀τ ) where the noise sequence is indepen-
dently and identically distributed (iid) as: nτ ∼ N (0, σ2

n).
Equivalently, the collection of outputs yt := [y1, . . . , yt]

⊤

are related to ft via the batch conditional likelihood as
p(yt|ft;Xt)=

∏t
τ=1 p(yτ |f(xτ ))=

∏t
τ=1N (yτ ; f(xτ ), σ

2
n).

Then for any input x the joint pdf of f(x) and yt is[
yt

f(x)

]
∼N

(
0t+1,

[
Kt+σ2

nIt kt(x)
k⊤
t (x) κ(x,x)+σ2

n

])
where kt(x) := [κ(x1,x), . . . , κ(xt,x)]

⊤. With the joint pdf
at hand, the function posterior pdf of f(x) is [8]

p(f(x)|Dt) = N (f(x);µt(x), σ
2
t (x)) (2)

with mean and variance expressed in closed form as follows

µt(x) = k⊤
t (x)(Kt + σ2

nIt)
−1yt (3a)

σ2
t (x) =κ(x,x)−k⊤

t (x)(Kt+σ2
nIt)

−1kt(x). (3b)

Capitalizing on the function posterior pdf, the next evalu-
ation point can be obtained by utilizing the so-termed EI ac-
quisition function, which is given by [9]

αEI
t+1(x|Dt) := Ep(f(x)|Dt)[max(0, f(x)− f̂max

t )] (4)

where f̂max
t is an estimate of the maximum function value at

slot t, which is typically given by f̂max
t = max(y1, . . . , yt);

see e.g., [7, 9]. For the single GP-based surrogate model

Authorized licensed use limited to: University of Minnesota. Downloaded on June 23,2023 at 11:57:20 UTC from IEEE Xplore.  Restrictions apply. 



where the function posterior pdf in (2) is Gaussian, the EI
acquisition function in (4) can be re-written as

αEI
t+1(x|Dt) = σt(x)ϕ

(
∆t(x)

σt(x)

)
+∆t(x)Φ

(
∆t(x)

σt(x)

)
(5)

with ∆t(x) := µt(x) − f̂max
t and ϕ(·),Φ(·) denoting the

Gaussian pdf and Gaussian cumulative density function (cdf)
respectively.

The EI criterion is employed in several practical BO set-
tings, since it can readily balance exploration and exploitation
[7, 9]. Nonetheless, the EI criterion is coupled here with the
single GP based surrogate model that relies on a pre-selected
kernel function κ(·), which may exhibit limited expressive-
ness of the sought function f , thus motivating the ensemble
(E)GP surrogate model as outlined next.

3. ENSEMBLE GPS SURROGATE MODEL AND EI

Targeting at a richer function space, the present work advo-
cates an ensemble of M GP models as a surrogate model for
the black-box function f . Each GP model hinges on a distinct
kernel function from a kernel dictionary K := {κ1, . . . , κM}
that consists of kernels with different hyperparameters and of
different types as in [22]. Specifically per GP model m ∈
M := {1, . . . ,M}, a unique GP prior is postulated as f |m ∼
GP(0, κm(x,x′)). Further combining these individual GP
priors with the weights {wm

0 }Mm=1 yields the EGP prior ex-
pressed as

f(x) ∼
M∑

m=1

wm
0 GP(0, κm(x,x′)),

M∑
m=1

wm
0 = 1 (6)

which is a Gaussian mixture (GM) with each weight wm
0 :=

Pr(i = m) denoting the probability that measures the contri-
bution of the corresponding GP model in the EGP surrogate
model. Although the notion of using a GM as an EGP prior
has been employed in typical prediction-oriented tasks [22],
the novelty of this work lies on its adaptation in the BO set-
ting, where additional design step is required to select the next
input vector xt+1 at the end of slot t. Relying on the EGP
prior in (6) and the set of evaluated data Dt, the EGP poste-
rior pdf can be obtained via the sum-product rule as follows

p(f(x)|Dt)=
M∑

m=1

Pr(i=m|Dt)p(f(x)|i=m,Dt) (7)

which is a GM posterior pdf with per-GP model weight
wm

t := Pr(i=m|Dt) being computed via Bayes’ rule as

wm
t ∝ Pr(i=m)p(Dt|i=m) = wm

0 p(Dt|i=m) (8)

where for GP model m, p(Dt|i = m) denotes the marginal
likelihood of the acquired data Dt up to slot t, which is ex-
pressed as

p(Dt|i=m) =

∫
p(yt|ft, i = m;Xt)p(ft|i = m;Xt)dft

= N (yt;0t,K
m
t + (σm

n )2It) (9)

where Km
t and (σm

n )2 denote the kernel (covariance) matrix
and noise variance of the mth GP model respectively. Note
that the per-GP model kernel hyperparameters along with the
noise variance are estimated at every iteration by optimizing
the marginal likelihood [6].

Leveraging the posterior pdf in (7) along with the corre-
sponding weights in (8), the acquisition of the next instance
xt+1 to be queried is carried out by first selecting a specific
GP model from the ensemble as follows

mt ∼ CAT (M,wt) (10)
with CAT (M,wt) denoting a categorical distribution that
selects one of the values from M with probabilities wt :=
[w1

t , . . . , w
M
t ]⊤. Then, xt+1 is obtained through the novel

EGP-based EI acquisition criterion as

xt+1 = argmax
x∈X

αEGP-EI
t+1 (x|Dt), (11)

αEGP-EI
t+1 (x|Dt) = σmt

t (x)ϕ(
∆mt

t (x)

σmt
t (x)

) + ∆mt
t (x)Φ(

∆mt
t (x)

σmt
t (x)

)

where ∆mt
t (x) := µmt

t (x) − f̂max
t , and µmt

t (x) and σmt
t (x)

represent the Gaussian posterior mean and variance of the
mtth GP model respectively. Intuitively, the larger the weight
wm

t of GP model m is, the more probable the latter is to be
utilized in the EI criterion in (11) at slot t. In that sense,
the EGP-based EI criterion properly adjusts to the mtth GP
model at each slot t as new data arrive on-the-fly.
Remark. Instead of sampling a single GP model from the
ensemble as in (10), one can directly apply the EI criterion in
(4) using the EGP posterior pdf in (7); though since the latter
is a GM, the EI criterion cannot be written in the form of (5).
The adoption of the EGP posterior pdf in (4) belongs to our
future research agenda.

4. NUMERICAL TESTS

In this section, the performance of the novel EGP-EI approach
is assessed on a set of benchmark synthetic functions and two
robotic tasks as detailed next.
Synthetic functions. Three standard synthetic functions for
BO are employed to corroborate the effectiveness of the ad-
vocated EGP-EI; that is, Ackley5d, Zakharov, and Drop-wave
[25] with the latter being a particularly challenging function
to optimize due to its multiple local optima.
Robot pushing tasks. The EGP-EI method is also evaluated
on a practical robotic task, where a robot needs to select the
proper action so as to push an object towards a pre-specified
target location. Following [26], we have tested two differ-
ent scenarios, namely, ‘robot pushing 3D’ and ‘robot pushing
4D’, where the former optimizes the 2D position coordinates
of the robot and the push duration and the latter addition-
ally optimizes the push angle. Here, the objective is to mini-
mize the distance between the target and the terminal location.
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Fig. 1: Simple regret performance of EGP-EI and single GP-EI baselines on Ackley-5d, Zakharov, and DropWave
function (from left to right). The kernel dictionary comprises four different kernels: RBF with(out) ARD and Matérn with
ν = 1.5, 2.5.

Fig. 2: Simple regret performance of EGP-EI and single GP-EI baselines on Robot pushing 3D, Robot pushing 4D
tasks (from left to right). The kernel dictionary comprises four different kernels: RBF with(out) ARD and Matérn with
ν = 1.5, 2.5.

The trajectory of the pushed object is generated utilizing the
github code1 in [26].

We compare the performance of the EGP-EI method with
the single GP-EI counterpart with kernel being pre-selected
as an RBF with and without auto-relevance determination
(ARD), and Matern kernel with ν = 1.5 and ν = 2.5 respec-
tively. The kernel dictionary of EGP-EI consists of these four
kernels; i.e., M = 4 and the weights of the M GP models
are initialized as wm

0 = 1/M , ∀m ∈ M. For all competing
approaches, 10 initial evaluation pairs are used to obtain the
kernel hyperparameters for each GP model maximizing the
marginal log-likelihood, and the hyperparameters are then
refitted every iteration. As a figure of merit, the simple re-
gret (SR) metric is utilized which per slot t is expressed as
SR(t) := f(x∗)−maxτ∈{1,...,t} f(xτ ).

The average performance of all competing approaches
along with the corresponding standard deviation are reported
for 10 independent runs. As shown in Fig. 1, the advocated
EGP-EI approach not only enjoys the lowest SR at the end of
the BO process but also converges faster to the correspond-
ing minimum SR value compared to the single GP-based
counterparts. In the robotic tasks, it is evident in Fig. 2
that although the EGP-EI method requires more iterations to
converge compared to the synthetic benchmark functions, it
consistently outperforms all competing alternatives in terms

1https://github.com/zi-w/Max-value-Entropy-Search

of SR upon 80 iterations in both tasks. The superior per-
formance of EGP-EI in all cases corroborates the merits of
adopting an ensemble of GPs as a surrogate model, which not
only offers a more expressive function space but can readily
guide the EI-based acquisition step in the BO process.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This work puts forth a novel weighted ensemble of GPs as a
surrogate model for BO. Building on the resultant GM pos-
terior pdf with adaptive weights being updated on-the-fly, the
advocated approach sequentially selects the proper surrogate
model fit, bypassing the need for selecting a priori a specific
kernel that may exhibit limited function space expressiveness.
Based on the EGP surrogate model, the acquisition of new
query points is carried out by utilizing a properly adjusted
EI acquisition criterion. The empirical performance on both
synthetic functions and practical robotic tasks showcases the
merits of the proposed EGP-EI approach.

Future directions include the combination of the advo-
cated EGP surrogate model with other acquisition criteria
such as Thomson sampling (TS) and upper confidence bound
(UCB), and theoretical analysis for the convergence of the
proposed method to the global optimum through the notion
of Bayesian regret.
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