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ABSTRACT

Assessing set-membership and evaluating distances to the
related set boundary are problems of widespread interest,
and can often be computationally challenging. Seeking ef-
ficient learning models for such tasks, this paper deals with
voltage stability margin prediction for power systems. Su-
pervised training of such models is conventionally hard due
to high-dimensional feature space, and a cumbersome label-
generation process. Nevertheless, one may find related easy
auxiliary tasks, such as voltage stability verification, that can
aid in training for the hard task. This paper develops a novel
approach for such settings by leveraging transfer learning. A
Gaussian process-based learning model is efficiently trained
using learning- and physics-based auxiliary tasks. Numeri-
cal tests demonstrate markedly improved performance that is
harnessed alongside the benefit of uncertainty quantification
to suit the needs of the considered application.

Index Terms— Gaussian processes, set-membership,
transfer learning, voltage stability.

1. INTRODUCTION

Computing the voltage stability margin is critical in power-
system operations [1, 2], and forms the primary application
considered in this work. The underlying setup, however, is
representative for several signal processing, machine learn-
ing, and control applications. Addressing a wider audience,
the abstract problem setup will be provided next, while the
details of voltage stability margin are deferred to Sec. 2.
Problem statement. Consider a compact set X C RM, and
let us define a function b(-) : RM — {0,1} as

b(x) = {1 , XxeX
0 , otherwise.

Function b(-) characterizes the set X'. The distance from a
given xg € X to the boundary of X is defined as

d(xg) := g;iEHX—XoH} (1)
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While metric d(x¢) could be of critical importance, evalu-
ating it may be challenging. Thus, despite having access to

computing d(-), a reliable learning-based surrogate d(-) is
valuable for real-time applications.

A typical supervised learning setup to obtain a surrogate
c/l\() would require a training dataset Dy,ain = { (X, d,)}1_4,
where d; = d(x,). In several applications, the feature-
dimension dim(x) = M is large, and building an adequately-
sized dataset becomes prohibitive due to the complexity in
computing d(-). In such cases, the affordable number of
training samples 7' may not be adequate to satisfactorily learn
the surrogate d(-). The membership verification function b(-)
may however be relatively easier to compute. This allows to
readily obtain an auxiliary dataset D := {(x4,bs) 1,
where b, = b(x,). When b(+) is significantly easier to com-
pute than d(-), one can afford T,,x > T. For the discussed
setup, the goal of this paper can be made explicit as follows.
Goal: Given a training dataset Diyain and an auxiliary
dataset DX, obtain a learning-based surrogate ().
Pertinent applications. The setup above appears in appli-
cations as diverse as adversarial machine learning, intrusion-
detection for cybersecurity, (in)stability analysis for dynam-
ical systems, and maximal loadability/throughput analysis in
physical networks. We will pick a couple to elaborate on.

e Adversarial machine learning. Learning-based models are
known to misclassify images corrupted by potentially unno-
ticeable adversarial perturbations [3, 4]. Thus, alongside the
inferred class-label, one may be interested in quantifying the
change, that is the perturbation, that could alter the label. In
such cases, the classifier (assuming binary) serves as b(+), and
X is the set in feature-space that the model assigns to a given
class. A small d(-) indicates an adversarial instance or an in-
stance susceptible to adversarial perturbation.

e Stability-margin prediction. The stability of nonlinear dy-
namical systems is contingent on the system state. Assessing
stability for a given state constitutes a binary investigation
such as b(-), where X is the stability region. The metric d(+)
then quantifies the disturbance that could cause instability.
Prior works on Transfer Learning. Approaches to improve
an inference task by utilizing information from a different,
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but related, task constitute the paradigm of transfer learning
(TL) [5]. Typically, TL is used in supervised learning when
the target task has to rely on only a few labeled data, whereas
the auxiliary tasks have sufficient data to train a well perform-
ing model. TL has gained popularity over the last decade in
applications such as ultrasound imaging [6], automated audio
captioning [7], and speech recognition [8], to list a few. Sev-
eral approaches learn the auxiliary task using deep learning
models; see e.g., [9], and [10] for Bayesian alternatives in-
volving random models drawn from a joint prior probability
density function (pdf). Similar in spirit to TL, self supervised
learning (SSL) seeks to transfer information to a target task
from so-called pretext tasks [11]. In contrast to the auxiliary
input-output instances involved in TL, these pretext tasks rely
on synthetically generated auxiliary instances [11].

Prior works on voltage stability. Long-term voltage stabil-
ity amounts to the solvability of power-flow equations [1]. A
pioneering development in this context is known as continua-
tion power flow (CPF) [2]. CPF uses a prediction-correction
equation solver along a given linear trajectory of operating
conditions, thus yielding a directional stability margin. A
neural network-based approach for fast prediction of direc-
tional margins was reported in [12]; see also [13] for an
upper bound on this margin. Identifying the relation between
power-flow solvability and the conditioning of the related Ja-
cobian matrix, tractably-computable indices are often used as
surrogates to stability margin [14]. Towards directly predict-
ing the stability margins, a data-based approach employing
an ensemble of linear LASSO regression models was pro-
posed in [15] placing emphasis on dimensionality reduction
of domain-based features. Faced with similar challenges,
[16] and [17] argued that building a classifier using binary
operator b(-) is much easier, and provides an informative
scalar feature-embedding.

Contributions. This work provides a novel physics-informed
transfer learning (PITL) approach for stability-margin pre-
diction with the following exciting attributes: i) Informative
low-dimensional features for the hard margin-prediction task
are extracted by exploiting an auxiliary classification dataset
that is easy to obtain; ii) Physics-based readily-computable
indices are identified that improve margin-prediction when
appended to the aforementioned low-dimensional features;
and iii) a high-accuracy regression model based on Gaussian
process (GP) ensembles (offering uncertainty quantifica-
tion) is obtained using an extremely small dataset with low-
dimensional input features. Finally, the proposed approach
is numerically benchmarked against the closely related work
of [16], while demonstrating the benefit of using a Gaussian
ensemble over a single Gaussian process.

2. VOLTAGE STABILITY MARGIN

Consider a single-phase network with N nodes representing
the per-phase equivalent of a three-phase balanced AC power
system [18]. Let (pn,qn) denote the active- and reactive-

power injections at node n € {1,...,N}; and (v, 6,) the
voltage magnitude and phase. It is typical to capture the net-
work topology and line parameters via the admittance matrix,
Y € CNxN, expressed as Y = G + yB, where matrices
G and B are real-valued. The dependence of (p;,g,) on
(vn, 0,) is dictated by the power flow equations [18]

N
DPn = Un Z U (Grm €08 Oy, + Brm, sin ) (2a)

m=1

N
Gn = Un Z U (Grm SIN Oy, — B, €08 O) (2b)

m=1

where 6,,,, := 6, — 0,,. In classical power-system analy-
sis, the nodes are classified into three categories based on the
known quantities from {py, ¢n, vn, 05, }. There is a reference
generator node r with a fixed voltage magnitude v,- and phase
0, (typically 6, = 0). The remaining generators are treated
as PV nodes with fixed (p,,v,), and loads are PQ nodes
with known (p,,, ¢,,). Without loss of generality, let us in-
dex the first Ng nodes as generators, with the reference node
as r = 1; and the remaining nodes n € {Ng +1,..., N} as
loads. For brevity, define the vector of known quantities

L T
o = [01,’[}17 <UNgsP25 PNy 4Ng+15 -+ qN]

Given «, the power flow problem aims at solving the 2NV
equations in (2) to obtain the remaining 2N unknowns in

vy = [plaqla -~qNG792a "79Na UNg+1» -~7UN]T

The nonlinear power-flow equations (2) may not admit
a solution for arbitrary values of ce. An operating point
o is said to be long-term voltage stable if there exists a
~ satisfying (2) [13, 2]. Oftentimes, power systems are
operated such that v,, ~ 1 forn = 1,...,Ng; and 6,
is set to zero, limiting the variability in operation to x =
[P, -, DNy N 11, -, qn] | - Thus, the set of stable operating
conditions can be defined as X := {x | (2) has a solution}.
The binary function b(-) then corresponds to the indicator
function for stability, that is, b(x) = 1 implies x is stable.

Since X is characterized by the solvability of nonlinear
equations (2), computing d(-) as per (1) constitutes a non-
convex optimization problem, which is hard to directly solve.
A prevalent sub-problem in power systems is to compute
the distance of x( to the boundary in a particular direction.
Specifically, given an x’ € RM, the directional distance

along xo — X' is d(x0, X') = || Amin (X — X0)||2, where

Amin = min {\ | x¢ + A\(x' —x0) ¢ X}. 3)

From the definitions of distance, d(-), and directional dis-
tance, d(-), it follows that d(xo) = miny d(xg,x’). A robust
approach for computing glv(x(), x') is by using the CPF, which
is incorporated in the (optimal) power flow toolbox MAT-
POWER [2, 19]. The value of d(x() can then be approx-

imated by min, ¢ peyx d(xg,x’), where the directional
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search is restricted to K random directions [16, 17]. Systems
with high dimension, M, may require a large K for reli-
ably approximating d(-); thus introducing large computation
cost. To put this in perspective, for the considered setup in
our numerical tests, the average time to assess stability (i.e.,
compute b(-)), evaluate d(-,-), and approximately find d(-)
requires 0.01, 0.17, and 50.9 seconds, respectively.

3. PROPOSED APPROACH

Given a dataset Diyain = {(X,,d,)}1_;, our pursuit to
learn a model (f() is challenged by a seemingly small 7'
when considering the large dimension (M) of x. To sim-
plify the task, we advocate a two-step approach: S7) Obtain
a low-dimensional, yet informative embedding z = f(x),
where z € R™ and m < M; and, S2) learning the model
as c?(x) = g(z) = g(f(x)) using a transformed dataset
Zirain :={(2,,d,)}1_,. We next elucidate S7) and $2).

In S1), for each x, in Di;ain, We seek an embedding

X
T by T . . . .
z; = [Z’T‘fer zPhy } . Embedding zX is obtained using
aux

the auxiliary dataset D2 := {(x4, by )} 2™, . We can afford
Toux > T due to the relatively low complexny of computing
b(x). Intuitively, an accurate classifier 3() assessing mem-
bership of x in X is anticipated to be cognizant of the set
boundary [16]. Thus, we use DX  to train a neural network-

train

based classifier 3(), where the two outputs of the penultimate
layer represent the likelihood of % belonging inside and out-
side X, respectively. Once trained, we use these outputs as
2" In addition to these transferred embeddings, we include
additional features zP" motivated by power-system domain
knowledge (hence motivating the name physics-informed
transfer learning). Specifically, solvability of the power-flow
equations (2) is related to the conditioning of the related Ja-
cobian. Two readily-computable pertinent indices include the
minimum of real part of the Jacobian’s eigenvalues, and the
log-determinant of the Jacobian matrix. These indices were
chosen as they are often used as surrogates for quantifying
voltage stability when computing the margin directly is not
viable [14]. Concatenating the transferred and the physics-
based embeddings, we ogtain z, € R4, allowing us to obtain
the transformed dataset Dy ain = { (2, d,)}1_;.

__ Step S§2) involves training a regression model using
Dirain. Acknowledging that the motivation for predicting
stability margin is safety oriented, uncertainty quantification
is of paramount importance. To that end, we build regression
models using (ensemble) Gaussian Processes ((E)GP).
Gaussian Processes. GPs have well-documented merits
for learning a nonparametric random function along with
its posterior pdf that fully quantifies the associated uncer-
tainty in a sample-efficient manner [20]. When learning
with GPs, the sought function g is assumed to be drawn
from a GP prior; that is ¢ ~ GP(0,k(z,2’)) where x(-)
denotes a kernel function that captures the pairwise similar-

ity between z and z’. This implies that the random vector
gr = [9(z1)...9(z7)]T ~ N(gr;0r,Kr) with K7 be-
ing the T x T covariance matrix whose (m,m’) entry is
[KT]ni,m’ = COV(Q(Zm),g(Zm')) = K(Zm,7zm’) [20] Fo-
cusing on the regression task, where the per-datum likelihood
can be written as p(d,|g(z,)) = N(d,;g(z;),02), it can
be shown that for any instance z., the predictive pdf of the
corresponding output d, is given by [20]

p(di|dr; Zr) = N(ds;d.(2.), 02 (zs)) €5

where
d.(z.) = kp(2.)(Kp 4 02Ip) lyp (5a)
0(2:) =k(2s,2.) ~kp (2.) (Kr+071r) "'k (z.)  (5b)
with Zp = [zl,...,zT]T, dr := [di,---,d7]" and
kr(z,) := [k(21,2),...,k(21,2.)] . Note that (5a) pro-

vides a prediction for z, with the predictive variance in (5b)
quantifying the associated uncertainty. The performance of a
single GP predictor hinges on a pre-selected kernel  which
may exhibit limited expressiveness of the learning function
space, thus motivating the EGP framework delineated next.

Ensemble GPs. Aiming at a richer function space, an en-
semble of M GP models is considered, each relying on a
distinct kernel chosen from a given kernel dictionary K :=
{k!',..., kM} that comprises kernels of different types and/or
different hyperparameters [21]. This means that for each GP
model m € {1,..., M} a unique GP prior is postulated as
flm ~ GP(0,k™(z,2')). Combining all M GP priors with
the corresponding weights {wg } M ylelds the EGP prior

Zwo =1 (6

where w{* := Pr(i = m) is deemed as the prior probability
that measures the significance of the corresponding GP model
m. Capitalizing on (6), the EGP-based function posterior pdf
can be written using the sum-product rule as

( ( |Dtram ZPr Z*m|Dtra1n) ( (z)‘i:mvbtrain)

m=1

ngLgPOH (z,2')

m=1

which is a mixture of posterior GPs with weights wy' =
Pr(i=m|Diin) obtained by

m)p(f)trainﬁzm) = wglp(f)train”:m) . (D
Then, for any instance z, each GP model forrns its (Gaussian
in the regression task) predictive pdf p(d.|Diain, M;Zx) =
N(d.;d"(z.), (07 (24))?). Upon combining all GP model

predictive pdfs w1th the adjusted weights {w}* M_.  the EGP
predictive pdf is given by [21]

wy' o« Pr(i=

M
)= ij"fp(d* | Dicain, ;2 )

m=1

_Z“’

p(d* |Z~)train§ Zy

d*’d ) (JT(Z*))2) (8)
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Table 1. NMSE and NPLL performance

Method | NMSE \ NPLL
GP 1.1628 £ 0.4958 | 26.1319 + 10.0676
EGP 1.0391 £ 0.2198 | 27.9818 + 2.0642
PITL-GP | 0.4892 £0.0189 | 1.5048 & 0.1601
PITL-EGP | 0.4577 £0.003 | 0.4927 + 0.0592
Baseline [16] 0.8847 -

4. NUMERICAL TESTS

In this section, the performance of the proposed approach is
evaluated on the IEEE 14-bus power system that comprises 5
generator and 9 load buses. Omitting the buses with zero gen-
eration/load, the vector of nominal (re)active powers Xyom €
R?3 was obtained from the MATPOWER casefile [19].
To obtain the training and testing datasets for the stability-
margin prediction task, we sampled 100 random x’s by scal-
ing Xpom entry-wise by a scalar drawn independently and
uniformly within [0, 3.5]. The stability-margin label for each
sample was obtained as the minimum of 300 directional mar-
gins computed via CPF tool in MATPOWER. These 300 di-
rections were generated per sample by drawing the entries
of x’ in (3) from a uniform distribution on [—25,25]. The
aforementioned process yielded the set {(x., d,)}1%, which
was equi-partitioned into a training set Di;,in and a test set
Diest- For the x’s in Dyyain, the physics-based embeddings
zo were also obtained using the Jacobian matrices provided
by MATPOWER. Next, for the auxiliary task, T,,x = 10,000
samples of x’s were generated with the scaling drawn from
[0,7.5]. The larger variation was to ensure balanced classes
of (un)stable points. The stability label b(x) was obtained via
MATPOWER yielding {X,, b, }.* . The training set D2
was formed with 7,000 instances and the remaining 3, 000
were used for validation.

We compare the proposed approach with three algo-
rithms. The first two involve a single GP model, and an
EGP model, respectively, without exploiting any auxiliary
task(s); see e.g., [20, 21]. The third algorithm utilizes a bi-
nary classification auxiliary task, followed by a uni-variate
linear regression [16]. Being closest to our approach, we refer
to this algorithm as the ‘baseline,” and implemented it with
architecture and parameters provided in [16].

For the proposed PITL approach with GP and EGP mod-
els (referred hereon as PITL-GP and PITL-EGP), the first
step of obtaining embedding z; was carried out by training a
single-layer neural-network with 1,000 neurons as a classifier
with cross-entropy loss. Other relevant hyperparameters were
determined using the maximum validation accuracy criterion.
Having trained the classifier, the regression training set Diyain
was transformed to include z yielding Diyain = {2z, d, }32 ;.
For the regression step, two models were tried: a single GP
with RBF kernel; and an EGP model with kernel dictionary
KC consisting of four kernels: RBF kernels with and without

auto-relevance determination, and two Matérn kernels with
v = 1.5,2.5, respectively. The kernel hyperparameters per
GP were obtained by maximizing the marginal log-likelihood.
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Fig. 1. Performance visualization with 25 test instances.

All competing approaches are assessed on a test set Dyegt
using the normalized mean-square error (NMSE) to quantify
the accuracy of point-predictions; and the negative predictive
log-likelihood (NPLL) metrics to further account for the asso-
ciated uncertainty as in [22]. The test results summarized in
Table 1 demonstrate that the advocated PITL-GP and PITL-
EGP approaches significantly outperform their single GP and
EGP counterparts. These results corroborate the hypothesis
that the reduced-dimension, physics-based, and transferred
embeddings, serve as excellent predictors. Compared to the
baseline in [16], the proposed PITL-GP and PITL-EGP meth-
ods not only enjoy lower NMSE, as shown in Table 1, but
additionally offer uncertainty quantification through the pre-
dictive variance. Figure 1 depicts the predicted values of
PITL-EGP along with standard deviation o-confidence inter-
vals, that the ground truth values were found to lie inside.

5. CONCLUSION

This work sets up the power-system voltage stability margin
prediction task as a set-membership problem. In the face of
small training datasets for the target regression task, a novel
physics-informed transfer learning approach is developed.
Knowledge (in form of a low-dimensional embedding) is
transferred from an auxiliary classification task that enjoys
larger training-data availability. The obtained transferred
embeddings are augmented using physics-based readily-
computable features that ultimately enable a satisfactory re-
gression performance on the target task. Addressing the need
of uncertainty quantification in safety-critical applications,
(ensemble) Gaussian processes are employed for predicting
the stability margins. Encouraging empirical performance of
the developed approach and the generalized problem setup
motivate future research with broad application base.
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