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CaCO3 [18]. The compressive strength of the carbonated matrix has 
been noted to increase with increasing carbonation curing period and 
this has been shown in the thermogravimetric analysis (TGA), X-ray 
diffraction (XRD) and Fourier transform infrared spectrometry (FTIR) 
measurements that, as carbonation progresses the peaks associated to 
calcium silicates reduce while CaCO3 peaks increase [16]. The CaCO3 
binding phase is first formed in smaller capillary pores as amorphous 
calcium carbonate (ACC) or microcrystalline phase [19]. The amor
phous phases undergo nucleation, growth and transition into vaterite or 
aragonite and finally into crystalline calcite which eventually seal large 
pores to reduce permeability of the composite [3,19]. 

Inspired by nature, efforts have been made to use biomolecules to 
fine tune the structure of CaCO3 at the nano and microscales so as to 
enhance the performance at the macroscale [20]. This may allow the 
production of low CO2 footprint binders with higher mechanical and 
durability properties. Several studies have reported the influence of 
biomolecules on the morphological and mechanical properties of CaCO3 
[7,21–24]. For instance, Polowczyk et al. [22] investigated the effect of 
ovalbumin and lysozyme on the morphology of CaCO3 and observed 
‘stack-like’ structures in the albumin modified CaCO3. They attributed 
the morphological changes to the electrostatic interaction between the 
negatively charged ovalbumin and Ca2+ which leads to the coalescence 
and creation of a steric barrier preventing the growth of particles. Yang 
et al. [23] studied the interaction of bovine serum albumin (BSA) with 
CaCO3 synthesized through gas-diffused method and reported the for
mation of CaCO3 with hierarchical structures. The authors attributed 
this observation to the binding interactions between BSA and CaCO3. 
Kim et al. [24] investigated the interaction between two sets of amino 
acids and calcite. The findings by the authors revealed the formation of 
organic-inorganic composites with outstanding mechanical properties 
comparable to biological composites. Despite a significant number of 
studies on the use of biomolecules to modulate the morphology and 
mechanical properties of CaCO3, investigations on the use of bio
molecules in CO2 activated binders are lacking. To the best of our 
knowledge only Khan et al. [7] utilized amino acids to modify the per
formance of a CO2 activated binder. Nonetheless, the work by Khan et al. 
[7] was mostly focused on the polymorph and mechanical performance 
of carbonated wollastonite paste with and without amino acids. The 
present study is carefully designed to increase the knowledge about the 
effect of proteins on carbonated wollastonite binder. Proteins are forms 
of biomolecules consisting of different amino acids that are joined 
together by peptide bonds [25]. Amino acids are the building block of 
proteins and may be non-polar hydrophobic, polar hydrophilic, basic 
and acidic in nature providing an assembly of interaction pathways 
between their side chains and other solid surfaces [25]. Considering the 
charge variations of the proteins, they may interact with cementitious 
materials which are equally heterogeneous [26]. 

In the present study, the influence of proteins with different molec
ular structures on the mineralization of CaCO3 formed as a result of 
wollastonite carbonation was studied and evaluated through FTIR, TGA, 
XRD, and Scanning Electron Microscopy (SEM). The X-ray micro- 
computed tomography (micro-CT) was employed to examine the inter
nal structure and drying shrinkage of the carbonated wollastonite paste. 
The physicochemical properties of the proteins including zeta potential, 
surface adsorption, surface tension, in the wollastonite environment as 
well as their effect on pore surface hydrophobization, were assessed. The 
compressive strength of the carbonated wollastonite was evaluated and 
discussed. 

2. Experiments 

2.1. Materials 

Wollastonite powder (Calcium metasilicate) is obtained from Sea
forth Mineral and Ore Co., INC USA. The oxide composition of the 
wollastonite powder evaluated using X-ray Fluorescence (XRF) is 

presented in Table 1. The specific surface area and mean particle size of 
the wollastonite powder is 1.8 m2/g and 9 μm, respectively. Five pro
teins with different molecular structures, namely, (ovalbumin) albumin, 
collagen peptide (CP), whey protein, non-fat milk powder (NFMP) and 
sodium immunoglobulin (SBI) were purchased and used in this study. In 
their respective native states, whey protein, albumin, NFMP, and SBI are 
reported to be globular in shape while CP is fibrous in their native state 
[27–29]. SBI consists of approximately 90% protein and can be obtained 
by fractionating edible grade bovine plasma [30]. NFMP consists of 
about 80% casein proteins [31]. The albumin utilized in the experiment 
consists of about 54–58% by weight of the egg white protein [32]. Whey 
protein concentrate can be obtained as a by-product of cheese making 
process [27]. Collagen on the other hand is a structural protein with high 
content of hydroxyproline and proline [25]. The molecular structures of 
these proteins have been studied in a previous study [33]. 

2.2. Sample preparation and carbonation of wollastonite pastes 

Wollastonite paste was prepared by hand-mixing wollastonite pow
der with deionized water at a water to wollastonite ratio of 0.45 for 3 
min. For the paste containing proteins, proteins at the concentrations of 
0.25% and 1%, per wollastonite mass, were mixed with deionized water 
and stirred continuously for 10 min. After 10 min of continuous stirring, 
the protein solution was hand-mixed with the wollastonite powder for 
an additional 3 min. The mixed pastes (both the control and the protein 
modified ones) were spread on a thin glass slide with the dimensions of 
25 mm × 1 mm × 75 mm. Care was taken to ensure that the thickness of 
the wollastonite paste was approximately 2 mm. The small paste 
thickness was to ensure uniform carbonation of the pastes. In addition, 
the paste was not tamped to avoid possible diffusion of CO2 even before 
the pastes were subjected to carbonation. Right after this process, the 
pastes were clearly labelled and placed inside a water-jacketed CO2 
chamber designed and manufactured by Lab-Line for the carbonation 
curing process. 

The condition of the carbonation process was set at a relative hu
midity (RH) of 95% at a temperature of 55 ◦C. The carbonation flow rate 
was set at 8 cubic feet per hour; thus, a timer was set to bring the level of 
CO2 up to 20% and then shut down until after 12 h where the process 
was repeated again. The flow rate for CO2 was set based on the di
mensions of the CO2 chamber. The pastes were kept inside the carbon
ation chamber for different durations of 8 h, 18 h, 72 h, 168 h, and 336 h 
before testing. The microstructural and chemical characterization of the 
thin paste carbonated pastes were evaluated using FTIR, TGA, XRD and 
SEM. 

Cube wollastonite pastes with the same mix design as in the thin 
paste samples were prepared and used in the contact angle test, 
compressive strength test and micro-CT analyses. In addition, in order to 
examine the effect of sample size, the samples obtained from the core of 
the cubes were also studied using TGA, FTIR, and SEM. The wollastonite 
paste was cast in a prismatic metallic molds with dimensions of 25 mm 
× 25 mm × 300 mm and compacted with a tamper for 2 min to achieve a 
uniform compaction level. The compacted pastes were placed inside the 
CO2 chamber with the same condition described previously, except that 
CO2 inside the chamber was refilled after every 8 h to ensure maximum 
degree of carbonation. The pastes were then demolded after 48 h of 
carbonation curing and placed back inside the carbonation chamber for 
the carbonation process to continue. On the 10th and 25th day, the 
prismatic pastes were cut into 25 mm × 25 mm × 25 mm cubes using a 
wet diamond saw. The pastes were again put inside the CO2 rich incu
bator after cutting and then tested the following day. 

Table 1 
Oxide composition of raw wollastonite in this study.  

Oxide SiO2 CaO Al2O3 MgO Fe2O3 LOI 

% 51.3 44.9 0.9 1.6 <0.2 1.1  
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than that of the control after exposure to water submersion. The control 
paste did not show any changes in the compressive strength before and 
after exposure to water submersion as seen in Fig. 15. 

4. Significance 

The study signifies the benefits of using cost-effective and 
environmentally-friendly proteins in carbonated cured binders to 
advance green infrastructure materials. The incorporation of certain 
proteins exhibited great benefits in modifying microstructure to reduce 
cracking and improve mechanical performance. 

5. Conclusions 

In this study, the effect of 5 proteins with different molecular 
structures on the mineralization, microstructure and mechanical prop
erties of carbonated wollastonite pastes was investigated. The findings 
from this study are as follows. 

• The surface charge of the wollastonite particles was shown to in
crease with the addition of proteins due to the adsorption of nega
tively charged proteins onto the wollastonite particle surface. It is 
hypothesized that the proteins’ moderate adsorption was primarily 
due to the electrostatic interaction between the negatively charged 
proteins and the negatively charged wollastonite particles via Ca2+

bridging. In addition, due to the presence of a variety of functional 
groups in the molecular structure of the proteins, other possible in
teractions including hydrogen bonds and hydrophobic bonds were 
suggested to contribute to the adsorption of some of the proteins onto 
the wollastonite surface.  

• Higher flow values were observed in the fresh wollastonite paste 
with proteins compared to the paste without proteins and the in
crease in flow was shown to increase with increasing protein con
centration. The reason for the increased flow was ascribed to the 
increased electrostatic repulsion between the protein-adsorbed 
wollastonite particles as evident in the zeta potential measurement, 
as well as ball bearing effect and formation of air bubbles due to the 
air entraining capacity of some of the proteins.  

• In the paste with the proteins, the surface tension of the pore solution 
was shown to decrease while the water contact angle of the paste 
surface was shown to increase due to the presence of hydrophobic 
functional groups in the molecular structure of the proteins. The pore 
surface hydrophobization ability of the proteins was shown to have 
important impact on the phase formation and microstructure of the 
carbonated wollastonite pastes.  

• While the SEM results revealed that calcite, ACC, and partially 
reacted wollastonite particles were the main reaction products in the 
carbonated pastes at both early and late ages, the results of the FTIR, 
TGA and XRD analysis revealed that in addition to the above- 
mentioned phases, other metastable phases including vaterite and 
aragonite were formed to a smaller extent, in the majority of the 
carbonated pastes with the proteins. This indicated that some pro
teins stabilized these metastable phases through the period of 
carbonation. It was also observed that the pastes with the proteins 
influenced the morphology by increasing the size of the calcite 
crystals.  

• Some of the proteins resulted in a higher CaCO3 content in the paste 
compared to the control paste. The reason for this increase is 
attributed to the hydrophobization of the pore structure, which 
delayed water loss and hence made free water available for the 
carbonation reaction to proceed.  

• The micro-CT examination of the carbonated pastes revealed that the 
control, albumin, NFMP and CP carbonated pastes showed cracks. 
The reason for the crack formation in these pastes was attributed to 
increased drying shrinkage despite being cured in a chamber with a 
relative humidity of more than 95%. The obvious absence of cracks 

in the carbonated pastes with whey protein and SBI at 1% and 0.25% 
concentration, and reduced crack formation in the paste with albu
min (0.25%) were attributed to the capillary pore surface hydro
phobization in these pastes. Reduced water transport and 
evaporation and decreased capillary forces result from the pore 
surface hydrophobization effect of the proteins.  

• Overall, the compressive strength of the carbonated pastes mixed 
with the proteins was shown to be higher than that of the control 
paste. Increased compressive strength was more pronounced in whey 
protein, SBI and albumin modified pastes especially at the 0.25% 
concentration. Absence of cracks, enhanced interfacial strength be
tween carbonation products, and formation of inorganic-organic 
composite phases in the microstructure provided by these proteins 
were suggested to be the reasons for the enhanced compressive 
strength of some of the pastes mixed with proteins compared to the 
control paste. 
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