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Abstract—Many emerging multimedia mobile applications rely
heavily upon image recognition of both static images and live
video streams. Image recognition is commonly achieved using
deep neural networks (DNNs) which can achieve high accuracy
but also incur significant computation latency and energy con-
sumption on resource-constrained smartphones. Recent efforts
addressing these issues include cloud offloading and reducing the
complexity of the DNNs, which, however, introduce increased
network latency or reduced accuracy. In-memory caching has
also been explored to assess the similarity of images as opposed
to exact matching. However, such approximate caching systems
often treat devices as static nodes, and do not fully utilize the
mobile and collaborative nature of smartphones without outside
infrastructure. Another consequence of treating nodes as static
is the necessity of cache sizes larger than what is feasible for
individual mobile applications.

In this paper we introduce Co-Cache, a in-memory caching
paradigm that supports infrastructure-less collaborative compu-
tation reuse in smartphone image recognition. Co-Cache utilizes
the inertial movement of smartphones, the locality inherent in
video streams, as well as information from nearby, peer-to-
peer devices to maximize the computation reuse opportunities in
mobile image recognition. Compared to other caching systems,
our extensive evaluation shows that Co-Cache can reduce the
required number of cache entries by 50-70% while lowering the
average latency of standard image recognition applications by up
to 94% with minimal loss of recognition accuracy.

I. INTRODUCTION

Emerging multimedia mobile applications are focusing on

technology interacting with, and augmenting the real-world

environment the user occupies. This interaction with the

real-world relies heavily on image recognition. For example,

augmented reality applications span navigation [27], gaming

[2], education [29], etc. Contextual recognition and cognitive

assistance applications, including Google Lens, constantly an-

alyze the world around them in an effort to categorize images

and offer users additional information and resources. These

applications often require near-instant recognition to fulfill the

latency and computation requirements needed to offer the user

a seamless experience. A major obstacle these applications

face in offering low latency is the inherent resource constraints

of even the most modern and expensive smartphones.

Most techniques for mitigating the latency on smartphones

include offloading to cloud or edge servers [4], [11], [25],

[36], reducing the complexity of the deep neural netoworks

(DNNs) often used for mobile image recognition [10], [15],

[38], and caching results for reuse [17], [18]. Offloading can

greatly reduce the computation requirements of the smart-

phone, however, also introduces significant networking latency

and requires a reliance on outside infrastructure [35]. Reducing

the complexity of a DNN can also reduce the latency and

computational requirements of image recognition, but at the

cost of reduced accuracy [9], [22], [34].

Caching for image recognition attempts to assess the simi-

larity of raw images or video frames to allow for computation

reuse. This paradigm of caching using similarity instead of ex-

act matching is called approximate caching. In such a system,

if an image is determined to be similar enough to a previously

recognized image, the result of the previous classification is

used and a neural network recognition is avoided. The use

of approximate caching techniques is required for real-world

recognition situations because as a user is moving around

in the real-world they are capturing 30-60 raw images per

second that each need recognition. To aid in the assessment

of similarity, the cache structure of an approximate cache is

often a Locality Sensitive Hash (LSH) or a KD-tree.

Current work in approximate in-memory caching for mobile

image recognition focuses on optimizing the underlying data

structure of the cache as well as the searching algorithms used

to query the cache [17], [18]. The approximate nature of an

LSH or KD-tree can often lead to false cache misses and

missed reuse opportunities without this optimization. However,

most current work in approximate caching for smartphone

image recognition uses established cache replacement and

insertion strategies that do not consider the inertial movement

of devices. This leads to two issues: the necessity of very large

caches, and the correct values not being cached or have been

prematurely replaced in the cache. Large caches of 500+ [17]

entries can consume 7-10 MB, and might be acceptable on

powerful computers, however, smartphones have significant

resource constraints and sometimes allow each individual

application to use only 2 MB of memory [3], making current

work infeasible in real-world situations. Each Android device

is different, and while some expensive devices might offer

large amounts of memory for individual applications, cheaper

devices with limited memory and older versions of Android

place significant restraints on the amount of memory per ap-

plication. Our work is, however, not only important on current

devices. As smartphones increase their memory, applications

also increase their resource needs, requiring careful memory

management both now and in the future.

In this paper we present Co-Cache, an approximate caching

system that introduces caching strategies built around the iner-

tial movement of mobile devices and allows for infrastructure-

less collaboration between nearby devices through creation

of ad-hoc peer-to-peer networks. In contrast to current work,
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Co-Cache optimizes cache management using the inherent

mobility and collaborative nature of smartphones. Co-Cache

offers a suite of inertial-driven optimization tools, including

predictive interpolative caching to automatically cache values

before they are needed, peer-to-peer collaborative pre-caching,

reuse scoring, and inertial-driven similarity thresholds to both

reduce the latency of image recognition and maintain high ac-

curacy. Our optimization tools allow us to achieve these results

while requiring a cache size of only 150-200 entries, which

allows Co-Cache to be deployed in real-world smartphones

with no memory issues.

II. MOTIVATION OF CO-CACHE

A. Motivating Use Cases

Many popular mobile applications are vision-based and rely

heavily on image recognition. Two of the main categories

include augmented reality (AR) and cognitive assistance. Aug-

mented reality is a technology that recognizes the environment

through a camera and overlays virtual annotations and objects

on a user’s view of the real world. Throughout this paper

we will explore and evaluate how Co-Cache can be used to

provide a smoother user experience for cognitive assistance

apps. Cognitive assistance applications provide the user with

assistance in their everyday life through helpful information,

instructions, and even directions.

These applications operate on a continuous stream of raw

images from a camera. As such, it must perform image

recognition to provide the user with useful information. Ad-

ditionally, these applications are often used while on the go

and in crowded areas, and therefore can be enhanced with

Co-Cache’s inertial-driven collaborative approach to aid in

achieving a lower latency without sacrificing accuracy.

B. Similarity in Video Streams
Approximate caching is built on the idea that raw images

from a video stream or from nearby users are often similar, but

rarely exactly the same. A traditional cache that only performs

exact matching would be of little to no use in this scenario,

which provides an opportunity for approximate caching to take

advantage of the temporal, spatial, and semantic similarity

inherent in video streams.

Temporal similarity is the tendency for video frames near

to each other in time to be similar to one another. Spatial

similarity is a principle that says that physical locations near

to each other are similar, and mainly differ in angle of

viewing and lighting conditions. Semantic similarity shows

that different instances of the same object appear in multiple

locations and situations.

Co-Cache utilizes a smartphone’s inertial movement and the

temporal similarity in video streams to adaptively optimize

our approximate similarity matching to capture as many high-

probability reuse opportunities in successive video frames

without a loss of accuracy. Co-Cache also uses the rotation of

a smartphone along with known spatial similarity principles

to predict when a cache miss is likely to occur and proac-

tively inserts entries into the cache that will avoid a cache

miss and reduce latency. Co-Cache offers infrastructure-less

collaboration between users through ad-hoc Wi-Fi peer-to-peer

networks and neighbor tracking through Bluetooth proximity

detection. Our ad-hoc approach to collaboration and tracking

allows us to fully utilize the semantic similarity present in

video streams through nearby users sharing known valuable

recognitions that allow users to recognize popular objects

without ever needing a full DNN recognition.

III. CO-CACHE DESIGN

A. Overview

Co-Cache is an in-memory caching system that facilitates

the reuse of image recognition computations to improve the

overall latency and efficiency of DNN image recognition on

mobile devices. Co-Cache leverages the collaborative nature

and inertial movement of mobile devices, as well as the

temporal, spatial, and semantic locality of real-world video

feeds, to optimize cache searching and ensure that the correct

computations are cached for reuse.

The core of Co-Cache’s contributions lie in the Local Cache

Management Module, and the Collaborative Network Com-

munication Module, seen in Figure 1. The Local Cache Man-

agement Module handles all cache searching, cache insertion

and replacement, sampling the on-device accelerometer, gyro-

scope, and magnetometer, and updating the cache entry reuse

scores. The Collaborative Network Communication Module

houses both the Wi-Fi Direct and Bluetooth components of Co-

Cache. This includes the Bluetooth proximity detection used

for sensing movement between users, and the Wi-Fi Direct

peer-to-peer logic for actually sending over cache entries based

on the Bluetooth proximity readings.

Fig. 1. System Architecture of Co-Cache

1) Background: Locality Sensitive Hashing: The underly-

ing data structure of Co-Cache is a Locality Sensitive Hash

(LSH). The keys of our approximate cache are feature vectors

of raw input images, and the value of a cache entry is the

class label given by the neural network recognition. An LSH

is widely used for nearest matching in high-dimensional space

[5]. The LSH contains multiple hash tables that each utilize

a unique hash function. Each hash table also employs a set

of buckets so that similar data will be hashed into the same

bucket. Each of these buckets represent a sense of ”locality,” in
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that similar images will all be hashed into the same bucket with

a high probability. The cache entries present in the buckets

from each hash table are then aggregated into a candidate set,

from which the final output is selected based on a k-nearest

neighbor search or a simple distance measure.

2) Background: Heading and Step Estimation: Traditional

heading estimation and step detection are often used for

localization and prioritize accuracy [31]. Heading estimation

is a process to determine which direction a user is facing, and

step detection determines whenever a step occurs, implying

that the user is moving. However, as discussed previously,

we do not need perfectly accurate step detection and heading

estimation to achieve the goals of Co-Cache and therefore take

an approximate approach to reduce computational complexity,

which includes reducing filtering, correction algorithms, and

real-world transformations for heading estimation and forgoing

step length estimation for step detection.
B. Local Cache Management Module

1) Key Computation: The cache keys in Co-Cache are

variable-length feature vectors generated from input images.

As our system runs on live video streams, each input image

is a single frame from a video, and the corresponding cache

key for any particular video frame is a feature vector that

describes the image. Co-Cache supports any of the popular

feature extraction algorithms, including SIFT [26], SURF [6],

ORB [30], HoG [12], Harris [19], etc. The cache value is the

label of the object recognized in the raw image. The only

requirement when choosing a feature extraction algorithm is

that there is an easily quantifiable concept of distance between

two vectors. This distance measure is essential to the cache

searching that uses a Locality Sensitive Hash (LSH) as well

as for similarity scores used throughout various components

of Co-Cache. Comparing extracted features of an image as

opposed to comparing images directly allows us to more easily

assess similarity between two images than if we compared the

two raw images themselves.

2) Inertial-Driven Similarity Threshold: Co-Cache’s

inertial-driven similarity threshold updates the initial

similarity threshold for matching images based on the inertial

movement of the device as well as the temporal similarity that

exists in the real-time video feed. The similarity threshold

is what ultimately decides if any cache lookup results in a

hit or a miss depending on how similar the current image is

to the values in the cache. There is a clear tradeoff between

the similarity threshold and the cache hit rate and error

rate. A larger similarity threshold results in more cache hits,

which reduces latency and computations, but also results

in more errors. Existing work [18] attempts a threshold

tuning algorithm, however, as their system ignores inertial

movement their input images have no temporal similarity

and their algorithm requires 100+ entries to have any effect.

This is not feasible in a real-world scenario as it can take

tens of minutes to recognize 100 unique objects and most

smartphones do not have adequate memory to dedicate over

100 entries for threshold tuning. Co-Cache, however, requires

only one positive recognition to show significant results of

our inertial-driven similarity threshold, making it a realistic

solution for live video feeds.

Algorithm 1: Inertial-Driven Similarity Threshold

Result: Updated Similarity Threshold

1 //Initial threshold chosen by user;

2 initialize thresh;

3 initialize init ← thresh;

4 initialize α, β, Δframe← 0;

5 //degree set to heading during recognition;

6 initialize degree ;

7 while cache search does not miss do
8 Δframe← Δframe+ 1;

9 Δdegree← headingdifference;

10 thresh←MAX((thresh/α+ (thresh−
(MAX(Δframe,Δdegree)/β)/thresh)/2), init);

11 if diff(currframe, cacheentry) < thresh then
12 return originalframeresult;
13 else
14 LSHcachelookup();
15 break;

16 end
17 end

The process of loosening and tightening the similarity

threshold can be seen in Algorithm 1. The main idea is that

after any DNN recognition, the object that was recognized is

highly likely to be seen in many consecutive frames of the

video. As such, the similarity threshold is loosened signifi-

cantly in the subsequent frames of the video and as the number

of frames since the DNN recognition grows, the similarity

threshold tightens back towards the original threshold. This

takes full advantage of the temporal similarity that exists in

consecutive frames of a live video feed.

Our evaluation in Section IV-C shows that there is a high

probability that an object stays in the view of the camera for at

least 10 frames, and usually 30+ frames. This observation is

consistent with results in [17]. Because of this, the inertial-

driven similarity updating algorithm is designed to capture

as many reuse opportunities within the first 30 frames and

then return to normal operation until the next new object is

recognized. Coincidentally, the difference in heading between

a user’s view and their initial heading when recognizing an

image follows the same principal as the sequence of frames.

If the current heading of the user is within 10-30 degrees of

the initial heading, then there is a high probability that the

user is viewing the same object.

Our inertial-driven similarity threshold algorithm takes the

initial similarity threshold, the larger value between heading

difference and number of frames since initial recognition,

and also a growth parameter, α, and dampening factor, β,

that can both be changed based on the use scenario. The

growth parameter is a value that determines how aggressive to

grow the similarity threshold. As seen in Algorithm 1, when
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calculating the updated similarity threshold the current value

of the threshold is initially divided by the growth parameter

which kickstarts the algorithm. We evaluate various growth

parameters in Section IV-C. The dampening factor can also

be decided based on the use scenario and is used to lessen the

effect of rotation and frame sequence, as both of these values

can be large enough to offset the rest of the algorithm if their

effects are not kept in check.

The calculation of the new similarity threshold can be found

on Line 10 of Algorithm 1. When updating the similarity

threshold we add the threshold value divided by α to the

difference between the current similarity threshold and the

larger value between the number of elapsed frames and the

change in heading. This larger value is then dampened by β
and the difference is divided by the current similarity thresh-

old. This maximum value between this calculated similarity

threshold and the initial similarity threshold is chosen as the

updated similarity threshold. An analysis of how the similarity

threshold changes over time can be found in Section IV-C.

It is important to note that the process described above resets

on every new DNN recognition and if a cache miss occurs and

a new entry is inserted into the cache, the loosened threshold

resets to the default similarity threshold.

3) Rotation-Driven Interpolative Caching: When using an

approximate cache, we have identified a few scenarios that

often lead to unnecessary cache misses. A cache miss often

occurs when the distance between two images containing

the same object is greater than the pre-determined threshold.

Another scenario where unnecessary cache misses occur is

when the LSH does not return the correct image in the

candidate set for similarity matching. This can occur for

several reasons, including an increase in image distance, and

also when the user rotates their device in specific ways. We

have found that rotation around the phone’s x-axis often leads

to avoidable cache misses. To the best of our knowledge, no

existing work handles this issue, and we introduce our rotation-

driven interpolative caching that reduces the cache misses due

to rotation that often plague in-memory caching systems.

Interpolative caching avoids unnecessary cache misses by

prefetching selected frames and inserting them into the cache

before they are needed. Co-Cache avoids cache misses that

require DNN recognitions by predicting when a miss might

occur and preemptively inserting a new frame into the cache

that will result in a cache hit and avoid unnecessary DNN

recognitions.

Our interpolative caching tracks both the changing similarity

distance between consecutive frames as well as the rotational

movement of the smartphone to predict when the above

scenario might occur. Based on factors including gyroscope

readings of the phone’s x-rotational axis and the incremental

distance measures, Co-Cache’s interpolative caching system

will preemptively insert an image into the cache to avoid a

costly cache miss. If the rotation of the device corresponds to

a growing similarity difference between the cached entry and

the current raw image we prefetch the current video frame

and insert it into the cache preemptively when the difference

in similarity approaches the similarity threshold. Every cache

miss and DNN recognition resets the rotation calculations to

a new base which allows Co-Cache to avoid any drift that

normally accumulates after repeated integrations. This both

avoids expensive drift mitigation calculations and also avoids

expensive DNN recognitions. Results of our rotation-driven

interpolative caching can be found in Section IV-F.

4) Collaborative Pre-Caching: We introduce Co-Cache’s

collaborative pre-caching as an infrastructure-less solution to

sharing environment and cache information between users.

CARS [36] introduces collaborative caching with a cloud

server and nearby devices running the same application, how-

ever, their strategy for collaboration does not take into account

movement of devices or relative distance between users. Co-

Cache creates ad-hoc peer-to-peer networks of smartphones

to facilitate collaboration between nearby users. While con-

nected, devices routinely monitor the relative movement of

nearby devices using our Bluetooth proximity detection. Other

work, including Psephos [23], attempt peer-to-peer collab-

oration for image recognition, but their solution requires a

cloud server and does not account for relative movement

between users. Co-Cache operates on realistic live video feeds

and better informs cache sharing through calculation of the

relative movement between users to allow for users to take

full advantage of the semantic similarity that exists in video

streams.

As users move throughout the environment, Co-Cache

monitors any nearby devices that are approaching the user.

If a device is approaching the user, they exchange cache

information. Collaborative pre-caching is vital to the success

of Co-Cache, as a significant source of cache misses and

latency is the physical act of moving to a new location. As a

user enters a new location, they do not have any information

of the objects that exist in the new area. Collaborative pre-

caching alleviates these issues through the sharing of known

valuable cache entries to any users who enter a new area.

When sharing cache entries to nearby users, the cache

entries with the highest reuse score (discussed in Section

III-B5) are shared, as those entries are deemed to be the

most valuable. In the cache, a subset of the total entries are

dedicated to pre-cached entries. The value of the subset size is

configurable depending on the use scenario. Pre-cached entries

are given their own subset of the overall cache because as more

users enter the network, individual nodes can receive tens, even

hundreds of entries from neighbors. If the general cache and

pre-cached entries are not separated then the valuable entries

from our local inertial-driven optimizations would be replaced

quickly and not fully utilized. When a pre-cached entry is

accessed for computation reuse, that entry is moved from the

pre-cached subset to the general cache as it can now have a

reuse score that is informed by our inertial optimizations.

5) Cache Warm-up, Insertion, and Replacement: Reuse
score is a metric developed for Co-Cache to assign a single

number value to predict the potential reuse opportunities of

any given cache entry. The reuse score is the main criteria

taken into consideration by Co-Cache’s cache replacement
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strategy. When determining what entries to potentially evict,

the existing cache entry with the lowest reuse score will be

evicted first.

reusescore =

1
s+1
10 ∗�Δheading

β � +
accesses+1

elapsedframes

#instances
(1)

Most existing caching systems determine their replacement

strategies based on metrics such as access frequency and

access time. Co-Cache’s reuse score, however, has a bevy of

metrics at its disposal, including standard access frequency,

access time, but also number of instances of an entry, and

also various movement-based information. In an approximate

caching paradigm there is often duplication of cache entries

due to the inherent accuracy issues regarding cache searching,

and therefore the number of instances of an entry in the cache

is a valuable metric. The movement-based metrics are derived

from the Local Cache Management Module’s sampling of the

smartphone’s inertial sensors. The equation for calculating the

reuse score can be seen in Equation 1, where s is the number

of steps taken since the last cache access for a particular entry,

Δheading has a maximum value of 180 and is the difference

in heading between the current heading of the user and the

heading during the last cache entry access, β is the same

dampening factor discussed in Section III-B2, accesses is the

number of times an entry has been accessed, elapsedframes
is the number of frames that have elapsed since an entry was

last accessed, and finally #instance is the number of entries

that map to the same value as a particular entry.

When calculating the reuse score, one is added to s to avoid

issues of dividing by zero. One is also added to accesses
to avoid issues that arise with zero. If one was not added

to accesses, then an entry that has zero accesses after two

frames would be too similar to an entry that has zero accesses

after 100 frames. The ceiling of the heading divided by the

dampening factor is taken because small changes in heading

should not have a large impact on reuse score.

Cache Warm-up, Insertion and Replacement. If the cache

is not entirely filled with entries, a cache entry is simply added

to the LSH and can immediately be used. However, if the cache

is entirely full then an entry must first be evicted. The eviction

process relies solely on the reuse score discussed previously.

Co-Cache finds the entry with the lowest reuse score, removes

it from the LSH, and inserts the new value into the LSH.

Cache warm-up is the process of populating the cache with

values whenever the user enters the application and they have

an empty cache. Any entries added to the cache during the

warm-up phase come entirely from other users near to the new

user. Proximity detection is based on received signal strength

(RSSI), and gives a rough estimate of who is nearest to the

user. Based on the RSSI values returned from the proximity

detection, the new device will request a proportional amount

of cache entries from various nearby users.

C. Collaborative Network Communication Module
1) Wi-Fi Direct Peer-to-peer Collaboration: Wi-Fi Direct is

an ad-hoc Wi-Fi protocol that exists on Android smartphones.

Phones use their Wi-Fi radio to make direct connections

between users which allows for the transfer of information

without any outside infrastructure [16]. Co-Cache’s peer-to-

peer system allows users physically near to one another to

exchange caching information quickly. When a user enters a

new location, Co-Cache automatically scans for existing peer-

to-peer networks. If a network already exists, then the new user

requests to join the network and once approved will request

cache entries from certain users in the network to perform

cache warm-up. If no network exists, the user will start their

own network and wait for other users to join.

2) Bluetooth Proximity Detection: Proximity detection is

used by Co-Cache to determine both what users are physically

the closest to each other as well as the relative movement

between users over time. Proximity detection is achieved using

Bluetooth’s discovery process. Discovery in Bluetooth is a

process in which a device broadcasts a bluetooth signal to

everyone near to them. While in discovery, devices also listen

for the broadcasts of nearby devices to potentially connect

to. However, for our purposes, the transfer of information

between users is handled by Wi-Fi Direct. Instead, when a

device receives a broadcast it also receives a signal strength

value known as RSSI, or a received signal strength indicator.

A large RSSI value indicates that the user broadcasting the

discovery message is physically close. Co-Cache periodically

performs Bluetooth discovery to collect RSSI values of all

nearby nodes.

If the RSSI value of a neighbor has been increasing over the

past few cycles, the users are potentially becoming physically

closer to each other. For each user device, the step detector

described in Section III-A2 is used to determine if this user is

currently moving. Once it has been determined that this user

is getting closer to another user, it will exchange messages

via Wi-Fi Direct to let the other user know if it is currently

moving. If only one user is moving, then the stationary user

will send cache entries to the moving user as the moving user

is most likely approaching the stationary user. If both users

are moving, then based on the heading of each device, either

one or both users exchange cache entries with each other to

help reduce the flurry of cache misses that often accompany

moving to a new location.

IV. IMPLEMENTATION AND EVALUATION

A. Evaluation Methodology

To test the viability of Co-Cache, we develop an image

recognition Android application built upon various popular

DNN models. The application was developed using Java,

OpenCV [1] and TensorFlow to facilitate the usage of multiple

DNNs. Our cloud baseline was deployed on Amazon Web

Services (AWS) with 8 vCPUs and 32 GB RAM. Our edge

baseline is a local PC with an i7-7700 CPU (4 cores, 8 logical

processors, @ 3.6 GHz).

Co-Cache was evaluated using ResNet [20] and Inception

v4 [32] trained on the standard Imagenet [13] dataset as

the DNN models. Both of these models are widely available

and widely used. We also explored using mobile focused
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DNN architectures such as MobileNet [21] or GoogleNet [33],

however, these architectures sacrifice significant accuracy and

are not well suited to our mobile image recognition tasks.

Co-Cache was tested on a variety of Android smartphones,

including Google Pixel 4 XL, Samsung Note 10+, Xiaomi Mi

8 Lite, Samsung Galaxy S9, and Google Pixel. This collection

of devices has a wide range of age and computation capacity,

which makes for a good real world experiment.

To evaluate Co-Cache in the real world, four testers were

brought to a local shopping supercenter and asked to browse

naturally throughout the store together using our image

recognition application. The store contains a wide variety

of products, including grocery, produce, athletics, electronics,

clothing, home essentials, etc. The shopping supercenter use

case is favorable as there were many object classes that could

be found in the store. As the users are moving throughout

the store, we save every piece of information needed for Co-

Cache to function so that we can recreate the exact same

test scenarios in different situations, including different DNNs,

devices, or even with more or less neighbors. To assess the

effectiveness of Co-Cache we investigate overall application

latency, computation reuse opportunities, inertial-driven simi-

larity threshold, recognition accuracy, and the effects of cache

size on the overall performance of Co-Cache. Latency is

measured in total milliseconds from the arrival of a new video

frame until the result of the recognition is returned. Latency is

calculated and averaged only on frames that returned a positive

recognition result. Accuracy and error rate are measured

against a ground truth of the DNN recognition. An error is

counted only if the cache search returns an incorrect result.

It is not considered an error if the cache returns no match.

Reuse rate is determined based on how many cache hits occur

compared with how many cache hits were possible. A cache

hit is not possible when there is no object in the video frame

or the correct cache entry is not in the cache.

B. Comparison with Existing Work
We also compare with existing work, CARS [36], in which

collaboration is proposed for improving the latency in image

recognition, involving a small recognition cache on the local

device, and a cloud server. CARS also introduces techniques

specific to augmented reality. For our comparison, we imple-

mented the image recognition pipeline of CARS, and forgo

implementation of any Augmented Reality-specific tasks to

make the image recognition comparison as fair as possible.

Additionally, we use the same LSH as Co-Cache for our CARS

implementation. This was done because the cache described

in CARS is not well suited to the unlabeled dataset we are

using. Also, because we are interested in the performance of

collaboration specifically, the choice to use the same cache

structure in both implementations will make our comparison

as equal as possible.

We chose CARS for our comparison because CARS is

the paper most similar to Co-Cache. CARS includes ad-hoc

sharing of image data between users, and a caching system on

the local device. However, Co-Cache differs from CARS in

significant areas. CARS requires a cloud server, and doesn’t

take into account any inertial movement during its recognition,

and CARS’ image sharing policy doesn’t take into account

any movement or distance between users. CARS also does

not implement any caching optimizations on the local device,

and requires nearby neighbors to achieve any optimizations,

which is not always available in the real world. Overall, this

may lead to a non-optimized caching experience.

C. Inertial-Driven Similarity Threshold

As discussed in Section III-B, the growth parameter, α,

controls the aggressiveness of our inertial-driven similarity

threshold algorithm. A smaller α indicates aggressive thresh-

old updating, allowing for greater computation reuse, but risk-

ing errors. We designed the inertial-driven similarity threshold

algorithm to capture as many reuse opportunities without

sacrificing accuracy. A small initial similarity threshold means

a high accuracy is desired, at the cost of higher latency.

Figure 2 shows the effects of the threshold parameter on

both reuse opportunities taken and error rate. As the α gets

smaller, the reuse percentage and error rate increase dramati-

cally. With no inertial-driven similarity threshold updating, we

have a reuse rate of about 78% and an error rate of around 4%.

As we decrease α, both the error rate and reuse rate increase

slowly until we reach a growth parameter of .7. With an α of

.7, we achieve a reuse rate of 89% and an error rate of 10%.

As α decreases the reuse rate and error rates both skyrocket as

the safeguards of frame sequence and heading can no longer

contain the similarity threshold. It is important to note that the

inertial-driven similarity threshold resets on every cache miss

or new object detection. A too small growth parameter does

not allow for this reset to occur frequently enough to contain

the similarity threshold. An α of .7 gives a good tradeoff of

latency reduction and error rate.

Fig. 2. Effect of Growth Parameter on Reuse and Error Rate

D. Cache Size

The number of cache entries required for caching is im-

portant for mobile applications as it directly affects the reuse

opportunities and accuracy. Additionally, individual Android

applications are granted limited amounts of memory. The final

amount each application gets is dependent on the specific

device, but it is sometimes capped at 8 MB [3].
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Co-Cache, however, can achieve better results than many

other systems while maintaining a cache size 50-70% smaller

than other applications. As can be seen in Figure 3, with a

cache size of 150 entries, Co-Cache achieves a reuse rate of

just under 90% with an error rate of around 10%. As the cache

size increases, the reuse rate also increases, but the accuracy

correspondingly decreases. At a cache size of 250 entries, we

achieve a reuse rate of around 95%, but an accuracy of only

around 80%. Because of this, we choose 150 cache entries

as the optimal cache size. The underlying data structure of

approximate caching is what leads to a decrease in accuracy

as the cache size increases. In exact caching situations, more

cache entries leads to higher accuracy, but in approximate

caching more entries leads to a higher rate of false positives.

With more entries in the cache, there is a higher probability

that one of the images is similar enough to the current frame,

even when it is not an actual match. Work in [17], [18] combats

the issue of accuracy with larger cache sizes by having many

entries of the same object. This, however, is not feasible in

real-world situations where a smaller cache size is required

on smartphones and smart glasses.

Fig. 3. Effects of Cache Size on Accuracy and Error Rate

E. Latency

The most important metric for evaluation of our system is

the overall latency of the application. Latency is the motivating

factor for most attempts of both offloading and caching.

Work in human-computer interaction has shown that image

recognition should take no longer than 100 ms to give a

seamless user experience [7], [8], [28]. The latency of image

recognition applications using Co-Cache was evaluated on

five different devices of varying age and quality, as well as

two popular neural network architectures. We also developed

cloud and edge offloading baselines to compare against Co-

Cache. Our cloud and edge baselines receive images from the

smartphone’s camera, run the DNN recognition, then return the

results to the device. Finally, we compare our results against

CARS, an existing work in this area.

One of the motivations of Co-Cache is the infeasibility of

the current state of the art cloud and edge offloading for image

recognition. As can be seen in the Cloud and Edge columns of

Table I, the latencies achieved by cloud and edge offloading

do not meet the 100 ms threshold required for a seamless

user experience. Running Co-Cache on the local device with

no neighbors achieves lower latency than cloud offloading

on all device/model combinations. When compared against

edge offloading, running Co-Cache locally with no neighbors

out performs edge offloading in 7 out of 10 device/model

combinations. With the addition of one neighbor, however, Co-

Cache outperforms both standard cloud and edge computing

in every scenario. Co-Cache’s peer-to-peer communication is

so effective because devices are not sending large images,

instead sending only extracted features of images, and also

the communication is done completely in the background, not

impacting latency negatively at all.

We also explored baseline cloud and edge offloading with

a vanilla approximate cache. While this did provide better

latencies of around 230-270 ms for cloud and 170-200 ms

for edge, the increased error rate of around 20-23% was not

feasible for real-world image recognition. Additionally, the

overhead involved with offloading inertial measurements made

using Co-Cache optimizations on the cloud not possible.

The data shown in Table I for our CARS implementation

is assuming four neighboring devices, which is also used in

our Co-Cache evaluation. It is interesting to note that CARS

achieves significantly better results than a pure Cloud or Edge

implementation, partly in thanks to its small local cache. On

our two highest quality devices, Co-Cache with no neighbors

has a lower average latency than CARS with four neighbors.

When comparing CARS with four neighbors to Co-Cache

with two neighbors, Co-Cache performs better in 8 out of 10

scenarios. Co-Cache with three devices outperforms CARS

with four devices in every scenario. And finally, Co-Cache

with four devices significantly outperforms CARS with four

devices in every scenario. In many cases, the average latency

of Co-Cache is less than half that of CARS, and in the best

scenario, Co-Cache achieves 81ms of latency compared with

CARS latency of 247ms, which is almost a 70% reduction in

latency.

Co-Cache also boasts significant latency reduction in older,

less powerful smartphones. Without caching support, ResNet

and Inception v4 running on the Mi 8 Lite, Galaxy S9,

and Pixel have latencies as high as 3,102.99 milliseconds.

With Co-Cache support and four devices, this latency is

reduced to around 196 milliseconds in the worst case and 119

milliseconds in the best case. This takes image recognition

from unusable to nearly seamless and in the best case can

achieve a latency reduction of around 94%.

Co-Cache supports both local caching and collaborative

caching. Figure 4 shows the latency reduction achieved by Co-

Cache in cases from one to four users. With only one device,

Co-Cache achieves latency reduction of anywhere from 80%

to 84% depending on what device is being used. With two

devices collaborating, we achieve latency reduction anywhere

from 87% to 90%. With three users we see latency reduction

in the range of 89% to 92%. Finally, with four devices we

achieve latency reduction anywhere from 91% to 94%.

These results are significant in two areas. First, when there

are many neighbors nearby, Co-Cache achieves very small la-
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TABLE I
END-TO-END LATENCY OF CO-CACHE (MS)

Smartphone DNN Model No Cache Cloud Edge CARS LRU Cache Local Co-Cache Two Devices Three Devices Four Devices

Pixel 4
ResNet 1,128.63 524.57 385.23

253.58
340.37 215.23 135.25 117.78 98.02

Inception v4 1,086.60 630.91 429.42 328.63 208.30 131.39 114.59 95.59

Note 10 +
ResNet 898.82 529.18 377.99

247.26
272.90 175.37 113.04 99.43 84.03

Inception v4 839.84 631.22 440.64 257.25 166.45 108.42 95.74 81.40

Mi 8 Lite
ResNet 2,584.20 544.65 399.03

271.03
704.81 421.63 240.65 201.12 156.41

Inception v4 2,395.53 653.93 434.41 659.36 397.78 230.59 194.07 152.77

Galaxy S9
ResNet 2,171.79 536.17 382.82

269.84
622.23 378.28 222.37 188.32 149.80

Inception v4 1,592.38 639.59 438.17 463.87 286.13 172.58 147.78 119.72

Pixel 1
ResNet 3,102.99 531.46 384.13

273.97
869.00 521.82 299.93 251.47 196.65

Inception v4 2,959.91 635.62 431.96 836.52 505.70 294.27 248.08 195.85

Fig. 4. Latency Reduction of Co-Cache with Multiple Users

tencies, and even in situations when there are no neighbors,
Co-Cache still achieves significant latency reduction.
F. Interpolative Caching and Collaborative Pre-Caching

Co-Cache’s success is directly affected by the performance

of our interpolative caching and collaborative pre-caching.

Figure 5 shows the reuse rate and error rate of Co-Cache

as a whole as well as the cache entries added by our inter-

polative caching and collaborative pre-caching. Reuse rate is

determined by the percentage of video frames that have an

object and also result in a cache hit. Reuse rate is different

from cache hit rate because for reuse rate we do not consider

video frames that have no objects.

Fig. 5. Reuse Rate and Error Rate of Co-Cache

The overall reuse rate when using a standard LRU caching

scheme without Co-Cache is about 73%, with an error rate of

around 7%. Using Co-Cache on a local device increases the

reuse rate by 12% over standard LRU, coming in around 85%

with an error rate of around 10%. With two devices, we see a

reuse rate of about 90% with an error rate of 11%. With three

devices we increase the reuse rate to 92% with an error rate

of 13%. Finally, with four devices, we see an overall reuse

rate of 94% and an error rate of 12%.

We also evaluate the hit and error rate on entries cached

via our interpolative and pre-caching. Interpolative caching

on a local device has a reuse rate of about 89%, and an

error rate of 18%. The error rate for interpolative caching

comes from the use of the DNN recognitions as the ground

truth. Because interpolative caching preemptively caches val-

ues without running a DNN recognition, often a few frames

after the interpolative caching the DNN sees a new object in

the frame, but the LSH still labels it as the old object.

V. RELATED WORK

Offloading systems such as CloudAR [37] choose to offload

the entire image recognition pipeline, including feature extrac-

tion, image recognition/object detection, and object tracking.

Others, including VisualPrint [24] choose to offload only the

image recognition and compute the feature extraction and

object tracking locally. As discussed previously, CARS [36]

introduces a cloud offloading system that also has a small

recognition cache and collaboration between users.

Approximate caching for image recognition is not as widely

studied as cloud and edge offloading. Recent studies, including

Cachier [14], Potluck [18], and FoggyCache [17] all study ap-

proximate caching for image recognition. Cachier utilizes edge

caching for approximate cache entry optimization and and

modeling query patterns. Potluck introduces cross-application

deduplication, allowing multiple applications residing on one

device to reuse recognitions from one another. FoggyCache

is a cross-device approximate computation reuse system that

optimizes the locality sensitive hashing and k-nearest neighbor

searching that many approximate caches rely on.

VI. CONCLUSIONS

In this paper we introduce Co-Cache, an inertial-driven

infrastructure-less collaborative approximate caching system

where computation results of similar images can be reused

to improve the latency of mobile image recognition. Ap-

proximate caching enhanced with Co-Cache achieves low

latency without sacrificing accuracy. We design interpolative

caching, reuse scoring, collaborative pre-caching, and inertial-

driven similarity thresholds to optimize the cache management
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of our caching system using the inertial measurements of

smartphones as well as the inherent similarity that exists in

video streams. We evaluate Co-Cache in a realistic real-world

situation. Our evaluation shows that Co-Cache can reduce the

overall latency of image recognition by up to 94%, while

also maintaining a cache size around 50-70% smaller than

competing approximate caching systems. We also show that

Co-Cache outperforms existing work in collaborative image

recognition.
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