2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) | 978-1-6654-8643-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/SECON55815.2022.9918552

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Co-Cache: Inertial-Driven Infrastructure-less
Collaborative Approximate Caching

James Mariani Yongqi Han Li Xiao
Michigan State University Michigan State University Michigan State University
mariani4 @msu.edu hanyongq@msu.edu Ixiao@cse.msu.edu

Abstract—Many emerging multimedia mobile applications rely
heavily upon image recognition of both static images and live
video streams. Image recognition is commonly achieved using
deep neural networks (DNNs) which can achieve high accuracy
but also incur significant computation latency and energy con-
sumption on resource-constrained smartphones. Recent efforts
addressing these issues include cloud offloading and reducing the
complexity of the DNNs, which, however, introduce increased
network latency or reduced accuracy. In-memory caching has
also been explored to assess the similarity of images as opposed
to exact matching. However, such approximate caching systems
often treat devices as static nodes, and do not fully utilize the
mobile and collaborative nature of smartphones without outside
infrastructure. Another consequence of treating nodes as static
is the necessity of cache sizes larger than what is feasible for
individual mobile applications.

In this paper we introduce Co-Cache, a in-memory caching
paradigm that supports infrastructure-less collaborative compu-
tation reuse in smartphone image recognition. Co-Cache utilizes
the inertial movement of smartphones, the locality inherent in
video streams, as well as information from nearby, peer-to-
peer devices to maximize the computation reuse opportunities in
mobile image recognition. Compared to other caching systems,
our extensive evaluation shows that Co-Cache can reduce the
required number of cache entries by 50-70% while lowering the
average latency of standard image recognition applications by up
to 94% with minimal loss of recognition accuracy.

I. INTRODUCTION

Emerging multimedia mobile applications are focusing on
technology interacting with, and augmenting the real-world
environment the user occupies. This interaction with the
real-world relies heavily on image recognition. For example,
augmented reality applications span navigation [27], gaming
[2], education [29], etc. Contextual recognition and cognitive
assistance applications, including Google Lens, constantly an-
alyze the world around them in an effort to categorize images
and offer users additional information and resources. These
applications often require near-instant recognition to fulfill the
latency and computation requirements needed to offer the user
a seamless experience. A major obstacle these applications
face in offering low latency is the inherent resource constraints
of even the most modern and expensive smartphones.

Most techniques for mitigating the latency on smartphones
include offloading to cloud or edge servers [4], [11], [25],
[36], reducing the complexity of the deep neural netoworks
(DNNs) often used for mobile image recognition [10], [15],
[38], and caching results for reuse [17], [18]. Offloading can
greatly reduce the computation requirements of the smart-
phone, however, also introduces significant networking latency
and requires a reliance on outside infrastructure [35]. Reducing

the complexity of a DNN can also reduce the latency and
computational requirements of image recognition, but at the
cost of reduced accuracy [9], [22], [34].

Caching for image recognition attempts to assess the simi-
larity of raw images or video frames to allow for computation
reuse. This paradigm of caching using similarity instead of ex-
act matching is called approximate caching. In such a system,
if an image is determined to be similar enough to a previously
recognized image, the result of the previous classification is
used and a neural network recognition is avoided. The use
of approximate caching techniques is required for real-world
recognition situations because as a user is moving around
in the real-world they are capturing 30-60 raw images per
second that each need recognition. To aid in the assessment
of similarity, the cache structure of an approximate cache is
often a Locality Sensitive Hash (LSH) or a KD-tree.

Current work in approximate in-memory caching for mobile
image recognition focuses on optimizing the underlying data
structure of the cache as well as the searching algorithms used
to query the cache [17], [18]. The approximate nature of an
LSH or KD-tree can often lead to false cache misses and
missed reuse opportunities without this optimization. However,
most current work in approximate caching for smartphone
image recognition uses established cache replacement and
insertion strategies that do not consider the inertial movement
of devices. This leads to two issues: the necessity of very large
caches, and the correct values not being cached or have been
prematurely replaced in the cache. Large caches of 500+ [17]
entries can consume 7-10 MB, and might be acceptable on
powerful computers, however, smartphones have significant
resource constraints and sometimes allow each individual
application to use only 2 MB of memory [3], making current
work infeasible in real-world situations. Each Android device
is different, and while some expensive devices might offer
large amounts of memory for individual applications, cheaper
devices with limited memory and older versions of Android
place significant restraints on the amount of memory per ap-
plication. Our work is, however, not only important on current
devices. As smartphones increase their memory, applications
also increase their resource needs, requiring careful memory
management both now and in the future.

In this paper we present Co-Cache, an approximate caching
system that introduces caching strategies built around the iner-
tial movement of mobile devices and allows for infrastructure-
less collaboration between nearby devices through creation
of ad-hoc peer-to-peer networks. In contrast to current work,

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.
978-1-6654-8643-9/22/$31.00 ©2022 |IEEE 46

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Co-Cache optimizes cache management using the inherent
mobility and collaborative nature of smartphones. Co-Cache
offers a suite of inertial-driven optimization tools, including
predictive interpolative caching to automatically cache values
before they are needed, peer-to-peer collaborative pre-caching,
reuse scoring, and inertial-driven similarity thresholds to both
reduce the latency of image recognition and maintain high ac-
curacy. Our optimization tools allow us to achieve these results
while requiring a cache size of only 150-200 entries, which
allows Co-Cache to be deployed in real-world smartphones
with no memory issues.

II. MOTIVATION OF CO-CACHE
A. Motivating Use Cases

Many popular mobile applications are vision-based and rely
heavily on image recognition. Two of the main categories
include augmented reality (AR) and cognitive assistance. Aug-
mented reality is a technology that recognizes the environment
through a camera and overlays virtual annotations and objects
on a user’s view of the real world. Throughout this paper
we will explore and evaluate how Co-Cache can be used to
provide a smoother user experience for cognitive assistance
apps. Cognitive assistance applications provide the user with
assistance in their everyday life through helpful information,
instructions, and even directions.

These applications operate on a continuous stream of raw
images from a camera. As such, it must perform image
recognition to provide the user with useful information. Ad-
ditionally, these applications are often used while on the go
and in crowded areas, and therefore can be enhanced with
Co-Cache’s inertial-driven collaborative approach to aid in
achieving a lower latency without sacrificing accuracy.

B. Similarity in Video Streams

Approximate caching is built on the idea that raw images
from a video stream or from nearby users are often similar, but
rarely exactly the same. A traditional cache that only performs
exact matching would be of little to no use in this scenario,
which provides an opportunity for approximate caching to take
advantage of the temporal, spatial, and semantic similarity
inherent in video streams.

Temporal similarity is the tendency for video frames near
to each other in time to be similar to one another. Spatial
similarity is a principle that says that physical locations near
to each other are similar, and mainly differ in angle of
viewing and lighting conditions. Semantic similarity shows
that different instances of the same object appear in multiple
locations and situations.

Co-Cache utilizes a smartphone’s inertial movement and the
temporal similarity in video streams to adaptively optimize
our approximate similarity matching to capture as many high-
probability reuse opportunities in successive video frames
without a loss of accuracy. Co-Cache also uses the rotation of
a smartphone along with known spatial similarity principles
to predict when a cache miss is likely to occur and proac-
tively inserts entries into the cache that will avoid a cache
miss and reduce latency. Co-Cache offers infrastructure-less

collaboration between users through ad-hoc Wi-Fi peer-to-peer
networks and neighbor tracking through Bluetooth proximity
detection. Our ad-hoc approach to collaboration and tracking
allows us to fully utilize the semantic similarity present in
video streams through nearby users sharing known valuable
recognitions that allow users to recognize popular objects
without ever needing a full DNN recognition.

III. Co-CACHE DESIGN
A. Overview

Co-Cache is an in-memory caching system that facilitates
the reuse of image recognition computations to improve the
overall latency and efficiency of DNN image recognition on
mobile devices. Co-Cache leverages the collaborative nature
and inertial movement of mobile devices, as well as the
temporal, spatial, and semantic locality of real-world video
feeds, to optimize cache searching and ensure that the correct
computations are cached for reuse.

The core of Co-Cache’s contributions lie in the Local Cache
Management Module, and the Collaborative Network Com-
munication Module, seen in Figure 1. The Local Cache Man-
agement Module handles all cache searching, cache insertion
and replacement, sampling the on-device accelerometer, gyro-
scope, and magnetometer, and updating the cache entry reuse
scores. The Collaborative Network Communication Module
houses both the Wi-Fi Direct and Bluetooth components of Co-
Cache. This includes the Bluetooth proximity detection used
for sensing movement between users, and the Wi-Fi Direct
peer-to-peer logic for actually sending over cache entries based
on the Bluetooth proximity readings.

- N
{/ Local Cache Management Module h

1
! [cache -{ Accelerometer
Search
| Cache Insertion | g
and - L I)

I
! —
A | /

N
Collaborative Network \
Communication
Module

|
|

|

’ Recognition Cache |—ﬂ DNN Recognition | Wi-Fi Direct Peer- :

Cache to-peer Manager |

|

m . :
| /

Cache Entry
Feature Update

Extraction

-
/

l(
vy |
I
|
|
|

Cache Miss
Hit J

|
\
Camera Return Results |

Input

Fig. 1. System Architecture of Co-Cache

1) Background: Locality Sensitive Hashing: The underly-
ing data structure of Co-Cache is a Locality Sensitive Hash
(LSH). The keys of our approximate cache are feature vectors
of raw input images, and the value of a cache entry is the
class label given by the neural network recognition. An LSH
is widely used for nearest matching in high-dimensional space
[5]. The LSH contains multiple hash tables that each utilize
a unique hash function. Each hash table also employs a set
of buckets so that similar data will be hashed into the same
bucket. Each of these buckets represent a sense of “locality,” in

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

47

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

that similar images will all be hashed into the same bucket with
a high probability. The cache entries present in the buckets
from each hash table are then aggregated into a candidate set,
from which the final output is selected based on a k-nearest
neighbor search or a simple distance measure.

2) Background: Heading and Step Estimation: Traditional
heading estimation and step detection are often used for
localization and prioritize accuracy [31]. Heading estimation
is a process to determine which direction a user is facing, and
step detection determines whenever a step occurs, implying
that the user is moving. However, as discussed previously,
we do not need perfectly accurate step detection and heading
estimation to achieve the goals of Co-Cache and therefore take
an approximate approach to reduce computational complexity,
which includes reducing filtering, correction algorithms, and
real-world transformations for heading estimation and forgoing
step length estimation for step detection.

B. Local Cache Management Module

1) Key Computation: The cache keys in Co-Cache are
variable-length feature vectors generated from input images.
As our system runs on live video streams, each input image
is a single frame from a video, and the corresponding cache
key for any particular video frame is a feature vector that
describes the image. Co-Cache supports any of the popular
feature extraction algorithms, including SIFT [26], SURF [6],
ORB [30], HoG [12], Harris [19], etc. The cache value is the
label of the object recognized in the raw image. The only
requirement when choosing a feature extraction algorithm is
that there is an easily quantifiable concept of distance between
two vectors. This distance measure is essential to the cache
searching that uses a Locality Sensitive Hash (LSH) as well
as for similarity scores used throughout various components
of Co-Cache. Comparing extracted features of an image as
opposed to comparing images directly allows us to more easily
assess similarity between two images than if we compared the
two raw images themselves.

2) Inertial-Driven Similarity — Threshold: Co-Cache’s
inertial-driven similarity threshold updates the initial
similarity threshold for matching images based on the inertial
movement of the device as well as the temporal similarity that
exists in the real-time video feed. The similarity threshold
is what ultimately decides if any cache lookup results in a
hit or a miss depending on how similar the current image is
to the values in the cache. There is a clear tradeoff between
the similarity threshold and the cache hit rate and error
rate. A larger similarity threshold results in more cache hits,
which reduces latency and computations, but also results
in more errors. Existing work [18] attempts a threshold
tuning algorithm, however, as their system ignores inertial
movement their input images have no temporal similarity
and their algorithm requires 100+ entries to have any effect.
This is not feasible in a real-world scenario as it can take
tens of minutes to recognize 100 unique objects and most
smartphones do not have adequate memory to dedicate over
100 entries for threshold tuning. Co-Cache, however, requires
only one positive recognition to show significant results of

our inertial-driven similarity threshold, making it a realistic
solution for live video feeds.

Algorithm 1: Inertial-Driven Similarity Threshold
Result: Updated Similarity Threshold

1 //Initial threshold chosen by user;

2 initialize thresh;

3 initialize init < thresh;

4 initialize o, 8, Aframe < 0;

5 //degree set to heading during recognition;

6

7

8

9

initialize degree ;

while cache search does not miss do

Aframe < Aframe + 1,

Adegree < headingdif ference;

10 thresh < MAX ((thresh/a + (thresh —
(MAX (A frame, Adegree)/B)/thresh)/2),init);

11 if dif f(curr frame, cacheentry) < thresh then

12 ‘ return original frameresult;
13 else

14 LS H cachelookup();

15 break;

16 end

17 end

The process of loosening and tightening the similarity
threshold can be seen in Algorithm 1. The main idea is that
after any DNN recognition, the object that was recognized is
highly likely to be seen in many consecutive frames of the
video. As such, the similarity threshold is loosened signifi-
cantly in the subsequent frames of the video and as the number
of frames since the DNN recognition grows, the similarity
threshold tightens back towards the original threshold. This
takes full advantage of the temporal similarity that exists in
consecutive frames of a live video feed.

Our evaluation in Section IV-C shows that there is a high
probability that an object stays in the view of the camera for at
least 10 frames, and usually 30+ frames. This observation is
consistent with results in [17]. Because of this, the inertial-
driven similarity updating algorithm is designed to capture
as many reuse opportunities within the first 30 frames and
then return to normal operation until the next new object is
recognized. Coincidentally, the difference in heading between
a user’s view and their initial heading when recognizing an
image follows the same principal as the sequence of frames.
If the current heading of the user is within 10-30 degrees of
the initial heading, then there is a high probability that the
user is viewing the same object.

Our inertial-driven similarity threshold algorithm takes the
initial similarity threshold, the larger value between heading
difference and number of frames since initial recognition,
and also a growth parameter, «, and dampening factor, [3,
that can both be changed based on the use scenario. The
growth parameter is a value that determines how aggressive to
grow the similarity threshold. As seen in Algorithm 1, when

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

48

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

calculating the updated similarity threshold the current value
of the threshold is initially divided by the growth parameter
which kickstarts the algorithm. We evaluate various growth
parameters in Section IV-C. The dampening factor can also
be decided based on the use scenario and is used to lessen the
effect of rotation and frame sequence, as both of these values
can be large enough to offset the rest of the algorithm if their
effects are not kept in check.

The calculation of the new similarity threshold can be found
on Line 10 of Algorithm 1. When updating the similarity
threshold we add the threshold value divided by « to the
difference between the current similarity threshold and the
larger value between the number of elapsed frames and the
change in heading. This larger value is then dampened by /3
and the difference is divided by the current similarity thresh-
old. This maximum value between this calculated similarity
threshold and the initial similarity threshold is chosen as the
updated similarity threshold. An analysis of how the similarity
threshold changes over time can be found in Section IV-C.

It is important to note that the process described above resets
on every new DNN recognition and if a cache miss occurs and
a new entry is inserted into the cache, the loosened threshold
resets to the default similarity threshold.

3) Rotation-Driven Interpolative Caching: When using an
approximate cache, we have identified a few scenarios that
often lead to unnecessary cache misses. A cache miss often
occurs when the distance between two images containing
the same object is greater than the pre-determined threshold.
Another scenario where unnecessary cache misses occur is
when the LSH does not return the correct image in the
candidate set for similarity matching. This can occur for
several reasons, including an increase in image distance, and
also when the user rotates their device in specific ways. We
have found that rotation around the phone’s x-axis often leads
to avoidable cache misses. To the best of our knowledge, no
existing work handles this issue, and we introduce our rotation-
driven interpolative caching that reduces the cache misses due
to rotation that often plague in-memory caching systems.

Interpolative caching avoids unnecessary cache misses by
prefetching selected frames and inserting them into the cache
before they are needed. Co-Cache avoids cache misses that
require DNN recognitions by predicting when a miss might
occur and preemptively inserting a new frame into the cache
that will result in a cache hit and avoid unnecessary DNN
recognitions.

Our interpolative caching tracks both the changing similarity
distance between consecutive frames as well as the rotational
movement of the smartphone to predict when the above
scenario might occur. Based on factors including gyroscope
readings of the phone’s x-rotational axis and the incremental
distance measures, Co-Cache’s interpolative caching system
will preemptively insert an image into the cache to avoid a
costly cache miss. If the rotation of the device corresponds to
a growing similarity difference between the cached entry and
the current raw image we prefetch the current video frame
and insert it into the cache preemptively when the difference

in similarity approaches the similarity threshold. Every cache
miss and DNN recognition resets the rotation calculations to
a new base which allows Co-Cache to avoid any drift that
normally accumulates after repeated integrations. This both
avoids expensive drift mitigation calculations and also avoids
expensive DNN recognitions. Results of our rotation-driven
interpolative caching can be found in Section IV-F.

4) Collaborative Pre-Caching: We introduce Co-Cache’s
collaborative pre-caching as an infrastructure-less solution to
sharing environment and cache information between users.
CARS [36] introduces collaborative caching with a cloud
server and nearby devices running the same application, how-
ever, their strategy for collaboration does not take into account
movement of devices or relative distance between users. Co-
Cache creates ad-hoc peer-to-peer networks of smartphones
to facilitate collaboration between nearby users. While con-
nected, devices routinely monitor the relative movement of
nearby devices using our Bluetooth proximity detection. Other
work, including Psephos [23], attempt peer-to-peer collab-
oration for image recognition, but their solution requires a
cloud server and does not account for relative movement
between users. Co-Cache operates on realistic live video feeds
and better informs cache sharing through calculation of the
relative movement between users to allow for users to take
full advantage of the semantic similarity that exists in video
streams.

As users move throughout the environment, Co-Cache
monitors any nearby devices that are approaching the user.
If a device is approaching the user, they exchange cache
information. Collaborative pre-caching is vital to the success
of Co-Cache, as a significant source of cache misses and
latency is the physical act of moving to a new location. As a
user enters a new location, they do not have any information
of the objects that exist in the new area. Collaborative pre-
caching alleviates these issues through the sharing of known
valuable cache entries to any users who enter a new area.

When sharing cache entries to nearby users, the cache
entries with the highest reuse score (discussed in Section
III-B5) are shared, as those entries are deemed to be the
most valuable. In the cache, a subset of the total entries are
dedicated to pre-cached entries. The value of the subset size is
configurable depending on the use scenario. Pre-cached entries
are given their own subset of the overall cache because as more
users enter the network, individual nodes can receive tens, even
hundreds of entries from neighbors. If the general cache and
pre-cached entries are not separated then the valuable entries
from our local inertial-driven optimizations would be replaced
quickly and not fully utilized. When a pre-cached entry is
accessed for computation reuse, that entry is moved from the
pre-cached subset to the general cache as it can now have a
reuse score that is informed by our inertial optimizations.

5) Cache Warm-up, Insertion, and Replacement: Reuse
score is a metric developed for Co-Cache to assign a single
number value to predict the potential reuse opportunities of
any given cache entry. The reuse score is the main criteria
taken into consideration by Co-Cache’s cache replacement

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

49

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

strategy. When determining what entries to potentially evict,
the existing cache entry with the lowest reuse score will be
evicted first.

1 + accesses+1

SfE)l * (%" elapsedframes

reusescore = - (D
#instances

Most existing caching systems determine their replacement
strategies based on metrics such as access frequency and
access time. Co-Cache’s reuse score, however, has a bevy of
metrics at its disposal, including standard access frequency,
access time, but also number of instances of an entry, and
also various movement-based information. In an approximate
caching paradigm there is often duplication of cache entries
due to the inherent accuracy issues regarding cache searching,
and therefore the number of instances of an entry in the cache
is a valuable metric. The movement-based metrics are derived
from the Local Cache Management Module’s sampling of the
smartphone’s inertial sensors. The equation for calculating the
reuse score can be seen in Equation 1, where s is the number
of steps taken since the last cache access for a particular entry,
Aheading has a maximum value of 180 and is the difference
in heading between the current heading of the user and the
heading during the last cache entry access, 3 is the same
dampening factor discussed in Section III-B2, accesses is the
number of times an entry has been accessed, elapsedframes
is the number of frames that have elapsed since an entry was
last accessed, and finally #instance is the number of entries
that map to the same value as a particular entry.

When calculating the reuse score, one is added to s to avoid
issues of dividing by zero. One is also added to accesses
to avoid issues that arise with zero. If one was not added
to accesses, then an entry that has zero accesses after two
frames would be too similar to an entry that has zero accesses
after 100 frames. The ceiling of the heading divided by the
dampening factor is taken because small changes in heading
should not have a large impact on reuse score.

Cache Warm-up, Insertion and Replacement. If the cache
is not entirely filled with entries, a cache entry is simply added
to the LSH and can immediately be used. However, if the cache
is entirely full then an entry must first be evicted. The eviction
process relies solely on the reuse score discussed previously.
Co-Cache finds the entry with the lowest reuse score, removes
it from the LSH, and inserts the new value into the LSH.
Cache warm-up is the process of populating the cache with
values whenever the user enters the application and they have
an empty cache. Any entries added to the cache during the
warm-up phase come entirely from other users near to the new
user. Proximity detection is based on received signal strength
(RSSI), and gives a rough estimate of who is nearest to the
user. Based on the RSSI values returned from the proximity
detection, the new device will request a proportional amount
of cache entries from various nearby users.

C. Collaborative Network Communication Module

1) Wi-Fi Direct Peer-to-peer Collaboration: Wi-Fi Direct is

an ad-hoc Wi-Fi protocol that exists on Android smartphones.

Phones use their Wi-Fi radio to make direct connections
between users which allows for the transfer of information
without any outside infrastructure [16]. Co-Cache’s peer-to-
peer system allows users physically near to one another to
exchange caching information quickly. When a user enters a
new location, Co-Cache automatically scans for existing peer-
to-peer networks. If a network already exists, then the new user
requests to join the network and once approved will request
cache entries from certain users in the network to perform
cache warm-up. If no network exists, the user will start their
own network and wait for other users to join.

2) Bluetooth Proximity Detection: Proximity detection is
used by Co-Cache to determine both what users are physically
the closest to each other as well as the relative movement
between users over time. Proximity detection is achieved using
Bluetooth’s discovery process. Discovery in Bluetooth is a
process in which a device broadcasts a bluetooth signal to
everyone near to them. While in discovery, devices also listen
for the broadcasts of nearby devices to potentially connect
to. However, for our purposes, the transfer of information
between users is handled by Wi-Fi Direct. Instead, when a
device receives a broadcast it also receives a signal strength
value known as RSSI, or a received signal strength indicator.
A large RSSI value indicates that the user broadcasting the
discovery message is physically close. Co-Cache periodically
performs Bluetooth discovery to collect RSSI values of all
nearby nodes.

If the RSSI value of a neighbor has been increasing over the
past few cycles, the users are potentially becoming physically
closer to each other. For each user device, the step detector
described in Section III-A2 is used to determine if this user is
currently moving. Once it has been determined that this user
is getting closer to another user, it will exchange messages
via Wi-Fi Direct to let the other user know if it is currently
moving. If only one user is moving, then the stationary user
will send cache entries to the moving user as the moving user
is most likely approaching the stationary user. If both users
are moving, then based on the heading of each device, either
one or both users exchange cache entries with each other to
help reduce the flurry of cache misses that often accompany
moving to a new location.

1V. IMPLEMENTATION AND EVALUATION
A. Evaluation Methodology

To test the viability of Co-Cache, we develop an image
recognition Android application built upon various popular
DNN models. The application was developed using Java,
OpenCV [1] and TensorFlow to facilitate the usage of multiple
DNNs. Our cloud baseline was deployed on Amazon Web
Services (AWS) with 8 vCPUs and 32 GB RAM. Our edge
baseline is a local PC with an 17-7700 CPU (4 cores, 8 logical
processors, @ 3.6 GHz).

Co-Cache was evaluated using ResNet [20] and Inception
v4 [32] trained on the standard Imagenet [13] dataset as
the DNN models. Both of these models are widely available
and widely used. We also explored using mobile focused

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

50

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

DNN architectures such as MobileNet [21] or GoogleNet [33],
however, these architectures sacrifice significant accuracy and
are not well suited to our mobile image recognition tasks.
Co-Cache was tested on a variety of Android smartphones,
including Google Pixel 4 XL, Samsung Note 10+, Xiaomi Mi
8 Lite, Samsung Galaxy S9, and Google Pixel. This collection
of devices has a wide range of age and computation capacity,
which makes for a good real world experiment.

To evaluate Co-Cache in the real world, four testers were
brought to a local shopping supercenter and asked to browse
naturally throughout the store together using our image
recognition application. The store contains a wide variety
of products, including grocery, produce, athletics, electronics,
clothing, home essentials, etc. The shopping supercenter use
case is favorable as there were many object classes that could
be found in the store. As the users are moving throughout
the store, we save every piece of information needed for Co-
Cache to function so that we can recreate the exact same
test scenarios in different situations, including different DNNs,
devices, or even with more or less neighbors. To assess the
effectiveness of Co-Cache we investigate overall application
latency, computation reuse opportunities, inertial-driven simi-
larity threshold, recognition accuracy, and the effects of cache
size on the overall performance of Co-Cache. Latency is
measured in total milliseconds from the arrival of a new video
frame until the result of the recognition is returned. Latency is
calculated and averaged only on frames that returned a positive
recognition result. Accuracy and error rate are measured
against a ground truth of the DNN recognition. An error is
counted only if the cache search returns an incorrect result.
It is not considered an error if the cache returns no match.
Reuse rate is determined based on how many cache hits occur
compared with how many cache hits were possible. A cache
hit is not possible when there is no object in the video frame
or the correct cache entry is not in the cache.

B. Comparison with Existing Work

We also compare with existing work, CARS [36], in which
collaboration is proposed for improving the latency in image
recognition, involving a small recognition cache on the local
device, and a cloud server. CARS also introduces techniques
specific to augmented reality. For our comparison, we imple-
mented the image recognition pipeline of CARS, and forgo
implementation of any Augmented Reality-specific tasks to
make the image recognition comparison as fair as possible.
Additionally, we use the same LSH as Co-Cache for our CARS
implementation. This was done because the cache described
in CARS is not well suited to the unlabeled dataset we are
using. Also, because we are interested in the performance of
collaboration specifically, the choice to use the same cache
structure in both implementations will make our comparison
as equal as possible.

We chose CARS for our comparison because CARS is
the paper most similar to Co-Cache. CARS includes ad-hoc
sharing of image data between users, and a caching system on
the local device. However, Co-Cache differs from CARS in
significant areas. CARS requires a cloud server, and doesn’t

take into account any inertial movement during its recognition,
and CARS’ image sharing policy doesn’t take into account
any movement or distance between users. CARS also does
not implement any caching optimizations on the local device,
and requires nearby neighbors to achieve any optimizations,
which is not always available in the real world. Overall, this
may lead to a non-optimized caching experience.

C. Inertial-Driven Similarity Threshold

As discussed in Section III-B, the growth parameter, «,
controls the aggressiveness of our inertial-driven similarity
threshold algorithm. A smaller « indicates aggressive thresh-
old updating, allowing for greater computation reuse, but risk-
ing errors. We designed the inertial-driven similarity threshold
algorithm to capture as many reuse opportunities without
sacrificing accuracy. A small initial similarity threshold means
a high accuracy is desired, at the cost of higher latency.

Figure 2 shows the effects of the threshold parameter on
both reuse opportunities taken and error rate. As the o gets
smaller, the reuse percentage and error rate increase dramati-
cally. With no inertial-driven similarity threshold updating, we
have a reuse rate of about 78% and an error rate of around 4%.
As we decrease «, both the error rate and reuse rate increase
slowly until we reach a growth parameter of .7. With an « of
.7, we achieve a reuse rate of 89% and an error rate of 10%.
As « decreases the reuse rate and error rates both skyrocket as
the safeguards of frame sequence and heading can no longer
contain the similarity threshold. It is important to note that the
inertial-driven similarity threshold resets on every cache miss
or new object detection. A too small growth parameter does
not allow for this reset to occur frequently enough to contain
the similarity threshold. An « of .7 gives a good tradeoff of
latency reduction and error rate.

Fig. 2. Effect of Growth Parameter on Reuse and Error Rate

D. Cache Size

The number of cache entries required for caching is im-
portant for mobile applications as it directly affects the reuse
opportunities and accuracy. Additionally, individual Android
applications are granted limited amounts of memory. The final
amount each application gets is dependent on the specific
device, but it is sometimes capped at 8§ MB [3].

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

51

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Co-Cache, however, can achieve better results than many
other systems while maintaining a cache size 50-70% smaller
than other applications. As can be seen in Figure 3, with a
cache size of 150 entries, Co-Cache achieves a reuse rate of
just under 90% with an error rate of around 10%. As the cache
size increases, the reuse rate also increases, but the accuracy
correspondingly decreases. At a cache size of 250 entries, we
achieve a reuse rate of around 95%, but an accuracy of only
around 80%. Because of this, we choose 150 cache entries
as the optimal cache size. The underlying data structure of
approximate caching is what leads to a decrease in accuracy
as the cache size increases. In exact caching situations, more
cache entries leads to higher accuracy, but in approximate
caching more entries leads to a higher rate of false positives.
With more entries in the cache, there is a higher probability
that one of the images is similar enough to the current frame,
even when it is not an actual match. Work in [17], [18] combats
the issue of accuracy with larger cache sizes by having many
entries of the same object. This, however, is not feasible in
real-world situations where a smaller cache size is required
on smartphones and smart glasses.

Fig. 3. Effects of Cache Size on Accuracy and Error Rate

E. Latency

The most important metric for evaluation of our system is
the overall latency of the application. Latency is the motivating
factor for most attempts of both offloading and caching.
Work in human-computer interaction has shown that image
recognition should take no longer than 100 ms to give a
seamless user experience [7], [8], [28]. The latency of image
recognition applications using Co-Cache was evaluated on
five different devices of varying age and quality, as well as
two popular neural network architectures. We also developed
cloud and edge offloading baselines to compare against Co-
Cache. Our cloud and edge baselines receive images from the
smartphone’s camera, run the DNN recognition, then return the
results to the device. Finally, we compare our results against
CARS, an existing work in this area.

One of the motivations of Co-Cache is the infeasibility of
the current state of the art cloud and edge offloading for image
recognition. As can be seen in the Cloud and Edge columns of
Table I, the latencies achieved by cloud and edge offloading
do not meet the 100 ms threshold required for a seamless

user experience. Running Co-Cache on the local device with
no neighbors achieves lower latency than cloud offloading
on all device/model combinations. When compared against
edge offloading, running Co-Cache locally with no neighbors
out performs edge offloading in 7 out of 10 device/model
combinations. With the addition of one neighbor, however, Co-
Cache outperforms both standard cloud and edge computing
in every scenario. Co-Cache’s peer-to-peer communication is
so effective because devices are not sending large images,
instead sending only extracted features of images, and also
the communication is done completely in the background, not
impacting latency negatively at all.

We also explored baseline cloud and edge offloading with
a vanilla approximate cache. While this did provide better
latencies of around 230-270 ms for cloud and 170-200 ms
for edge, the increased error rate of around 20-23% was not
feasible for real-world image recognition. Additionally, the
overhead involved with offloading inertial measurements made
using Co-Cache optimizations on the cloud not possible.

The data shown in Table I for our CARS implementation
is assuming four neighboring devices, which is also used in
our Co-Cache evaluation. It is interesting to note that CARS
achieves significantly better results than a pure Cloud or Edge
implementation, partly in thanks to its small local cache. On
our two highest quality devices, Co-Cache with no neighbors
has a lower average latency than CARS with four neighbors.
When comparing CARS with four neighbors to Co-Cache
with two neighbors, Co-Cache performs better in 8 out of 10
scenarios. Co-Cache with three devices outperforms CARS
with four devices in every scenario. And finally, Co-Cache
with four devices significantly outperforms CARS with four
devices in every scenario. In many cases, the average latency
of Co-Cache is less than half that of CARS, and in the best
scenario, Co-Cache achieves 81ms of latency compared with
CARS latency of 247ms, which is almost a 70% reduction in
latency.

Co-Cache also boasts significant latency reduction in older,
less powerful smartphones. Without caching support, ResNet
and Inception v4 running on the Mi 8 Lite, Galaxy S9,
and Pixel have latencies as high as 3,102.99 milliseconds.
With Co-Cache support and four devices, this latency is
reduced to around 196 milliseconds in the worst case and 119
milliseconds in the best case. This takes image recognition
from unusable to nearly seamless and in the best case can
achieve a latency reduction of around 94%.

Co-Cache supports both local caching and collaborative
caching. Figure 4 shows the latency reduction achieved by Co-
Cache in cases from one to four users. With only one device,
Co-Cache achieves latency reduction of anywhere from 80%
to 84% depending on what device is being used. With two
devices collaborating, we achieve latency reduction anywhere
from 87% to 90%. With three users we see latency reduction
in the range of 89% to 92%. Finally, with four devices we
achieve latency reduction anywhere from 91% to 94%.

These results are significant in two areas. First, when there
are many neighbors nearby, Co-Cache achieves very small la-

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

52

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

TABLE I
END-TO-END LATENCY OF CO-CACHE (MS)

Smartphone | DNN Model | No Cache | Cloud Edge CARS | LRU Cache | Local Co-Cache | Two Devices | Three Devices | Four Devices
Pixel 4 ResNe.t 1,128.63 | 524.57 | 385.23 253 58 340.37 215.23 135.25 117.78 98.02
Inception v4 1,086.60 | 630.91 | 429.42 328.63 208.30 131.39 114.59 95.59
Note 10 + ResNgt 898.82 | 529.18 | 377.99 24726 272.90 175.37 113.04 99.43 84.03
Inception v4 839.84 | 631.22 | 440.64 257.25 166.45 108.42 95.74 81.40
Mi 8 Lite ResNe.t 2,584.20 | 544.65 | 399.03 271.03 704.81 421.63 240.65 201.12 156.41
Inception v4 2,395.53 | 653.93 | 434.41 659.36 397.78 230.59 194.07 152.77
Galaxy S9 ResNe_t 2,171.79 | 536.17 | 382.82 269.84 622.23 378.28 222.37 188.32 149.80
Inception v4 1,592.38 | 639.59 | 438.17 463.87 286.13 172.58 147.78 119.72
Pixel 1 ResNgt 3,102.99 | 531.46 | 384.13 273.97 869.00 521.82 299.93 251.47 196.65
Inception v4 2,95991 | 635.62 | 431.96 836.52 505.70 294.27 248.08 195.85

B Pixel4 XL W Note 10+ Mi 8 Lite B Galaxy S9 B Pixel

10

g | || || ||

Local Co- Two Devices Three Four Devices
Cache Devices

Reduction Ratio
= = = =
[=] =~ [--]

o

Fig. 4. Latency Reduction of Co-Cache with Multiple Users

tencies, and even in situations when there are no neighbors,
Co-Cache still achieves significant latency reduction.
F. Interpolative Caching and Collaborative Pre-Caching
Co-Cache’s success is directly affected by the performance
of our interpolative caching and collaborative pre-caching.
Figure 5 shows the reuse rate and error rate of Co-Cache
as a whole as well as the cache entries added by our inter-
polative caching and collaborative pre-caching. Reuse rate is
determined by the percentage of video frames that have an
object and also result in a cache hit. Reuse rate is different
from cache hit rate because for reuse rate we do not consider
video frames that have no objects.

Fig. 5. Reuse Rate and Error Rate of Co-Cache
The overall reuse rate when using a standard LRU caching
scheme without Co-Cache is about 73%, with an error rate of
around 7%. Using Co-Cache on a local device increases the
reuse rate by 12% over standard LRU, coming in around 85%

with an error rate of around 10%. With two devices, we see a
reuse rate of about 90% with an error rate of 11%. With three
devices we increase the reuse rate to 92% with an error rate
of 13%. Finally, with four devices, we see an overall reuse
rate of 94% and an error rate of 12%.

We also evaluate the hit and error rate on entries cached
via our interpolative and pre-caching. Interpolative caching
on a local device has a reuse rate of about 89%, and an
error rate of 18%. The error rate for interpolative caching
comes from the use of the DNN recognitions as the ground
truth. Because interpolative caching preemptively caches val-
ues without running a DNN recognition, often a few frames
after the interpolative caching the DNN sees a new object in
the frame, but the LSH still labels it as the old object.

V. RELATED WORK

Offloading systems such as CloudAR [37] choose to offload
the entire image recognition pipeline, including feature extrac-
tion, image recognition/object detection, and object tracking.
Others, including VisualPrint [24] choose to offload only the
image recognition and compute the feature extraction and
object tracking locally. As discussed previously, CARS [36]
introduces a cloud offloading system that also has a small
recognition cache and collaboration between users.

Approximate caching for image recognition is not as widely
studied as cloud and edge offloading. Recent studies, including
Cachier [14], Potluck [18], and FoggyCache [17] all study ap-
proximate caching for image recognition. Cachier utilizes edge
caching for approximate cache entry optimization and and
modeling query patterns. Potluck introduces cross-application
deduplication, allowing multiple applications residing on one
device to reuse recognitions from one another. FoggyCache
is a cross-device approximate computation reuse system that
optimizes the locality sensitive hashing and k-nearest neighbor
searching that many approximate caches rely on.

VI. CONCLUSIONS

In this paper we introduce Co-Cache, an inertial-driven
infrastructure-less collaborative approximate caching system
where computation results of similar images can be reused
to improve the latency of mobile image recognition. Ap-
proximate caching enhanced with Co-Cache achieves low
latency without sacrificing accuracy. We design interpolative
caching, reuse scoring, collaborative pre-caching, and inertial-
driven similarity thresholds to optimize the cache management

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

53

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

of our caching system using the inertial measurements of
smartphones as well as the inherent similarity that exists in
video streams. We evaluate Co-Cache in a realistic real-world
situation. Our evaluation shows that Co-Cache can reduce the
overall latency of image recognition by up to 94%, while
also maintaining a cache size around 50-70% smaller than
competing approximate caching systems. We also show that
Co-Cache outperforms existing work in collaborative image
recognition.

ACKNOWLEDGMENT

This work was partially supported by the U.S. National
Science Foundation under Grant CCF-2007159.

[1]
[2]
[3]
[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Opencv: Open computer vision library, 2000.

Pokemon go augmented reality game, 2016.

Android compatibility definition, 2020.

Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. Mobile cloud
computing for computation offloading: Issues and challenges. Applied
computing and informatics, 14(1):1-16, 2018.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Wain-
garten. Optimal hashing-based time-space trade-offs for approximate
near neighbors. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 47-66. SIAM, 2017.
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up
robust features. In European conference on computer vision, pages 404—
417. Springer, 2006.

Stuart K Card. The psychology of human-computer interaction. Crc
Press, 2018.

Stuart K Card, George G Robertson, and Jock D Mackinlay. The
information visualizer, an information workspace. In Proceedings of
the SIGCHI Conference on Human factors in computing systems, pages
181-186, 1991.

Lukas Cavigelli, Philippe Degen, and Luca Benini. Cbinfer: Change-
based inference for convolutional neural networks on video data. In
Proceedings of the 11th International Conference on Distributed Smart
Cameras, pages 1-8, 2017.

Guoguo Chen, Carolina Parada, and Georg Heigold. Small-footprint key-
word spotting using deep neural networks. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4087-4091. IEEE, 2014.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl,
and Hari Balakrishnan. Glimpse: Continuous, real-time object recogni-
tion on mobile devices. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pages 155-168, 2015.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients
for human detection. In 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05), volume 1, pages
886-893. IEEE, 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248-255.
Teee, 2009.

Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. Cachier: Edge-caching for recognition applications. In
2017 IEEE 37th international conference on distributed computing
systems (ICDCS), pages 276-286. IEEE, 2017.

Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware
multi-tenant on-device deep learning for continuous mobile vision. In
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, pages 115-127, 2018.

Colin Funai, Cristiano Tapparello, and Wendi Heinzelman. Enabling
multi-hop ad hoc networks through wifi direct multi-group networking.
In 2017 International Conference on Computing, Networking and Com-
munications (ICNC), pages 491-497. 1IEEE, 2017.

Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. Foggycache: Cross-device
approximate computation reuse. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, pages
19-34, 2018.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

Peizhen Guo and Wenjun Hu. Potluck: Cross-application approximate
deduplication for computation-intensive mobile applications. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
271-284, 2018.

Christopher G Harris, Mike Stephens, et al. A combined corner and
edge detector. In Alvey vision conference, volume 15, pages 10-5244.
Citeseer, 1988.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications, 2017.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon:
Mobile gpu-based deep learning framework for continuous vision ap-
plications. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, pages 82-95, 2017.
Stratis loannidis, Laurent Massoulie, and Augustin Chaintreau. Dis-
tributed caching over heterogeneous mobile networks. In Proceedings
of the ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 311-322, 2010.

Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Low
bandwidth offload for mobile ar. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
pages 237-251, 2016.

Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-
time object detection for mobile augmented reality. In The 25th
Annual International Conference on Mobile Computing and Networking,
MobiCom *19, New York, NY, USA, 2019. Association for Computing
Machinery.

David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91-110, 2004.
Wolfgang Narzt, Gustav Pomberger, Alois Ferscha, Dieter Kolb, Reiner
Miiller, Jan Wieghardt, Horst Hortner, and Christopher Lindinger. Aug-
mented reality navigation systems. Universal Access in the Information
Society, 4(3):177-187, 2006.

Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.
Tulian Radu. Augmented reality in education: a meta-review and cross-
media analysis. Personal and Ubiquitous Computing, 18(6):1533—-1543,
2014.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In 2011 International conference
on computer vision, pages 2564-2571. Ieee, 2011.

Zuolei Sun, Xuchu Mao, Weifeng Tian, and Xiangfen Zhang. Activity
classification and dead reckoning for pedestrian navigation with wear-
able sensors. Measurement science and technology, 20(1):015203, 2008.
Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alex Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions, 2014.

Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xu-
anzhe Liu. Deepcache: Principled cache for mobile deep vision. In
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, pages 129-144, 2018.

Wenxiao Zhang, Bo Han, and Pan Hui. On the networking challenges
of mobile augmented reality. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network, pages 24-29, 2017.

Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrishnan, Eric Zavesky,
and Feng Qian. Cars: Collaborative augmented reality for socialization.
In Proceedings of the 19th International Workshop on Mobile Computing
Systems & Applications, pages 25-30, 2018.

Wenxiao Zhang, Sikun Lin, Farshid Hassani Bijarbooneh, Hao Fei
Cheng, and Pan Hui. Cloudar: A cloud-based framework for mobile
augmented reality. In Proceedings of the on Thematic Workshops of
ACM Multimedia 2017, pages 194-200, 2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:
An extremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6848—6856, 2018.

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2023 at 21:12:47 UTC from |IEEE Xplore. Restrictions apply.

54

