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Abstract—Graph-guided semi-supervised learning (SSL) has
gained popularity in several network science applications, in-
cluding biological, social, and financial ones. SSL becomes par-
ticularly challenging when the available nodal labels are scarce,
what motivates naturally the active learning (AL) paradigm. AL
seeks the most informative nodes to label in order to effectively
estimate the nodal values of unobserved nodes. It is also referred
to as active sampling, and boils down to learning the sought
function mapping, and an acquisition function (AF) to identify
the next node(s) to sample. To learn the mapping, this work
leverages an adaptive Bayesian model comprising an ensemble
(E) of Gaussian Processes (GPs) with enhanced expressiveness
of the function space. Unlike most alternatives, the EGP model
relies only on the one-hop connectivity of each node. Capitalizing
on this EGP model, a suite of novel and intuitive AFs are
developed to guide the active sampling process. These AFs are
then combined with weights that are adapted incrementally
to further robustify performance. Numerical tests on real and
synthetic datasets corroborate the merits of the novel methods.

Index Terms—Gaussian processes, ensemble learning, active
learning, semi-supervised learning over graphs

I. INTRODUCTION

In the last decade, semi-supervised learning (SSL) over
graphs has received growing attention from the scientific
community at the crossroads of machine learning and network
science, on the premise of its major impact in diverse fields
such as medicine, biology, and financing [5]. Given observa-
tions from a subset of nodes, SSL on graphs can reconstruct
unobserved nodal values by leveraging the connectivity of
nodes. In practice however, only a few nodes can be observed
due to privacy concerns or high sampling costs. In biomedical
networks for instance, a medical doctor will not reveal a
patient’s record to respect confidentiality, while in protein
networks some attributes may require expensive and time-
consuming medical tests. The scarcity of nodal observations
motivates the active learning (AL) paradigm.

In contrast to passive SSL approaches that rely on a given
or randomly chosen set of observed nodes, the goal of AL
is to prudently select which nodes to query and add to the
observed set in order to improve prediction performance;
that is, to sample the most informative nodes from a large
set of unobserved nodes. AL over graphs is also known as
active sampling, and requires (i) a model to learn the sought
graph function that maps nodes to nodal values; and (ii) an
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acquisition function (AF) or sampling strategy to query nodes
from the unlabeled set. Focusing on Bayesian models that
offer uncertainty quantification compared to the deterministic
ones, a Gauss-Markov random field (GMRF) model was
adopted for (i) in [21], in conjunction with the so-termed ‘Σ-
optimality’ AF for (ii) that minimizes the sum of the entries
of the predictive covariance. Capitalizing on a GMRF model
for the correlation of labels across neighboring nodes, [2] put
forth an AF that selects to query the node causing the largest
change on the GMRF model.

Belonging to the family of nonparametric Bayesian models,
Gaussian processes (GPs) have been extensively used for
AL because of their ability to learn the probability density
function (pdf) of a random function in a sample-efficient
manner; see e.g., [8], [9]. In the graph context, the AF
in [8] uses the predictive mean and variance, and has also
been adopted in [35] combined with a manifold-preserving
reduction step that yields a sparse manifold graph. A GP-
based approach using the graph Laplacian is coupled in [24]
with a scalable variational inference scheme leveraging a ‘Σ-
optimal’ AF [21]. Non-Gaussian models for (i) have relied on
the Laplace approximation to obtain a Gaussian proxy of the
non-Gaussian pdf, based on which a node is queried using the
‘largest model change’ criterion [23]. Albeit interesting, the
aforementioned approaches rely on a single GP model that
may exhibit limited expressiveness of the function space, and
pertain only to the classification task, where the nodal values
(or labels) are drawn from a finite alphabet.
Contributions. To cope with these limitations, we put forth
a novel Bayesian approach that relies on an ensemble of
Gaussian Processes (EGPs) for graph-guided AL. Besides
allowing for a richer function space, the EGP model of the
sought function uses only the one-hop connectivity vector of
each node without requiring additional nodal features, and
updates incrementally the model parameters with no need for
retraining, a property that fits nicely the AL setup. Although
EGPs were introduced in [18], [19], and also employed for
graph-guided learning [25], [26], [27], reinforcement learning
[13], [15], [29], Bayesian optimization [20] and conventional
active learning [28], it is the first time to be utilized for active
sampling over graphs. In addition, the advocated EGP model
can readily accommodate a suite of novel and intuitive AFs
that rely on the disagreement and uncertainty based rules.
Further adopting a weighted ensemble of these AFs with
weights properly adapted as data arrive incrementally, leads to
enhanced robustness. Experimental tests on real and synthetic
datasets showcase the benefits of both the EGP model and the
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accompanying novel acquisition criteria.

II. PROBLEM FORMULATION

Consider a graph that consists of N nodes collected in the
vertex set V := {1, . . . , N}, and E edges connecting pairs of
nodes. The connectivity of nodes is captured by the N × N
adjacency matrix A, whose (n, n′)th entry ann′ := A(n, n′)
represents a weighted edge connecting node n to node n′. A
real-valued function f(·) on the graph is a mapping from a
node n ∈ V to its noise-free nodal value fn, which further
yields the (possibly noisy) nodal observation yn. For instance,
fn could be the age of user n in a social network.

If sampling nodal values incurs high cost, the training
data is limited, and one deals with weak or semi-supervised
learning (SSL) of the map from the observed nodal values
O to the unobserved ones Ō. SSL has been carried out
incrementally by utilizing the one-hop connectivity vector
an := A(:, n) of node n as the input to function f , that is,
fn := f(an) [25], [26], [34]. A reliable estimate of f requires
sufficiently many observations {yn}, which may not be always
feasible in practice. This motivates well the AL paradigm that
aims at selecting the few most informative nodes to sample,
in order to efficiently and effectively estimate f(·).

AL begins with a small-size set of observed nodes L0 :=
{an, yn, n ∈ S0} with S0 collecting initially sampled nodes,
and a larger set of unobserved nodes U0 := {an, n ∈ S̄0},
where S̄0 := V \ (S0 ∪ Ō). Relying on the sets Lt and Ut at
time slot t, AL capitalizes on the function’s probability density
model p(f(a)|Lt) to build the so-termed acquisition function
(AF) α(·) that selects the one-hop connectivity vector ant+1

∈
Ut of node nt+1 ∈ S̄t at slot t+ 1 as

ant+1 = argmax
a∈Ut

α(a;Lt) . (1)

The AF looks for the most informative unobserved node to
sample, leveraging the quantifiable uncertainty captured by
p(f(a)|Lt) that aids function space exploration. Subsequently,
an oracle is queried to reveal the associated value ynt+1

of
node nt+1, which can be either a real value in a regression
task or a class label drawn from a finite alphabet in a
classification task. With ynt+1

at hand, the observed (or
labeled) set is augmented as Lt+1 := {an, yn, n ∈ St+1}
with St+1 = St ∪ {nt+1}, while the unlabeled set becomes
Ut+1 := {an, n ∈ S̄t+1} with S̄t+1 = S̄t \ {nt+1}. Thus,
the critical choices for AL are the belief model for f and
the AF α. In the next section, we will outline the GP-based
Bayesian model for f along with the corresponding α that
can quantitatively capture the associated uncertainty.

III. ACTIVE SAMPLING WITH A SINGLE GP

GPs have well-documented merits in estimating the prob-
ability density function (pdf) of a nonparametric map in
a sample-efficient manner [31]. This renders GPs a valu-
able model for AL; see e.g., [8], [9]. Learning with GPs
starts with a GP prior on the sought function f ; that is,
f ∼ GP(0, κ(a, a′)), where κ(a, a′) is a kernel function
that measures the pairwise similarity between the connectivity

input vectors a and a′. This GP definition implies that the ran-
dom vector ft := [f(an1

) . . . f(ant
)]⊤ (⊤ for transposition)

comprising all function values for inputs At := [an1 . . . ant ]
⊤

with {nτ}tτ=1 referring to the index of all labeled nodes
up to slot t (including the |L0| initially labeled ones), is
Gaussian distributed as p(ft|At) = N (ft;0t,Kt) ∀t, where
Kt is the t × t covariance matrix whose (m,m′) entry is
[Kt]m,m′ = cov(f(anm

), f(anm′ )) := κ(anm
,anm′ ) [31].

The output data yt := [y1 · · · yt]⊤1 are linked with the func-
tion evaluations ft through the likelihood p(yt|ft;At) that is
supposed to be factored as p(yt|ft;At) =

∏t
τ=1 p(yτ |f(anτ

))
with known per-datum factors p(yτ |f(anτ

)). Focusing on the
regression task, where p(yτ |f(anτ )) = N (yτ ; f(anτ ), σ

2
n),

the predictive pdf of the nodal value yt+1 of an unlabeled
node with connectivity vector a is given by [31]

p(yt+1|Lt,a) = N (yt+1; ŷt+1|t(a), σ
2
t+1|t(a)). (2)

The first two moments of the pdf in (2) are

ŷt+1|t(a) = k⊤
t (a)(Kt + σ2

nIt)
−1yt (3a)

σ2
t+1|t(a) =κ(a, a)−k⊤

t (a)(Kt+σ
2
nIt)

−1kt(a) + σ2
n (3b)

with kt(a) := [κ(a, an1
), . . . , κ(a, ant

)]⊤ and t+ 1|t signi-
fying that all t nodes up until slot t have been employed to
obtain p(yt+1|Lt,a). It is worth mentioning that the mean in
(3a) provides a label (or nodal value) prediction corresponding
to a, while the variance in (3b) offers quantification of the
associated uncertainty. Most GP-based AL settings leverage
this uncertainty to select the next node to be queried using
the following acquisition function (AF)

ant+1 = argmax
a∈Ut

σ2
t+1|t(a) (4)

which for the Gaussian pdf is equivalent to maximizing the
entropy [22].

Albeit interesting, the predictive mean and variance in (3)
incur complexity O(t3), which although affordable in AL
settings when t is small, it can be further reduced. In addition,
(3) entails direct access to the one-hop connectivity vector
a, thus discouraging privacy-sensitive scenarios. Furthermore,
GP-based AL hinges on a pre-selected kernel that may confine
the resultant function space expressiveness. To cope with
these limitations, a novel ensemble approach is advocated that
capitalizes on random spectral features, as described next.

IV. MODELING WITH AN ENSEMBLE OF GPS

Broadening the scope of the active sampling approach over
graphs based on a single GP with a pre-selected kernel, this
section deals with an ensemble (E) of M GP experts to
learn the sought function model with richer expressiveness.
Specifically, each GP expert m ∈ M := {1, . . . ,M} relies
on a unique kernel chosen from a predefined kernel dictionary
K := {κm}Mm=1, where the kernels have different hyperpa-
rameters, and may be of different type. Each expert postulates

1Note that the output data {ynτ }tτ=1 corresponding to nodes {nτ}tτ=1
will be henceforth abbreviated as {yτ}tτ=1 for notational brevity.
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a unique GP prior on f as f |m ∼ GP(0, κm(a, a′)), and an
EGP meta-learner combines them as

f(a) ∼
M∑

m=1

wm
0 GP(0, κm(a, a′)),

M∑
m=1

wm
0 = 1 (5)

where each expert’s weight wm
0 := Pr(i = m) measures its

significance in the EGP model. As newly labeled data in AL
become available incrementally, the EGP-based predictive pdf
can be expressed using the sum-product rule as

p(yt+1|Lt,a)=
M∑

m=1

Pr(i=m|Lt)p(yt+1|i=m,Lt,a) (6)

which is a Gaussian mixture (GM) with weights {wm
t :=

Pr(i = m|Lt)}Mm=1 measuring the contribution of experts,
and enabling model adaptation online.

To further reduce complexity of the EGP model and allow
for online updates, which is particularly appealing for AL, we
will adopt a low-rank parametric function approximant based
on the so-termed random features (RFs), as outlined next.

A. RF-based EGP parametric model
Capitalizing on a standardized shift-invariant kernel

κ̄(a, a′) = κ̄(a−a′) with κ̄ = κ/σ2
θ , RF-based approximation

begins with expressing κ̄ as the the inverse Fourier transform
of a spectral density πκ̄(ζ) as [32]

κ̄(a− a′) =

∫
πκ̄(ζ)e

jζ⊤
(a−a′)dζ = Eπκ̄

[
ejζ

⊤
(a−a′)

]
(7)

where πκ̄(ζ) integrates to 1, so that it can be viewed as pdf.
Since κ̄ is real, the imaginary part of (7) vanishes and the last
expectation equals Eπκ̄

[
cos(ζ⊤(a− a′))

]
. Upon drawing a

sufficient number D of independent and identically distributed
(i.i.d.) samples {ζj}Dj=1 from πκ̄(ζ), an estimate of κ̄ is

ˇ̄κ(a, a′) :=
1

D

D∑
j=1

cos
(
ζ⊤
j (a− a′)

)
. (8)

Let us now define the 2D×1 RF vector [11]
ϕζ(a) (9)

:=
1√
D

[
sin(ζ⊤

1 a), cos(ζ
⊤
1 a), . . . , sin(ζ

⊤
Da), cos(ζ⊤

Da)
]⊤

which can be used to express ˇ̄κ as ˇ̄κ(a, a′) = ϕ⊤
ζ (a)ϕζ(a

′)

that yields the parametric linear function approximant

f̌(a) = ϕ⊤
ζ (a)θ, θ ∼ N (θ;02D, σ

2
θI2D) . (10)

This parametric model enables the propagation of the posterior
p(θ|yt;At) = N (θ; θ̂t,Σt) per slot t using a recursive
Bayesian iteration. Besides the online posterior update, the
RF-based parametric model encourages applications where
privacy needs to be preserved, because it does not require
direct access to each node’s one-hop connectivity vector a,
but relies on the RF vector in (9), which can be seen as an
encrypted version of a because of its co-sinusoidals.

Having established the well-documented merits of the RF-
based parametric model, next we will show how the RF-based
EGP model is updated as new data arrive on-the-fly.

Algorithm 1 GradEGP-MultiAFs

1: Initialization: L0, U0, V , K;
2: ω0 = 1

K [1, . . . , 1]⊤;
3: for t = 0, 1, . . . , T do
4: Obtain EGP Ξt based on Lt using (16)-(18);
5: for k = 1, . . . ,K do
6: Obtain instance ãknt+1

∈ Ut by (24);

7: Obtain ‘pseudo-label’ ỹkt+1 by (25) using Ξt;

8: Obtain Ξ̃k
t+1 utilizing pseudo pair {ãknt+1

, ỹkt+1} ;

9: Obtain error ϵv,kt+1 on E via (27);
10: end for
11: Update per AF weight using (29);
12: Obtain ant+1

∈ Ut of node nt+1 via (30);
13: Obtain label yt+1 upon querying the oracle;
14: Lt+1 = {an, yn, n ∈ St+1}, St+1 = St ∪ {nt+1};
15: Ut+1 := {an, n ∈ S̄t+1}, S̄t+1 = S̄t \ {nt+1};
16: end for

B. EGP model online updates

With the dictionary K consisting of distinct shift-invariant
kernels, each GP expert m ∈ M constructs its RF vector
ϕm
ζ (a) upon drawing i.i.d. vectors {ζm

j }Dj=1 from the power
spectral density πm

κ̄ (ζ) of the standardized kernel κ̄m with
κ̄m = κm/σ2

θm . Then, the generative parametric model
describing the sought function f and the (possibly noisy)
output y for expert m at slot t, is

p(θm) = N (θm;02D, σ
2
θmI2D)

p(f(a)|i = m,θm) = δ(f(a)− ϕm⊤
ζ (anτ )θ

m)

p(y|θm,a) = N (y;ϕm⊤
ζ (a)θm, σ2

n) . (11)

This generative model allows expert m to summarize all
labeled samples Lt in the posterior pdf p(θm|Lt) =
N (θm; θ̂m

t ,Σ
m
t ). Further accounting for per-expert weights,

the RF-based EGP model updates the parameter set per slot t

Ξt := {wm
t , θ̂

m
t ,Σ

m
t ,m ∈ M} . (12)

Next, we will show how Ξt can form the predictive pdf, which
will be used in the next section to design the AF, and how
Ξt can be updated with the newly acquired pair.
RF-based EGP predictive pdf. Each expert m capitalizes on
its posterior p(θm|Lt) to form the predictive pdf as

p(yt+1|i=m,Lt,a)=

∫
p(yt+1|θm,a)p(θm|Lt)dθ

m

= N (yt+1; ŷ
m
t+1|t(a), (σ

m
t+1|t(a))

2)

with

ŷmt+1|t(a) = ϕm⊤
ζ (a)θ̂m

t (13a)

(σm
t+1|t(a))

2 = ϕm⊤
ζ (a)Σm

t ϕm
ζ (a) + σ2

n . (13b)
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The EGP meta-learner combines the predictive pdfs of all M
experts with the properly adjusted weights wm

t to form its
ensemble version, which is a GM given by

p(yt+1|Lt,a)=

M∑
m=1

p(yt+1|i=m,Lt,a)p(i = m|Lt)

=
M∑

m=1

wm
t N (yt+1; ŷ

m
t+1|t(a), (σ

m
t+1|t(a))

2) . (14)

Considering the minimum mean-square error (MMSE) esti-
mator of yt+1 yields the ensemble predictor along with the
corresponding variance, which are available in closed form as

ŷt+1|t(a) =

M∑
m=1

wm
t ŷ

m
t+1|t(a) (15a)

σ2
t+1|t(a) =

M∑
m=1

wm
t [(σm

t+1|t(a))
2+(ŷt+1|t(a)−ŷmt+1|t(a))

2]

(15b)

where “t + 1|t” signifies that only the model parameters
and nodal observation of the previous slot t are involved in
predicting yt+1.

RF-based EGP model update. Based on the RF-based EGP
predictive pdf (14), one can obtain the next query node nt+1

with input vector ant+1
by maximizing the AFs as elaborated

in the next section. Upon evaluating ant+1 to obtain the label
yt+1, the posterior pdf of θm is propagated as

p(θm|Lt+1) =
p(θm|Lt)p(yt+1|θm,ant+1

)

p(yt+1|ant+1
, i = m,Lt)

= N (θm; θ̂m
t+1,Σ

m
t+1) (16)

with the mean θ̂m
t+1 and covariance matrix Σm

t+1 given by

θ̂m
t+1= θ̂m

t +(σm
t+1|t)

−2Σm
t ϕm

ζ (ant+1
)(yt+1−ŷmt+1|t)

Σm
t+1=Σm

t −(σm
t+1|t)

−2Σm
t ϕm

ζ(ant+1
)ϕm⊤

ζ (ant+1
)Σm

t .

Meanwhile, each expert m updates the corresponding weight
wm

t+1 := Pr(i = m|Lt+1) by applying Bayes’ rule as

wm
t+1 =

Pr(i = m|Lt)p(yt+1|ant+1 , i = m,Lt)

p(yt+1|ant+1
,Lt)

=
wm

t N
(
yt+1; ŷ

m
t+1|t, (σ

m
t+1|t)

2
)

∑M
m′=1 w

m′
t N

(
yt+1;ŷm

′

t+1|t, (σ
m′

t+1|t)
2
) . (18)

V. EGP-BASED ACQUISITION CRITERIA

Building on the ensemble predictive pdf in (14), this section
introduces a suite of intuitive AFs whose maximizers yield the
next node to be sampled, based on different criteria.

A. Query-by-Committee (QBC)

The first AF hinges on the notion of ‘disagreement’ adopted
in the so-termed ‘QBC’ acquisition criterion, which has been
applied to both classification and regression tasks; see e.g.,

[33], [10] and [3]. With the M GP experts viewed as members
of a committee, the EGP-based QBC rule is (cf. (13a))

αQBC(a;Lt) :=
M∑

m=1

wm
t (ŷmt+1|t(a)− ŷt+1|t(a))

2 (19)

where ŷt+1|t(a) in (15a) represents the consensus of the
committee. Different from the standard QBC rule that has
equal weights among committee members, the weights in both
(19) and (15a) are different across m. Albeit interesting, this
approach takes into account only the per-expert predictive
mean in (13a) and disregards the predictive variance in (13b)
that quantifies the associated uncertainty.

B. Weighted variance
Accounting for the uncertainty offered by each expert’s

predictive variance, the next AF combines the variances of all
M experts with the properly adjusted weights wm

t as follows

αwVar(a;Lt) :=
M∑

m=1

wm
t (σm

t+1|t(a))
2 . (20)

Although intuitively simple, this AF does not leverage the
valuable information provided by each expert’s predictive
mean in (13a).

C. Variance of GP mixture
Combining the merits of the last two AFs, one can directly

build on the GM in (14) whose variance yields the AF

αGPM−Var(a;Lt) = σ2
t+1|t(a) (21)

which is the sum of (19) and (20).

D. Weighted entropy
An alternative measure of uncertainty is provided by the

entropy whose maximization is tantamount to maximizing the
variance in the Gaussian pdf case. However, this does not
apply in the GM of (14). Similar to the ‘weighted variance’
AF, one can consider instead a weighted combination of all
experts’ entropy as

αwEnt(a;Lt) :=
1

2

M∑
m=1

wm
t ln(2π((σm

t+1|t(a))
2) . (22)

E. Entropy of GP mixtures
Further accounting for each expert’s predictive mean (cf.

(13a)) besides the predictive variance (cf. (13b)), and allowing
for interaction among GP experts, one can rely on the entropy
of the GP mixture (cf. (14)). Although this is not available
in closed form, one can fortunately exploit its analytic lower
bound, which is given by [7]

−
M∑

m=1

wm
t

∫
N (yt+1(a); ŷ

m
t+1|t(a),(σ

m
t+1|t(a))

2)

× log p(yt+1(a)|Lt)dyt+1(a)

(a)

≥ −
M∑

m=1

wm
t log

(∫
N (yt+1(a); ŷ

m
t+1|t(a),(σ

m
t+1|t(a))

2)

× log p(yt+1(a)|Lt)dyt+1(a)
)
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where (a) comes from Jensen’s inequality. Since the term
inside the logarithm is in analytic form, the last AF is

αGPM−Ent(a;Lt) := −
M∑

m=1

wm
t log

 M∑
m′=1

wm′

t ψm,m′

t


(23)

where ψm,m′
models the interaction of any two distinct GP

models as

ψm,m′

t :=

∫
N (yt+1(a); ŷ

m
t+1|t(a),(σ

m
t+1|t(a))

2)

×N (yt+1(a); ŷ
m′

t+1|t(a),(σ
m′

t+1|t(a))
2)dyt+1(a)

= N (ŷmt+1|t(a); ŷ
m′

t+1|t(a), (σ
m
t+1|t(a))

2 + (σm′

t+1|t(a))
2) .

F. Ensembling EGP-based AFs

So far, we have devised a suite of novel AFs that the advo-
cated graph-adaptive EGP model (abbreviated as ‘GradEGP’)
can employ to sample an unlabeled node for query. Based on
the relative Bayesian optimization context, it is shown that
there does not exist a single AF that thrives in all different
tasks [6]. Inspired by this observation that also applies in
the AL context, it is intuitive that a proper combination of
candidate AFs may exhibit robustness and improved perfor-
mance. Similar to the GradEGP model, we assign each AF
k ∈ {1 . . .K} a weight ωk

t ∈ [0, 1] with
∑K

k=1 ω
k
t = 1 so that

ωk
t can be thought of as probability measuring the significance

of each expert. To properly adjust these weights, we rely
on a validation set E := {(anv

τ
, yvτ )}Vτ=1 with {anv

τ
}Vτ=1

denoting the connectivity vectors of the observed nodes in
En := {nvτ}Vτ=1, to assess the performance of different AFs.

Relying on the labeled set Lt at slot t, the RF-based EGP
parameter set Ξt in (12) is estimated, and then each AF k
selects the next query node nkt+1 with connectivity vector
ãknt+1

by maximizing the associated criterion as

ãknt+1
= argmax

a∈Ut

αk(a;Lt) . (24)

After receiving ãknt+1
, AF k utilizes the EGP parameter set

Ξt to form a ‘pseudo-label’ corresponding to ãknt+1
as

ỹkt+1 =
M∑

m=1

wm
t ϕm⊤

ζ (ãknt+1
)θ̂m

t . (25)

Capitalizing on the pair {ãknt+1
, ỹkt+1}, expert k relies on (16)

– (18) to update the EGP parameter set

Ξ̃k
t+1 = {w̃m,k

t+1 , θ̃
m,k
t+1 , Σ̃

m,k
t+1 ,m ∈ M} . (26)

Using Ξ̃k
t+1, the performance of AF k is then evaluated based

on the prediction error on the validation set as

ϵv,kt+1 = V −1
V∑

τ=1

(yvτ − ŷv,kτ |t+1)
2 (27)

where the predicted label for node nvτ in the validation set is

ŷv,kτ |t+1 =
M∑

m=1

w̃m,k
t+1ϕ

m⊤
ζ (anv

τ
)θ̃m,k

t+1 . (28)

With {ϵv,kt+1}k at hand, the per-AF weight is updated as

ωk
t+1 =

ωk
t exp(−ηϵ

v,k
t+1)∑K

k′=1 ω
k′
t exp(−ηϵv,k′

t+1)
(29)

where η denotes the learning rate. The weight update formula
in (29) belongs to the exponentiated weight update in online
learning with expert advice; see e.g., [4].

The updated weights are subsequently used to eventually
query the next node nt+1 by optimizing the weighted ensem-
ble of AFs as

ant+1
= argmax

a∈Ut

K∑
k=1

ωk
t+1α

k(a;Lt) . (30)

This novel ‘GradEGP-MultiAFs’ approach that combines var-
ious acquisition criteria on-the-fly, is summarized in Alg. 1.

VI. NUMERICAL TESTS

In this section, the performance of the proposed EGP-based
AFs will be tested in both synthetic and real graph datasets.
Relying on the advocated GradEGP statistical model to learn
the sought function, the acquisition rules to be assessed are
the ones described in Sec. V A-F, which from now on will be
abbreviated as GradEGP with “QBC,” “wVar,” “GPM-Var,”
“wEnt,” “GPM-Ent,” and “MultiAFs,” respectively. All these
approaches will be compared against the GradEGP model
that randomly selects new nodes to sample, abbreviated as
“GradEGP-random,” and the single GP model baseline that
employs the maximum variance (entropy) criterion.

For fairness in comparison, the set of initially labeled nodes
in L0 is common to all competing approaches, while the
kernel hyperparameters for all GP experts in GradEGP and the
single GP baseline, are obtained by maximizing the marginal
likelihood. For all RF-based approaches, the number of RFs
is D = 50. The kernel dictionary K comprises radial basis
functions (RBFs) with lengthscales {10c}6c=−4. Regarding the
“GradEGP-MultiAFs” approach, each αk(a;Lt) in (30) is
divided by its maximum value to range between 0 and 1.

The performance of all approaches is evaluated on a held-
out test set Ō := (ane

τ
, yeτ )

T e

τ=1 of nodes {neτ}T
e

τ=1 (where
e stands for evaluation). As figure of merit, the normalized
mean-square error (NMSE) at each iteration t is reported for
all approaches, which is given by

NMSEt :=
1

T e

T e∑
τ=1

(ŷeτ |t − yeτ )
2/||ye

T ||22

where ye
T := [ye1 . . . y

e
T ]

⊤. All approaches are tested over 10
realizations, whose sample average NMSE performance along
with the corresponding standard deviation are reported.

Synthetic dataset. A synthetic graph is constructed with
N = 100 nodes utilizing a stochastic block model consisting
of C = 10 communities, as in e.g. [30]. The output per
node is the eigenvector corresponding to the lowest nonzero
eigenvalue of the graph Laplacian. The number of initially
labeled nodes for AL is |L0| = 10; the size of the unlabeled
set is |U0| = 60; and, the test set Ō consists of 20 nodes.
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Fig. 1: NMSE performance on (a) “SBM C10;” (b) “Temperature;” and (c) “Email Eu” and datasets.

Regarding the GradEGP-MultiAFs approach, the validation
set comprises 10 nodes to evaluate each AF per iteration.

The NMSE performance of all competing approaches is
depicted in Fig. 1a, where it is evident that all EGP-based
approaches outperform the single GP-Var baseline, showcas-
ing the merits of adopting an ensemble of GP learners with
adaptive weights being properly adjusted as new data arrive
on-the-fly. In addition, the superior performance of all (except
one) GradEGP - based AL methods over the “GradEGP-
random” approach demonstrates the benefits of the novel ac-
quisition criteria. Further adopting a weighted ensemble of the
candidate AFs in the “EGP-MultiAFs” approach significantly
improves the prediction performance, with the latter being the
best-performing approach in terms of NMSE.

Temperature dataset. This dataset comprises hourly temper-
ature measurements offered by the National Climatic Data
Center, at N = 109 measuring stations across the continental
United States in 2010 [1]. A symmetric graph is constructed
utilizing the geographic distances of these stations as in [17],
[14], [16]. In the experimental setup, we choose |L0| = 10,
|U0| = 60, |E| = 10 and |Ō| = 29. As shown in Fig. 1b,
all proposed approaches outperform the “GradEGP-random”
baseline, corroborating the merits of adopting intuitive ac-
quisition criteria to guide nodal sampling. Although the GP-
Var baseline outperforms three out of the five advocated
GradEGP-based single AF approaches, “GradEGP-MultiAFs”
exhibits the lowest NMSE by properly combining the merits
of all AFs using appropriate adaptive weights per iteration.

Email Eu dataset. In this dataset, a graph is constructed
using email data from N = 1, 005 individuals affiliated
with a large European research institute. An edge (n, n′)
is nonzero only if person n sent person n′ at least one
email [12]. The sought nodal values are the ground-truth
community memberships of the nodes, which are real with
analog-amplitude as in a regression task; see e.g., [25]. For the
experimental evaluation, we consider |L0| = 50, |U0| = 700,
|E| = 50, and |Ō| = 205. It can be clearly seen that all
proposed approaches except “GradEGP-wEntr” significantly
outperform the “GP-Var” and “GradEGP-random” baselines,
with “GradEGP-MultiAFs” consistently performing best (ex-
cept one iteration). Hence, utilizing an EGP model and
combining a suite of intuitively effective criteria in an adaptive
manner, it is possible to improve the prediction performance
in AL settings, where the size of the unlabeled set is large.

VII. CONCLUSIONS

This contribution dealt with active node sampling for graph-
based SSL. With a per-node one-hop connectivity vector as
input to an EGP model, an incremental learning approach was
developed to learn the graph function mapping adaptively.
Building on this so-termed “GradEGP” model, a suite of novel
AFs were devised to sequentially select unlabeled nodes based
on different rules. Further combining the advocated single
AFs on the fly with properly adaptive weights, yields a novel
GradEGP-based ensemble acquisition approach. Tests on both
synthetic and real graph datasets showcase the merits of the
proposed methods relative to conventional passive sampling.
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