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Abstract—Crowdsourcing is the learning paradigm that aims to
combine noisy labels provided by a crowd of human annotators.
To facilitate this label fusion, most contemporary crowdsourcing
methods assume conditional independence between different
annotators. Nevertheless, in many cases this assumption may not
hold. This work investigates the effects of groups of correlated
annotators in multiclass crowdsourced classification. To deal with
this setup, a novel approach is developed to identify groups of
dependent annotators via second-order moments of annotator
responses. This in turn, enables appropriate dependence aware
aggregation of annotator responses. Preliminary tests on synthetic
and real data showcase the potential of the proposed approach.

Index Terms—Crowdsourcing, Weak supervision, Ensemble
Learning, Classification

I. INTRODUCTION

Crowdsourcing has recently enjoyed success in numerous
learning and data mining tasks, by using crowds of human
annotators to accomplish a given task [1]. In particular,
crowdsourced classification combines classification labels pro-
vided by (possibly unreliable) annotators. Most works on
crowdsourcing focus on aggregating noisy annotator labels, to
obtain results hopefully close to the ground-truth, by assuming
conditional independence across annotators.

The simplest label aggregation method for classification
is the majority voting rule, which assigns to a datum the
label most annotators agree on. While making no strict model
assumptions, this method implicitly assumes that all annotators
are of roughly equal ability, yielding reduced performance
in various scenaria. Sophisticated methods make use of the
conditional independence assumption, advocating probabilistic
models of annotators, and estimate parameters that character-
ize their performance. A popular model in this category is
the so-called Dawid-Skene model, that uses the expectation-
maximization (EM) algorithm to estimate annotator parame-
ters and the unknown labels [2]. As the aforementioned EM
algorithm is susceptible to initialization, methods that estimate
parameters through the moments of annotator responses, have
been advocated to initialize it [3]–[7]. Recent methods have
also been proposed to take into account data dependencies [8]–
[10], or detect the presence of spammer annotators in a
dataset [11], [12].

Nevertheless, in many cases the conditional independence
assumption does not hold, thus challenging classical label
aggregation methods, as they have to operate under model
misspecification. Current approaches tackling this scenario can
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handle binary crowdsourced classification [13], or, they are
performed during the label aggregation stage [14]. A related
line of work, aims to identify adversarial annotators from their
responses [15]–[17]. The colluding adversaries scenario can
be cast as a problem of identifying dependent annotators. In
this work, we develop a novel approach to identify groups of
dependent annotators from the second-order moments of their
responses, prior to the aggregation stage, and in the multiclass
classification setting.
Notation. Unless otherwise noted, lowercase bold letters, x,
denote column vectors, uppercase bold letters, X, represent
matrices, and calligraphic uppercase letters, X , stand for sets.
The (i, j)th entry of matrix X is denoted by [X]ij ; vec(X)
denotes a vector consisting of the stacked columns of X;
and ◦ denotes the Hadamard (elementwise) product between
two vectors or matrices. The Frobenius and nuclear norms
of a matrix X are denoted by ∥X∥F and ∥X∥∗ respectively.
Pr denotes probability, or the probability mass function; ∼
denotes ”distributed as;” ⊤ represents transpose; card(A)
denotes the cardinality, i.e. the number of elements, of set A;
E[·] denotes expectation, and 1(A) is the indicator function
for the event A, that takes value 1 when A occurs, and 0
otherwise.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N independent and identi-
cally distributed (i.i.d.) data X := {xn}Nn=1 each belonging to
one of K possible classes with corresponding labels {yn}Nn=1,
e.g. yn = k if xn belongs to class k. Class priors are collected
in π := [π1, . . . , πK ]⊤ = [Pr(yn = 1), . . . ,Pr(yn = K)]⊤.
M annotators or workers observe X , or subsets of it, and
provide noisy estimates of labels, where gm(xn) ∈ {1, . . . ,K}
denotes the label assigned to the n-th datum by annotator m.
When an annotator does not provide a response for xn, we
encode this by setting gm(xn) = 0. Given only the annotator
responses {gm(xn),m = 1, . . . ,M}Nn=1, the crowdsourced
classification task involves fusing annotator responses to esti-
mate the ground-truth labels, namely {ŷn}Nn=1. Note that this
is an unsupervised problem, as we do not have access to the
ground-truth labels {yn}Nn=1 or the raw data in X .

A popular probabilistic model for crowdsourced classifica-
tion, is the so-called Dawid and Skene (DS) model [2]. The
DS model posits that given a true label yn, annotator responses
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are independent, that is

Pr (g1(xn) = k1, . . . , gM (xn) = kM |yn = k)

=
M∏

m=1

Pr(gm(xn) = km|yn = k),

and consequently an annotator m can be characterized by a
K × K confusion matrix Hm that has entries hm,k′,k :=
[Hm]k′,k = Pr(gm(xn) = k′|yn = k). If annotator confusion
matrices {Hm}Mm=1 and class priors π are known, the label of
xn can be fused via a maximum a posteriori (MAP) classifier,
as

ŷn = argmax
c∈{1,...,K}

log πc +
M∑

m=1

log(hm,gm(xn),c), (1)

where we used the conditional independence of the annotators.
Nevertheless, confusion matrices and priors are not known a
priori, and have to be estimated from the available annotator
responses, using for instance the methods outlined in [2], [4],
[5], [18].

While enabling high quality classification fusion in many
crowdsourcing tasks, the DS model does not account for
any dependencies that may arise among annotators. The next
section will introduce our proposed approach for dealing with
annotator dependencies.

III. IDENTIFYING GROUPS OF ANNOTATORS

As the plain vanilla DS model does not apply under annota-
tor dependencies, in this work we consider an extended version
of it, which has been successfully utilized in [13], [19], [20].
Suppose there exist J < M groups of annotators, and that
responses within each annotator group are dependent. In this
work, the number of groups J is assumed to be known. Let
Mj denote the set of annotator indices corresponding to group
j, and Mj = card(Mj) be the cardinality of said group. Under
this extended model, dependencies per group j are captured
via a latent variable zj(xn) ∈ {1, . . . ,K}, conditioned on
which the responses of annotators within the group become
independent, that is

Pr({gm(xn) = km}m∈Mj |zj(xn) = k) (2)

=
∏

m∈Mj

Pr (gm(xn) = km|zj(xn) = k) , j = 1, . . . , J.

The hidden variables {zj(xn)}Lj=1 are also assumed condition-
ally independent given the ground-truth label yn of the datum
xn, that is

Pr (z1(xn) = k1, . . . , zJ(xn) = kJ |yn = k)

=
J∏

j=1

Pr (zj(xn) = kj |yn = k) . (3)

Similar to the plain vanilla DS model, we can define priors
for hidden variables θj := [θj,1, . . . , θj,K ]⊤ = [Pr(zj(xn) =
1), . . . ,Pr(zj(xn) = K)]⊤ for j = 1, . . . , J , and confu-
sion matrices for each annotator; thus, if annotator m be-
longs to group j, the corresponding confusion matrix has

Algorithm 1 Two-stage label fusion

1: Input: Annotator responses {gm(xn)}N,M
n=1,m=1, annotator

groups {Mj}Jj=1.
2: Output: Estimates of data labels {ŷn}Nn=1

3: for j = 1, . . . , J do
4: Estimate θj , {Hm}m∈Mj using e.g. [2], [5], [6].
5: Estimate hidden labels {ẑj(xn)}Nn=1 via (4).
6: end for
7: Estimate π, {Ψj}Jj=1 using e.g. [2], [5], [6].
8: Estimate data labels {ŷn}Nn=1 via (5).

entries [Hm]k′,k = Pr(gm(xn) = k′|zj(xn) = k), while
the confusion matrix Ψj per hidden variable j, has entries
ψj,k′,k := [Ψj ]k′,k = Pr (zj(xn) = k′|yn = k) . In this setup,
label fusion can be accomplished in two stages [13], [19]: At
the first stage, annotator confusion matrices {Ĥm}m∈Mj

and
priors for latent variables {θ̂j,c}Kc=1 are estimated per group
j, via standard crowdsourcing algorithms [2], [5]. Then the
responses per group are aggregated and estimates of the hidden
variables {ẑj(xn)}N,J

n=1,j=1 are obtained, as

ẑj(xn) = argmax
c∈{1,...,K}

log θ̂j,c +
M∑

m=1

log(ĥm,gm(xn),c). (4)

At the second stage, latent variable confusion matrices
{Ψ̂j}Jj=1 and class priors π̂ are estimated using again standard
crowdsourcing algorithms on the latent variables. The final
estimates of the labels {ŷn}Nn=1, are obtained by aggregating
hidden variables,

ŷn = argmax
c∈{1,...,K}

log π̂c +
J∑

j=1

log(ψ̂j,ẑj(xn),c). (5)

The two step label fusion procedure is listed in Alg. 1. How-
ever, for this two-stage procedure to be successful, knowledge
of the groupings of annotators is critical.

The ensuing subsections outline how the second-order mo-
ments of annotator responses can be utilized to infer annotator
groups. For brevity’s sake we describe the case for J = 2
groups, although the proposed approach can be readily scaled
for J > 2. Further annotators are assumed to be aligned, that
is the first M1 belong to the first group and the rest to the
second.

A. Annotator co-occurrence

Consider the K ×K co-occurrence matrix Rm,m′ between
two annotators m,m′ ̸= m, that has entries [Rm,m′ ]k,k′ =
Pr (gm(xn) = k, gm′(xn) = k′). If annotators m,m′ belong
to the same group, e.g. m,m′ ∈ M1, then it can be shown
that their co-occurrence matrix is given by [19]

Rm,m′ = Hmdiag(Ψ1π)H
⊤
m′ (6)

= Hmdiag1/2(Ψ1π)diag1/2(Ψ1π)H
⊤
m′ = U1,mU⊤

1,m,
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where we have used the fact that the entries of Ψ1π are non-
negative, and defined Uj,m := Hmdiag1/2(Ψjπ). Accord-
ingly, the co-occurrence matrix between annotators m,m′′ that
belong to different groups, e.g. m ∈ M1,m

′′ ∈ M2, is

Rm,m′′ = HmΨ1diag(π)Ψ2H
⊤
m′′ (7)

= HmΨ1diag1/2(π)diag1/2(π)Ψ⊤
2 H

⊤
m′′

= V1,mV⊤
2,m′′ ,

with Vj,m := HmΨjdiag1/2(π). Eq.’s (6) and (7) indicate
that co-occurrence matrices between two annotators admit
different factorizations when annotators belong to the same
group, and when they belong to different ones. Nevertheless,
simple algebraic manipulations show that,

Vj,m = Uj,mdiag−1/2(Ψℓπ)Ψjdiag1/2(π)
= Uj,mCj , (8)

where Cj := diag−1/2(Ψjπ)Ψjdiag1/2(π). Thus, in both
cases, the decompositions of the co-occurrence matrix are
linearly related. Finally, the co-occurrence of an annotator with
itself is given by Rm,m = diag(HmΨjπ) [19], which cannot
be decomposed in a form similar to (6) or (7).

B. Inferring annotator groups

Let R̄ be an MK ×MK block matrix, whose (m,m′)-th
block is the K ×K matrix Rm,m′ , i.e. [7]

R̄ =

R1,1 R1,2 . . . R1,M

...
. . .

...
RM,1 . . . RM,M

 . (9)

Upon defining the M1K × K matrices Ū1 :=
[U⊤

1,1, . . . ,U
⊤
1,M1

]⊤, V̄1 := [V⊤
1,1, . . . ,V

⊤
1,M1

]⊤, and the
M2K × K matrices Ū2, V̄2 accordingly, and using (8), R̄
can be written as

R̄ =

[
Ū1 0
0 Ū2

] [
Ū⊤

1 C⊤
1 V̄

⊤
2

C⊤
2 V̄

⊤
1 Ū⊤

2

]
+ D̄ = L+ D̄ (10)

where L :=

[
Ū1 0
0 Ū2

] [
Ū⊤

1 C⊤
1 V̄

⊤
2

C⊤
2 V̄

⊤
1 Ū⊤

2

]
and D̄ is a block

diagonal matrix, with the m-th diagonal block being Rm,m−
Uj,mUj,m, for m ∈ Mj . As J < K the block matrix R̂,
exhibits a low-rank plus block-diagonal structure. Also (10)
indicates that the low rank matrix L exhibits structure that
is dependent on the groupings of annotators. The form of R̄
suggests a two-step procedure for estimating annotator groups.
First, we need to remove the influence of D̄ from R̄. This can
be done via robust PCA [21], as D̄ does not adhere to the low
rank structure of L. Nevertheless, we have access only to the
sample version of (10), ˆ̄R, which can be readily formed by
estimating sample co-occurrence matrices as

[R̂m,m′ ]k′,k =

∑N
n=1 1(gm(xn) = k, gm′(xn) = k′)

Nm,m′
, (11)

with Nm,m′ being the number of data that annotators m,m′

have both provided responses for. If two annotators do not

Algorithm 2 Identifying groups of dependent annotators

1: Input: Annotator responses {gm(xn)}N,M
n=1,m=1, K, J .

2: Output: Estimated annotator groups {M̂j}Jj=1

3: Estimate co-occurrence matrices R̂m,m′ ∀m,m′ from
annotator responses, via (11)

4: Collect R̂m,m′ ∀m,m′ in block matrix ˆ̄R.

5: Extract L̂ from ˆ̄R via (12).
6: Cluster columns of L̂ via subspace clustering to obtain

annotator groups.

have any overlap, that is Nm,m′ = 0, we set R̂m,m′ = 0.
Thus, at the first step we solve

{L̂, ˆ̄D} =argmin
L,S

∥L∥∗ + λ∥vec(S)∥1 (12)

subject to Ω ◦ ˆ̄R = Ω ◦ (L+ S) ,

where λ > 0 is a tunable regularization constant and Ω ∈
{0, 1}MK×MK is a binary mask indicating which entries of
ˆ̄R are observed. The nuclear norm in (12) promotes low rank
solutions for L, whereas the ℓ1 norm on the entries of S,
promotes sparse solutions. S is used here to capture the block
diagonal matrix D̄, and any other spurious correlations in ˆ̄R
that may arise due to the heterogeneous noise. Note that, (12)
is a convex program, therefore it can be solved using off-the-
shelf tools [22].

Upon estimating L, its structure is exploited via subspace
clustering [23]–[25]. Subspace clustering is used to cluster
the columns of L into groups that correspond to each group
of annotators. The proposed algorithm is tabulated in Alg. 2.
Having estimated the groups of annotators, dependency-aware
label aggregation approaches [19], such as the two-step label
fusion in Alg. 1, can be employed.

IV. NUMERICAL TESTS

The performance of the proposed algorithm will be evalu-
ated in this section, in synthetic and real datasets. The label
aggregation algorithms considered are majority vote (denoted
as MV), and the EM algorithm of Dawid-Skene [2] (denoted
as DS) initialized using MV. Group-aware DS and Group-
aware MV, denote the results from the hierarchical label
fusion of Alg. 1 when DS and MV are used respectively, and
annotator groups are estimated via Alg. 2. In all tests, label
classification performance is evaluated using accuracy, given
by the percentage 1/N

∑
n 1({ŷn = yn}), and the Orthogonal

Matching Pursuit subspace clustering algorithm [25] is used in
Step 6 of Alg. 2. Experiments were performed using MATLAB
[26], and results represent averages over 10 independent Monte
Carlo runs.

For the synthetic data tests, N ground-truth labels {yn}Nn=1,
were generated i.i.d. according to π, i.e. yn ∼ π, for
n = 1, . . . , N . Annotators were then grouped into J groups
and Ψj and {Hm}Mm=1 were generated at random. Annotator
responses are generated as follows: if yn = k, then the hidden
variable zj(xn) is generated according to the k-th column

1278

Authorized licensed use limited to: University of Minnesota. Downloaded on June 23,2023 at 12:50:03 UTC from IEEE Xplore.  Restrictions apply. 



Dataset MV DS Group-aware MV Group-aware DS
Bluebird 75.92% 87.96% 72.22%(J = 7) 91.6% (J = 7)
Shuttle 98.82% 97.54% 98.93%(J = 3) 99.46% (J = 3)
CoverType 75% 48.46% 74.49% (J = 4) 74.09% (J = 4)

TABLE I: Classification accuracy for real datasets.

of Ψj . Finally, if zj(xn) = k′ and m ∈ Mj gm(xn) is
generated according to the k′-th column of Hm. Results for
a synthetic dataset with K = 3 classes, M = 40 synthetically
generated annotators, belonging to J = 4 groups, with 10
annotators per group, are shown in Fig. 1, as the number
of data N increases. Specifically Fig. 1a shows the grouping
accuracy, i.e. the percentage of correctly grouped annotators,
of Alg. 2. Clearly, as N grows, the sample estimates of
co-occurrence matrices become more accurate yielding more
accurate groupings. For the same dataset, Fig. 1b depicts the
percentage of correctly classified data, when taking the group
structure of the annotators into account versus ignoring it, as
in DS [2] and MV. Here we see that even though the number
of data increases, the performance of DS and MV does not
improve, with MV exhibiting more robust behavior than DS
since it does not make any explicit conditional independence
assumptions. On the other hand, as the grouping accuracy in-
creases, so does the classification accuracy of Group-aware DS
and Group-aware MV, corroborating the claim that annotator
dependencies should be taken into account. Another interesting
observation is that when the grouping accuracy is low, the two-
stage label fusion of Alg. 1 can yield worse results than DS
or MV.

The performance of Alg. 2 is further evaluated on 3 real
datasets: the bluebird dataset [27], with N = 108,M =
39,K = 2, the Shuttle dataset [28], with N = 58, 000,M =
15,K = 7, and the CoverType dataset [28] with N =
581, 012,M = 15,K = 7. Bluebird is a crowdsourcing
dataset, where annotators are tasked with classifying images
of birds into two classes. Shuttle and CoverType are machine
learning datasets from the UCI database. For these datasets, a
collection of M = 15 classification algorithms from MATLAB
act as annotators. These algorithms are trained on randomly
selected subsets of the datasets, and then provided labels for
the entire dataset. Table I shows the classification accuracy for
the 3 real datasets. For Group-aware DS and Group-aware MV
the parentheses indicate the number of groups J that yielded
the specific result. The real data results show similar trends to
the synthetic data ones, namely improved performance when
consider annotator groups for the crowdsourced classification
task.

V. CONCLUSIONS

This contribution showcased an algorithm for identifying
groups of dependent annotators in crowdsourcing, using the
moments of annotator responses. Simulated tests in synthetic
and real datasets showcased the effectiveness of the proposed
method, and the importance of incorporating annotator depen-
dencies in the crowdsourcing task.
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Fig. 1: Simulated tests on a synthetic dataset with K = 3
classes, M = 40 annotators and J = 4 groups.

Future work involves tailoring the clustering methods for the
task at hand, developing methods for identifying the number
of groups J , utilizing more general dependency models, as
well as performance analysis of the proposed method.
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