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concrete cracks are an emerging field. These techniques rely on the 
microbes or enzymes to precipitate calcium carbonate (CaCO3). 
Microbial-induced carbonate precipitation (MICP) relies on the bio
mineralization capability of bacteria to produce the self-healing agent 
under suitable environmental conditions [53]. Unlike MICP, which re
lies on bacteria to generate urease enzyme, the enzyme-induced car
bonate precipitation (EICP) depends on plant derived urease to catalyze 
the necessary reactions that precipitate CaCO3 [52]. Despite the wide 
application of the MICP technique on sand consolidation, a few limita
tions of this method has been reported. For instance, Ahenkorah et al. 
[54] reported that for the same content of CaCO3, the tensile strength of 
EICP-treated sand is markedly higher compared to the MICP-treated 
sand. The complexities associated with the MICP process such as the 
optimum conditions (temperature, oxygen, pH level) needed for specific 
bacteria growth may be daunting and not readily available [55,56]. In 
addition, the relative smaller size of the urease enzymes (~12 nm), as 
compared to the size of the microbes (typically ranging between 300 nm 
and 500 nm), allows EICP to be utilized in finer pore spaces [57]. The 
application of EICP has been explored in sand consolidation [54,58-62], 
a few on surface crack healing in mortars [52], and as a plugging ma
terial in reservoirs [63]. 

Proteins are the fundamental building blocks of impressive display of 
biomaterials involved in critical functions of life [64]. In the last 30 
years, several proteins that regulate the biomineralization processes, 
including promotion of crystal formation [65-67], matrix-assisted 
orientation of crystal [68], growth inhibition by face-selective surface 
adsorption [69,70], and control of the crystal phase [69] have been 
isolated and analyzed. It has been shown in a recent study [71] that use 
of proteins extracted from nacre improves the MICP in sand 
biocementation. 

Inspired by the intricate role of biomolecules in affecting the 
microstructure and properties of natural composites, this research seeks 
to investigate the influence of proteins on the EICP processes in a cement 
environment and to reveal the potential effect of proteins on the self- 
healing of cementitious materials utilizing EICP. Interestingly, some of 
the applications of EICP in sand consolidation and the surface crack 
healing of concrete have had proteins as part of the formulation [63,72- 
74]. For instance, Almajed et al. [72] investigated the effect of non-fat 
milk dairy powder (NFMP) on the soil strengthening and observed an 
improved soil strengthening, but with a low CaCO3 content. They 

attributed this outcome to the precipitation of calcite at contact points 
between the particles due to the non-fat milk diary powder. Larsen et al. 
[63] applied EICP which has been modified with some proteins on 
fracture plugging in chalk reservoir. According to their findings, there 
was a ten-fold increase in CaCO3 precipitation. They attributed this to 
the protection of the urease by other proteins stabilizing the urease 
against the environmental changes. Zulfikar et al. [73] utilized soybean 
protein to augment crack healing in concrete using EICP and observed a 
reduction in concrete permeability compared to the control samples. 
Ihsani and Putra [74] used milk as a catalyst for EICP healing in cracked 
concrete and observed an improved concrete permeability and concrete 
strength. They attributed this outcome to the possible influence of 
bacteria present in the milk. Pretreatment using concentrated protein 
solutions such as bovine serum albumin and milk have also been used to 
improve urease enzyme effectiveness with respect to precipitation effi
ciency [75,76]. These and many other studies have demonstrated the 
effectiveness and influence proteins have on soil strengthening and 
crack healing when EICP or any other healing material is involved. In 
spite of the afore-mentioned studies, the mechanisms underlying the 
effect of proteins on the EICP processes in a cement environment is not 
understood and lacking in the literature. Thus, in order to address this 
shortcoming, this paper aims to investigate the influence of five proteins 
with different characteristics on the EICP processes in a cement envi
ronment. The cement environment consisted of fine ground hardened 
cement paste. The ability of EICP to bind loosely packed ground hard
ened cement paste was studied as a model to provide insights into the 
crack surface binding processes of EICP. Use of ground hardened cement 
paste was motivated by increased surface area and as a result, higher 
interaction between the proteins, EICP, and ground hardened cement 
paste. This avoided some of the difficulty associated with extracting 
healing material in the interface between cement paste surfaces for 
chemical and morphological characterization. Techniques such as dy
namic light scattering (DLS) and electrophoretic light scattering (ELS) 
were employed to study the size and charge of the proteins, respectively. 
Ultraviolet–visible (UV–Vis) spectrophotometry was utilized to study 
the adsorption isotherm of the proteins on the ground hardened cement 
paste and (CaCO3). X-ray micro-computed tomography (micro-CT) and 
scanning electron microscopy (SEM) were used to evaluate the internal 
microstructure of the samples. Fourier transform infrared spectroscopy 
(FTIR) and thermogravimetric analysis (TGA) were adopted to study the 

Fig. 1. Particle size distribution of the ground hardened cement.  
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carbonate (Na2CO3) in an aqueous solution. The control crystallization 
solution was prepared by mixing equal volumes (200 mL) of 1.5 M 
equimolar concentration of CaCl2 and Na2CO3, respectively, at pH level 
of 12.5. The precipitate was filtrated using a micro membrane filter with 
a 0.45 µm pore diameter under a negative pressure. The precipitate was 
washed with deionized water (DI) and acetone, and oven-dried at 50 ◦C 
under vacuum for 3 days. It should be pointed out that the CaCO3 syn
thesized in this way may have different characteristics from CaCO3 
obtained from EICP, however, since CaCO3 obtained from EICP may 
contain other organic phases that could interfere with the protein 
adsorption study, CaCO3 was synthesized and used in the adsorption 
experiment. 

2.1.4. EICP solution formulation 
EICP solution in this study was prepared by dissolving anhydrous 

CaCl2, urea, urease, and proteins into DI water. The molar ratio of CaCl2 
to urea was maintained at 0.75:1, thus, 1.5 M of CaCl2 and 2 M of urea. 
These concentrations were chosen based on prior trials to result in 
effective CaCO3 precipitation in the test tube experiments carried out in 
this study. A high urease enzyme with an activity of 72,520 U/g was 
used in the EICP formulation. The urease enzyme solution was designed 
to achieve concentrations of 6 kU/L (1 U corresponds to the amount of 
enzyme that hydrolyses 1 μmol of urea per minute at pH 7.0 and 25 ◦C 
[85]) and 12 kU/L (Sigma Aldrich Type III Jack Bean Urease). These 
concentrations of urease were chosen to understand the effect of high 
and low urease concentrations on the mechanical and microstructural 

Fig. 6. Adsorption isotherm of proteins on ground hardened cement paste.  

Fig. 7. Adsorption isotherm of proteins on CaCO3 in the pore solution.  
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properties of the ground hardened cement paste. 
The proteins used in the experiment were added at a concentration of 

2% by mass of DI water. The stock solutions were prepared by first, 
mixing the appropriate mass of each protein with CaCl2 and urea for 3 
min in 25 mL DI water and then, mixing them with the already prepared 
25 mL urease solution. Since the EICP process is fast, the stock solution 
was quickly poured into the mold containing the ground hardened 
cement paste. 

2.1.5. Ground hardened cement paste treatment with EICP 
Four replicates of the control and protein modified EICP-ground 

hardened cement paste were prepared using each of the stock solu
tions. Right after mixing the stock solutions, they were poured into the 
cylindrical molds and thoroughly mixed with the ground hardened 
cement paste. Fig. 2 illustrates the treatment cycle of the ground hard
ened cement paste. The ground hardened cement paste-EICP mixture 
was gently tamped so that the treated ground hardened cement paste 
column in the cylindrical mold reached a final height of 25 mm above 
the base. Following a slight compaction, the water level remained about 
15 mm above the surface of the ground hardened cement paste column. 
The top of each column was covered with the parafilm foil to minimize 
solution loss by evaporation. In the case of the stock solution prepared 
with the 6 kU/L urease concentration, three treatment cycles were 
carried out. Treatment solutions were poured into the ground hardened 
cement paste column and drained after 12 hours. This was done on three 
occasions. On the third day after the treatment process, the solution was 
drained, and the column samples were oven-dried at 38 ◦C for 7 days. 
For the samples with the 12 kU/L urease concentration, only one cycle 
was applied. The column samples were kept at room temperature (23 
◦C) for three days; then solutions were drained out of the columns and 
the columns were oven-dried at 38 ◦C for 7 days. After 7 days, the 
samples were demolded and then prepared for further experimental 
investigation. Samples obtained from the interior of the columns were 
used to study the chemical characteristics and microstructure of the 
samples. A whitish powder was observed to form on the top surface of 
the columns; these precipitates were expected to result from the EICP 
solution remaining above the columns and thus contained less particles 
of ground hardened cement paste. Samples obtained from these pre
cipitates on the top surface of the columns were also used in the FTIR 
and SEM tests. 

2.2. Methods 

2.2.1. pH measurement 
The pH of the ground hardened cement paste treated with EICP 

solution with different proteins at different times was measured using a 
pH meter. The pH of the CaCl2 and urea solution of concentrations 1.5 M 
and 2 M, respectively, was also measured. Prior to the pH measurement, 
the pH probe was calibrated with pH buffers of pH 4.0 and 7.0, 
respectively. After mixing the EICP solution with the ground hardened 
cement paste, the mixture was mixed and allowed to stand for one 
minute and then, the pH probe was dipped into the supernatant. After 24 
and 48 hours, the pH probe was again dipped into the supernatant to 
measure the respective pH values. At these times, the reaction had 
completed. 

2.2.2. Zeta potential and hydrodynamic size measurement of proteins 
The net surface charge and the hydrodynamic size of the proteins 

were measured using a Zetasizer Nano ZS instrument (Malvern In
struments Ltd., Malvern, U.K.) at 25 ℃. In this experiment, the protein 
solutions with a 0.15% concentration by mass of DI water (native state) 
was prepared and their net charge and size determined. To simulate the 
pH of the cement environment and also to determine the effect of high 
pH on the proteins, the charge and size of the proteins were also 
determined at pH of 12.5. The solution was placed in a disposable folded 
capillary cell (DTS1070) that was loaded into the instrument. Each 
sample was tested 3 times with an equilibration time of 120 s inside the 
instrument before data was collected between 100 and 110 runs. The 
concentration of the proteins for the zeta potential analysis was the same 
as for the hydrodynamic size analysis. The measurement parameters for 
the zeta potential and hydrodynamic size analysis, namely, refractive 
index (RI) and absorption for the proteins was set at 1.45 and 0.001, 
respectively. 

2.2.3. Surface adsorption and Ca2+ complexation measurement 
The concentration of proteins adsorbed on the ground hardened 

cement paste, CaCO3 and those that formed insoluble complexes with 
calcium ion were measured using the Agilent 8453 UV–Vis spectro
photometer at 25 ℃. The wavelength of 562 nm was used for the 
quantitative analysis since it is ideal for protein quantification analysis 
using the Bradford protein assay (BCA) [86,87]. The protein adsorption 
was measured using BCA [88,89]. The concentration of protein present 
is determined by measuring the absorption spectra of an unknown 
protein sample and comparing it with that of a known protein concen
tration [86]. The stability of the reagent under alkaline conditions 
makes the BCA method most suitable for the adsorption measurements 
[87]. For the protein adsorption tests on the ground hardened cement 
paste, 0.4 mL of DI water was mixed with 0.5 g of ground hardened 
cement paste, centrifuged, and left to stand for 20 min to allow the 
hydration of the unhydrated portion of the ground hardened cement 
paste. After 20 min, 0.1 mL of each of the protein solutions was mixed 
with the ground hardened cement paste mixture and centrifuged for one 
minute. The mixture was ultra-sonicated for 25 min. After ultra- 
sonication, the paste was centrifuged for 10 min. 0.1 mL of the super
natant was mixed with 2 mL of BCA reagent and incubated for 30 min at 
37 ℃. After incubation, the mixture was cooled for 10 min at room 
temperature. A purple color indicated the presence of protein in the 
solution [87]. The concentration of protein adsorbed on the ground 
hardened cement paste was calculated from the difference between the 
concentration of protein in the equivalent volume of DI water only and 
the concentration of the supernatant. The adsorption experiment on the 
chemically synthesized CaCO3 was conducted the same way as on the 
ground hardened cement paste except that instead of 0.4 mL of DI water, 
0.4 mL of an extracted cement pore solution of the ground hardened 
cement paste was mixed with 0.5 g of CaCO3. The extracted pore solu
tion was filtrated from the mixture of ground hardened cement paste and 
DI water at a solid/water of (10g/30g). The final pH obtained was 12.66. 
The mixture was centrifuged to obtain the supernatant pore solution. 
Readings were taken in duplicates. It has previously been established 
that carboxylate groups may chelate Ca2+ in solution [90,91]. When the 
proteins are added to the ground hardened cement paste mixed with 

Fig. 8. Amount of proteins precipitated in the insoluble protein-Ca2+ com
plexes in the pore solution. 
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corresponding to vaterite in the FTIR analysis (Fig. 10), vaterite could 
not be identified in the SEM micrographs. 

3.7. Micro-CT analysis 

Figs. 15 and 16 illustrate the total porosity and pore size distribution 
of the 12 kU/L of urease concentration samples determined by the 
micro-CT analysis. Treated samples were modified with 2% protein 
concentration. The total porosity of the control, lysozyme, whey protein, 
albumin, NFMP and SBI modified samples was 15.37%, 12.7%, 13.3%, 
10.67% 11.3% and 13.6%, respectively. It can be observed that the total 
porosity of the samples modified with proteins was lower than that of 
the control sample, with the albumin and NFMP modified samples 
exhibiting the lowest porosity. The average pore diameter of the control 
sample as shown in Fig. 16 was 0.094 mm, whereas the average pore 
diameter of the protein modified samples was 0.081 mm, 0.070 mm, 
0.078 mm, 0.072 mm, and 0.068 mm for lysozyme, whey protein, al
bumin, NFMP and SBI, respectively. The less densified microstructure of 
the control sample as reported in the SEM, is consistent with the higher 
porosity and pore size of the control sample. 

The decrease in the total porosity of the samples modified with 
proteins could be in part due to an increase in CaCO3 in the samples 
modified with proteins, compared to the control sample, as evidenced 
from the TGA results. The more pronounced reduction in the pore size 
distribution in the samples modified with proteins can be attributed to 
the more uniform precipitation of CaCO3 in the microstructure. The 
adsorption of proteins on the surface of ground hardened cement par
ticles provides nucleation sites for CaCO3, which leads to a more uniform 
CaCO3 precipitation and smaller interspace between the precipitates. 
The adhesive and cohesive behaviors of the proteins, which can serve as 
a glue between solid phases in the microstructure can also contribute to 
the observed smaller pore distribution. The adsorption of the proteins 
onto CaCO3 could affect the precipitation kinetics resulting in a more 
stabilized precipitation of CaCO3 from the solution, and as a result more 
uniform distribution of the precipitates in the microstructure. 

3.8. Tensile strength 

The tensile strength of the control sample and the samples modified 
with 2% proteins is shown in Fig. 17. This Figure shows the result cor
responding to the 6 kU/L and 12 kU/L urease concentration samples, 
respectively. Ground hardened cement paste sample prepared without 
EICP showed no strength and as such, is not plotted. This indicated that 
the reaction products resulting from continued hydration of ground 
hardened cement paste was not able to provide adhesion between the 
particles. The observed increased tensile strength of the samples treated 
with EICP can be attributed to the EICP, which precipitated and bonded 
the loosely ground hardened cement paste particles. 

It can be observed from Fig. 17 that generally, the samples modified 
with proteins showed a higher tensile strength than the control samples. 
The increase in tensile strength was more pronounced in the samples 
modified with NFMP, followed by albumin, whey protein and lysozyme, 
respectively. This increase was more evident in the case of 12 kU/L than 
6kU/L urease concentrations, as seen from Fig. 17. The higher strength 
of the samples with NFMP is in agreement with the results discussed in 
recent studies where EICP modified with NFMP was applied to silica 
sand [72,133]. 

The reduced porosity and average pore size of the samples modified 
with proteins compared to the control sample, as evidenced in Figs. 15 
and 16 could be a contributing factor to the increased strength of these 
samples. It is interesting to note that the tensile strength of the albumin 
and NFMP modified samples follow the same trend as their respective 
reduced total porosities. 

The adhesive strength of the proteins can play an important role in 
the binding of the constituents in the microstructure, and as such, the 
mechanical tensile strength of the samples. The importance of the 

adhesive strength brought about by the proteins can be realized from the 
higher tensile strength of the samples modified with albumin and NFMP, 
compared to the samples modified with other proteins even though the 
pore size distribution appeared to be similar for all sample with proteins. 
The reduced tensile strength of the samples modified with SBI can be 
attributed to a possible hydrolysis of SBI due to the combined denatur
ation effect of urea and high pH. Both urea and high pH are known 
denaturation agents [134]. The combined effect of these denaturation 
agents may reduce the adhesive strength of SBI. The adhesive properties 
of proteins in applications including wood have been studied in the past 
[135-137]. The adsorption of proteins or amino acids on CaCO3 can lead 
to the formation of organic–inorganic bio-composites. Such composites 
have been reported by Cantaert et al. [138] and Mayer [139] to possess 
improved mechanical properties arising from their microstructural 
morphology directed by the biomolecules. It is plausible that in our case, 
some of the proteins resulted in protein-CaCO3 composites that were 
able to provide enhanced interfacial strength between the ground 
hardened cement paste particles, and thus, improved the overall tensile 
strength of the samples. Several researchers including Ihsani et al. [74] 
and Almajed et al. [72] demonstrated an improvement in cracked con
crete strength and soil strength, respectively, when NFMP was included 
in the EICP treatment solution. It should be noted that one clear 
observation which stood out for the sample modified with NFMP was the 
presence of more ettringite in the microstructure, as evidenced from 
SEM imaging and FTIR results discussed earlier. These rod-like features 
can act as fiber mineral fillers that can bridge between the structures, 
seal pores and enhance the strength of the samples. This could further 
enhance the tensile strength of the samples modified with NFMP. 

3.8.1. Water permeability 
Fig. 18 shows the volume of water passing through the samples with 

12 kU/L urease concentration at 10, 30, 120, 180 and 240th minutes. 
Modified samples were prepared with 2% protein concentration. Lyso
zyme and SBI modified samples could not be used in the permeability 
test because the samples disintegrated and lacked cohesion at the start of 
the experiment due to the presence of water. This result appears to be in 
agreement with the lower tensile strength exhibited by the lysozyme and 
SBI modified samples as shown in Fig. 17. It is generally observed that 
the samples modified with whey protein and albumin showed lower 
reduction in water permeability compared to the control sample. The 
sample modified with NFMP showed lower water permeability at early 
times, but the difference diminished at late times. This could be attrib
uted to the negative impact of moisture on the NFMP modified sample. 
Reduction in protein adhesion due to increased moisture content has 
been observed in prior study [135]. A systematic investigation on the 
adhesion properties of the proteins used in this study is under way and 
will be reported in the future publications. 

A study by Nemati et al. [75] using EICP modified with skim powder, 
which is expected to be similar to NFMP, showed a reduction in the 
permeability of an unconsolidated porous media. However, in our case, 
the sample modified with NFMP was less effective in improving 
permeability, compared to the samples modified with other proteins. 

The reduced water permeability in the samples modified with whey 
protein and albumin could be related to the microstructure; the micro- 
CT analysis, as discussed previously, indicated a smaller pore size dis
tribution and total porosity in the sample modified with whey protein 
and albumin compared to the control sample. This difference in the 
microstructure can be a reason for the lower water permeability of the 
sample modified with whey protein and albumin compared to that of the 
control sample. 

In addition, the hydrophobic property of proteins or polymers is 
capable of inducing water repelling effect on surfaces [140-143]. Xiao 
et al. [92] established a direct correlation between surface tension and 
protein hydrophobicity. It was reported that, as the surface tension of 
the protein solution decreased, the hydrophobicity of the protein 
increased due to the gradual exposure of the hydrophobic regions. From 
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the test results, the surface tension of urea only, whey protein, albumin 
and NFMP was 71.7 mN/m, 41.3 mN/m, 46.3 mN/m, and 49.7 mN/m, 
respectively. Among the proteins, NFMP showed the highest surface 
tension making it least hydrophobic followed by albumin and then whey 
protein. It is interesting to note that the effect of proteins on reducing the 
sample permeability followed the proteins’ trend of reduced surface 
tension or increased hydrophobicity. 

4. Conclusions 

In this study the effect of proteins on EICP in binding ground hard
ened cement paste particles was studied. The major findings of the study 
are stated below.  

• The zeta potential analysis showed an increase in negative charge 
when pH was increased to 12.5. The effect of increased pH on protein 
size was different for the proteins.  

• Adsorption experiment revealed that high negative charge densities 
favored adsorption of proteins onto ground hardened cement paste. 
Proteins showed significantly smaller adsorption to CaCO3, 
compared to the ground hardened cement paste.  

• FTIR, TGA, and SEM analyses showed that ettringite, CaCO3, and CH 
were the reaction products found in the sample. Calcite was identi
fied as the main polymorph of CaCO3 in the samples, and this was 
due to the high pH of the environment favoring the formation of 
calcite. It was observed that the samples modified with proteins 
exhibited a higher CaCO3 content than the control sample. The 
sample modified with NFMP revealed a higher ettringite content 
compared to the sample modified with other proteins. 

• The total porosity and average pore size were reduced for the sam
ples modified with proteins compared to the control sample. This 
could be attributed to higher CaCO3 content in the samples modified 
with proteins.  

• Overall, the tensile strength of the samples modified with proteins 
was higher than that of the control sample. Tensile strength 
improvement was more pronounced in the samples modified NFMP, 
whey protein and albumin. Lower porosity and pore size distribu
tion, and more importantly, improvements in the interfacial adhe
sion of the constituents provided by proteins could be the reason for 
enhanced tensile strength of the samples modified with proteins 
compared to the control sample. 

• It was found that the sample modified with whey protein and albu
min had a lower water permeability compared to the control sample. 
This could be explained in light of lower total porosity and smaller 
pore size distribution of the samples modified with these two pro
teins compared to the control sample. In addition, internal pore 
surface hydrophobicity induced by the proteins contributed to the 
lower water permeability of the samples modified with whey protein 
and albumin. Surface tension measurements of the protein solutions, 
as an indicator of their pore surface hydrophobization ability, 
seemed to show a good agreement with the effect of the proteins on 
reducing water permeability. 
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[103] P. Novák, V. Havlíček, Protein Extraction and Precipitation, Proteomic Profiling 
Anal, Chem. Crossroads Second Ed. (2016) 52–62. 

[104] A.C. Dumetz, A.M. Chockla, E.W. Kaler, A.M. Lenhoff, Effects of pH on protein- 
protein interactions and implications for protein phase behavior, Biochim. 
Biophys. Acta - Proteins, Proteomics. 1784 (2008) 600–610. 

[105] B.Y. Qin, M.C. Bewley, L.K. Creamer, H.M. Baker, E.N. Baker, G.B. Jameson, 
Structural basis of the tanford transition of bovine β-lactoglobulin, Biochemistry. 
37 (1998) 14014–14023. 

[106] J. Plank, H. Bian, Method to assess the quality of casein used as superplasticizer in 
self-levelling compounds, Cem. Concr. Res. 40 (2010) 710–715. 

[107] D.H.G. Pelegrine, C.A. Gasparetto, Whey proteins solubility as function of 
temperature and pH, LWT - Food Sci. Technol. 38 (2005) 77–80. 

[108] J. Li, C. Wang, X. Li, Y. Su, Y. Yang, X. Yu, Effects of pH and NaCl on the 
physicochemical and interfacial properties of egg white/yolk, Food Biosci. 23 
(2018) 115–120. 

[109] M. Boulet, M. Britten, F. Lamarche, Voluminosity of some food proteins in 
aqueous dispersions at various pH and ionic strengths, Food Hydrocoll. 12 (1998) 
433–441. 

[110] J. Plank, C. Winter, Competitive adsorption between superplasticizer and retarder 
molecules on mineral binder surface, Cem. Concr. Res. 38 (2008) 599–605. 

[111] P.E. Stutzman, Scanning electron microscopy in concrete petrography, Mater. Sci. 
Concr. Spec. (2001) 59–72. http://fire.nist.gov/bfrlpubs/build01/PDF/b01086. 
pdf. 

[112] L.S. Dent Glasser, E.E. Lachowski, K. Mohan, H.F.W. Taylor, A multi-method 
study of C3S hydration, Cem. Concr. Res. 8 (1978) 733–739. 

[113] A. Zingg, F. Winnefeld, L. Holzer, J. Pakusch, S. Becker, L. Gauckler, Adsorption 
of polyelectrolytes and its influence on the rheology, zeta potential, and 
microstructure of various cement and hydrate phases, J. Colloid Interface Sci. 323 
(2008) 301–312. 
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