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Abstract—Recent years have witnessed the emergence of
mobile edge computing (MEC), on the premise of a cost-
effective enhancement in the computational ability of hardware-
constrained wireless devices (WDs) comprising the Internet of
Things (IoT). In a general multi-server multi-user MEC system,
each WD has a computational task to execute and has to select
binary (off)loading decisions, along with the analog-amplitude
resource allocation variables in an online manner, with the
goal of minimizing the overall energy-delay cost (EDC) with
dynamic system states. While past works typically rely on the
explicit expression of the EDC function, the present contribution
considers a practical setting, where in lieu of system state
information, the EDC function is not available in analytical
form, and instead only the function values at queried points
are revealed. Towards tackling such a challenging online combi-
natorial problem with only bandit information, novel Bayesian
optimization (BO) based approach is put forth by leveraging
the multi-armed bandit (MAB) framework. Per time slot, by
exploiting temporal information, the discrete offloading decisions
are first obtained via the MAB method, and the analog resource
allocation variables are subsequently optimized using the BO
selection rule. Numerical tests validate the effectiveness of the
proposed BO approach.

Index Terms—Mobile edge computing, Bayesian optimization,
online learning, task offloading, resource allocation, Internet of
Things.

I. INTRODUCTION

Capitalizing on the mobile edge computing (MEC) architec-
ture, wireless devices (WDs) equipped with low-power on-chip
computing units in the Internet of Things (IoT), carry out high-
performance computation by offloading tasks to the servers
located at the network edge [1]. Due to the time-varying
wireless channel conditions and the dynamic computing capac-
ities at the edge servers, judiciously offloading computations
can afford major performance enhancement. Prior works on
offloading computations typically focus on offline algorithms,
which assume that the system states are known a priori [2],
[3], even though such knowledge is challenging to acquire
beforehand.
Besides unknown system dynamics, the unpredictable WD

preferences (e.g., service latency, reliability or privacy) render
it prohibitive to model the objective function analytically in
dynamic IoT environment. In fact, the IoT controller can only
have available objective function values at queried points. In
this context, the bandit convex optimization (BCO) [4], [5]
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leverages only point-wise values of objective functions for
the gradient estimations. Tailored for partial task offloading
strategies among multiple edge servers, BCO with both time-
varying costs and constraints was studied in [6]. On the other
hand, aiming at binary computational offloading strategies
with such a bandit feedback, multi-armed bandit (MAB) based
methods have been popular in MEC systems [7]–[10].

Although achieving promising results, the aforementioned
BCO or MAB based works deal only with either continu-
ous or discrete decision variables. In many practical settings
though, the analog-amplitude communication and computation
resource allocation variables (e.g., transmit power and local
computing speed) need to be jointly optimized with discrete
variables that capture offloading decisions for optimum MEC
performance. Finely discretizing the analog action space (or
relaxing the discrete task offloading decisions), renders the
existing MAB methods (or the BCO approaches) inaccurate
and computationally prohibitive. In addition, the convexity of
objective functions commonly assumed in BCO algorithms
may not hold in practice [1]–[3], [11]. Although dealing
with arbitrary objective functions, MAB methods require to
explore every single arm at least once to accumulate sufficient
statistics, which may incur sudden performance drops and slow
down the learning processes for large MEC networks [7]–[10].

Alleviating these limitations, we advocate a novel approach
based on Bayesian optimization (BO) [12], [13] in conjunction
with the MAB in order to solve this combinatorial optimization
of discrete task offloading decisions and analog-amplitude re-
source allocation strategies in time-varying multi-server multi-
user MEC systems with bandit feedback. Building on the
BO framework for online bandit optimization of categorical
and continuous decision variables, a Gaussian process (GP)
[14]–[17] based surrogate model is adopted for the sought
objective function with novel kernel design by incorporating
temporal information. With the GP-based surrogate model, an
innovative acquisition rule is developed in the time-varying
BO scheme to select new optimization variables per itera-
tion. Specifically, given the categorical offloading decisions
obtained by the MAB-based method, the analog-amplitude
resource allocation variables are determined using the conven-
tional BO-based selection rule. Numerical tests demonstrate
that our proposed BO approach outperforms the existing
benchmarks.

Notation: (·)⊤ and (·)−1 denote transpose and matrix in-
verse, respectively, and ∥x∥ stands for the l2-norm of a vector

1086978-1-6654-5906-8/22/$31.00 ©2022 IEEE Asilomar 2022

20
22

 5
6t

h 
As

ilo
m

ar
 C

on
fe

re
nc

e 
on

 S
ig

na
ls,

 S
ys

te
m

s,
 a

nd
 C

om
pu

te
rs

 |
 9

78
-1

-6
65

4-
59

06
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IE
EE

CO
N

F5
63

49
.2

02
2.

10
05

18
68

Authorized licensed use limited to: University of Minnesota. Downloaded on June 23,2023 at 13:27:51 UTC from IEEE Xplore.  Restrictions apply. 



2

x. Besides, 0t, 1t and It denote the t× 1 all-zero vector, the
t× 1 all-one vector and the t× t identity matrix, respectively.
Inequalities for vector x > 0 are entry-wise. I(x = x′) denotes
the indicator function taking the value of 1 if x = x′, and
0 otherwise. N (x;µ,K) stands for the probability density
function (pdf) of a Gaussian random vector x with mean µ
and covariance K.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MEC system with M WDs, and N base stations
(BSs). Each BS n ∈ N := {1, . . . , N} is the gateway of
edge servers to provide MEC services to the power-limited
WDs indexed by m ∈ M := {1, . . . ,M}. Per slot t ∈ T :=
{1, ..., T}, the m-th WD has a computational task character-
ized by the pair (Imt , Lm

t ), where Imt denotes the size of input
data in bits, and Lm

t represents the workload in terms of the
total number of CPU cycles to execute the aforementioned
task. This WD could either execute its task locally or offload
it to one of the BSs, a choice that is henceforth captured by the
categorical variable cmt ∈ {0, 1, ..., N}. Specifically, cmt = 0
indexes local computing, and cmt = n, n ∈ N , stands for
offloading task to BS n, i.e.,

cmt =

{
0, local computing
n, offloading to BS n

∀m ∈ M, n ∈ N , t ∈ T .

For both scenarios, the computational overhead per task con-
sists of the execution delay and energy consumption, which
will be elaborated as follows.

A. Local Computing

If WD m chooses to execute its task locally (i.e., cmt = 0)
per slot t, it has to select the local CPU frequency fm

t , based
on which the task computing time is given by τml,t =

Lm
t

fm
t

and
the corresponding energy consumption is

ϵml,t = ξLm
t (fm

t )2 (1)

where ξ denotes the effective switched capacitance parameter.

B. Edge Computing

If WD m alternatively goes for edge computing at BS n
per slot t, that is, cmt = n, it must first offload the task
using transmit power pmt . Suppose that the wireless channel
coefficient between WD m and BS n for task offloading
is hm,n

t , and the receiver is corrupted by additive white
Gaussian noise (AWGN) with mean zero and variance σ2.
Here, the wireless channel is assumed to be invariant within
each slot and may change across different slots. Then, the
uplink transmission data rate for the sought offloading task is
Rm,n

t = W log2(1+pmt |hm,n
t |2/σ2), where W is the identical

bandwidth of the dedicated spectral resource block allocated
to each WD. Accordingly, the offloading transmission time
is τmu,t =

∑N
n=1 I(cmt = n)Imt /Rm,n

t and the transmission
energy consumption of WD m is ϵmu,t = pmt τmu,t.
For edge computing at BS n, the total computation resource

per slot t is signified by the CPU frequency fn
c,t. Upon receiv-

ing all the offloaded tasks, the edge server generates multiple

virtual machines (VMs) to execute the tasks in parallel, and e-
qually partitions fn

c,t to yield f
n
c,t/(1+

∑
m′∈M/m I(cm′

t = n))
per task. The edge execution time for WD m’s task is thus

τmc,t =

N∑
n=1

I(cmt = n)
Lm
t (1 +

∑
m′∈M/m I(cm′

t = n))

fn
c,t

. (2)

C. Problem Formulation
Accounting for both local and edge computing, the total

time delay and energy consumption for executing the task at
WD m per slot t are given by Dm

t = I(cmt = 0)τml,t + I(cmt ̸=
0)(τmu,t + τmc,t) and Em

t = I(cmt = 0)ϵml,t + I(cmt ̸= 0)ϵmu,t,
respectively. Taking a weighted sum of task execution time
delay Dm

t and energy consumption Em
t yields the energy-

delay cost (EDC) per WD m as

EDCm
t (cmt , fm

t , pmt ) = βdD
m
t + βeE

m
t (3)

where βd, βe are positive scalars that balance these two
costs. For notational brevity, collect the optimization vari-
ables in ct := [c1t , . . . , c

M
t ]⊤, pt := [p1t , . . . , p

M
t ]⊤, and

ft := [f1
t , . . . , f

M
t ]⊤. The objective is to choose online (at

the beginning of each slot t) the categorical task offloading
decisions (i.e., ct) and analog-amplitude resource allocation
strategies (i.e., pt, ft) minimizing the accumulated EDC across
all WDs, that is

(P1) min
{ct,pt,ft}t

T∑
t=1

M∑
m=1

EDCm
t (cmt , fm

t , pmt ),

s.t. cmt ∈ {0, 1, 2, ..., N}, 0 < pmt ≤ Ppeak,

0 < fm
t ≤ fpeak, ∀m ∈ M, t ∈ T

where fpeak and Ppeak are the peak local CPU frequency and
transmit power of the WDs, respectively. By further introduc-
ing xt := [p⊤

t , f
⊤
t ]⊤ and the reward function φt(ct,xt) :=

−
∑M

m=1 EDCm
t per slot t, (P1) can be equivalently expressed

as

(P2) max
{ct,xt}t

T∑
t=1

φt(ct,xt),

s.t. ct ∈ {0, 1, 2, ..., N}M ,

0 < xt ≤ xpeak, ∀t ∈ T

where xpeak := [Ppeak1
⊤
M , fpeak1

⊤
M ]⊤, and 1M is the M -

dimensional all-one column vector.
A major challenge facing (P2) (equivalently (P1)) is that

the wireless channels {hm,n
t }, the edge computing capacities

{fn
c,t}, the computational task characterization {Imt , Lm

t } are
not available; thus, the explicit form of the time-varying EDC
function is unknown when making the task offloading and
resource allocation decisions {ct,xt} per slot. After perform-
ing {ct,xt}, only noisy EDC function value (equivalently the
realization of φt(ct,xt)) at that queried point can be acquired
at the end of slot t. The difficulty of such a bandit setup is
further exacerbated by its combinatorial nature that calls for
the joint optimization of the categorical ct and continuous xt.
To tackle this bandit mix-integer program, novel BO-based
approach will be pursued in the following section.
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III. TIME-VARYING BO FOR DYNAMIC MEC
MANAGEMENT

BO has well-documented merits in optimizing black-box
functions that arise in several settings [12]. To account for
the temporal variation arising from unknown system dynamics
(e.g., changing channel conditions and computing capacities of
the edge servers), the slot index t is augmented as an additional
input of the sought black-box function, i.e., φ(ct,xt, t) :=
φt(ct,xt). In short, BO seeks to maximize the black-box
φ(zt) with zt := [c⊤t ,x

⊤
t , t]

⊤ by sequentially acquiring
function observations using a surrogate model. Collect all the
acquired data up to slot t in Dt := {(zτ , yτ )}tτ=1 with yτ
denoting the possibly noisy observation of φ(zτ ). Each BO
iteration consists of i) obtaining the function posterior pdf
p(φ(z)|Dt) based on the chosen surrogate model using Dt;
and, ii) selecting zt+1 to evaluate at the beginning of slot
t+ 1, whose observation yt+1 will be acquired at the end of
slot t + 1. In the following, we will introduce the GP-based
surrogate model and the acquisition rule for zt+1, respectively.

A. GP-based Surrogate Model for Time-Varying Function φ
and Kernel Design

As an established Bayesian nonparametric approach, the GP
can learn black-box functions with quantifiable uncertainty and
sample efficiency, making it suitable for surrogate modeling
in BO. Specifically, given data Dt, the goal is to learn the
function φ(·) that links the input zτ with the scalar output
yτ as zτ → φ(zτ ) → yτ . Towards this, a GP prior is
assumed on the unknown φ as φ ∼ GP(0, κ(z, z′)), where
κ(·, ·) is a kernel (covariance) function measuring pairwise
similarity of any two inputs. Then, the joint prior pdf of
any t function evaluations φt := [φ(z1), ..., φ(zt)]

⊤ at inputs
Zt := [z1, ..., zt]

⊤ is jointly Gaussian distributed as [14]

p(φt|Zt) = N (φt;0t,Kt), ∀t (4)

where Kt is a t × t covariance matrix with (τ, τ ′)-th entry
[Kt]τ,τ ′ = cov(φ(zτ ), φ(zτ ′)) := κ(zτ , zτ ′). The estimation
of φ relies on the observed outputs yt := [y1, ..., yt]

⊤ that are
linked with φt through the Gaussian conditional likelihood
p(yt|φt,Zt) = N (yt;φt, σ

2
oIt), where σ2

o is the noise vari-
ance. Along with the GP prior in (4), one can readily obtain
the function posterior pdf p(φ(z)|Dt) via Bayes’ rule as

p(φ(z)|Dt) = N (φ(z);µt(z), σ
2
t (z)) (5)

where its mean and variance have the following closed-form
expressions

µt(z) = k⊤
t (z)(Kt + σ2

oIt)
−1yt (6)

σ2
t (z) = κ(z, z)− k⊤

t (z)(Kt + σ2
oIt)

−1kt(z) (7)

where kt(z) := [κ(z1, z), ..., κ(zt, z)]
⊤.

Clearly, the performance of this GP predictor (6)-(7) highly
hinges on the design of the kernel function κ(·, ·) over the in-
put space. Accounting for both the continuous xτ for resource
allocation and the categorical cτ for task offloading in the
function input zτ , as well as temporal variations across slots,

three separate kernels are considered, which are κx(xτ ,xτ ′)
over continuous inputs, κc(cτ , cτ ′) over categorical inputs, and
the temporal kernel κtemp(τ, τ

′).
Various kernel functions are available for continuous inputs;

see [14]. A popular choice is the class of Matérn kernels

κMT
x (xτ ,xτ ′ ) =

21−ν

Γ(ν)

(√
2ν∥xτ − xτ ′∥

l

)ν

Bν

(√
2ν∥xτ − xτ ′∥

l

)
(8)

with parameter ν > 0 controlling the smoothness of the
learning function. The smaller ν is, the less smooth the sought
function is assumed to be. In (8), l is the characteristic
lengthscale, Bν is a modified Bessel function, and Γ is the
gamma function. As for categorical variables, we follow [18]
to adopt the kernel function κc(cτ , cτ ′) as

κc(cτ , cτ ′) =
ω

M

M∑
m=1

I(cmτ = cmτ ′) (9)

where ω is the categorical kernel variance. To allow for a
richer set of couplings between the continuous and categorical
domains, a mixture of the sum and product compositions of
the two kernels κx and κc is proposed for the kernel function
κx,c over continuous and categorical variables [18], i.e.,

κx,c([x
⊤
τ , c

⊤
τ ]

⊤, [x⊤
τ ′ , c⊤τ ′ ]⊤) =(1− λ)[κc(cτ , cτ ′) + κx(xτ ,xτ ′)]

+ λκc(cτ , cτ ′)κx(xτ ,xτ ′) (10)

where λ ∈ [0, 1] weighs the contributions from the sum and
product compositions of κc and κx.

To further capture the temporal variation of the black-box
function φ due to the unknown system dynamics, the following
temporal kernel function κtemp(τ, τ

′) is adopted based on [19]

κtemp(τ, τ
′) = (1− ρ)

|τ−τ′|
2 (11)

where ρ ∈ [0, 1] is the hyperparameter that controls the level
of temporal dynamics in the learning function φ. The larger
the value of ρ, the more frequently φ varies over time. In
particular, when ρ = 0, κtemp(τ, τ

′) = 1 for any (τ, τ ′), thus
inducing no dynamics in φ.

Henceforth, applying the product composition of κx,c (10)
and κtemp (11) yields the overall kernel function given by

κ(zτ , zτ ′) = κtemp(τ, τ
′)κx,c([x

⊤
τ , c

⊤
τ ]

⊤, [x⊤
τ ′ , c⊤τ ′ ]⊤). (12)

It can be observed that the temporal kernel imposes a scaling
factor on κx,c based on the time separation of any pair of
inputs. This agrees well with intuition that inputs that are well
separated in time (i.e., large |τ − τ ′|) yield less correlated
function values for ρ ̸= 0.

B. Acquisition for zt+1 Based on GP Surrogate Model

Having available GP-based posterior function model (5)
with the form of kernel function specified by (12) at slot t,
one is ready to select the next decisions zt+1. Coping with
both categorical and continuous variables, this is certainly a
nontrivial task, but can fortunately be handled by relying on
the MAB framework. Since the cardinality of the categorical
variables is exponential with respect to the number M of

1088

Authorized licensed use limited to: University of Minnesota. Downloaded on June 23,2023 at 13:27:51 UTC from IEEE Xplore.  Restrictions apply. 



4

WDs, a scalable multi-agent MAB approach will be leveraged
with each WD m acting as an agent simultaneously and
independently determining its local task offloading decision
cmt ∈ {0, 1, ..., N}. As the overall reward function in the
resultant MAB framework does not follow any statistical
distribution, it is more sensible to rely on the adversarial
MAB framework and adopt as the action selection rule the
well-known exponential-weight algorithm for exploration and
exploitation (EXP3) [20]. Per slot t, EXP3 maintains an unnor-
malized weight vector wm

t := [wm
t (0), wm

t (1), ..., wm
t (N)]⊤

for each WD m to guide the selection of its action. Next, we
will delineate how each acquisition step of the time-varying
BO selects categorical ct+1 and continuous xt+1 with the help
of EXP3.
1) Acquisition for Categorical Task Offloading Decisions:

Given wm
t from the end of slot t, each agent m in EXP3 draws

its action cmt+1 randomly according to the probability vector
qm
t := [qmt (0), qmt (1), ..., qmt (N)]⊤ with [20]

qmt (k) =
(1− γ)wm

t (k)∑N
k′=0 w

m
t (k′)

+
γ

N + 1
, ∀k ∈ {0, 1, ..., N} (13)

where γ ∈ (0, 1] is the coefficient that balances exploitation
given by the normalized weight in the first factor and ex-
ploration from the uniform probability in the second term.
Specifically, by including the uniform distribution, EXP3
allows all N + 1 decisions to be explored per agent (WD)
so as to get good reward estimates.
2) Acquisition for Analog-Amplitude Resource Allocation

Decisions: With the categorical task offloading decisions ct+1
at hand, the analog-amplitude resource allocation decisions
xt+1 are selected by finding the maximizer of the celebrated
upper confidence bound (UCB)-based acquisition function
as [21]

xt+1 = argmax
0<x≤xpeak

ut+1(x|Dt, ct+1, t+ 1) := µt(x, ct+1, t+ 1)+√
ζt+1σ

2
t (x, ct+1, t+ 1) (14)

where the coefficient ζt+1 ≥ 0 nicely balances the exploita-
tion and exploration that are signified by the posterior mean
µt (6) and variance σ2

t (7), respectively. With closed-form
expressions of µt and σ2

t at hand, one can readily solve (14)
via off-the-shelf gradient-based solvers.
3) Weight Update in EXP3: Upon deploying (ct+1,xt+1)

into the MEC system to yield the observed reward yt+1,
EXP3 capitalizes on the importance sampling rule to obtain
an unbiased estimate of the reward value as

φ̂m
t+1(k) =

yt+1I(cmt+1 = k)

qmt (k)
, ∀k ∈ {0, 1, ..., N},m ∈ M

based on which the corresponding weight is updated using the
exponential rule as

wm
t+1(k) = wm

t (k) exp

(
γφ̂m

t+1(k)

N + 1

)
= wm

0 (k) exp

(
γ
∑t+1

τ=1 φ̂
m
τ (k)

N + 1

)
, ∀k ∈ {0, 1, ..., N},m ∈ M.

It is evident that wm
t+1(k) summarizes the cumulative rewards

up to slot t+1 for action k under WD m, and thus represents
the effect of exploitation in (13).

IV. SIMULATION RESULTS

In this section, numerical tests were conducted to evaluate
the performance of the proposed BO approach for dynamic
MEC management. In the multi-user multi-server MEC system
with M WDs and N BSs, the time-varying wireless channel
hm,n
t from WD m to BS n is modelled as Rician fading

channel, where K ≥ 0 is the Rician factor representing the
ratio of the power in the LoS component to the power in the
non-LoS component. The total average channel gain follows
the free-space path loss model |h̄m,n

t |2 = Ad(
3×108

4πϕdm,n
)PL, ∀t,

where Ad = 4.11 denotes the antenna gain, ϕ = 915 MHz is
the carrier frequency, dm,n represents the distance (measured
by meters) between WD m and BS n, and PL = 3 signifies
the pass loss exponent. In addition, the means of time-varying
edge CPU frequencies {fn

c,t}n,t, task computational workloads
{Lm

t }m,t, and task input data sizes {Imt }m,t are 26 GHz, 125
Mcycles, and 1250 KBytes, respectively [2], [11]. Specifically,
the generation rules follow [19] with parameter η = 0.2
adjusting the level of temporal dynamics in these system state
variables.

Besides, the peak transmit power Ppeak and computational
frequency fpeak of each WD are equal to 100 mW and 108

Hz, respectively. To be aligned with commercial practise, the
computing efficiency coefficient ξ of the WDs in (1) is chosen
as ξ = 10−26. We set the channel additive white Gaussian
noise power σ2 = 10−10 W, and the bandwidth W = 2 MHz.
The prior weights of the time delay and energy consumption
cost of the WDs in (3) are set as βd = βe = 0.5.

For the proposed time-varying BO approach, the Matérn
kernel (8) with parameter ν = 5/2 is adopted for the kernel
κx over continuous variables. The weight λ regarding the sum
and product kernel compositions in (10) is set to 0.5. The
coefficients ζt = 2, ∀t, in UCB-based acquisition rule (14).
Unless otherwise stated, the other kernel hyperparameters are
optimized by maximizing the log marginal likelihood every
δ = 10 slots via multi-started gradient descent. The perfor-
mance measure of the competing methods is given by the no-
tion of regret. By denoting the maximizer of φt as (c∗t ,x

∗
t ), the

instantaneous regret per slot t is gt := φt(c
∗
t ,x

∗
t )−φt(ct,xt),

based on which the cumulative and average regrets are denoted
as GT :=

∑T
t=1 gt and ḠT := GT /T , respectively. It is worth

mentioning that (c∗t ,x
∗
t ) are obtained by relying on explicit

cost function in (P2) with known system state information.
All the methods are run for 200 time slots and the average
performances over 100 random repetitions are reported.

For performance comparison, three existing schemes are
employed as baselines, namely, the MAB [20], bandit convex
optimization (BCO) [4], and the conventional time-invariant
BO approach [12]. Since MAB can only cope with discrete
decision variables, we discretized the analog-amplitude re-
source allocation variables into 5 levels and then adopted
the multi-agent EXP3 method [20] for learning. In BCO, the
analog-amplitude resource allocation variables are obtained
by constructing gradient estimates using evaluated function
values, while the discrete offloading variables are still sought
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based on MAB as in the proposed BO approach. Besides, time-
invariant BO method neglects temporal information in MEC
systems.
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Fig. 1: Comparison of average regret under the 2-BS and 2-WD MEC system.

With properly selected temporal kernel hyperparameter, the
average regret curves of all the competing approaches are
presented in Fig. 1 for the 2-BS and 2-WD MEC system
with [d1,1, d1,2, d2,1, d2,2] = [20, 13, 15, 18] and K = 4.
Specifically, the temporal kernel hyperparameter in the time-
varying BO approach is chosen as ρ = 0.048. As shown in
Fig. 1, our proposed time-varying BO approach outperforms
the three benchmarks, namely, time-invariant BO, MAB, and
BCO, by around 1.21%, 8.51% and 25.72% in average regret
after 200 time slots. This suggests the benefits of adapting
temporal information-aided Bayesian approach to the black-
box optimization with both categorical (i.e., task offloading)
and analog-amplitude (i.e., resource allocation) variables.
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Fig. 2: Impact of MEC network size on average energy-delay cost.

Moreover, fixing the number M of WDs as 2, the average
EDC over slots is plotted as a function of the number N
of BSs for all the competing methods in Fig. 2. Apparently,
the proposed BO approach achieves lower average EDC than
the other three baselines. Additionally, the average EDC of
all the methods decreases as the network size grows by
better exploiting the diverse computing capacities and channel
conditions of the edge servers.

V. CONCLUSION

BO for dynamic MEC management was studied in this
paper. Different from prior works in time-varying MEC sys-
tems, the focus was online joint optimization of discrete task
offloading decisions and analog-amplitude resource allocation

strategies by minimizing the EDC using only bandit observa-
tions at queried points. Specifically, by exploiting temporal in-
formation, we developed novel BO approach that incorporates
the strength of the MAB framework. Numerical tests under
different MEC network sizes demonstrated the effectiveness
of the proposed BO approach.
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