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Abstract

Intramolecular symmetry-adapted perturbation theory (ISAPT) is a method to

compute and decompose the noncovalent interaction energy between two molecular

fragments A and B covalently connected via a linker C. However, the existing ISAPT

algorithm displays several issues for many fragmentation patterns (that is, specific

assignments of atoms to the A/B/C subsystems), including an artificially repulsive

electrostatic energy (even when the fragments are hydrogen-bonded) and very large and

mutually cancelling induction and exchange-induction terms. We attribute those issues

to the presence of artificial dipole moments at the interfragment boundary, as the atoms

of A and B directly connected to C are missing electrons on one of their hybrid orbitals.

Therefore, we propose several new partitioning algorithms which reassign one electron,

on a singly occupied link hybrid orbital, from C to each of A/B. Once the contributions

from these link orbitals are added to fragment density matrices, the computation of

ISAPT electrostatic, induction, and dispersion energies proceeds exactly as normal,

and the exchange energy expressions need only minor modifications. Among the link

partitioning algorithms introduced, the so-called ISAPT(SIAO1) approach (in which

the link orbital is obtained by a projection onto the intrinsic atomic orbitals (IAOs)

of a given fragment followed by orthogonalization to this fragment’s occupied space)

leads to reasonable values of all ISAPT corrections for all fragmentation patterns, and

exhibits fast and systematic basis set convergence. This improvement is made possible

by a significant reduction in magnitude (even though not a complete elimination) of

the unphysical dipole moments at the interfragment boundaries. We demonstrate the

utility of the improved ISAPT partitioning by examining intramolecular interactions

in several pentanediol isomers, examples of linear and branched alkanes, and the open

and closed conformations of a family of N-arylimide molecular torsion balances.
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Introduction

Weak noncovalent interactions are ubiquitous in nature as they occur both between sepa-

rate molecules and between nonbonded fragments of the same molecule. As a result, the

knowledge and understanding of these interactions is indispensable in many areas of chem-

istry, physics, materials science, and biology. When the energy of a weak interaction is

computed using quantum chemistry, it is highly desirable to use a computational proto-

col that is both quantitative and conceptual, that is, it provides an accurate overall value

and its meaningful decomposition into individual terms that can be separately interpreted

and understood. There are many approaches that satisfy one of these conditions but only

very few methods can do both; among the latter, symmetry-adapted perturbation theory

(SAPT)1,2 is a particularly attractive choice thanks to its many robust variants and effi-

cient computer implementations. The interaction energy in SAPT is decomposed into four

major contributions: electrostatics (Coulomb interaction of unperturbed molecular charge

densities, including charge penetration), exchange (the short-range repulsion stemming from

the Pauli exclusion principle), induction (the polarization of one molecule by the interacting

partner), and dispersion (the correlation between instantaneous charge density fluctuations).

For example, at the lowest (qualitatively accurate) SAPT0 level of theory, the interaction

energy is approximated as a sum of the following corrections, grouped together to account

for the four major contributions:

ESAPT0
int =

(
E

(10)
elst

)
+
(
E

(10)
exch

)
+
(
E

(20)
ind,resp + E

(20)
exch−ind,resp + δHF

)
+
(
E

(20)
disp + E

(20)
exch−disp

)
(1)

In Eq. (1) and below, the consecutive superscripts denote orders of perturbation theory with

respect to intermolecular interaction and intramolecular correlation (thus, there is no in-

tramolecular correlation in SAPT0). Furthermore, the additional subscript “resp” denotes

the relaxation (response) of each molecule’s Hartree-Fock (HF) orbitals to the electric field

of the interacting partner, and the δHF term brings in higher-order induction and exchange-
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induction effects contained in the supermolecular HF interaction energy. SAPT has been

employed to compute and interpret intermolecular interactions for numerous complexes of

theoretical and experimental interest; many of these applications, together with major ad-

vances in the SAPT methodology, have been summarized in the recent reviews.3–7

While there are many options to decompose the intermolecular interaction energy, and

several ways to do the same thing for a covalent bond,8–10 the physical decomposition of

intramolecular noncovalent interactions is much less understood. While it is not at present

possible to quantify the entire nonbonded interaction involving all molecular fragments, if

one can identify two nonbonded fragments A and B connected to each other through a linker

fragment C, there are a few options to define and partition the interaction energy between A

and B in the presence of C. On one hand, one could remove C and cap the dangling bonds

of A and B with hydrogen atoms. As the interaction in question is now intermolecular, one

can use any of the standard SAPT variants to evaluate its contributions.11,12 However, the

fragmentation approach requires altering the molecular system and, if the linking fragment

is small, artificial means to avoid an overly pronounced repulsion between the capping hy-

drogens. Two alternatives that do not require cutting and capping have been introduced by

Gonthier and coworkers.13–15 The first one involves localizing the occupied orbitals on the

fragments A, B, C and constructing a non-Hermitian zeroth-order Hamiltonian13 in which

the A–B interactions are removed following the Chemical Hamiltonian approach introduced

by Mayer.16 These removed interactions are then brought back as the perturbation that

gives rise to the noncovalent intramolecular interaction.15 The need for a non-Hermitian,

biorthogonal formalism makes the theory somewhat more complicated, and the resulting en-

ergy decomposition is a little different than in standard SAPT: the polarization corrections

cannot be separated from their exchange counterparts (for example, the entire first-order en-

ergy is a single term), but the second-order energy includes an explicit delocalization (charge

transfer) term in addition to the induction and dispersion ones.

The second approach14 leads to the same set of corrections as intermolecular SAPT
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(at its lowest, SAPT0 level). In this method, referred to as ISAPT, the occupied orbitals

are localized according to the intrinsic bond orbital (IBO) scheme.17 Subsequently, the HF

wavefunctions for A and B are obtained by solving the HF equations for each fragment

embedded in the HF potential of linker C (that is, the A–C and B–C interactions are

included but the A–B one is not). The product of the A and B wavefunctions obtained in

this way can then be used as the zeroth-order wavefunction for a standard SAPT expansion.

In any variant, the treatment of the interfragment boundaries is critical to the perfor-

mance of the method. In the default ISAPT protocol, the doubly occupied IBOs describing

the interfragment bonds are treated as part of the linker C (it is assumed that (A,C) and

(B,C) are each connected by a single bond only). To maintain zero net charges on A and

B (as long as the entire molecule is electrically neutral), one proton worth of the charge on

the atom from A (B) that takes part in the interfragment bond is reassigned to C. Thus,

no spurious charges are created at the interfragment boundaries (obviously, the presence of

such charges would badly skew the SAPT electrostatic energy). However, the same cannot

be said about spurious dipole moments, even when the interfragment bonds are nonpolar.

Imagine, for illustration, that the fragmentation is performed for the propane molecule to

calculate the noncovalent interaction between two CH3– groups connected by the –CH2–

linker. Then, each of the fragments A and B features a central carbon atom, with its nu-

clear charge reduced by one, and three hydrogen atoms located along the directions of three

sp3 hybrid orbitals. However, as the fourth hybrid orbital that would complete the tetrahe-

dral symmetry is missing, such a fragment has a substantial dipole moment, and we might

expect that the interaction between these spurious dipoles on A and B might dominate

the SAPT electrostatic contribution. If the doubly occupied interfragment IBOs, together

with the corresponding +1 nuclear charges, are instead reassigned to fragments A and B

or equally shared between A/B and C,14 the spurious dipole moments remain, and an ad-

ditional problem appears when the linker is small and the resulting charge densities of A

and B are too close together. For instance, in our propane example, such a reassignment is
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not acceptable because it would lead to assigning a +1 nuclear charge on the same central

carbon atom to both A and B.

While the process of fragmentation and the definition of intramolecular SAPT corrections

is not unique as it does not lead to any experimental observables, a useful approach should

lead to ISAPT results that make physical sense. For example, an intramolecular hydrogen

bond should show up as a favorable interaction both in terms of the total SAPT energy and

its electrostatic component, similar to an intermolecular hydrogen bond. This is not always

the case for any of the variants (link orbital assignments) of the original ISAPT method of

Ref. 14. A good example is the 2,4-pentanediol molecule that involves an intramolecular

hydrogen bond. In the fragmentation scheme of Fig. 1 (a), which was extensively studied

in Ref. 14, the ISAPT results make sense and resemble the SAPT decomposition for the

water dimer; in particular, the electrostatic energy is attractive (negative). However, in

the fragmentation scheme of Fig. 1 (b), the electrostatic energy is strongly positive, which

does not make physical sense as the addition of nonpolar hydrocarbon chains to A and B

cannot offset the favorable dipole-dipole interaction between the –OH groups. We believe

that the reason for this unphysical behavior are the artificial dipole moments resulting from

the interfragment boundaries cutting through the (nonpolar) C-C bonds.

(a) (b)

Figure 1: Two different partitionings of the 2,4-pentanediol molecule into hydrogen bonded
fragments A and B covalently connected through a linking fragment C. A missing bond
signifies a fragment boundary.

The problem of unphysical multipoles at the interfragment boundary was already men-

tioned in Ref. 14, and it was further explored by Meitei and Hesselmann in Ref. 12. These

authors, in the specific context of highly sterically crowded hydrocarbons such as the all-meta
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tert-butyl derivative of hexaphenylethane,18 proposed a solution to replace the embedding

in the linking fragment (in this case, two central carbon atoms) by an embedding in a set of

capping hydrogen atoms at very short C-H bond lengths to reduce the artificial dipoles. In

most cases, this approach indeed led to a sensible, somewhat attractive electrostatic energy;

however, such a correction is very system specific as it cannot be expected that the embed-

ding in the capping hydrogens can replace an embedding in any linker fragment C. Therefore,

the issue of unphysical dipoles appearing at the ISAPT interfragment boundary remains un-

solved, limiting the applications of the method to highly favorable cases and/or cases where

the errors cancel (which might be expected when investigating differences between similar

systems).

In this work, we propose several algorithms to repartition the link bonds between frag-

ments to reduce the unphysical fragment dipoles while preserving the embedding in the

actual, unaltered chemical system. In a sense, we follow a direction stated, but not pursued,

by Meitei and Hesselmann,12 and explore an alternative assignment of the linking electron

pair – the one where one electron is ascribed to each of the two adjacent fragments. This

leads to several new ISAPT variants, differing in the way in which the linking IBO is de-

constructed into a pair of intrinsic hybrid orbitals (IHOs) on the bonded atoms.17 It should

be stressed that our goal is not the ultimate, rigorous definition of ISAPT corrections (we

are fully aware that such fragment-fragment contributions are not measurable quantities),

but a practical and robust ISAPT algorithm whose results make physical sense for a wide

variety of molecular systems and fragmentation patterns. In particular, we expect a practical

ISAPT variant

(a) to substantially reduce the magnitude of the fragment dipole moments when a nonpolar

system is partitioned into nonpolar fragments,

(b) to give attractive electrostatic energies for intramolecular hydrogen bonded fragments,

and slightly attractive electrostatic energies between nonpolar fragments (due to charge

penetration19,20),
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(c) to closely follow the results of standard intermolecular SAPT at large A–B separations,

(d) to exhibit stable behavior as the one-electron basis set is enlarged.

In the remainder of this article, we develop and test our new ISAPT link bond parti-

tionings with a goal of satisfying the conditions (a)–(d) above. First, in the Methodology

section, we describe the new algorithms. Next, the new partitionings are applied to a set of

representative intramolecular interactions and compared with the original link assignment

of Ref. 14. The final section contains conclusions.

Methodology

Definitions

In the following discussion, the capital letters K,L,M, . . . will denote atomic orbital (AO)

basis functions (the AO basis always covers the entire molecule). The fragments A and B

interact with each other only noncovalently, but are covalently connected via the linker C.

We will assume that A and C are connected by a single bond, and likewise for B and C; let

φAC and φBC denote the connecting IBOs.17 The initial set of IBOs is obtained by localizing

the HF wavefunction for the entire molecule, and its orthogonal subspaces containing IBOs

for the respective fragments will be denoted by B0
A, B0

B, and BC. Subsequently, the occupied

orbitals of A and B are reconstructed with the A–B interaction switched off but the A–C

and B–C ones fully present. Specifically, the HF equations for A and B embedded in the

frozen HF wavefunction of C are solved at this point. Afterwards, the entire one-electron

space B (the space spanned by the AOs) includes occupied subspaces BA, BB, BC for the

respective fragments, with both BA and BB orthogonal to BC (however, BA is not orthogonal

to BB; note also that the subspace for the linker C has not changed in the last step). The

virtual orbitals for fragments A and B live in the orthogonal complements to the spaces

BA ⊕ BC and BB ⊕ BC, respectively. Thus, the occupied orbitals on C are projected out
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from both the occupied and virtual orbitals on A/B.

In the original ISAPT method14 with the default link assignment, the doubly occupied

orbitals φAC and φBC are assigned to linker C together with a single proton from the nucleus

of A/B that participates in the covalent bond (the remaining protons are still assigned to

A/B, so that this nucleus has an effective charge reduced by one within that fragment).

Thus, if the original molecule was electrically neutral, all fragments are neutral too. Unfor-

tunately, the same cannot be said about the dipole moments on the individual fragments.

The connecting atom on A or B, besides missing one proton, is missing an electron on one

of its hybrid orbitals, the one responsible for the covalent bond with C. Thus, even for a

nonpolar environment such as an sp3 carbon in a hydrocarbon molecule, an artificial dipole

moment is created on the fragment A/B because one hybrid orbital, with its bonding elec-

tron, has been removed. We believe that this artificial dipole moment is the cause of often

unphysical interfragment electrostatic energies in ISAPT.

Link orbital reassignment

The IBOs φAC and φBC can be viewed as linear combinations of “intrinsic hybrid orbitals”

(IHOs) on the atoms connected by the linking bond — combinations of intrinsic atomic

orbitals (IAOs)17 resulting in a hybrid orbital pointing in the bond direction. We propose

to partially undo the IAO→IBO transformation and identify IHOs χx and χy that, in some

sense, constitute the A-fragment and B-fragment parts of φAC and φBC , respectively. More

than one algorithm of determining these IHOs is possible and we will present two specific

choices below. Normally, we do assume that χx and χy, like the whole link orbital space where

they come from, are orthogonal to the occupied spaces BA and BB, respectively. Note that

this orthogonalization will have to be explicitly enforced as χx and χy are not contained in

the subspace BC; we will also investigate what happens if one forgoes this orthogonalization.

In this process of bond orbital decomposition, we associate one electron with each of χx

and χy and, for the purpose of updating density matrices, we will assume that half of this
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electron comes in with spin up and half with spin down. In our new link assignments, the

single electron on χx is reassigned from C to A together with the corresponding +1 nuclear

charge on the A atom connected to C. Thus, the assignment of nuclear charges is now very

simple – the full charges of all nuclei in A belong to A – but the assignment of electronic

charges becomes more complicated. An analogous reassignment takes place between C and

B — the net result is that A and B gain one electron each relative to the default ISAPT

link assignment. Our hope is that, by the addition of electrons on χx and χy, the fragment

charges around the linking atoms become more spherically symmetrical, and any unphysical

dipole moments at the fragment boundary should be substantially diminished.

First-order ISAPT terms

At this point, the redefinition of the ISAPT first-order electrostatic energy is straightforward.

The nuclear potentials of fragments A and B are modified to account for the entire charge

+Ze−, not +(Z − 1)e−, on the linking atom. The HF-level fragment density matrices DA

and DB are supplemented by the contributions of the (singly occupied) orbitals χx and

χy, respectively. The updated nuclear potentials and density matrices are then used in

standard SAPT expressions to determine the ISAPT E
(10)
elst term between fragments A and

B. Note that while the addition of linking electrons to A and B is reflected in the updated

density matrices, their removal from C must be reflected in the embedding. For example,

the embedded HF calculation for A still includes the A-C linking pair, with one electron

now in A and one still in C. However (as explained in detail later), the treatment of the

more distant interfragment boundary B-C has been altered as one linking electron has been

removed from C and thus from the embedding potential.

The E
(10)
exch correction, within its customary S2 approximation,1 requires, in addition to

the full density matrix, its partitioning into spin density matrices. It is natural to assume

that the supplementary contributions of χx and χy are divided equally between the spin-up

and spin-down density matrix (half spin-up and half spin-down). However, this assumption
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does not determine the exchange energy uniquely, as the interactions between the electrons

on χx and χy depend on the mutual alignment of their spins. In the two limiting cases that

both lead to equal spin-up and spin-down density matrices, the link spinorbitals ψx and ψy

can have parallel spins,

ψ‖x =
1√
2
χx (| ↑〉+ | ↓〉) ψ‖y =

1√
2
χy (| ↑〉+ | ↓〉) (2)

or perpendicular spins,

ψ⊥x =
1√
2
χx (| ↑〉+ | ↓〉) ψ⊥y =

1√
2
χy (| ↑〉 − | ↓〉) (3)

Note that the parallel case corresponds to 〈ψ‖x|ψ‖y〉 = 〈χx|χy〉 and includes one electron

worth of exchange interaction between the link spinorbitals. The perpendicular case leads to

〈ψ⊥x |ψ⊥y 〉 = 0; thus, no exchange interaction between the link spinorbitals exists. Both cases

introduce an interdependence between the spins of the A–C and B–C link electrons which

can be viewed as unphysical — the A–C and B–C partitionings should be independent of

each other, leading to a random mutual orientation of spins. To model this random spin

coupling, we propose to adopt as the final exchange energy the average of the parallel and

perpendicular approaches:

E
(10)
exch(S2) =

1

2

(
E

(10)‖
exch (S2) + E

(10)⊥
exch (S2)

)
(4)

Following the standard derivation of MO-based exchange corrections within the density-

matrix formalism21 (valid in both dimer and monomer basis sets) and recasting the resulting

formulas to the AO basis,22–24 we obtain the following formulas for the parallel-spin and
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perpendicular-spin variants:

E
(10)‖/⊥
exch (S2) =− 2DA ·KB ∓ 1

2
DX ·KY − 2VA · (DASAODB)∓ 1

2
VA · (DXSAODY )

− 4JA · (DASAODB)∓ JA · (DXSAODY ) + 2KA · (DASAODB)

+
1

2
KX · (DXSAODB)± 1

2
KX · (DASAODY )± 1

2
KA · (DXSAODY )

− 2VB · (DBSAODA)∓ 1

2
VB · (DY SAODX)

− 4JB · (DBSAODA)∓ JB · (DY SAODX) + 2KB · (DBSAODA)

+
1

2
KY · (DY SAODA)± 1

2
KY · (DBSAODX)± 1

2
KB · (DY SAODX)

+ 2VA · (DBSAODASAODB) +
1

2
VA · (DY SAODASAODY )

± 1

2
VA · (DY SAODXSAODB)± 1

2
VA · (DBSAODXSAODY )

+ 4JA · (DBSAODASAODB) + JA · (DY SAODASAODY )

± JA · (DY SAODXSAODB)± JA · (DBSAODXSAODY )

+ 2VB · (DASAODBSAODA) +
1

2
VB · (DXSAODBSAODX)

± 1

2
VB · (DXSAODY SAODA)± 1

2
VB · (DASAODY SAODX)

+ 4JB · (DASAODBSAODA) + JB · (DXSAODBSAODX)

± JB · (DXSAODY SAODA)± JB · (DASAODY SAODX)

− 2(DASAODB) ·K†[DASAODB]− 1

2
(DXSAODB) ·K†[DXSAODB]

− 1

2
(DASAODY ) ·K†[DASAODY ]∓ 1

2
(DASAODY ) ·K†[DXSAODB]

∓ 1

2
(DASAODB) ·K†[DXSAODY ]∓ 1

2
(DXSAODY ) ·K†[DASAODB]

∓ 1

2
(DXSAODB) ·K†[DASAODY ]− 1

8
(DXSAODY ) ·K†[DXSAODY ] (5)

In the above equation, the upper plus/minus signs correspond to E
(10)‖
exch (S2) and the lower

signs to E
(10)⊥
exch (S2). Furthermore, the AO-basis density matrices are computed from the
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LCAO MO coefficients CiK in the usual way:

(DA)KL =
∑
i

CiKCiL +
1

2
CxKCxL (DB)KL =

∑
j

CjKCjL +
1

2
CyKCyL

(DX)KL = CxKCxL (DY )KL = CyKCyL (6)

where the indices i and j run over occupied orbitals of A and B, respectively, and indices x, y

correspond to the link orbitals χx, χy (the factors 1
2

result from the link orbital containing

only half an electron of a given spin). Note that DA and DB already contain the link-

orbital contributions DX and DY , respectively, but the numerical factors multiplying the

link-orbital terms need to be adjusted by the presence of the additional terms involving DX

and DY . The elements of the commonly used generalized Coulomb and exchange matrices

are given by

J[X]KL =
∑
MN

(KL|MN)XMN K[X]KL =
∑
MN

(KM |NL)XMN (7)

the shorthand notations JZ ≡ J[DZ ] and KZ ≡ K[DZ ] (Z = A,B,X, Y ) indicate the

regular (not generalized) Coulomb and exchange matrices, VA/VB are matrices containing

the nuclear attraction integrals for an appropriate fragment, SAO is the AO-basis overlap

matrix (SAO)KL = 〈K|L〉, and the dot signifies an inner product of matrices:

X ·Y =
∑
KL

XKLYKL (8)

The case of the full nonapproximated E
(10)
exch is more complicated and will be presented in

detail in Appendix A.
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Second-order ISAPT terms

A more subtle issue is defining a suitable induction energy E
(20)
Ind (following Ref. 25, the

capitalized correction name denotes a sum of pure induction and exchange-induction terms)

and, in a coherent manner, the δHF correction that captures higher-order induction and

exchange-induction effects beyond that specific form of E
(20)
Ind . For these purposes, we note

that the single electron on χx (χy) does contribute (via the electron density) to the electro-

static potential of a given fragment that polarizes the other one. However, the orbitals χx

(χy) themselves are assumed to be frozen (unpolarizable). In other words, we consider the

response (polarization) of the occupied orbitals in BA under the influence of the electrostatic

potential resulting from the nuclei of B and the occupied orbitals in BB ⊕ (1/2){χy} and

vice versa, where “(1/2)” reminds that the orbital χy is singly occupied while the orbitals

spanning BB are doubly occupied. A technical issue is the precise choice of the virtual space

for the response of fragment-A orbitals. We employed for this virtual space the orthogonal

complement of BA ⊕ BC like in the default ISAPT variant, disregarding the fact that the

IHO χx, carved out of BC, is not precisely contained in BC and has a nonzero component in

the unoccupied space.

The coupled perturbed Hartree-Fock (CPHF) coefficients C i
a/C

j
b for each fragment and

the pure induction correction E
(20)
ind,resp can now be computed using standard SAPT0 formulas

(note that a and b denote virtual orbitals of A and B, respectively). The exchange-induction

correction E
(20)
exch−ind,resp, computed in ISAPT within the S2 approximation, again depends on

whether a parallel (Eq. (2)) or perpendicular (Eq. (3)) spin coupling of link electrons is

assumed, and we will again opt for the average of the two as our final correction. The

resulting AO-based formula for both couplings, derived via the density matrix formalism, 21
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reads

E
(20)‖/⊥
exch−ind,resp(A← B, S2) =CA ·

[
−2KB − 4JBDBSAO − 2VBDBSAO + 2KBDBSAO

+
1

2
KY DY SAO − 4J[DASAODB]∓ J[DXSAODY ]

+ 2SAODBKA ± 1

2
SAODY KX + 2K[DASAODB]

± 1

2
K[DXSAODY ]− 4SAODBJA − 2SAODBVA

+ 4SAODBSAODAJB ± SAODY SAODXJB

+ 2SAODBSAODAVB ± 1

2
SAODY SAODXVB

+ 4JBDASAODBSAO ± JBDXSAODY SAO

+ 2VBDASAODBSAO ± 1

2
VBDXSAODY SAO

+ 4J[DBSAODASAODB]± J[DY SAODXSAODB]

± J[DBSAODXSAODY ] + J[DY SAODASAODY ]

− 2SAODBK[DBSAODA]∓ 1

2
SAODBK[DY SAODX ]

∓ 1

2
SAODY K[DBSAODX ]− 1

2
SAODY K[DY SAODA]

− 2K[DASAODB]DBSAO ∓ 1

2
K[DXSAODB]DY SAO

∓ 1

2
K[DXSAODY ]DBSAO − 1

2
K[DASAODY ]DY SAO

+ 4SAODBJADBSAO + SAODY JADY SAO

+2SAODBVADBSAO +
1

2
SAODY VADY SAO

]
(9)

where CA is the matrix of fragment-A CPHF coefficients C i
a backtransformed to the AO

basis using the appropriate LCAO MO coefficients CiK and CaL:26

CA
KL = C i

aCiKCaL (10)

An analogous formula for the other exchange induction term E
(20)‖/⊥
exch−ind,resp(B← A, S2) (where,
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this time, fragment A polarizes fragment B) is obtained from Eq. (9) by an exchange of all

symbols pertaining to A by the corresponding ones of B and vice versa.

The adjustment to the treatment of second-order exchange-dispersion energy resulting

from our link bond reassignment is quite analogous to exchange-induction energy (note that

the E
(20)
disp term needs no adjustment as excitations from the link orbital are not consid-

ered). The resulting AO-based formulas for E
(20)‖/⊥
exch−disp(S2) are presented in the Supporting

Information. Notably, all additional terms resulting from the link-electron spin coupling

cancel out when averaging the parallel and perpendicular cases, so the spin-averaged value

of E
(20)
exch−disp(S2) is given by the standard SAPT0 formula (see e.g. Ref. 26 for its AO form)

without any modifications.

Hartree-Fock delta term

Unfortunately, our proposed definition of interfragment induction energy does not lend itself

to an infinite-order generalization that can be used to define δHF. Recall that, in standard

intermolecular SAPT, δHF is defined as the difference between the supermolecular HF in-

teraction energy EHF
int and its SAPT approximation E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp.

Adapted to the ISAPT context, EHF
int still signifies the difference in the HF energies of the

A-B complex with and without interaction. In our ISAPT algorithms, on the noninteract-

ing fragment side, the induction energy accounts for a polarization of orbitals from BA in

the electrostatic potential of BB ⊕ (1/2){χy} and the other way around. Accordingly, one

should optimize the noninteracting occupied orbitals for A in the orthogonal complement

of BC, with the embedding potential including interactions with nuclei of C and the sum

of electron densities coming from χx and the rest of BC (recall that the latter has had two

electrons removed and reassigned to A and B). Note that the embedding potential does

not contain the interaction with the single-electron density from χy, the IHO at the more

distant fragment boundary, which has been reassigned to fragment B; thus, the entire A–B

interaction has been temporarily switched off.
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On the interacting side, one optimizes the occupied orbitals of AB also in the orthog-

onal complement of BC, with the nuclei of C and the Coulomb and exchange operators

corresponding to the density of BC forming the HF embedding potential. Note that this

potential is obtained from the same HF calculation for the entire molecule. Moreover, the

reassignment of electrons on χx and χy does not matter this time because the HF system

is embedded in the sum of densities coming from χx, χy, and the rest of BC. The orbitals

χx and χy, while frozen in the HF optimization, do belong to the fragments A and B, so

that their interaction with each other and with the nuclei of the other fragment needs to

be included in the HF interaction energy (it is a constant term that does not depend on

the orbitals being optimized). Unfortunately, in this algorithm, the treatment of the two

electrons assigned to χx and χy is not consistent between the fragment calculations, where

they are described by frozen orbitals, and the molecular one, where they belong to doubly

occupied orbitals which are variationally optimized. As a result, we were not able to define

a supermolecular δHF correction that is consistent with the proposed reassignment of link

bond electrons and the resulting E
(10)
elst , E

(10)
exch, E

(20)
ind,resp, and E

(20)
exch−ind,resp corrections. In the

calculations below, the δHF term will be taken from ISAPT calculations with the default

assignment of the entire link orbitals to C.

Embedding, orthogonalization, and self-consistency

We note at this point that the embedding defined in the fragment HF calculations described

above (omitting the IHO at the distant fragment boundary), while perfectly consistent with

our electrostatic and induction energy expressions, is not the same as the embedding used to

compute the initial HF orbitals spanning BA and BB (which, by default, always takes into

account the entire linker including both χx and χy). If the linker is sufficiently large, the

difference in the embedding density occurs far away from the fragment in question and its

effect should be small, however, we have to consider whether an orbital reoptimization is in

order before the computation of ISAPT corrections. On the other hand, χx and χy depend
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on the spaces BA and BB because they are orthogonalized to these spaces. This circular

dependence suggests that iteration to self-consistency is the most rigorous way to implement

the process: determine χx and χy which are orthogonal to the initial spaces BA and BB

from the default link assignment algorithm, reoptimize BA in an embedding excluding χy

and BB in an embedding excluding χx, update χx/χy by enforcing orthogonality to new

BA/BB, and so on. However, a fully self-consistent algorithm is impractical — each iteration

requires converged HF calculations for both fragments. On the other hand, as differences in

embedding should be minor and occur relatively far away from a given fragment, this process

should be very quickly convergent, and we can limit ourselves to zero, one, or two iterations.

This leads to three variants of our approach:

Zero iterations: the occupied spaces BA/BB are taken directly from the default ISAPT

variant, that is, the HF orbitals have been obtained using an embedding in the entire

BC space. These occupied spaces are used to construct χx and χy, and the ISAPT

corrections are obtained from the resulting augmented density matrices and the polar-

ization of the occupied spaces.

One iteration: after the IHOs χx and χy are constructed as above, the HF calculations

for fragments are repeated, this time with the embedding potential for A excluding

χy and the embedding potential for B excluding χx. This leads to new occupied

spaces B′A/B′B, which in turn results in updated IHOs χ′x and χ′y orthogonal to the

new occupied spaces. Now, all ISAPT corrections are obtained from the resulting

augmented density matrices and the polarization of the occupied spaces B′A/B′B.

Two iterations: after the IHOs χ′x and χ′y are constructed as above, the HF calculations

for fragments are repeated once again, this time with the embedding potential for A

excluding χ′y and the embedding potential for B excluding χ′x. This leads to new

occupied spaces B′′A/B′′B, which in turn results in updated IHOs χ′′x and χ′′y orthogonal

to the new occupied spaces. Now, all ISAPT corrections are obtained as above, but
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using the occupied spaces B′′A/B′′B and the IHOs χ′′x and χ′′y.

Determining link hybrid orbitals: the SAO and SIAO approaches

To complete the specification of our method, we have to define how the IHOs χx and χy are

determined. We propose two algorithms for this, both of which proceed with a projection

step (onto the fragment A or B) and an orthogonalization step (relative to all doubly oc-

cupied orbitals of this fragment). Once the specific IBO φAC responsible for the A–C link

bond is identified, its projection onto A can be performed in one of two ways. In the first

approach, inspired by the ALMO method,27 φAC is represented in the AO basis and pro-

jected onto the space of basis functions centered on atoms of A only (all other coefficients of

this orbital are zeroed). This approach will be termed Splitting of Atomic Orbitals (SAO).

In the second approach, φAC is represented in the IAO basis,17 projected onto the space of

IAOs centered on atoms of A only by zeroing all other coefficients, and transformed back to

the AO basis. This approach will be termed Splitting of Intrinsic Atomic Orbitals (SIAO).

In either method, the final IHO χx is obtained from the projected orbital by a Schmidt

orthonormalization to all doubly occupied orbitals of A, that is, to the BA space. Note that

the SIAO projection is not strictly an ALMO (it has nonzero coefficients of basis functions

on the other fragments resulting from the tails of the IAOs), and the SAO projection ceases

to be an ALMO after orthogonalization. However, in either case, χx is still mostly local-

ized on A. The same projection-then-orthogonalization procedure is performed at the other

interfragment boundary to determine χy.

The final specification of the new ISAPT algorithm includes both the SAO/SIAO recipe

to determine link IHOs and the level of self-consistency between those IHOs and the occu-

pied orbital space expressed by the number of iterations described earlier in this section. For

example, the SAO0 method involves the SAO projection algorithm resulting in χx/χy or-

thogonalized to the original occupied spaces BA/BB (zero iterations), while the SIAO2 one

uses the SIAO projection leading to χ′′x/χ
′′
y orthogonalized to the twice updated occupied
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spaces B′′A/B′′B. While the orthogonalization step is formally required to obtain a valid frag-

ment density matrix when augmented by χx/χy, we will perform a limited set of numerical

tests to investigate the practical consequences of not orthogonalizing (note that the lack of

orthogonalization makes the algorithms with 1 and 2 iterations identical as χX ≡ χ′X ≡ χ′′X

for X = x, y).

Finally, we note a common formal flaw of both selections of the IHOs χx and χy: they

are not entirely contained in the occupied space BC. As a result, from the point of view of

the linker C, the reassignment of one electron each to χx and χy involves subtracting some

electron density that is not present in the system, leaving out a residual density matrix for C

that is not positive definite (two negative eigenvalues). We do not see a simple way to avoid

this flaw; however, it should be inconsequential in practice as only the density matrices of A

and B are used to compute the ISAPT corrections and, for the purpose of recomputing the

occupied orbital spaces BA and BB, the repartitioning only changes the embedding potential

at the more distant interfragment boundary.

Results and discussion

Our improved ISAPT algorithms have been implemented in a development version of the

Psi4 software package.28 The modified Psi4 code is available on GitHub at

https://github.com/konpat/psi4/tree/isapt. The interaction energy components within

a number of representative molecules are analyzed and compared to the previously pro-

posed ISAPT method by Parrish et al.14 In particular, pentanediol isomers, n-heptane, 2,4-

dimethylpentane, and folded and unfolded bicyclic N-arylimide based molecular balances

(halogens: Cl, Br, and I interact noncovalently with aromatic fragments: benzene, phenan-

threne, pyrene, and ethylene)29 are chosen for the study. All geometries are optimized at

the MP2 level of theory employing the aug-cc-pVDZ basis set. To examine the accuracy

of energy contributions, single-point ISAPT energy calculations are performed using three
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orbital bases, aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ (aDZ, aTZ, aQZ for short).

For bulky molecules, the N-arylimide balances, the systems are optimized using the B3LYP-

D3(BJ) method30 with the aDZ basis set (with cc-pVDZ-pp on the heavy iodine atom). The

resulting ISAPT interaction energies are computed using the aDZ basis set, with cc-pVTZ

centered on the iodine atom. Overall, each molecular system is tested with seven link as-

signment options: C (original), SAO0, SAO1, SAO2, SIAO0, SIAO1, and SIAO2, with and

without orthogonalizing the link orbitals to the fragment occupied space.

P242 P244 P142

P156 C73 C7B24

Figure 2: Some illustrative fragmentation patterns of 2,4-, 1,4-, and 1,5-pentanediol, n-
heptane, and 2,4-dimethylpentane considered in this work. A missing bond signifies a frag-
ment boundary.

Pentanediol isomers

The 2,4-, 1,4-, and 1,5-pentanediol molecules, featuring the OH· · ·O distances ranging from

2.40 Å (an intramolecular hydrogen bond) to 6.30 Å, serve as convenient illustrative examples

for a range of polar noncovalent intramolecular interactions. Four, six, and nine fragmen-

tation patterns of the 2,4-, 1,4-, and 1,5-pentanediol systems, respectively, were studied. A

few examples (P242, P244, P142, and P156) of these fragmentation patterns are presented
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in Fig. 2; the remaining ones are shown in the Supporting Information.

Figure 3: ISAPT energy components in 2,4-pentanediol (P242 fragmentation pattern) com-
puted using the aXZ bases (X=D, T, Q) and three link assignments: C, SAO1, and SIAO1.

The P242 model, well handled by the original ISAPT(C) approach, assists in the verifi-

cation of the implemented methods by comparing to the data in Ref. 14. According to Fig.

3, the ISAPT energy components computed by the SIAO1 method have the lowest absolute

differences relative to the original C variant. The electrostatic term has a MAD, mean ab-

solute difference, of 0.28 kcal/mol with bases aDZ, aTZ, and aQZ. This MAD amounts to

0.70 kcal/mol for the SAO1 method. Other energy contributions are also in good agreement

between different fragmentation patterns: the SAO1 and SIAO1 induction energies deviate

from the C variant by 0.12–0.17 kcal/mol, the first-order exchange term varies by about 0.07

kcal/mol, and differences in the dispersion term do not exceed 0.02 kcal/mol, much smaller

than the differences between basis sets.

On the other hand, for most of the other fragmentation patterns, including the minimal

linker arrangement of 2,4-pentanediol (P244) as well as related short-linker configurations

for other isomers (P142 and P156), the electrostatic energy in the original ISAPT(C) vari-

ant is strongly repulsive. This does not make physical sense, as one expects either strong

electrostatic attraction due to favorable dipole-dipole interaction (P244) or weak attraction

due to charge penetration (P142 and P156). As stated before, we hypothesize that the
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observed problematic behavior of ISAPT(C) electrostatics is connected to the unphysical

dipole moments emerging at the A-C and B-C fragment boundaries. The results with the

new ISAPT link assignments (Figs. 4-6) indicate that the SAO1 and SIAO1 electrostatic en-

ergy has shifted to a physically justified negative value. Furthermore, while the second-order

induction and exchange-induction components in original ISAPT(C) are both very large in

magnitude and cancel each other to a large extent, the respective SAO1 and SIAO1 terms

are much smaller. The large cancellation between induction and exchange-induction effects

is well known from conventional intermolecular SAPT (and is related to the overall diver-

gence of the perturbation series31,32): the unsymmetrized (polarization) expansion allows the

two molecules to overpolarize each other, an effect that has to be cancelled by the exchange

terms brought about by enforcing the full permutational symmetry of the wavefunction. The

observation that, in ISAPT, such an overpolarization is made particularly egregious by the

original C link assignment, once again suggests the unphysical dipole moments at interfrag-

ment boundaries, leading to an artificially enhanced electric field, as the culprit. As far as

other ISAPT energy terms are concerned, the first-order exchange is relatively consistent

between the C and SAO1 schemes but reduced in the SIAO1 one while the dispersion and

exchange-dispersion energies are remarkably consistent across all three link assignments.

Figures 4-6 show that the link reassignment proposed in this work significantly improves

the ISAPT energy components that are problematic in original ISAPT(C). We postulate

that this improvement stems from a substantial reduction of the artificial dipoles arising from

the nonsymmetric carbon atoms next to the A-C and B-C linking bonds. Indeed, Table

1 shows that the SAO1 and SIAO1 dipole moments on fragments A and B, for different

pentanediol isomers and fragmentation patterns, are about 15–20% smaller in magnitude

than the fragment dipole moments from the original ISAPT0, and are consistent with respect

to the basis set. As both fragments are obviously polar, we do not expect a reduction

of dipole moments to near-zero in pentanediol molecules. However, it appears that the

redistribution of link bonds to the corresponding IHOs on each fragment has crucially reduced

23



Figure 4: ISAPT energy components in 2,4-pentanediol (P244 fragmentation pattern) com-
puted using the aXZ bases (X=D, T, Q) and three link assignments: C, SAO1, and SIAO1.

Figure 5: ISAPT energy components in 1,4-pentanediol (P142 fragmentation pattern) com-
puted using the aXZ bases (X=D, T, Q) and three link assignments: C, SAO1, and SIAO1.

the imbalance of the electron densities on the linking atoms, leading to more meaningful

interaction energies.

Overall, with the new SAO1 and SIAO1 variants, the dominant attractive contributions

to the intramolecular interaction energy in 2,4-pentanediol are electrostatics and dispersion

as expected for a hydrogen bonded system. The overall interaction energy for the P244
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Figure 6: ISAPT energy components in 1,5-pentanediol (P156 fragmentation pattern) com-
puted using the aXZ bases (X=D, T, Q) and three link assignments: C, SAO1, and SIAO1.

Table 1: Magnitude of the HF dipole moments (in a.u.) for different molecules
and their fragments in the aDZ, aTZ, and aQZ bases.

System Basis ABC
Fragment A Fragment B

C SAO1 SIAO1 C SAO1 SIAO1

P242
aDZ 1.057 0.951 0.670 0.716 0.936 0.666 0.691
aTZ 1.056 0.950 0.644 0.714 0.935 0.633 0.689
aQZ 1.056 0.950 0.657 0.713 0.935 0.630 0.689

P244
aDZ 1.057 0.833 0.699 0.688 1.312 0.720 0.922
aTZ 1.056 0.833 0.704 0.687 1.313 0.765 0.921
aQZ 1.056 0.833 0.744 0.687 1.313 0.740 0.921

P142
aDZ 1.040 1.319 0.676 0.915 0.893 0.625 0.697
aTZ 1.040 1.319 0.680 0.913 0.892 0.611 0.694
aQZ 1.039 1.319 0.638 0.913 0.892 0.628 0.694

P156
aDZ 0.959 1.186 0.630 0.893 0.893 0.625 0.705
aTZ 0.958 1.185 0.667 0.889 0.892 0.617 0.702
aQZ 0.957 1.184 0.604 0.889 0.892 0.612 0.701

C73
aDZ 0.047 0.808 0.095 0.389 0.813 0.097 0.392
aTZ 0.046 0.810 0.048 0.388 0.815 0.056 0.391
aQZ 0.046 0.810 0.110 0.388 0.815 0.126 0.391

C75
aDZ 0.047 0.788 0.115 0.339 0.813 0.080 0.352
aTZ 0.046 0.790 0.047 0.339 0.815 0.037 0.351
aQZ 0.046 0.790 0.041 0.339 0.815 0.117 0.351

C7B24
aDZ 0.045 0.799 0.091 0.385 0.799 0.091 0.385
aTZ 0.044 0.800 0.178 0.384 0.800 0.177 0.384
aQZ 0.044 0.800 0.100 0.384 0.800 0.100 0.384
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fragmentation pattern, Fig. 4, is attractive as expected, amounting to −3.48 kcal/mol for

SAO1/aDZ and −4.75 kcal/mol for SIAO1/aDZ, improving from the repulsive 8.80 kcal/mol

value obtained with original ISAPT0(C)/aDZ. The SAO1 and SIAO1 variants predict that

the fragments in P244 exhibit significantly stronger bonding than the fragments in P242 (Fig.

3), which is consistent with the addition of aliphatic chains that amplify the attractive dis-

persion and charge penetration effects. Both models can also be compared with an analogous

hydrogen bonded configuration of the water dimer, involving the same OH· · ·OH geometry

with the remaining hydrogens added in the direction of the O-C bonds in 2,4-pentanediol at

MP2/aDZ-optimized distances (Fig. 7). One can see that the attractive electrostatic energy

obtained from the intramolecular SIAO1 method is in good agreement with the water dimer

value computed with standard intermolecular SAPT0. This agreement is accidentally too

good: both electrostatic terms primarily stem from the dipole-dipole interaction of the very

similar polar fragments, but 2,4-pentanediol includes more charge penetration due to the hy-

drocarbon chains. Indeed, the presence of the additional aliphatic chains in P244 increases

both the interfragment density overlap (thus leading to larger first-order exchange) and the

polarizability (enhancing the induction and dispersion terms).

Figure 7: Comparison of energy components between the P244 fragmentation pattern of
2,4-pentanediol (computed with ISAPT/SAO1 and ISAPT/SIAO1) and the corresponding
water dimer structure exhibiting the same hydrogen-bonded arrangement (computed with
standard SAPT0).
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When the basis set is enlarged from aDZ to aQZ, the ISAPT(SIAO1) energy components

are highly consistent. As expected, the dispersion and exchange-dispersion corrections in-

crease in magnitude as the basis set increases while other, uncorrelated corrections change

very little. This observation is in perfect agreement with standard intermolecular SAPT,

where the slow basis set convergence of dispersion and exchange-dispersion corrections is

well documented and the possible remedies include midbond functions33 and the explicitly

correlated F12 approach.34 Somewhat disappointingly, the same stable convergence pattern

does not apply to the SAO1 link assignment. Conversely, Figs. 3-6 indicate that the basis

set convergence of the ISAPT(SAO1) electrostatic and first-order exchange terms is slow

and erratic, and these convergence issues carry on to the total interaction energies. This IS-

APT(SAO1) basis set instability is the main reason why we recommend the SIAO1 variant,

which never suffers from such convergence issues, for all practical applications.

Some insights into the different basis set behavior of ISAPT(SAO1) and ISAPT(SIAO1)

can be obtained by examining the corresponding link orbitals (IHOs). An example com-

parison of the link IBOs with the IHOs resulting from both schemes, for the n-heptane

molecule and its fragmentation pattern later referred to as C74, is presented in Fig. 8. For

this example, we note that both schemes lead to IHOs that roughly resemble the carbon sp3

hybrid orbitals pointing towards the other fragment, however, the SIAO1 orbitals appear to

be more localized to the respective A/B fragments (note that all panels in Fig. 8 use the

same isosurface value). This would suggest that the two IHOs χ′x and χ′y should have smaller

overlap for SIAO1 than for SAO1 (as before, the primes signify that one iteration towards

self-consistency of orbital spaces and link IHOs has been performed within the SAO1/SIAO1

schemes). Indeed, we observe that the 〈χ′x|χ′y〉 overlap integral tends to be much smaller in

magnitude for SIAO1 than for SAO1. For example, in the 2,4-pentanediol system, the P244

fragmentation scheme, and the aDZ, aTZ, and aQZ basis sets, |〈χ′x|χ′y〉| amounts to 0.133,

0.0632, and 0.0724, respectively, for SAO1 and 3.02x10−4, 3.09x10−4, and 3.11x10−4, respec-

tively, for SIAO1. Formally, neither SIAO1 nor SAO1 link hybrids are strictly localized on
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the A/B fragments: the IAOs have small tails on other atoms, and the orthogonalization

does not strictly preserve the localization. The reason why the SIAO1 link hybrids are more

strongly localized than the SAO1 ones is that the minimal basis used to construct IAOs17

does not give them the flexibility to improve the basis set description on atoms other than

their center. On the contrary, in a sufficiently large AO basis, the functions centered on

one atom actively improve the basis set description around other atoms, although this im-

provement varies erratically from basis to basis. As a result, the SAO projection scheme

leaves out larger tails than the SIAO one, but these tails are not stable with the basis set.

In our opinion, this behavior leads to both a larger |〈χ′x|χ′y〉| overlap and a larger basis set

instability for the SAO1 link assignment scheme relative to the SIAO1 one.

As the OH· · ·O interacting distance increases when going from 2,4- to 1,4- and 1,5-

pentanediols, the electrostatic contribution in a primarily dipole-dipole interaction decreases.

Among the 1,4-pentanediol models, the P142 partitioning reports the most favorable elec-

trostatic energy (Fig. 5), which amounts to −3.04 kcal/mol for SIAO1 and −9.01 kcal/mol

for SAO1 using the aDZ basis. A notable reduction in the induction term compared to the

original ISAPT(C) variant occurs, leading to a net interaction energy of −4.50 kcal/mol and

−0.38 kcal/mol in SIAO1 and SAO1, respectively. Interestingly, a similar trend is observed

in the P156 partitioning of the 1,5-pentanediol system (Fig. 6), yet the electrostatic term

can more likely be attributed to charge penetration in this case. The 1,5-pentanediol series

shows that the fragments are mainly bound by the electrostatic force, along with a roughly

equal contribution from the induction and dispersion terms that sum to the net attractive

energy.

Alkanes

Due to the nonpolarity of the C-C bond and the negligible electronegativity difference in-

volved in the C-H bonding, intramolecular interactions in hydrocarbons are dominated by

London dispersion forces. Alkanes are excellent models for analyzing nonbonded intramolec-
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Orbital contours (at the same isosurface value of 0.05) of the complete link IBOs
from ISAPT(C) (panels (a) and (b)) and the reassigned link IHOs from ISAPT(SAO1)
(panels (c) and (d)) and from ISAPT(SIAO1) (panels (e) and (f)). The system is n-
heptane in the C74 fragmentation pattern, and the basis set is aDZ.
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ular interactions, as it is those interactions that result in a higher thermodynamic stability of

branched alkanes relative to their linear isomers.35 Thus, linear and branched seven-carbon

alkanes, n-heptane and 2,4-dimethylpentane (structures C73 and C7B24 in Fig. 2, respec-

tively) are chosen as models to study the performance of different ISAPT variants. It should

be stressed that a single fragmentation of these alkanes is not enough to quantify the entire

nonbonded intramolecular interaction, as some of the relevant interacting groups inevitably

end up on the same fragment. However, the fragmentation patterns in C73 and C7B24

are designed to alleviate this issue as, in both cases, fragments A and B are propyl groups

(1-propyl or 2-propyl). Thus, the A-B interaction misses the important 1,3-methyl-methyl

stabilizing effects (protobranching36) within each propyl group, but it misses the same num-

ber of such effects in both cases.

Both n-heptane and 2,4-dimethylpentane are nonpolar molecules, and their fragments

obtained by cutting through C-C bonds should be nonpolar as well. However, as shown in

Table 1, when the entire link IBO is assigned to fragment C, the noncovalently interacting

fragments A and B acquire large dipole moments. As stated above, the origin of those

unphysical dipole moments is the unbalanced charge distribution around the linking carbon

atoms, where the electrons occupying only three out of the four sp3 orbitals belong to the

fragment A(B). Fortunately, according to Table 1, the magnitude of the fragment dipole

moments is strongly reduced in the new approaches, by 85–90% for SAO1 and 50–55% with

SIAO1. In the SIAO1 case, this reduction is perfectly consistent in all tested basis sets,

while the SAO1 dipole moments show some basis set fluctuations in line with the energy

components. Thus, while the link bond reassignment proposed here does not completely

eliminate the spurious multipoles at the interfragment boundary, it reduces their magnitude

significantly. It is not clear why the SAO1 approach tends to provide a greater dipole moment

reduction than the SIAO1 one.

We now turn to examining the ISAPT energy contributions for n-heptane and 2,4-

dimethylpentane as a function of the link assignment, focusing on the difference between
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Figure 9: Comparison of the ISAPT0 energy components between n-heptane (C73, colored
bars) and its branched isomer, 2,4-dimethylpentane (C7B24, empty bars) computed with
the C, SAO1, and SIAO1 variants.

two systems which may shed light on the physical origins of the branched alkane stabiliza-

tion. A glimpse at both sets of data (Fig. 9) once again shows that the default ISAPT(C)

variant does not provide physically meaningful results: the electrostatic energy is strongly

repulsive while the induction and exchange-induction terms are very large in magnitude and

strongly vary between aDZ and aTZ. The SAO1 link reassignment once again alleviates the

issue of repulsive electrostatics. However, besides a fairly slow (but not terrible) basis set

convergence, one sees another troubling property that puts the usefulness of ISAPT(SAO1)

into doubt: the total C73 interaction energy is slightly repulsive in all tested basis sets. The

SIAO1 link reassignment eliminates both of those issues, providing meaningful and quickly

convergent ISAPT energy contributions and predicting a stronger interfragment stabilization

for the branched isomer relative to the linear one. Thus, only the ISAPT(SIAO1) variant

is suitable for providing meaningful insights into the nonbonded interactions enhancing the

thermodynamic stability of 2,4-dimethylpentane relative to n-heptane.

The ISAPT(SIAO1) data in Fig. 9 indicate that the overall attractive interaction energy

is predominantly controlled by the dispersion contribution and secondarily by the electro-
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static term, but the latter effect is more than counterbalanced by the repulsive first-order

exchange. The 2,4-dimethylpentane system exhibits roughly twice the intramolecular electro-

static and dispersion energy of the n-heptane model (−2.95 and −4.76 kcal/mol versus −1.43

and −2.09 kcal/mol, respectively, in the aDZ basis set). This illustrates why branched alka-

nes are more thermodynamically stable than linear alkanes with the same carbon content 35

— the contribution to the fragments’ electron densities from multiple closely spaced methyl

groups enhances the charge penetration term in the electrostatic energy as well as leads to a

larger dispersion energy. Obviously, the larger interfragment overlap in the branched system

increases the first-order exchange repulsion as well, and the overall change in interaction

energy is the net result of the additional stabilizing terms in electrostatics and dispersion

and destabilizing exchange contributions.

In addition, the intramolecular energy contributions in n-heptane can be compared to

the standard SAPT terms for a related intermolecular interaction involving fragments A

and B capped with hydrogen atoms. The C73 model with the small -CH2- linking fragment

is not suitable for this purpose as the capping hydrogens would end up too close to each

other. Therefore, we switch to the C75 model with a slightly bigger -CH2CH2- linking

fragment. For this model, the interacting fragments A and B with an additional hydrogen

on each are treated with the standard SAPT0 method in the same aDZ–aQZ bases. The

resulting energy contributions are presented in Fig. 10, showing that the intermolecular

SAPT0 electrostatic energy well matches with the improved ISAPT0 variants, especially

SIAO1. The close distance between the two capping hydrogens results in larger exchange

and dispersion energies observed in the intermolecular system as expected. This attribution

of increased first-order exchange and dispersion can be confirmed by an intermolecular F-

SAPT calculation,37 where each SAPT term is partitioned into contributions from a pair of

fragments, the capping hydrogen and the rest of the molecule. In the F-SAPT calculation

in the aTZ basis, the first-order exchange interaction energy of the added hydrogens and

the partner monomer amounts to 1.71 kcal/mol, that is, 72% of the total dimer exchange
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energy of 2.36 kcal/mol. The uncapped fragments account for only 0.65 kcal/mol (28%) of

exchange and −0.69 kcal/mol (48%) of dispersion energy, much closer to the intramolecular

SAPT results. Overall, the improved ISAPT methods provide reasonable and reliable energy

decomposition unlike the original ISAPT0(C) variant (which gives 1.42 kcal/mol for the

electrostatic term in the C75 model).

Figure 10: Comparison of energy components between the C75 model of n-heptane (com-
puted with the ISAPT0/SAO1 and ISAPT0/SIAO1 variants) and the related intermolecular
propane-ethane dimer (computed with standard SAPT0) in the aXZ bases, X=D, T, Q. The
locations of two additional hydrogens in the dimer calculation are explicitly optimized at the
MP2/aDZ level.

Comparison of different SAO and SIAO variants, with and without

orthogonalization

The results presented so far led us to designate the ISAPT(SIAO1) variant as the most

meaningful one for practical calculations. We also made extensive comparisons to the IS-

APT(SAO1) variant as well as the original ISAPT(C) one. We will now illustrate how the

performance of the method is influenced by the level of self-consistency in the determination

of fragment and link occupied orbitals (that is, the choice between SAO0/SAO1/SAO2 or

SIAO0/SIAO1/SIAO2), and by the orthogonalization of the link IHOs to the fragment oc-
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cupied spaces or lack thereof. We will make explicit comparisons using the n-heptane and

2,4-dimethylpentane models (C73 and C7B24, respectively), but the conclusions are trans-

ferable to the other studied systems as well: analogous tables comparing different ISAPT

“minor variants” for the pentanediol models are provided in the Supporting Information.

A comparison of the new ISAPT energy contributions for the C73 and C7B24 models

is presented in Figs. 11 and 12, respectively. In both SAO and SIAO formalisms, a dra-

matic change of ISAPT results, especially of induction and exchange-induction energies, is

observed between the original HF orbitals (SAO0/SIAO0) and their one-iteration refinement

(SAO1/SIAO1). However, the second iteration (SAO2/SIAO2) changes very little, confirm-

ing that the algorithm is essentially converged after one iteration. This is the reason why

we have focused on the SAO1 and SIAO1 results so far, and why we recommend the SIAO1

variant for all practical calculations: some internal consistency between the fragment and

link orbitals is clearly required (otherwise, as shown in Figs. 11-12, the induction effects

blow up quite dramatically), but performing a single iteration of their mutual refinement is

entirely sufficient. The SAO2 and SIAO2 methods show only up to ±0.003 kcal/mol energy

differences compared to the corresponding SAO1 and SIAO1 methods, regardless of the basis

set size.

Figure 11: Comparison of interaction energies in the C73 model of n-heptane, computed
using the aQZ basis set with six link assignment options SAOn and SIAOn, n = 0, 1, 2.
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Figure 12: Comparison of interaction energies in the 2,4-dimethylpentane model C7B24,
computed using the aQZ basis set with six link assignment options SAOn and SIAOn, n =
0, 1, 2.

Another technical detail of the new ISAPT calculations that turns out to have very

minor significance is the orthogonalization of the link IHOs to the occupied space for the

fragment (that is, for the SAO1 and SIAO1 approaches, the orthogonalization of χ′x(χ′y) to

the spaces B′A(B′B), respectively). All ISAPT(SAO) and ISAPT(SIAO) results presented so

far have employed this orthogonalization, but we will now check what happens if the orthog-

onalization is skipped. A comparison of the ISAPT(SAO1) and ISAPT(SIAO1) energies for

n-heptane and 2,4-dimethylpentane, with (denoted “ORTH”) and without (“NONE”) the

orthogonalization of link IHOs to the fragment occupied space, is presented in Fig. 13. For

the SAO1 variant, the electrostatic and first-order exchange components with and without

orthogonalization follow the same trends, but the actual numerical values are quite differ-

ent. On the contrary, the differences between the corresponding first-order ISAPT(SIAO1)

contributions are nearly negligible, and so are the variations in second-order ISAPT energies

for both approaches.

The last technical aspect of new ISAPT calculations that we need to investigate is the

choice of spin coupling between the singly occupied link IHOs in the computation of exchange

energies. At the first order, the parallel (PAR) and perpendicular (PERP) spin-coupled val-
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Figure 13: Comparison of ISAPT energy components within n-heptane (C73) and 2,4-
dimethylpentane (C7B24) molecules with (data marked “ORTH”) and without (marked
“NONE”) link orbital orthogonalization, computed using the SAO1 and SIAO1 variants
with the aXZ bases, X=D, T, Q.

ues of E
(10)
exch, as well as their averages (AVG), are presented in Fig. 14 for four systems:

2,4-pentanediol (P244), 1,4-pentanediol (P142), n-heptane (C73), and 2,4-dimethylpentane

(C7B24). Due to the larger overlap of the link orbitals, the ISAPT(SAO1) first-order ex-

change energy is not just more erratic with respect to basis set, but it is also much more

sensitive to the spin coupling than ISAPT(SIAO1). As the overlap integral between the two

IHOs is zero in the perpendicular mode, the parallel coupling leads to a larger exchange en-

ergy in the SAO1 variant. In contrast, the PAR and PERP E
(10)
exch values from ISAPT(SIAO1)
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are highly consistent for all systems studied. In second order (see the Supporting Informa-

tion), both E
(20)
exch−ind,resp and E

(20)
exch−disp are practically independent on spin coupling: the

absolute differences between the PAR and PERP values for the systems and basis sets in-

cluded in Fig. 14 do not exceed 0.042 kcal/mol (SAO1) and 2.7x10−4 kcal/mol (SIAO1) for

E
(20)
exch−ind,resp, and 0.0032 kcal/mol (SAO1) and 7.4x10−5 kcal/mol (SIAO1) for E

(20)
exch−disp.

For all other ISAPT results in this work, the average of the parallel and perpendicular

spin-coupling values is chosen as the total exchange contribution.

Figure 14: ISAPT exchange energy E
(10)
exch from parallel (PAR), perpendicular (PERP), and

average (AVG) spin couplings in models P244, P142, C73, and C7B24. The values are
computed with SAO1 (empty bars) and SIAO1 (colored bars) in the aXZ bases, X=D,T,Q.

N-arylimide molecular balances

Noncovalent intramolecular interactions of aromatic groups are crucial in chemical and bio-

logical processes, especially in rational drug design, new drug discovery, and the development

of synthetic materials, sensors, and catalysts.29,38 A prime example of carefully designed in-

tramolecular interactions are the highly versatile N-arylimide molecular torsion balances, an

effective platform to quantify non-covalent halogen-π interactions in solution, via the folded

(closed) and unfolded (open) conformational equilibrium. Recently, a number of bicyclic N-

arylimide balances were synthesized and used to quantitatively probe halogen-π interactions

by Sun and coworkers.29 Understanding and tuning the delicate interplay of intramolecular

nonbonded interactions between the open and closed conformations of molecular balances
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requires reliable insights from energy decomposition. Therefore, in this study, the intramolec-

ular interaction energy components of closed and open states of several halogen-containing

N-arylimide systems (see Fig. 15 for representative structures, and the Supporting Infor-

mation for all geometries) are analyzed using the ISAPT(SIAO1) method and compared to

the original ISAPT(C) approach. In the closed conformation, a halogen atom is positioned

over an aromatic surface (benzene, phenanthrene, or pyrene). In the open conformation,

the halogen-substituted benzene ring is rotated 180 degrees so that only a hydrogen atom

points towards the aromatic surface. It should be noted that the open and closed structures

are separately optimized; thus, their geometric difference involves some rearrangements in

addition to the rotation of the substituted benzene ring. To separate the actual noncova-

lent intramolecular interactions from the geometry relaxation effects (the latter do not lend

themselves to a SAPT-like decomposition), we also examine the “openR” structures, which

are open-balance conformations obtained from the optimized closed structure directly by

a 180-degree rotation of the halogen-substituted benzene ring (no geometry reoptimization

is performed so the “openR” structure is not a local minimum). An analogous “closedR”

structure, a closed conformation obtained by a 180-degree rotation of the open one, involves

very short halogen-π distances and is strongly repulsive; therefore, we do not discuss it any

further. In all structures, the noncovalent interaction energy of the halogen atom (fragment

A) with the bulk of the molecule including the aromatic surface (fragment B) is investigated,

with a single phenylene ring constituting the linker fragment C, as depicted in Fig. 15.

The ISAPT(C) and ISAPT(SIAO1) intramolecular interaction energy contributions for

several N-arylimide molecular balances are presented in Table 2. The issues of the original C

variant are quite evident. First, while the open and “openR” conformations display a grossly

overestimated repulsive electrostatics, the ISAPT(C) E
(10)
elst energy for closed conformations is

usually overly attractive. While this has not happened before for the systems studied in this

work, it is a manifestation of the very same issue of unphysical dipole moments at the inter-

fragment boundary: after all, these dipole moments can be aligned unfavorably or favorably.
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Cl-ben-closed Br-ben-closed Br-ben-open

I-phe-closed I-pyr-closed I-pyr-openR

Figure 15: Representative open and closed structures of several molecular balances investi-
gated in this work. The balances vary by the halogen atom (Cl, Br, or I) and its noncova-
lently interacting partner, the aromatic surface (ben = benzene, phe = phenanthrene, pyr
= pyrene). A missing bond signifies a fragment boundary.
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Table 2: Intramolecular interaction energy components (in kcal/mol) of rep-
resentative models of N-arylimide molecular balances computed at the IS-
APT0/aDZ level of theory.

System Method E
(10)
elst E

(10)
exch E

(20)
ind,resp E

(20)
exch−ind,resp E

(20)
disp E

(20)
exch−disp Total

Cl-ben-closed
C −1.06 14.50 −72.82 70.97 −7.49 1.32 5.42

SIAO1 −1.87 6.82 −5.90 5.32 −6.83 0.80 −1.66

Cl-ben-openR
C 5.43 2.64 −1.92 0.92 −3.09 0.27 4.27

SIAO1 0.50 2.39 −1.08 0.56 −3.03 0.23 −0.43

Cl-ben-open
C 5.64 2.27 −1.69 0.77 −2.83 0.23 4.39

SIAO1 0.63 2.03 −0.84 0.38 −2.78 0.19 −0.39

Br-ben-closed
C −9.82 24.73 −351.01 344.47 −9.27 1.95 1.06

SIAO1 −2.99 8.49 −11.10 10.35 −8.34 1.09 −2.50

Br-ben-openR
C 5.54 3.02 −4.36 3.31 −3.41 0.34 4.43

SIAO1 0.56 2.55 −1.36 0.76 −3.32 0.27 −0.52

Br-ben-open
C 5.68 2.97 −3.88 2.86 −3.32 0.33 4.64

SIAO1 0.59 2.52 −1.26 0.72 −3.24 0.26 −0.41

I-phe-closed
C −7.54 22.93 −729.84 720.46 −12.42 2.27 −4.14

SIAO1 −2.30 8.26 −9.16 8.23 −11.58 1.48 −5.07

I-phe-openR
C 4.87 3.96 −10.83 9.50 −4.43 0.52 3.58

SIAO1 −0.16 3.17 −2.44 1.61 −4.29 0.42 −1.69

I-phe-open
C 5.50 3.50 −12.44 11.25 −3.91 0.43 4.32

SIAO1 0.19 2.67 −1.82 1.14 −3.77 0.33 −1.25

I-pyr-closed
C −5.91 20.95 −600.22 592.43 −12.46 2.15 −3.05

SIAO1 −2.26 8.02 −8.74 7.82 −11.69 1.45 −5.40

I-pyr-openR
C 4.93 4.45 −10.55 9.15 −4.66 0.57 3.90

SIAO1 −0.20 3.66 −2.77 1.89 −4.51 0.47 −1.46

I-pyr-open
C 5.50 3.70 −9.85 8.63 −4.04 0.46 4.40

SIAO1 0.15 2.93 −1.97 1.28 −3.91 0.37 −1.16
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Second, the ISAPT(C) induction and exchange-induction terms for closed conformations are

dramatically large. When the individual contributions are so overestimated, it is hard to

expect their sufficiently complete cancellation: indeed, the sum E
(20)
ind,resp +E

(20)
exch−ind,resp is up

to 12 times larger for ISAPT(C) than for ISAPT(SIAO1). The issues with the ISAPT(C)

induction energy lead to sometimes unphysically large values of the δHF term – see the

Supporting Information. Therefore, the total ISAPT molecular balance interaction energies

presented in this section do not include δHF.

On the other hand, a switch to the SIAO1 link assigment solves all the issues of IS-

APT(C). The induction and exchange-induction energies for closed conformations are cor-

rected to physically meaningful values, the first-order exchange energy for the same structures

is reduced about threefold and, consequently, the total intramolecular interaction becomes

attractive in all cases. Just like for the other systems, the dispersion energies are con-

sistent between ISAPT(C) and ISAPT(SIAO1) (<1 kcal/mol differences). The induction

and exchange-induction corrections are no longer unreasonably large and their cancellation

is more complete, leaving the dispersion energy as the primary binding effect for all sys-

tems and conformations. The ISAPT(SIAO1) electrostatic energy is weakly repulsive (< 1

kcal/mol) for most open conformations and somewhat attractive (−1.9 to −3.0 kcal/mol) for

the closed ones, but neither electrostatics nor induction match the binding strength of dis-

persion interactions (−2.9 to −3.9 kcal/mol for the open conformations and −6.8 to −11.7

kcal/mol for the closed ones, taking into account the small exchange-dispersion effects as

well).

Interestingly, bromine-containing systems exhibit the strongest electrostatic attraction

forces in the closed configuration, ranging from −0.71 to −2.99 kcal/mol compared with

−1.14 to −2.31 kcal/mol in iodine systems. Furthermore, the benzene surface produces the

strongest electrostatic energies for each halogen substituent, about 0.1 - 0.2 kcal/mol greater

than in phenanthrene and pyrene systems. The total ISAPT(SIAO1) interaction energy in

closed conformations shows that binding increases with both the size of the aromatic surface
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and the atomic number of the halogen (Fig. 16).

Figure 16: The ISAPT0(SIAO1)/aDZ total interaction energy of closed N-arylimide molec-
ular balances with three halogen substituents: Cl, Br, and I and four π surfaces: ethylene,
benzene, phenanthrene, and pyrene.

For the open state of the molecular balance, the “openR” structure (where the -Ph-X

fragment is rotated 180 degrees without reoptimization) has a slightly larger dihedral angle

(by about 6 degrees) between the aromatic surface and the imide group connecting to the

linker fragment than the “open” one. With the SIAO1 method, a slightly more repulsive

first-order exchange and somewhat stronger induction and dispersion energies are observed

in the “openR” systems. As a result, the total interaction energy of the “open” systems is up

to 0.4 kcal/mol less attractive than of the “openR” systems, as shown in Table 2. However,

the overall differences in ISAPT0 interaction energy components between the ”open” and

”openR” structures are quite minor, showing that geometric relaxation is not a crucial factor

for the performance of these molecular balances; the difference in intramolecular nonbonded

interactions, which can be readily studied with ISAPT(SIAO1), is a much more important

quantity. The increase in the electron density and polarizability of the halogen substituent

from chlorine to iodine is correlated with their total binding energies. In the benzene based

balances, the overall interaction energy increases from −0.43 kcal/mol for chlorine to −0.52
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kcal/mol for bromine and to −0.98 kcal/mol for iodine in the “openR” configurations. The

corresponding increase in the pyrene based balances is from −0.58 kcal/mol for Cl to −0.75

kcal/mol for Br and −1.46 kcal/mol for I.

Figure 17: Decomposition of the folding energy (closed−openR) in representative molecular
balance systems computed at the ISAPT0(SIAO1)/aDZ level of theory. The effects marked
“Ind20” and “Disp20” represent the complete induction and dispersion components, includ-
ing the respective exchange-induction and exchange-dispersion contributions.

As shown by the ISAPT0(SIAO1) decomposition, the closed conformations of N-arylimide

molecular balances are mainly bound by the dispersion forces. The predicted relative fold-

ing energy can thus be computed as δE int
total(closed − openR) as presented in Fig. 17. At

equilibrium, due to a close halogen-π contact, the closed structure is strongly stabilized by

dispersion forces, which grow with both the halogen atomic number (and thus its polar-

izability) and the size of the π surface. The closed conformation is secondarily stabilized,

relative to the open one, by the electrostatic contribution which is, however, more than coun-

terbalanced by the exchange repulsion term. The effect of induction energy on the relative

conformational stability is negligible.
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Summary

In this work, we solve the issue of unphysical interaction energy contributions in the original

intramolecular SAPT (ISAPT) method of Ref. 14. This issue culminates in strongly repulsive

electrostatic energies for systems where the electrostatics should clearly be favorable (such

as those involving intramolecular hydrogen bonding) and while it does not show up in every

possible fragmentation pattern, it plagues most of them (especially those with a small linker

fragment C). We identified the cause of this issue to be the artificial dipole moments at the

A-C and B-C boundaries, where the linking atom is missing electrons on one of its hybrid

orbitals as the entire doubly occupied intrinsic bond orbital (IBO) is assigned to C. We

propose to overcome this issue by partially undoing the coupling that leads from intrinsic

hybrid orbitals (IHOs) to IBOs, and reassign one electron from C to each of A/B, placing

it on a suitably constructed approximation to the missing hybrid orbital. This reassignment

leads to new, updated density matrices for fragments A and B which can be employed

in standard SAPT0 formulas to compute updated electrostatic, induction, and dispersion

energies (it is assumed that the link hybrid orbital does not participate in excitations).

For the corresponding exchange corrections, a choice needs to be made whether the single

electrons on the A-C and B-C link orbitals undergo parallel, perpendicular, or averaged

spin coupling. This is a purely technical issue that has a minor effect on the ISAPT energy

contributions.

The selection of the link IHOs involves a projection of the bond orbital onto a suitably

designed fragment A/B space. We propose two algorithms for this projection: in the SAO

variant, the target space is spanned by the AO basis functions centered on A/B, and in the

SIAO one, the target space is spanned by the intrinsic atomic orbitals17 centered on A/B.

Each of these two choices leads to several minor variants depending on the level of self-

consistency between the noninteracting orbital space of, say, A (which should not include

any interaction with the B link IHO) and the A link IHO (which should be orthogonal to

the other occupied orbitals of A). We find out that a minimal level of this self-consistency
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is essential (the SAO0 and SIAO0 variants are not reliable), but one iteration towards self-

consistency, as in the SAO1 and SIAO1 methods, is entirely sufficient.

We show that both ISAPT(SAO1) and ISAPT(SIAO1) resolve the issue with artificial

dipole moments on the linking atoms. All ISAPT energy contributions now exhibit physi-

cally meaningful values for all fragmentation schemes. In particular, the electrostatic energy

is now strongly attractive for intramolecular hydrogen-bonded systems and weakly attractive

(due to charge penetration) for nonpolar fragments. The induction and exchange-induction

energies are not nearly as large as in original ISAPT(C), which makes their sum more mean-

ingful. The first-order exchange energy typically becomes less repulsive, and the dispersion

and exchange-dispersion contributions are in good agreement with the original ISAPT(C)

method. Finally, the δHF term, the only component that is not amenable to the proposed link

reassignment, is taken from the original ISAPT(C) theory. In all tested molecular systems,

ISAPT(SIAO1) is the best variant for calculating and interpreting intramolecular interac-

tions. Unlike ISAPT(SAO1), the SIAO1 variant shows remarkable consistency between basis

sets thanks to a much smaller overlap between the link IHOs when they are formed via a

projection onto a fragment IAO space. While both ISAPT(SAO1) and ISAPT(SIAO1) sig-

nificantly reduce the magnitude of the fragment dipole moments in systems with entirely

nonpolar fragments, the former variant leads to a somewhat larger reduction.

The reliable intramolecular energy decomposition provided by the new ISAPT(SIAO1)

approach enables one to shed light on the origins of various nonbonded interactions. In this

work, we illustrate the new algorithms by comparing the energy components for three pen-

tanediol isomers at a range of fragmentation patterns, comparing the ISAPT description of

the intramolecular hydrogen bond in 2,4-pentanediol to the SAPT0 description of the inter-

molecular hydrogen bond in the water dimer. Next, we use ISAPT(SIAO1) to study alkanes,

explaining why the branched isomer, 2,4-dimethylpentane, is more thermodynamically stable

than the linear isomer, n-heptane. Finally, we investigate a family of N-arylimide molecular

torsion balances, differing by the halogen atom and the aromatic surface, to examine the
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origins of the folding energy, that is, the nonbonded energy difference between the closed and

open conformer. The proposed ISAPT(SIAO1) approach is expected to provide a physically

reasonable energy decomposition for any closed-shell molecule that can be separated into two

noncovalently interacting fragments and a linker by cutting two single bonds. Therefore, we

expect more valuable insights obtained from this method to emerge in the near future.

Associated Content

The Supporting Information is available free of charge at ...

• Derivation of the modified E
(20)
exch−disp expressions involving parallel and perpendicular

spin couplings of link orbitals, and additional tables and figures (PDF)

• Cartesian coordinates of all systems studied in this work (TXT)

The modified Psi4 code including new ISAPT variants is available at

https://github.com/konpat/psi4/tree/isapt.
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Appendix: Nonapproximated first-order exchange en-

ergy in new ISAPT

In this Appendix, we will rederive the expression for the full, nonapproximated E
(10)
exch

39

ISAPT correction appropriate for the new SAO and SIAO variants where the singly occupied

IHOs on fragments A and B do not have a definite spin. The original formula for this

correction is given in terms of spinorbitals and still holds,25 however, the despinning of
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this formula needs to proceed differently as the link spinorbitals involve both spin-up and

spin-down contributions and thus couple the two spin blocks of the overlap matrix.

Following the formulation in Ref. 25, the complete nonexpanded first-order SAPT0 energy

E(10) = E
(10)
elst + E

(10)
exch is expressed as

E(10) = WAB +
∑
ir

BirDri +
∑
jr

AjrDrj +
1

2

∑
ijrs

〈ij||rs〉 (DriDsj −DsiDrj) (11)

In Eq. (11), i runs over the occupied spinorbitals of A, j runs over occupied spinorbitals

of B, and r, s run over occupied spinorbitals of both fragments. Furthermore, WAB is the

constant intermolecular nuclear repulsion term, Bir = 〈ψi|VB|ψr〉 and Ajr = 〈ψj|VA|ψr〉 are

the matrix elements of the nuclear attraction potential of B/A, and 〈ij||rs〉 = 〈ij|rs〉−〈ij|sr〉

is the antisymmetrized two-electron integral in the physicists’ notation. Finally, Drs are the

elements of the inverse of the overlap matrix Srs of all occupied spinorbitals, D = S−1. It is

the lack of the block diagonal character of S, and thus also D, due to spin-up and spin-down

coupling that necessitates a somewhat different treatment of Eq. (11) in the ISAPT/SAO

and ISAPT/SIAO cases.

Once again, the explicit form of S and D depends to some extent on the spin coupling

between the electrons occupying the spinorbitals ψx and ψy reassigned to fragments A and

B in the SAO and SIAO approaches. We will consider both the parallel (Eq. (2)) and

perpendicular (Eq. (3)) spin coupling of ψx and ψy. Let us assume that the occupied A and

B spinorbitals ψr are ordered as (ψi(| ↑〉), ψi(| ↓〉), ψx, ψj(| ↑〉), ψj(| ↓〉), ψy). In this basis,
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the matrix S has the following explicit block form for each spin coupling:

S‖ =



δii′ 0 0 Sji 0 Syi/
√

2

0 δii′ 0 0 Sji Syi/
√

2

0 0 1 Sjx/
√

2 Sjx/
√

2 Syx

Sij 0 Sxj/
√

2 δjj′ 0 0

0 Sij Sxj/
√

2 0 δjj′ 0

Siy/
√

2 Siy/
√

2 Sxy 0 0 1


(12)

S⊥ =



δii′ 0 0 Sji 0 Syi/
√

2

0 δii′ 0 0 Sji −Syi/
√

2

0 0 1 Sjx/
√

2 Sjx/
√

2 0

Sij 0 Sxj/
√

2 δjj′ 0 0

0 Sij Sxj/
√

2 0 δjj′ 0

Siy/
√

2 −Siy/
√

2 0 0 0 1


(13)

One can see that, in either case, S does not have a block-diagonal character and thus

needs to be inverted as a whole (therefore, a (2Nocc,A + 2Nocc,B + 2)× (2Nocc,A + 2Nocc,B + 2)

matrix needs to be inverted instead of a (Nocc,A +Nocc,B)× (Nocc,A +Nocc,B) one in original

ISAPT). However, S and thus D remains symmetric (or, in the case of S⊥ and the ψy

row/column, antisymmetric) with respect to a simultaneous flipping of all spins. As a result,

the corresponding (up,up) and (down,down) elements of D‖ or D⊥ are identical, e.g. D
‖
i↑,j↑ =

D
‖
i↓,j↓ = D

‖,ss
ij ; similarly, D

‖
i↑,j↓ = D

‖
i↓,j↑ = D

‖,os
ij , with the superscripts ‘ss’ and ‘os’ indicating

same-spin and opposite-spin terms, respectively. Now, going back to Eq. (11), we note that

the Bir and Ajr matrices are spin-diagonal so that only the same-spin block of D contributes

to these terms. To despin the last term in Eq. (11), we have to break up the antisymmetrized

two-electron integral and note that the 〈ij|rs〉 term requires the same spins within the (i, r)

and (j, s) pairs while the 〈ij|sr〉 term imposes the same spins within the (i, s) and (j, r)
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pairs. As a result, the following non-zero terms contribute to the last sum in Eq. (11) (not

including the 1/2 factor):

∑
ijrs

〈ij||rs〉 (DriDsj −DsiDrj) =4
∑
ijrs

〈ij|rs〉Dss
riD

ss
sj − 2

∑
ijrs

〈ij|sr〉Dss
riD

ss
sj

− 2
∑
ijrs

〈ij|sr〉Dos
riD

os
sj − 2

∑
ijrs

〈ij|rs〉Dss
siD

ss
rj

− 2
∑
ijrs

〈ij|rs〉Dos
siD

os
rj + 4

∑
ijrs

〈ij|sr〉Dss
siD

ss
rj (14)

Special care needs to be taken when any of the indices i, j, r, s falls on the reassigned link

spinorbital (x or y). Such an orbital contributes (with a factor of 1/
√

2) to both spin

contributions of an integral, and the spin-flip symmetry of D is in general different for

the parallel and perpendicular spin coupling. The D‖ matrix is symmetric in all cases,

for example, D
‖
x,i↑ = D

‖
x,i↓. On the other hand, D⊥ is symmetric when it comes to x

(D⊥x,i := D⊥x,i↑ = D⊥x,i↓) but antisymmetric when y is involved (D⊥y,i := D⊥y,i↑ = −D⊥y,i↓); in

particular, D⊥xy = 0.

The one- and two-electron integrals involving the link orbital ψy also differ between the

parallel and perpendicular spin coupling. In the parallel case, the
∑

ir BirDri term has the

following contributions from the link orbitals, when the index i falls on x and/or the index

r falls on x or y:

∑
ir

B
‖
irD

‖
ri  2

∑
ii′

Bii′D
ss
i′i +
√

2
∑
i

BixDxi + 2
∑
ij

BijD
ss
ji +
√

2
∑
i

BiyDyi

+
√

2
∑
i

BxiDix +BxxDxx +
√

2
∑
j

BxjDjx +BxyDyx (15)
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In the perpendicular case, the same term becomes

∑
ir

B⊥irD
⊥
ri  2

∑
ii′

Bii′D
ss
i′i +
√

2
∑
i

BixDxi + 2
∑
ij

BijD
ss
ji +
√

2
∑
i

BiyDyi

+
√

2
∑
i

BxiDix +BxxDxx +
√

2
∑
j

BxjDjx (16)

with the Bxy term canceling out in this case. The other one-electron term is completely

analogous for the parallel spin coupling, and for the perpendicular one, once again, the term

containing Ayx cancels (note that, numerically, the parallel and perpendicular formulas are

different in every term because the matrices S and D are different). We see that every link

index reduces the term prefactor by a factor of
√

2, in accordance with the weight of the spin-

up and spin-down contributions to the overall link spinorbital. The same pattern is observed

for the two-electron terms in Eq. (14), as will be illustrated by a complete decomposition

of one of the terms involving both same-spin and opposite-spin contributions. Omitting the
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summation signs for brevity, we get

〈ij|sr〉DriDsj  2〈ij|i′i′′〉Dss
i′′iD

ss
i′j + 2〈ij|i′i′′〉Dos

i′′iD
os
i′j + 2〈ij|j′i′〉Dss

i′iD
ss
j′j + 2〈ij|j′i′〉Dos

i′iD
os
j′j

+
√

2〈ij|xi′〉Dss
i′iDxj +

√
2〈ij|xi′〉Dos

i′iDxj +
√

2〈ij|yi′〉Dss
i′iDyj ±

√
2〈ij|yi′〉Dos

i′iDyj

+ 2〈ij|i′j′〉Dss
j′iD

ss
i′j + 2〈ij|i′j′〉Dos

j′iD
os
i′j + 2〈ij|j′j′′〉Dss

j′′iD
ss
j′j + 2〈ij|j′j′′〉Dos

j′′iD
os
j′j

+
√

2〈ij|xj′〉Dss
j′iDxj +

√
2〈ij|xj′〉Dos

j′iDxj +
√

2〈ij|yj′〉Dss
j′iDyj ±

√
2〈ij|yj′〉Dos

j′iDyj

+
√

2〈ij|i′x〉DxiD
ss
i′j +

√
2〈ij|i′x〉DxiD

os
i′j +

√
2〈ij|j′x〉DxiD

ss
j′j +

√
2〈ij|j′x〉DxiD

os
j′j

+ 2〈ij|xx〉DxiDxj+2〈ij|yx〉DxiDyj

+
√

2〈ij|i′y〉DyiD
ss
i′j ±

√
2〈ij|i′y〉DyiD

os
i′j +

√
2〈ij|j′y〉DyiD

ss
j′j ±

√
2〈ij|j′y〉DyiD

os
j′j

+2〈ij|xy〉DyiDxj + 2〈ij|yy〉DyiDyj

+
√

2〈xj|i′i〉DixD
ss
i′j +

√
2〈xj|i′i〉DixD

os
i′j +

√
2〈xj|j′i〉DixD

ss
j′j +

√
2〈xj|j′i〉DixD

os
j′j

+ 2〈xj|xi〉DixDxj+2〈xj|yi〉DixDyj

+
√

2〈xj|ij′〉Dj′xD
ss
ij +

√
2〈xj|ij′〉Dj′xD

os
ij +

√
2〈xj|j′j′′〉Dj′′xD

ss
j′j +

√
2〈xj|j′j′′〉Dj′′xD

os
j′j

+ 2〈xj|xj′〉Dj′xDxj+2〈xj|yj′〉Dj′xDyj

+ 〈xj|ix〉DxxD
ss
ij + 〈xj|ix〉DxxD

os
ij + 〈xj|j′x〉DxxD

ss
j′j + 〈xj|j′x〉DxxD

os
j′j

+
√

2〈xj|xx〉DxxDxj+
√

2〈xj|yx〉DxxDyj

+〈xj|iy〉DyxD
ss
ij + 〈xj|iy〉DyxD

os
ij + 〈xj|j′y〉DyxD

ss
j′j + 〈xj|j′y〉DyxD

os
j′j

+
√

2〈xj|xy〉DyxDxj +
√

2〈xj|yy〉DyxDyj

+
√

2〈iy|i′i′′〉Dss
i′′iDi′y ±

√
2〈iy|i′i′′〉Dos

i′′iDi′y +
√

2〈iy|ji′〉Dss
i′iDjy ±

√
2〈iy|ji′〉Dos

i′iDjy

+〈iy|xi′〉Dss
i′iDxy + 〈iy|xi′〉Dos

i′iDxy + 〈iy|yi′〉Dss
i′iDyy ± 〈iy|yi′〉Dos

i′iDyy

+
√

2〈iy|i′j〉Dss
jiDi′y ±

√
2〈iy|i′j〉Dos

jiDi′y +
√

2〈iy|j′j〉Dss
jiDj′y ±

√
2〈iy|j′j〉Dos

jiDj′y

+〈iy|xj〉Dss
jiDxy + 〈iy|xj〉Dos

jiDxy + 〈iy|yj〉Dss
jiDyy ± 〈iy|yj〉Dos

jiDyy

+2〈iy|i′x〉DxiDi′y + 2〈iy|jx〉DxiDjy +
√

2〈iy|xx〉DxiDxy +
√

2〈iy|yx〉DxiDyy

+ 2〈iy|i′y〉DyiDi′y + 2〈iy|jy〉DyiDjy+
√

2〈iy|xy〉DyiDxy +
√

2〈iy|yy〉DyiDyy

+2〈xy|i′i〉DixDi′y + 2〈xy|ji〉DixDjy +
√

2〈xy|xi〉DixDxy +
√

2〈xy|yi〉DixDyy

+2〈xy|ij〉DjxDiy + 2〈xy|j′j〉DjxDj′y +
√

2〈xy|xj〉DjxDxy +
√

2〈xy|yj〉DjxDyy

+
√

2〈xy|ix〉DxxDiy +
√

2〈xy|jx〉DxxDjy + 〈xy|xx〉DxxDxy + 〈xy|yx〉DxxDyy

+
√

2〈xy|iy〉DyxDiy +
√

2〈xy|jy〉DyxDjy + 〈xy|xy〉DyxDxy + 〈xy|yy〉DyxDyy (17)
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We see that each occurrence of a link-orbital index x or y simply lowers the prefactor of a

term by a factor of
√

2, from a total of 4 (twice the same-spin part plus twice the opposite-

spin part) when no link indices are present to 1 when all four indices pertain to link orbitals.

The same behavior occurs for all other two-electron terms. The variant of Eq. (17) for the

perpendicular spin coupling omits all terms containing D⊥xy = D⊥yx = 0, and also the two-

electron integral is zero if x and y are the pair of indices belonging to the same electron, e.g.,

〈xj|yi〉⊥ = 0. As a result, all terms underlined in Eq. (17) are present only in the parallel

spin coupling and they are omitted in the perpendicular spin coupling variant. Moreover,

the terms involving both y and the opposite-spin D matrix elements change sign; thus the ±

signs in Eq. (17) which signify a plus sign for the parallel spin coupling and a minus sign for

the perpendicular one. An analogous formula for a Coulomb-type integral term, once again
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in the parallel and perpendicular version, reads

〈ij|rs〉DriDsj  4〈ij|i′′i′〉Dss
i′′iD

ss
i′j + 4〈ij|i′j′〉Dss

i′iD
ss
j′j + 2

√
2〈ij|i′x〉Dss

i′iDxj + 2
√

2〈ij|i′y〉Dss
i′iDyj

+ 4〈ij|j′i′〉Dss
j′iD

ss
i′j + 4〈ij|j′′j′〉Dss

j′′iD
ss
j′j + 2

√
2〈ij|j′x〉Dss

j′iDxj + 2
√

2〈ij|j′y〉Dss
j′iDyj

+ 2
√

2〈ij|xi′〉DxiD
ss
i′j + 2

√
2〈ij|xj′〉DxiD

ss
j′j + 2〈ij|xx〉DxiDxj + 2〈ij|xy〉DxiDyj

+ 2
√

2〈ij|yi′〉DyiD
ss
i′j + 2

√
2〈ij|yj′〉DyiD

ss
j′j + 2〈ij|yx〉DyiDxj + 2〈ij|yy〉DyiDyj

+ 2
√

2〈xj|ii′〉DixD
ss
i′j + 2

√
2〈xj|ij′〉DixD

ss
j′j + 2〈xj|ix〉DixDxj + 2〈xj|iy〉DixDyj

+ 2
√

2〈xj|j′i〉Dj′xD
ss
ij + 2

√
2〈xj|j′′j′〉Dj′′xD

ss
j′j + 2〈xj|j′x〉Dj′xDxj + 2〈xj|j′y〉Dj′xDyj

+ 2〈xj|xi〉DxxD
ss
ij + 2〈xj|xj′〉DxxD

ss
j′j +

√
2〈xj|xx〉DxxDxj +

√
2〈xj|xy〉DxxDyj

+2〈xj|yi〉DyxD
ss
ij + 2〈xj|yj′〉DyxD

ss
j′j +

√
2〈xj|yx〉DyxDxj +

√
2〈xj|yy〉DyxDyj

+ 2
√

2〈iy|i′′i′〉Dss
i′′iDi′y + 2

√
2〈iy|i′j〉Dss

i′iDjy+2〈iy|i′x〉Dss
i′iDxy + 2〈iy|i′y〉Dss

i′iDyy

+ 2
√

2〈iy|ji′〉Dss
jiDi′y + 2

√
2〈iy|jj′〉Dss

jiDj′y+2〈iy|jx〉Dss
jiDxy + 2〈iy|jy〉Dss

jiDyy

+ 2〈iy|xi′〉DxiDi′y + 2〈iy|xj〉DxiDjy+
√

2〈iy|xx〉DxiDxy +
√

2〈iy|xy〉DxiDyy

+ 2〈iy|yi′〉DyiDi′y + 2〈iy|yj〉DyiDjy+
√

2〈iy|yx〉DyiDxy +
√

2〈iy|yy〉DyiDyy

+ 2〈xy|ii′〉DixDi′y + 2〈xy|ij〉DixDjy+
√

2〈xy|ix〉DixDxy +
√

2〈xy|iy〉DixDyy

+ 2〈xy|ji〉DjxDiy + 2〈xy|jj′〉DjxDj′y+
√

2〈xy|jx〉DjxDxy +
√

2〈xy|jy〉DjxDyy

+
√

2〈xy|xi〉DxxDiy +
√

2〈xy|xj〉DxxDjy+〈xy|xx〉DxxDxy + 〈xy|xy〉DxxDyy

+
√

2〈xy|yi〉DyxDiy +
√

2〈xy|yj〉DyxDjy + 〈xy|yx〉DyxDxy + 〈xy|yy〉DyxDyy

(18)

with the underlined terms omitted for the perpendicular spin coupling.

The molecular-orbital formulas for the complete, nonapproximated E(10) correction still

need to be recast into an atomic-orbital (AO) form so that the operations involving two-

electron integrals can be efficiently implemented using generalized Coulomb and exchange

matrices.40 To this end, we will use capital letters K,L,M,N to denote the AO basis func-

tions; note that the set of AOs spans the entire molecule and is used to expand occupied
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orbitals on all fragments. The coefficient CrK represents the weight of basis function K in

the molecular orbital ψr, that is, ψr =
∑

K CrKφ
AO
K . Further, we define the back-transformed

inverse-overlap matrix blocks Dvw,spin, where v, w are orbital type indices (i, j, r, or s) and

the spin case spin is either ‘ss’ or ‘os’, as in the following example:

(Dri,ss)KL = ”
∑
ri

CrKD
ss
riCiL” =

∑
i′i

Ci′KD
ss
i′iCiL +

1√
2

∑
i

CxKDxiCiL

+
∑
ji

CjKD
ss
jiCiL +

1√
2

∑
i

CyKDyiCiL

+
1√
2

∑
i

CiKDixCxL +
1

2
CxKDxxCxL

+
1√
2

∑
j

CjKDjxCxL +
1

2
CyKDyxCxL (19)

A second example shows the differences between the parallel spin coupling (upper signs) and

perpendicular spin coupling (lower signs) in the opposite-spin case (the same-spin formulas

are identical for both couplings):

(Dsj,os)KL = ”
∑
sj

CsKD
os
sjCjL” =

∑
ij

CiKD
os
ij CjL +

1√
2

∑
i

CxKDxjCjL

+
∑
jj′

CjKD
os
jj′Cj′L ±

1√
2

∑
i

CyKDyjCjL

± 1√
2

∑
i

CiKDiyCyL +
1

2
CxKDxyCyL

± 1√
2

∑
j

CjKDjyCyL ±
1

2
CyKDyyCyL (20)

(additionally, as stated before, for the perpendicular spin coupling Dxy = 0). The interme-

diate expression in quotes would be appropriate in a closed-shell case where each occupied

orbital of A and B holds two electrons, and it has been used before.28,41 However, in our case

we need to break down summations over individual-fragment indices into doubly occupied

orbitals and the link orbital (i (i, x), j  (j, y)), and the summations over both-fragment
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indices into all four above parts (r, s  (i, x, j, y)). To accommodate the correct numerical

prefactors for terms involving link orbitals in Eqs. (15)–(17), each term in Eqs. (19)–(20) is

reduced by a factor of
√

2 for every link orbital x, y present. One should note that v, w in

Dvw,spin are not matrix indices but only denote the specific molecular orbital subblock over

which the summation in Eq. (19) extends. Regardless of the v, w type, all these matrices

are of the same size NAO×NAO. Finally, as implied in Eqs. (19)–(20), the ss/os designation

only applies if neither of the indices represents a link orbital.

The definition of Dvw,spin in Eqs. (19)–(20) allows folding all contributions to any single

term in Eq. (14), for example, the 64 terms in Eq. (17), into one tensor contraction. The same

is achieved for the 8 contributions in Eq. (15) and the analogous 8 contributions involving

the Ajr matrix. This leads to the following AO formula for the complete first-order ISAPT

interaction energy with the reassignment of link orbitals:

E(10) = WAB + 2B ·Dri,ss + 2A ·Drj,ss

+ 2Dri,ss · J[Dsj,ss]−Dri,ss ·K[Dsj,ss]T −Dri,os ·K[Dsj,os]T

−Dsi,ss ·K[Drj,ss]T −Dsi,os ·K[Drj,os]T + 2Dsi,ss · J[Drj,ss]

= WAB + 2B ·Dri,ss + 2A ·Drj,ss

+ 4Dri,ss · J[Dsj,ss]− 2Dri,ss ·K[Dsj,ss]T − 2Dri,os ·K[Dsj,os]T (21)

where the back-transformed inverse-overlap matrix blocks Dvw,spin, augmented by link orbital

contributions, are defined in Eqs. (19)–(20), and the generalized Coulomb and exchange

matrices J[X] and K[X] have been defined in Eq. (7). The final transformation in Eq. (21)

makes use of the fact that the indices r and s are equivalent (have the same summation

range), so after summing over the MO indices, for example, Dri,ss ≡ Dsi,ss. Equation (21)

has the same form for the parallel and perpendicular spin coupling, but the Dvw,spin matrix

blocks, as explained above, are defined and computed differently.
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