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POLICY MIRROR DESCENT FOR REGULARIZED
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WITH LINEAR CONVERGENCE"
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Abstract. Policy optimization, which learns the policy of interest by maximizing the value
function via large-scale optimization techniques, lies at the heart of modern reinforcement learning
(RL). In addition to value maximization, other practical considerations arise commonly as well, in-
cluding the need of encouraging exploration, and that of ensuring certain structural properties of the
learned policy due to safety, resource, and operational constraints. These considerations can often be
accounted for by resorting to regularized RL, which augments the target value function with a
structure-promoting regularization term. Focusing on an infinite-horizon discounted tabular Markov
decision process, this paper proposes a generalized policy mirror descent (GPMD) algorithm for
solving regularized RL. As a generalization of policy mirror descent [G. Lan, Math. Program., 198
(2023), pp. 1059--1106], the proposed algorithm accommodates a general class of convex regularizers as
well as a broad family of Bregman divergence in cognizance of the regularizer in use. We demon-strate
that our algorithm converges linearly to the global solution over an entire range of learning rates, in a
dimension-free fashion, even when the regularizer lacks strong convexity and smoothness. In addition,
this linear convergence feature is provably stable in the face of inexact policy evaluation and imperfect
policy updates. Numerical experiments are provided to corroborate the applicability and appealing
performance of GPMD.
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1. Introduction. Policy optimization lies at the heart of recent successes of
reinforcement learning (RL) [39]. In its basic form, the optimal policy of interest,
or a suitably parameterized version, is learned by attempting to maximize the value
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function in a Markov decision process (MDP). For the most part, the maximization
step is carried out by means of first-order optimization algorithms amenable to large-
scale applications, whose foundations were set forth in the early works of [53, 47]. A
partial list of widely adopted variants in modern practice includes policy gradient (PG)
methods [47], natural policy gradient (NPG) methods [24], TRP O [44], PPO [45], and
soft actor-critic methods [22], to name just a few. In comparison with model-based
and value-based approaches, this family of policy-based algorithms offers a remarkably
flexible framework that accommodates both continuous and discrete action spaces
and lends itself well to the incorporation of powerful function approximation schemes
like neural networks. In stark contrast to its practical success, however, theoretical
understanding of policy optimization remains severely limited even for the tabular
case, largely owing to the ubiquitous nonconvexity issue underlying the objective
function.

1.1. The role of regularization. In practice, there are often competing objec-
tives and additional constraints that the agent has to deal with in conjunction with
maximizing values, which motivate the studies of regularization techniques in RL. In
what follows, we isolate a few representative examples.

t Promoting exploration. In the face of large problem dimensions and complex
dynamics, it is often desirable to maintain a suitable degree of randomness
in the policy iterates, in order to encourage exploration and discourage pre-
mature convergence to suboptimal policies. A popular strategy of this kind
is to enforce entropy regularization [54], which penalizes policies that are not
suficiently stochastic. Along similar lines, the Tsallis entropy regularization
[16, 31] further promotes sparsity of the learned policy while encouraging
exploration, ensuring that the resulting policy does not assign non-negligible
probabilities to too many suboptimal actions.

t Safe RL. In a variety of application scenarios such as industrial robot arms
and self-driving vehicles, the agents are required to operate safely both to
themselves and the surroundings [5, 40]; for example, certain actions might
be strictly forbidden in some states. One way to incorporate such prescribed
operational constraints is through adding a regularizer (e.g., a properly cho-
sen log barrier or indicator function tailored to the constraints) to explicitly
account for the constraints.

t Cost-sensitive RL. In reality, different actions of an agent might incur dras-
tically different costs even for the same state. This motivates the design of
new objective functions that properly trade off the cumulative rewards against
the accumulated cost, which often take the form of certain regularized value
functions.

Viewed in this light, it is of imminent value to develop a unified framework towards
understanding the capability and limitations of regularized policy optimization. While a
recent line of works [3, 38, 12] has looked into specific types of regularization tech-
niques such as entropy regularization, existing convergence theory remains highly
inadequate when it comes to a more general family of regularizers.

1.2. Main contributions. The current paper focuses on policy optimization
for regularized RL in a a-discounted infinite horizon Markov decision process (MDP)
with state space S, action space A, and reward function r(t,t). The goal is to find an
optimal policy that maximizes a regularized value function. Informally speaking, the
regularized value function associated with a given policy i takes the following form:

V) =V - uE[hs(i (t IS))]'
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where V' denotes the original (unregularized) value function, u> 0 is the regulariza-
tion parameter, hs(t) denotes a convex regularizer employed to regularize the policy
in state s, and the expectation is taken over certain marginal state distribution w.r.t.
the MDP (to be made precise in section 2.1). It is noteworthy that this paper does
not require the regularizer hs to be either strongly convex or smooth.

In order to maximize the regularized value function (2.8b), Lan [27] exhibited a
seminal algorithm called Policy Mirror Descent (PMD), which can be viewed as an
adaptation of the mirror descent algorithm [41, 7] to the realm of policy optimization.
In particular, PMD subsumes the natural policy gradient (NPG) method [24] as a
special case. To further generalize PMD [27], we propose an algorithm called Gen-
eralized Policy Mirror Descent (GPMD). In each iteration, the policy is updated for
each state in parallel via a mirror-descent style update rule. In sharp contrast to [27],
which considered a generic Bregman divergence, our algorithm selects the Bregman
divergence adaptively in cognizance of the regularizer, which leads to complementary
perspectives and insights. Several important features and theoretical appeal of GPMD
are summarized as follows.

t GPMD substantially broadens the range of (provably effective) algorithmic
choices for regularized RL and subsumes several well-known algorithms as
special cases. For example, it reduces to regularized policy iteration [21]
when the learning rate tends to infinity and subsumes entropy-regularized
NPG methods as special cases if we take the Bregman divergence to be the
Kullback--Leibler (KL) divergence [12].

t Assuming exact policy evaluation and perfect policy update in each iteration,
GPMD converges linearly--in a dimension-free fashion--over the entire range
of the learning rate a > 0. More precisely, it converges to an n-optimal
regularized Q-function in no more than an order of

1+ au 1

au(l- a) 8 n

iterations (up to some logarithmic factor). Encouragingly, this appealing fea-
ture is valid for a broad family of convex and possibly nonsmooth regularizers.
t The intriguing convergence guarantees are robust in the face of inexact policy

evaluation and imperfect policy updates; namely, the algorithm is guaranteed

to converge linearly at the same rate until an error floor is hit. See section

3.2 for details.

t Numerical experiments are provided in section 5 to demonstrate the practical

applicability and appealing performance of the proposed GPMD algorithm.
Finally, we find it helpful to briefly compare the above findings with prior works. As
soon as the learning rate exceeds a q 1/u, the iteration complexity of our algo-rithm
is at most on the order of -1 log 11,_ thus matching that of regularized policy iteration
[21]. In comparison to [27], our work sets forth a different framework to an-alyze
mirror-descent-type algorithms for regularized policy optimization, generalizing and
refining the approach in [12] far beyond entropy regularization. When constant
learning rates are employed, the linear convergence of PMD [27] critically requires the
regularizer to be strongly convex, with only sublinear convergence theory established
for convex regularizers. In contrast, we establish the linear convergence of GPMD
under constant learning rates even in the absence of strong convexity. Furthermore,
for the special case of entropy regularization, the stability analysis of GPMD also sig-
nificantly improves over the prior art in [12], preventing the error floor from blowing up
when the learning rate approaches zero, as well as incorporating the impact of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/23 to 128.91.114.146 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1064 ZHAN, CEN, HUANG, CHEN, LEE, AND CHI

optimization error that was previously uncaptured. More detailed comparisons with
[27, 12] can be found in section 3.

1.3. Related works. Before embarking on our algorithmic and theoretic devel-
opments, we briefly review a small sample of other related works.

Global convergence of policy gradient methods. Recent years have witnessed a
surge of activities towards understanding the global convergence properties of policy
gradient methods and their variants for both continuous and discrete RL problems,
examples including (20, 9, 3, 63, 51, 37, 10, 25, 35, 37, 4, 56, 51, 12, 36, 34, 52, 60, 62,
61, 46], among other things. The authors of [42] provided the first interpretation of
NPG methods as mirror descent [41], thereby enabling the adaptation of techniques
for analyzing mirror descent to the studies of NPG-type algorithms such as TRPO
[46, 48]. It has been shown that the NPG method converges sublinearly for unregu-
larized MDPs with a fixed learning rate [3], and converges linearly if the learning rate is
set adaptively [25], via exact line search [10], or following a geometrically increasing
schedule [55]. The global linear convergence of NPG holds more generally for an ar-
bitrary fixed learning rate when entropy regularization is enforced [12]. Noteworthily,
the authors of [33] established a lower bound indicating that softmax PG methods
can take an exponential time--in the size of the state space--to converge, while the
convergence rates of NPG-type methods are almost independent of the problem di-
mension. In addition, another line of recent works [1, 23, 30] established regret bounds
for approximate NPG methods--termed as KL-regularized approximate policy itera-
tion therein--for infinite-horizen undiscounted MDPs, which are beyond the scope of
the current paper.

Regularization in RL. Regularization has been suggested to the RL literature ei-
ther through the lens of optimization [17, 3] or through the lens of dynamic program-
ming [21, 50]. Our work is clearly an instance of the former type. Several recent results
in the literature merit particular attention: The authors of [3] demonstrated sublinear
convergence guarantees for PG methods in the presence of relative entropy regular-
ization and the authors of [38] established linear convergence of entropy-regularized
PG methods, whereas the authors of [12] derived an almost dimension-free linear con-
vergence theory for NPG methods with entropy regularization. Most of the existing
literature focused on the entropy regularization or KL-type regularization, and the
studies of general regularizers had been quite limited until the recent work [27]. The
regularized MDP problems are also closely related to the studies of constrained MDPs,
as both types of problems can be employed to model/promote constraint satisfaction
in RL, as recently investigated in, e.g., [15, 19, 18, 58, 57]. Note, however, that it
is dificult to directly compare our algorithm with these methods, due to drastically
different formulations and settings.

1.4. Notation. Let usintroduce several notations that will be adopted through-
out. For any set A, we denote by |A | the cardinality of a set A and let a (A ) indicate
the probability simplex over the set A. For any convex and differentiable function
h(t), the Bregman divergence generated by h(t) is defined as

e e
(1.1) Dh(z,x):=h(z)- h(x)- ah(x),z- x .
For any convex (but not necessarily differentiable) function h(t), we denote by | h the

subdifferential of h. Given two probability distribution i,andi, over A, the KL
divergence from i to i1 is defined as KL(i 1]i2):=" ,, A i1(a)log. @) For any

vectors a = [ai]1iq ig n and b = [bi]1q iq n, the notation aq b (resp., aq bz) means that
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aiq bi (ai g bi) forevery 1q i g n. We shall also use 1 (resp., 0) to denote the all-one
(resp., all-zero) vector whenever it is clear from the context.

2. Model and algorithms.

2.1. Problem settings. The focus of this paper is a discounted infinite-
horizon Markov decision process, as represented by M = (S,A,P,r,a) [8]. Here,
S :={1,...,|S |} is the state space, A := {1,...,|A |} is the action space, a n [0, 1)
is the discount factor, and P : S's A w a (S) is the probability transition matrix
(so that P(t |s, a) is the transition probability from state s upon execution of action a),
whereas r : S s A w [0,1] is the reward function (so that r(s,a) indicates the
immediate reward received in state s after action a is executed). Here, we focus on
finite-state and finite-action scenarios, meaning that both |S | and |A | are assumed to
be finite. A policy i :S w a (A ) specifies a possibly randomized action selection rule;
namely, i (t |s) represents the action selection probability in state s.

For any policy i , we define the associated value function V' :S w R as follows:

[ | ]
(2.1) Isns: Vi(s):= E a'r(s,,a,) s,=s ,
atm i (t)st),

st+1m P(t|st,at)!l
tq O

t=0

which can be viewed as the utility function we wish to maximize. Here, the expectation is
taken over the randomness of the MDP trajectory {(st, at)}tq o induced by policyi .
Similarly, when the initial action a is fixed, we can define the action-value function (or
Q-function) as follows:

(2.2) [ ]
i . LU o _ -
I(s,a)nSs A: Q'(s,a):= E ar(s,a)'s = s,a =a
st+1lm Pt =0
st,at), at+1mi(t]
st+l)itqo

A well-known fact is that the policy gradient of Vi (w.r.t. the policy i ) admits the
following closed-form expression [47]:

|Vi(So)_ 1
li(@|s) 1-

(2.3) l(s,a)nSs A: ad‘s‘](s)Qi (s, a).
Here, d;o n a (S) is the so-called discounted state visitation distribution defined as
follows:

n
(2.4) di (s):=(1- a) a''(st= s|so),
t=0

where P' (st = s|sg) denotes the probability of s; = s when the MDP trajectory
{st}tq 0 is generated under policy i given the initial state so.

Furthermore, the optimal value function and the optimal Q-function are defined
and denoted by

(2.5) [(s,a)nSs A: V'(s):=maxV'(s), Q' (s,a) := maxQ' (s, a).

It is well known that there exists at least one optimal policy, denoted by i ", that
simultaneously maximizes the value function and the Q-function for all state-action
pairs [2].
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Regularized MDP. In practice, the agent is often asked to design policies that
possess certain structural properties in order to be cognizant of system constraints
such as safety and operational constraints, as well as to encourage exploration during
the optimization/learning stage. A natural strategy to achieve these is to resort to
the following regularized value function w.r.t. a given policy i [42, 38, 12, 27]:

S<

‘ { A
IsnS: V'(s):= E a' r(s,a)- uh (i(tls)) s =s
L t 0t St t 0
atmi (tIst), t=0
st+1m P(tlslt,atM ( )
tq O
(2.6) =Vigs)- T dihe i (]S)
senS

where hs :a (A ) w R stands for a convex and possibly nonsmooth regularizer for

state s, u > 0 denotes the regularization parameter, and dsi (t) is defined in (2.4). Here,
for technical convenience, we assume throughout that hs(t) (s n S) is well-defined over
an “a -neighborhood"" of the probability simplex a (A ) defined as follows:
{ | }
m
aa(A):= x=[Xalana |Xag OforallanA;1- aq Xaql+a ,

an A

where a> 0 can benan arbitrary constant. For instance, entropy regularization adopts
the choice hs(p) = N logpi for all sn'S and pna (A ), which coincides with the
negative Shannon entropy of a probability distribution. Similarly, a KL regularization
adopts the choice hs(p) = KL(p| pref), Which penalizes the distribution p that deviates
from the reference pref. As another example, a weighted |1 regularization adopts the
choice hs(p) = - ws,ipi forallsnS and pna (A), where ws,i q 0 is the cost of
taking action i at'fate s, and the regularizer hs(i (t|s)) captures the expected cost of
the policy i in state s. Throughout this paper, we impose the following assumption.

Assumption 1. Consider an arbitrarily small constant a > 0. For for any sn S,
suppose that hg(t) is convex and

(2.7) hs(p)=y forany pnaa(A).

Following the convention in prior literature (see, e.g., [38]), we also define the
corresponding regularized Q-function as follows:

(2.8a) I(s,a)nSs A: Q' (s,a):=r(s,a)+ a E Vi(se) .

semP (t|s,a)
As can be straightforwardly verified, one can also express V, in terms of Q/ as
: ) ( )
(2.8b) IsnS: V'(s):= E [Q'(s,a)- uh i(tls)].
u ami (t]s) v s
The optimal regularized value function V| and the corresponding optimal policy i,
are defined, respectively, as follows:
(2.9) Isns: VS (s):= W “(s) = maxV,' (s), i :=argmaxV, .
I I

It is worth noting that the author of [43] asserts the existence of an optimal policy i |
that achieves (2.9) simultaneously for all sn S. Correspondingly, we shall also define
the resulting optimal regularized Q-function as

(2.10) I(s,a)nSs A:  Ql(s,a)= Q.*(s,a).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2.2. Algorithm: Generalized policy mirror descent. Motivated by PMD
[27], we put forward a generalization of PMD that selects the Bregman divergence in
cognizance of the regularizer in use. A thorough comparison with [27] will be provided
after introducing our generalized PMD algorithm.

For notational simplicity, we shall write

)

+ (k) i (k)
(211) v:=v) ",  aQl(s,a):=Q] ‘(s,a), and  d¥(s):=d] " (s)

throughout the paper, where i k) denotes our policy estimate in the kth iteration.
To begin with, suppose for simplicity that hs(t) is differentiable everywhere. In

the kth iteration, a natural MD scheme that comes into mind for solving (2.6)--

namely, maximize; V, (so) for a given initial state so--is the following update rule:

(2.12)
i (¢ |s) | .
=arg min - aiqVy (so)l - .p
Pna (A) i=i (k) )
{ 1 )
+ —dfs)hs(p)+ D, p,i Mt Is) }
1 e e 1 )
Carg min 1 d®(sf - SQW(s, 0,0 + uh (o] ¥ D, pilt]s)
pna(dA) . 1- a *° ¢ s at, ¢

e e 1
arg min - Q®s,t),p + uh (p)+ _p, (p,i ) (t Is))
pna (A) ¢ s < s

for every state sn S. Here, we start with a learning rate a® and obtain simplification

by replacing a® with a(1 - a)/d(slg)(s). Notably, the update strategy (2.12) is invariant
to the initial state sp, akin to natural policy gradient methods [3].

This update rule is well-defined for, say, the case when hs is the negative en-
tropy, since the algorithm guarantees i () > 0 all the time and hence hs is always
differentiable w.r.t. the kth iterate (see [12]). In general, however, it is possible to
encounter situations when the gradient of hs does not exist on the boundary (e.g.,
when hs represents a certain indicator function). To cope with such cases, we resort to a
generalized version of Bregman divergence (see, e.g., [26, 28, 29]). To be specific, we
attempt to replace the usual Bregman divergence Dn, (p, q) by the following metric:

(2.13) Dh,(p,q;8s):=hs(p)- hs(q)- egs,p- €QqO,

where gs can be any vector falling within the subdifferential | hs(q). Here, the non-
negativity condition in (2.13) follows directly from the definition of the subgradient
for any convex function. The constraint on gs can be further relaxed by exploiting
the requirement p,qn a (A ). In fact, for any vector is = gs - cs1 (with cs n R some
constant and 1 the all-one vector), one can readily see that

Dh,(p,qa;8s) = hs(p)- hs(q)- egs,p- ge= hs(p)- hs(q)- eis,p- e+ cel,p- ce
(2.14) = hs(p)- hs(q)- es,p- = Dhs(p:q;is),

where the last line is valid since 1P p= 1P q= 1. As a result, everything boils down to
identifying a vector i that falls within | hs(q) upon global shift.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Towards this, we propose the following iterative rule for designing such a sequence
of vectors as surrogates for the subgradient of hs:

(2.15a) i Os,t)n | hs(i ©O)(¢ |s));

(2.15b) i (k2(s, t) = iWs, )+ = —al(s,t),  kaqo,

1+ au 1+

where i **1)(s t) is updated as a convex combination of the previous i (s,t) and
ka)(s,t), where more emphasis is put on ka)(s,t) when the learning rate a is large.
As asserted by the following lemma, the above vectors i (K)(s,t) we construct satisfy
the desired property, i.e., lying within the subdifferential of h_ under suitable global
shifts. It is worth mentioning that these global shifts {cs(k)} only serve as an aid
to better understand the construction but are not required during the algorithm
updates.

Lemma 2.1. For all kg 0 and every sn S, there exists a quantity cgk) n R such
that

(2.16) i®(s,t)- cini hs(i () (¢ |s)).

In addition, for every sn S, there exists a quantity c{ n R such that

(2.17) u 'Ql(s,t)- cilnl hs( it |s)).

Proof. See Appendix A.1. 0

Thus far, we have presented all crucial ingredients of our algorithm. The whole
procedure is summarized in Algorithm 2.1 and will be referred to as Generalized
Policy Mirror Descent (GPMD) throughout the paper. Interestingly, several well-
known algorithms can be recovered as special cases of GPMD.

Algorithm 2.1. PMD with generalized Bregman divergence (GPMD).
Input: initial policy iterate i (°), learning rate a > 0.
Initialize i(©) so that i©(s,t) n | hs(i ©(t]s)) forall snS.
fork=0,1,..., do
For every sn S, set

(2.18a)
k+1 { e K e 1 K K )}
i ©*(ts)=arg min - Q¥(s,t)p +uh (p)+ 2D, p,i N(tls)i™
pna (A) ¢ s H ¢
where
( ) e e
(2.18b) Dh, p,q;i :=hs(p)- hs(q)- i(s,t),p- q .

For every (s,a)n S s A, compute

———ik(s,a)+ QM(s, a).

2.18 i (s, a) = <
( ) I (s, a) 1+ au 1+ au

end for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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t When the Bregman divergence Dy (t,t) is taken as the KL divergence, GPMD
reduces to the well-renowned NPG algorithm [24] when u= 0 (no regulariza-
tion) and to the NPG algorithm with entropy regularization analyzed in [12]
when hg(t) is taken as the negative Shannon entropy.

t When a= y (no divergence), GPMD reduces to regularized policy itera-tion
in [21]; in particular, GPMD reduces to the standard policy iteration
algorithm if in addition u is also 0.

Comparison with PMD [27]. Before continuing, let us take a moment to point out
the key differences between our algorithm GPMD and the PMD algorithm proposed
in [27] in terms of algorithm designs. Although the primary exposition of PMD in
[27] fixes the Bregman divergence as the KL divergence, the algorithm also works in
the presence of a generic Bregman divergence, whose relationship with the regularizer
hs is, however, unspecified. Furthermore, GPMD adaptively sets this term to be the
Bregman divergence generated by the regularizer hs in use, together with a carefully
designed recursive update rule (cf. (2.15)) to compute surrogates for the subgradient of
hs to facilitate implementation. Encouragingly, this specific choice leads to a tailored
performance analysis of GPMD, which was not present in and instead complementary
with that of PMD [27]. In truth, our theory offers linear convergence guarantees for
more general scenarios by adapting to the geometry of the regularizer hs; details will
follow momentarily.

3. Main results. This section presents our convergence guarantees for the
GPMD method presented in Algorithm 2.1. We shall start with the idealized case,
assuming that the update rule can be precisely implemented, and then discuss how
to generalize it to the scenario with imperfect policy evaluation.

3.1. Convergence of exact GPMD. To start with, let us pin down the con-
vergence behavior of GPMD, assuming that accurate evaluation of the policy Q(kl) is
available and the subproblem (2.18a) can be solved perfectly. Here and below, we
shall refer to the algorithm in this case as exact GPMD. Encouragingly, exact
GPMD provably achieves global linear convergence from an arbitrary initialization, as
asserted by the following theorem.

Theorem 3.1 (exact GPMD). Suppose that Assumption 1 holds. Consider any
learning rate a> 0, and set a := . 1. Then the iterates of Algorithm 2.1 satisfy

(3.1a) ld-melan-ﬂ-ﬂU-ﬂ“q,
L L y

(3.16) lvr - voent aa+ 20 (1- a)(1- 2y,

y
for all kg 0, where C1:= |Q, - Q?, + 2a Q- ui @, .

In addition, if hs is 1-strongly convex w.r.t. the |1 norm for some s n S, then
one further has

(

(3.2) |mmy1&“m”mu*1-u-ﬂu-mhq, kq 0.

Our theorem confirms the fast global convergence of the GPMD algorithm, in terms
of both the resulting regularized Q-value (if hs(t) is convex) and the policy estimate
(if hs(t) is strongly convex). In summary, it takes GPMD no more than

1 C1_ 1+auI C1

(3.33) (1- a)(1- a) 8T au(l- a) %€
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iterations to converge to an n-optimal regularized Q-function (in the |, sense) or

1 Ci_ 1+au C1

(3.3b) 1- a)(1- a) Bru au(l- a) Bnu

iterations to yield an n-approximation (w.r.t. the | 1 norm error) of i /. The iteration
complexity (3.3) is nearly dimension-free--namely depending at most logarithmically
on the dimension of the state-action space--making it scalable to large-dimensional
problems.

To make clear our contributions, it is helpful to compare Theorem 3.1 with the
theory for the state-of-the-art algorithm PMD in [27].

t Linear convergence for convex regularizers under constant learning rates.
Suppose that constant learning rates are adopted for both GPMD and PMD.
Our finding reveals that GPMD enjoys global linear convergence--in terms
of both |Q' - QM| , and AR V"1 |, --even when the regularizer
hs(t) is only convex but not strongly convex. In contrast, [27, Theorem 2]
provided only sublinear convergence guarantees (with an iteration complex-
ity proportional to 1/n) for the case with convex regularizers, provided that
constant learning rates are adopted.!

t A full range of learning rates. Theorem 3.1 reveals linear convergence of
GPMD for a full range of learning rates; namely, our result is applicable to
any a> 0. In comparison, linear convergence was established in [27] only when
the learning rates were suficiently large and when hs was 1-strongly convex
w.r.t. the KL divergence. Consequently, the linear convergence results in [27]
do not extend to several widely used regularizers, such as negative Tsallis
entropy and log-barrier functions (even after scaling), which are, in contrast,
covered by our theory. It is worth noting that the case with small-to-medium
learning rates is often more challenging to cope with in theory, given that its
dynamics could differ drastically from that of regularized policy iteration.

t Further comparison of rates under large learning rates. [27, Theorem 1]
achieves a contraction rate of a when the regularizer is strongly convex
and the step size satisfies a q 12, while the contraction rate of GPMD
is 1- 11‘3:‘ (1- a) under the full range of the step size, which is slower but
approaches the contraction rate a of PMD as a goes to infinity. Therefore, in
the limit aw y , both GPMD and PMD achieve the contraction rate a. As
soon as a q 1/u, their iteration complexities are on the same order.

3.2. Convergence of approximate GPMD. In reality, however, it is often
the case that GPMD cannot be implemented in an exact manner, either because
perfect policy evaluation is unavailable or because the subproblem (2.18a) cannot
be solved exactly. To accommodate these practical considerations, this subsection
generalizes our previous result by permitting inexact policy evaluation and non-zero
optimization error in solving (2.18a). The following assumptions make precise this
imperfect scenario.

Assumption 2 (policy evaluation error). Suppose, for any k g 0, we have access
to an estimate ka) obeying

|
(3.4) |Qlﬂk’- QM| g Neval.

L Y

—mfact, [27, Theorem 3] suggests using a vanishing strongly convex regularization, as well as a
corresponding increasing sequence of learning rates, in order to enable linear convergence for non-
strongly-convex regularizers.
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Algorithm 3.1. Approximate PMD with generalized Bregman divergence (approx-
imate GPMD).
Input: initial policy i {9, learning rate a> 0.
Initialize t(O(s)n | hs(i ©(t |s)) for all sn S.
fork=0,1,..., do
For every sn S, invoke the oracle to obtain (cf. (3.5))

(3.6) i trt)(s) = Gs,m,,,t(afk’,i CRCL
For every (s,a)n S s A, compute

1 c
7 £(k+1) - £ (k) . (k) .
(3.7) (s,a)= . (s,a)+ o7 aqu (s,a)

end for

Assumption 3 (subproblem optimization error). Consider any policy i and any
vector i n R !l 1. Define

o e e 1 (. , )
fs(p;i,i):=- Qls,t),p + uhs(p)+ gDhs p,i(t]s)i(st),

where Dy (p,q;i) is defined in (2.13). Suppose there exists an oracle Gs opt(Q,i i)
that is capable of returning i &t |s) such that

(3.5) fs(ie(tls);i,i)q min fs(p;i,i)+ n

opt’
pna (A) .

Note that the oracle in Assumption 3 can be implemented eficiently in practice via
various first-order methods [6]. Under Assumptions 2 and 3, we can modify Al-
gorithm 2.1 by replacing {Ou(k)} with the estimate {Ou(k)} and invoking the oracle
Gsn (Q,i,i) to solve the subproblem (2.18a) approximately. The whole procedure,
which we shall refer to as approximate GPMD, is summarized in Algorithm 3.1.

The following theorem uncovers that approximate GPMD converges linearly--at
the same rate as exact GPMD--before an error floor is hit.

Theorem 3.2 (approximate GPMD). Suppose that Assumptions 1, 2, and 3 hold.
Consider any learning rate a > 0. Then the iterates of Algorithm 3.1 satisfy

[ ]
(3.8a) |Q,- QY| ga (1- (1- a)(1- a))kC1+ C2 ,

]
(3.8b) |V, - VMU, g @+ 2) (1- (1- a)(1- a))kC1+ Ca + (1- a)opt,

where a := 1, C1 is defined in Theorem 3.1, and

L ) ) ]
1 2a 2a
©T1E Maian-a ™ M aaas e ™

In addition, if hs is 1-strongly convex w.r.t. the |1 norm for any sn S, then we
can further obtain
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[ ]
(3.9a) Q- Q*Y|, qa (1- (1- a)(1- a))kC1+ Cs ,
]
(3.9b) v,/ - v, q (@ +2) (1- (1- a)(1- a))kC1+ C3 + (1- a)nopt,
(3.9¢) }
[ ] P e
|i[(t|s)- i (k1 |s)||1q RERTE (1- a)(1- a))kC1+ Cs + 1;7;;
where
1 [ , ) ( . ) |
(3.10) Cs3:= 1- a3 2+ u(1: a) Neval + 1+m MNopt

In the special case where nopt = 0 and a =y , Algorithm 3.1 reduces to regularized
policy iteration, and the convergence result can be simplified as follows:

2a Neval
+

|
P (0)
q c |Qu' ClL |y (1_73)2

|QL -
y
In particular, when hs is taken as the negative entropy, our result strengthens the
prior result established in [12] for the approximate entropy-regularized NPG method
with nopt = 0 over a wid’e range of learning rates. Specifically, the error bound in [12]
reads asatfee. 2+ 2 where the second term in the brackets scales inversely with
respect to a and therefore grows t{nboundedl\j as a approaches 0. In contrast, (3.9)
and (3.10) suggest a bound atf¢a 2+ eSSy which is independent of the learning

rate a in use and thus prevents the error bound from blowing up when the learn-ing

rate approaches 0. Indeed, our result improves over the prior art [12] whenever
2(1-
a q (nEVE|a) :
Remark 1 (sample complexities). One might naturally ask how many samples
are suficient to learn an n-optimal regularized Q-function by leveraging sample-based
policy evaluation algorithms in GPMD. Notice that it is straightforward to consider

an expected version of Assumption 2 as follows:
U | ]
el g v L7 a neas

[ 5]
el a2 g,

where the expectation is with respect to the randomness in policy evaluation; then
the convergence results in Theorem 3.2 apply to E[| Q] - ka”)l y land E[li [(t]s)-

i fk”)(t |s)| 1] instead. This randomized version makes it immediately amenable to
combine with, e.g., the rollout-based policy evaluators in [27, section 5.1], to obtain
(possibly crude) bounds on the sample complexity. We omit these straightforward
developments. ]

Roughly speaking, approximate GPMD is guaranteed to converge linearly to an
error bound that scales linearly in both the policy evaluation error neval and the opti-
mization error nept, thus confirming the stability of our algorithm vis-g-vis imperfect
implementation of the algorithm. As before, our theory improves upon prior works by
demonstrating linear convergence for a full range of learning rates even in the absence of
strong convexity and smoothness.

4. Analysis forexact GPMD (Theorem 3.1). In this section, we present the
analysis for our main result in Theorem 3.1, which follows a framework different from
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[27]. Here and throughout, we shall often employ the following shorthand notation

when it is clear from the context:
iM(s):=iM(t|s)na (A), Q' (s):= Q' (s,t)nRI |,

(4.1) Tk () ez i (K) RI | i i

| (S) | (Slt)n A’ Qlu(S):=QIL(S,t)n RlA |,

in addition to those already defined in (2.11).

4.1. Preparation: Basic facts. In this subsection, we single out a few basic
results that underlie the proof of our main theorems.

Performance improvement. To begin with, we demonstrate that GPMD enjoys
a sort of monotonic improvement concerning the updates of both the value function
and the Q-function, as stated in the following lemma. This lemma can be viewed as
a generalization of the well-established policy improvement lemma in the analysis of
NPG [3, 12] as well as PMD [27]. The proof can be found in [59].

Lemma 4.1 (pointwise monotonicity). For any (s,a)n Ss A and any kq 0,
Algorithm 2.1 achieves

(4.2) VK (s)q v¥(s) and  Q**(s,a)q Q(s,a).

Interestingly, the above monotonicity holds simultaneously for all state-action pairs
and hence can be understood as a kind of pointwise monotonicity.

Generalized Bellman operator. Another key ingredient of our proof lies in the
use of a generalized Bellman operator Ty : REI 1w RI I 1 associated with
the regularizer h = {hs} s s. Specifically, for any state-action pair (s, a) and any
vector Qn RS 11 1, we define

[ {e o 3]
(4.3) T (Q)(s,a)=r(s,a)+ a E max Q(s®),p - uh «(p)
uh semP(t]s,a) pna (A) s

It is worth noting that this definition shares similarity with the regularized Bellman
operator proposed in [21], where the operator defined there is targeted at V,, while
ours is defined w.r.t. Q.

The importance of this generalized Bellman operator is two-fold: it enjoys a de-
sired contraction property, and its fixed point corresponds to the optimal regularized
Q-function. These are generalizations of the properties for the classical Bellman op-
erator, and are formally stated in the following lemma, whose proof can be found in
[59].

Lemma 4.2 (properties of the generalized Bellman operator). For any u> 0, the
operator Ty,n defined in (4.3) satisfies the following properties:
t Tyn is a contraction operator w.r.t. the |, norm; namely, for any Q1,Qz n
RISI 1, one has

I
(4.4) |Tu,h(Q1)‘ Tu,h(Q2)| v galQi- Q] y -
t The optimal regularized Q-function Q] is a fixed point of Ty,n, that is,
(4.5) Tun(Qy) = Qf.

4.2. Proof of Theorem 3.1. Inspired by [12], our proof consists of (i) char-
acterizing the dynamics of Iy errors and establishing a connection to a useful linear
system with two variables and (ii) analyzing the dynamics of this linear system di-
rectly. In what follows, we elaborate on each of these steps.
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Step 1: Error contraction and its connection to a linear system. With the as-
sistance of the above preparations, we are ready to elucidate how to characterize

the convergence behavior of |Q' - Q***|, . Recalling the update rule of i (k*1)
(cf. (2.18c)), we can deduce that
)

( ) (
Q- ui™P=aqQ - ui® +(1-a)q - Q¥
with a = Z1--, thus indicating that
(4.6) |Q[ - ui(k+1>l| qa |Q[ - ui<k>|' +(1- a)I'Qr - QW 'y

Interestingly, there exists an intimate connection between |Q - Q(k+1)| y and
|Q- ui "]y that allows us to bound the former term by the latter. This is stated
in the foIIowmg lemma, with the proof postponed to Appendix A.2.

Lemma 4.3. Set a = 1. The iterates of Algorithm 2.1 satisfy
(ke1) |} | i (k+1) ko1l ~0) ol
(4.7) IQS—QL+|yqa|q *|y+aa+|q - ui |y

The above inequalities (4.6) and (4.7) can be succinctly described via a useful
linear system with two variables |Q', - Q¥|, and Q- ui®]y , thatis,

(4.8) Xk+1 q Axk + aatly,
where
(4.9) [ ] [ ]
(k) [
A i = a(l- a) aa Xk 1= lQ[ i Ql |y and Y': |QSO)- U|(0)|
Totee e Tl | 0

This forms the basis for proving Theorem 3.1.

Step 2: Analyzing the dynamics of the linear system (4.8). Before proceeding, we
note that a linear system similar to (4.8) has been analyzed in [12, section 4.2.2]. We
intend to apply the following properties that have been derived therein:

[ ]
(4.10a) xke1 g A Ixo+ afa” TA- 1)y,
[ 0 ]
(O) . ’
|Q ui @] "

]
(4.10¢) Ak+L - ((1- a)a + 2 i PRI

(4.10b) a@a tA- 1) ly=

Substituting (4.10c) and (4.10b) into (4.10a) and rearranging terms, we reach

( )il | ol
xks1q (1- a)a+a  (1- a)la, - QI
||y )[a]

I
i (0) (0) i (0
+a|QL-U| |y+a|QL - ui 1

(
q ((1— a)a + a)k IQ{,- fo’)||y + 2a|Q£- ui(°)|| a

which taken together with the definition of xx+1 gives

(4.11a) IQ’- Q(k+1)|| qa((l- a)a+a)k(=Qr- Q‘°>|| +2aIOf— ui<°>|| ),
u u y u u y u y
| (-

) ( )
(4.11b) lat - ui(""llly q ( 1 al)a+ a)k lllru Q‘O‘)ll + 2a|11rlL ui(oly| )
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Step 3: Controlling |i ' (s)- i **¥)(s)| ; and |V - V(k+1)| . It remains to
convert this result to an upper bound on |i(s)- i (k+1)(s)| 1 and |Vr vty
By virtue of Lemma 2.1, there exist two vectors g (s) n | h(i r(s)) glk+1)(s) n

I hs(i ***1)(s)) and two scalars c{ Y R that satlsfy
u Q) (s)- 1 = g (s),
iel)(s, t)- 1 = glke)(g),

It holds for all sn S that
vy (s) - V(K1) (s)
= Qi (s),i(s)%- uhs(if(s))- CQ(s), i K2 (s) %4 uhs(i k2 (s))
e €
L(s)- Qi V(s),i (k1) (s) . .
+ u(hs(i 1 (s)) - he(if(s)) - Ql(s),i M (s)- iL(s)
de Co ) e e ) o
(Qt(s) ‘s, C()% e ughl(s) (), “is)- iTs)T ¢
Q(s)- Q*(s),i ©*D(s) + il D(s)- Q' (s),i K+ (s)- i (s))
(4.13) IQu(s ‘k+1)(s)ll +2] Q' (s)- ui*H(s)

(4.12)

y 7
where (i) results from hs(i (" (s))- hs(i "(s)) a eg*)(s),i " (s)- i (s)e. Plug-
ging (4.11) into (4.13) completes the proof for (3.1b).

When hs is 1-strongly convex w.r.t. the | 1 norm, we can invoke the strong mono-
tonicity property of a strongly convex function [6, Theorem 5.24] to obtain

€ e
i(s)- i ‘k”’(s)llfq i1(s)- i N(s), 8" (s)- g *Y(s)
( ¢
= u(s i (k+1) (s), |g S)+ c 1- (k+1)(s) C(k+1)1
q || r(s)- i (k+1)(g (s)+ ¢.1- g+ (s) - k"l)li
(4.14) = 1|| in(s)- i (k+1)(s) . q (s)- ui (k+1)(s)|| y

where the second line is valid since e | (s),1e = ei “”1)(5), le = 1. This taken together

with (4.11) gives rise to the advertised bound |
i1 (s)- i‘k*“(S)lllq u 1|I Q' (s)- ui ()l
v
) I p )
qu 1((1- aja+a " lq, - QL(,O)|y +2alqQ - ui(°)|y
5. Numerical experiments. In this section, we provide some simple numerical
experiments to corroborate the effectiveness of the GPMD algorithm.

5.1. Tsallis entropy. While Shannon entropy is a popular choice of regular-
ization, the discrepancy between the value function of the regularized MDP and the
unregularized counterpart scales as O(—-Jlog | A |). In addition, the optimal policy un-der
Shannon entropy regularization a55|gns positive mass to all actions and is hence
nonsparse. To promote sparsity and obtain better control of the bias induced by reg-
ularization, the authors of [31, 32] proposed to employ the Tsallis entropy [49] as an
alternative. To be precise, for any vector pn a (A ), the associated Tsallis entropy is
defined as

( )
1 m )q 1 [ ( )a- 1

1- p(a) = q- Eamp 1- p(a)

TSalliSq(p) = T
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Fig. 1. [Q" - Q(lt) | y versus the iteration count for both PMD and GPMD, for multiple choices
of the learning rate a. The left plot (a) is concerned with Tsallis entropy regularization, whereas
the right plot (b) concerns log-barrier regularization used in our constrained RL example. The error
curves are averaged over five independent runs.

where q > 0 is often referred to as the entropic index. When qw 1, the Tsallis entropy
reduces to the Shannon entropy.

We now evaluate numerically the performance of PMD and GPMD when applied
to a randomly generated MDP with |S|= 200 and |A|= 50. Here, the transition
probability kernel and the reward function are generated as follows. For each state-
action pair (s, a), we randomly select 20 states to form a set Ss,a, and set P(s® s, a) =
1/20 if s*n Ss,a, and 0 otherwise. The reward function is generated by r(s,a) mUs, s t
Us, where U, and Us are independent uniform random variables over [0, 1]. We shall
set the regularizer as hs(p) = - TsalliS 2(p) for all sn S with a regularization parameter
u= 0.001. As can be seen from the numerical results displayed in Figure 1(a), GPMD
enjoys a faster convergence rate compared to PMD.

5.2. Constrained RL. In reality, an agent with the sole aim of maximizing
cumulative rewards might sometimes end up with unintended or even harmful behav-
ior, due to, say, improper design of the reward function or nonperfect simulation of
physical laws. Therefore, it is sometimes necessary to enforce proper constraints on
the policy in order to prevent it from taking certain actions too frequently.

To simulate this problem, we first solve an MDP with |S|= 200 and |A |= 50,
generated in the same way as in the previous subsection. We then pick 10 state-
action pairs from the support of the optimal policy at random to form a seti . We can
ensure that i "(a|s) < i max = 0.1 for all (s,a) n i by adding the following log-
barrier regularization with u= 0.001:

{
Y ( ) if (s,a)ni and p(a)qg i max,
hs(p)= - log i max- p(a)’ if(s,a)ni andp(a)< imax,
0 otherwise.

Numerical comparisons of PMD and GPMD when applied this problem are plottedin
Figure 1(b). It is observed that PMD methods stall after reaching an error floor on the
order of 10" 2, while GPMD methods are able to converge to the optimal policy
eficiently.

6. Discussion. The present paper has introduced a generalized framework
of policy optimization tailored to regularized RL problems. We have proposed a
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Generalized Policy Mirror Descent (GPMD) algorithm that achieves dimension-free
linear convergence, which covers an entire range of learning rates and accommodates
convex and possibly nonsmooth regularizers. Numerical experiments have been con-
ducted to demonstrate the utility of the proposed GPMD algorithm. Our approach
opens up a couple of future directions that are worthy of further exploration. For
example, the current work restricts its attention to convex regularizers and tabular
MDPs; it is of paramount interest to develop policy optimization algorithms when the
regularizers are nonconvex and when sophisticated policy parameterization--including
function approximation--is adopted. Understanding the sample complexities of the
proposed algorithm--when the policies are evaluated using samples collected over an
online trajectory--is crucial in sample-constrained scenarios and is left for future in-
vestigation. Furthermore, it might be worthwhile to extend the proposed algorithm
to accommodate multi-agent RL, with a representative example being regularized
multi-agent Markov games [14, 64, 11, 13].

Appendix A. Proof of key lemmas. In this section, we collect the proof of
several key lemmas. Here and throughout, we use E; [t] to denote the expectation
over the randomness of the MDP induced by policy i . We shall follow the notation
convention in (4.1) throughout. In addition, to further simplify notation, we shall
abuse the notation by letting

(A.1a) Dh,(e,i;i):= Dhs(é(t [s),i (t]s);i (s,t)),
(A.1b) Dh,(p,i;i):=Dn, p,i(tl]s)i(st),,
(A.1c) Dh,(i,p;i):=Dn, i(t]s),p;il(s,t)

for any policy i andé and any pn a (A ), whenever it is clear from the context.

A.1. Proof of Lemma 2.1 We start by relaxing the probabriTIity simplex con-
straint (i.e., pna (A)) in (2.18a) with a simpler linear constraint ~ _ , p(a)= 1 as
follows:

e (
minimizey, gia1 - a M(s),p + auhs(p)+ Dp, p,i*K;i®
e

m

(A.2) subject to p(a)= 1.

an A

To justify the validity of dropping the non-negative constraint, we note that for any
p obeying p(a) < 0 for some a n A, our assumption on hs (see Assumption 1) leads
to hs(p) = y , which cannot possibly be the optimal solution. This confirms the
equivalence between (2.18a) and (A.2).

Observe that the Lagrangian w.r.t. (A.2) is given by

e e e e
Ls(p,a‘sk’)= - a Q&k’(s(),p + auhs(§)+ hs(p) - hs(i‘k’(s))- p- i M(s),iM(s)
m
+ afd) pa)- 1 ,
an A

where a(sk) n R denotes the Lagrange multiplier associated with the constraint

. P(@) = 1. Given that i (k”l)(s) is the solution to (2.18a) and hence (A.2),

the optimality condition requires that

( ) ( )
Onlpls pal® | ens) = - aQ(s)+ (1+ au)l hy i K (s)" - i K(s)+ alk1.
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Rearranging terms and making use of the construction (2.15), we are left with

_ (k) 1 L ] )

: (
(K k - (k k (K
ikt (s) - 1+Sau1= 1+ au aQY(s)+ i™(s)- al1 nihsit(s),

thus concluding the proof of the first claim (2.16).
We now turn to the second claim (2.17). In view of the property (4.5), we have

e e
i"(s)=arg min - Q' (s),p + uh_(p).
! pna (A) v :

This optimization problem is equivalent to

e e
minimizey, gia1 - Q) (s),p + uhs(p)
m

(A.3) subject to p(a)= 1,

an A

which can be verified by repeating a similar argument for (A.2). The Lagrangian
associated with (A.3) is

( )

( I') € r € r m
Ls pas =- Qj(s),p + uhs(p)+ a; p(a)- 1 ,
an A

where a; n R denotes the Lagrange multiplier. Therefore, the first-order optimality
condition requires that

Onlpl 5( p,ag)lp:i Js) = - Q/f(s) + ul hs(i rl(s)) +a'l,

which immediately finishes the proof.

(k+1) _ ke

A.2. Proof of Lemma 4.3. Recall that Q, = Q‘l( " In view of the relation
(2.8), one obtains
Q**(s,a)=r(s,a) + a E v (k+1)(ge)
¢ semP (t |s,a)[ ¢ ( ) ]
=r(s,a)+a E E [Q“”l)(se,ae)- uh i k*1)(s) ]
sem (t]s,a) . ae i (k+1)(se) L S
e € ( )]
=r(s,a)+a E Qe t(se),i k1 (s®)" - uh i (H1(se)
semP(t|s,a) ¢

This combined with the fixed-point condition (4.5) allows us to derive

Q(s,a)- Q**1(s, a)

= Tup(Qy)(s, a)
{ [e (k+1) ey i (k+1)(e ( (k+1) (e )]}
- r(s,a)+ a E Q (s®),i (s®) - uh i (s®)
semP (t|s,a) ' e s
= TU,F(QJ)(s,a)
(& (ks1) ey : (kel)) e (. ernyge )}
- r(s,a)+ a E ui (s®),i (s®) - uhei (s®)
semP(t|s,a) e s ]
(A.4) - a E Ql(k"l)(se,ae)- ui 1 (se,a8) .

m
semP (t [s,a),ae i (k+1)(se)

In what follows, we control each term on the right-hand side of (A.4) separately.
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Step 1: Bounding the 1st term on the right-hand side of (A.4). Lemma 2.1 tells
us that

i (s) - M an | hg(i (F1)(s))

for some scalar cﬁk”) n R. This important property allows one to derive
(A.5)  on-ilk*t(s)+ clk*t)g 4 Ihs(i <k+1)(s)) = ILk+1,s( [ <k+1>(s);cgk+1>),
where

ei (k+1)

Lkszs(psa):=- (s), - hs( p) +alfp.
) i

= fren, 3 (p)

Recognizing that the function fx+1,5(t) is convex in p, we can view L k+1,5(p; a ) as the
Lagrangian of the following constrained convex problem with Lagrangian multiplier a
nR:

S e e
(A.6) minimize  fi,; o(p) = - i **(s),p + hs( p)_
p:1r p=1

The condition (A.5) can then be interpreted as the optimality condition w.r.t. the
program (A.6) and i (k*1)(s), meaning that

(. ) .
fier,s 0 (s)" = min frer,s(p)
p:1P p=1
or, equivalently,
e e ( ) e e
(A.7) i (k1)) i (+l(s) ™ - h, i *(s)" = max i%Y(s),p - h_(p).
p:1r p=1

In addition, for any vector p that does not obey p q 0, Assumption 1 im-plies
that hs(p) = y, and hence p cannot possibly be the optimal solution to maxyn 4 (a

iei (& )(s), pe - hs(p). This together with (A.7) essentially implies that

e e ( ) e e
(A.8) ik (s), i ke (s)” - h ik (s)" = max i *V(s),p - h (p).
° pna (A) °

As a consequence, we arrive at
(A.9)

Tu,h(Qu’{)(s,a) )

e
- r(s,a)+ a E [ ui k8 (se),i k1 (se) - yh e(i (k+1)(se))]
ser?P(t Is,a) e s ]}

; [ {e (1) ey & }
T h(Q )(s,a)- r(s,a)+ a E max ui (s®),p - uh <(p)
u, t semP(t|s,a) pna (A) )

Tyn(Q1)(s,a) - Tun(ui®*)(s, a)
q aTQj - uj (1| ,

where the last step results from the contraction property (4.4) in Lemma 4.2.
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Step 2: Bounding the 2nd term on the right-hand side of (A.4). Recall that a =
1+§ —. Invoking the monotonicity property in Lemma 4.1 and the update rule (2.18c),
we obtain

Q£k+1) s,a)- ui(k+1)(s,a)
=3 ngk*l)(s,a)- ui M(s, a)

} { }

+(1- a) Qlt(s,a)- Q¥(s, a)

ga Q¥(s,a)- ui¥(s,a)

Repeating this lower bound argument then yields

{ }

Q“"Y(s,a)- ui**(s,a)q a**t Ql%(s,a)- uis,a)
q- ak+1|lQl(°)- ui (°)||y

thus revealing that
(A-10) [ ey (ke1) I 1|qo . 4]
+ e e (k+ e e + :
- E Ql (s®,a%) - ui (s®,a%) g a QL - ui ,

m
semP (t [s,a),ae i k+l(se)

Step 3: Putting all this together. Substituting (A.9) and (A.10) into (A.4) gives
I

I |
k+1 s (k+1 k+1 0 (o)
(A.11) 0q Q! (s,a)- Q*"Y(s,a)q a|Q[- ui DT+t Q- Wi O

for all (s,a)n S s A, thus concluding the proof.

Appendix B. Analysis for approximate GPMD (Theorem 3.2). The
proof consists of three steps: (i) evaluating the performance difference between i (k)
and i (k"ly (ii) establishing a linear system to characterize the error dynamic, and (iii)
analyzing this linear system to derive global convergence guarantees. We shall
describe the details of each step in what follows. As before, we adopt the notational
convention (A.1) whenever it is clear from the context.

B.1. Step 1: Bounding performance difference between consecutive
iterates. When only approximate policy evaluation is available, we are no longer
guaranteed to have pointwise monotonicity as in the case of Lemma 4.1. Fortunately,
we are still able to establish an approximate versioin of Lemma 4.1, as stated below.

Lemma B.1 (performance improvement for approximate GPMD). For all sn S
and all kg 0, we have

1+ a 2
Vu(k+1)(5)q Vu(k)(s)' 1- an)pt' 1- aneval-

In addition, if hs is 1-strongly convex w.r.t. the |1 norm for all s n S, then one
further has

3+ a H >
Nopt

1- a T (2+ au)(1- a)ne"al'

VS (s) a vf(s) -

In words, while monotonicity is not guaranteed, this lemma precludes the possibility of
Vu(k+1)(s) being much smaller than Vu(k)(s), as long as both neval and nypt are reasonably
small.

B.1.1. Proof of Lemma B.1. We divide the proof into two cases based on
whether hs is convex or strongly convex.
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The case when hs is convex. Let @‘k*1) be the exact solution of the following
problem:
{ }

e 1
(B.1) e*(s)=arg min - Q¥(s), pe + uhs(p)+ D, (p,i (k);it“‘))
L s

pna (A) H

With this auxiliary policy iterate (¥*1) in mind, we start by decomposing V ***)(s)-
Vu(k)(s) into the following three parts:

(B.2)
(1- )V Uis) - v (s ( o
Ql(s®), i B (s®) - 1 M(s®) - uh i N(sE) 4 uh i ()

)]

E
g ko) €
= E Q'"(s¢),e (s€)- i"(s®) - uh.e (s€) + uh i '™(s®)
ger (ke t e s s
d . [e (K)eey i (k+l)jcey o (k+1)[ce ( (k+1) [ e ) ( (k+1) (e )]
+ E Q" (s®),i (s®)- e (s®) 'Uhse| (s®) +uhsee (s%)
emd 1) L
: ]
£ E QM) - @ist), i M (st) - ()
semd/*TY

where the first identity arises from the performance difference lemma for the regular-
ized setting [27]. To continue, we seek to control each part of (B.2) separately.
t Regarding the first term of (B.2), straightforward computation indicates that

(B.3) ) ) )
e -
k ) k k
e e ( ) ( )
9“(5‘“-[,1 (el gey i0(s®) - uhge @' *V(s® "+ uhge i )(s® ]
= 1 (1+ au)Dn,. (i (k) (k+1)(ge ),'Iﬂk+1)) + Dh,. (é(k"l),i ‘k);rr(k))
forall s nS.

t As for the second term of (B.2), the definition of the oracle Gsn o (see As-
sumption 3) guarantees that

(B.4)

e 1
_ ka)(se),i (k+1)(se) + uhse(i (k+1)(se)) + = Dh, (i (k+1) (k);¥(k))
e H

e 1
q - ka)(SE)'é(k+l)(SE) + Uhse(é(k+1)(se )) + 7Dh5e (é(k+1),i (k)’K(k))
e .

<
+ Nopt

for any s n S. Rearranging terms, we are left with

(B.5)
el “ k+1 _ “ 1 € ( k+1 )) ( k 1 )
Q' '(s®), i (s®) &' *V(s®) - uhe i (s® "+ uhe & TV (s®

1 1
a- ;Dne e o, ) 4 Dhee e oo, ) Mopt

1(

)

-2 p,. (é(km'i (k);it(k)) o b (k+1) g (k);;(k))

s

hye

(
. L Dn.. (. (k+1) 4 (k)l.it(k)) - Dn., (. (k+1) (k);it(k)) - gt

H
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In addition, we note that the term

Dh.. (é(m)'i (k) )

appears in both (B.3) and (B.5), which can be canceled out when summing these two

equalities. Specifically, adding (B.3) and (B.5) gives
e
aM(se),e r(se) - i MW(se) - uhse(é(k+1)(se()) + uhse(i)(k)(se)) )
e e
t
+ [Q(k)(se),i (k+1)(se)_ é(k+1)(se) - uhge i(k+1)(se) + uhge ]é(k+1)(se)
1 ( t ( t)

g = (1+au)Dp, i®, g lked)jled) yopy T (ed) g (k) (k)

(
+ X o, (. (ke1) (k);f[(k)) - D (. (k+1) (k);it(k)) - Togt.
Substituting this into (B.2) and invoking the elementary inequality |ea,be |g |a] 1] b]y
thus lead to

(B.6)
W (s) - W H(s) ]
q ! E f[(1+ au)D, (i W, (k1) jlrt) 4 p (i (k+1) o ‘k);'rt“‘))]
1- aemgn e[ * o
1 1( ( ) ( ))
+ E o, i (k1) 00, ) D, i () (k) (k)
1- aemaltt e ¢ o€
- Nept - 1 E [ IQ(k)(se) _ Q(k)(56)| ||i (k+1)(se) - (k)(se)| ]
1- a 1- agemgln t L | Y | 1

where the last line makes use of Assumption 2 and the fact that|i *)(s)| 1 =
[i ®)(s)] .= L
Following the discussion in Lemma 2.1, we can see that it{K)(s) - c(sk)l n

| hs(e ()(s)) with some constant c!* for all k. This together with the convexity
of hs (see (2.13)) guarantees that

(B.7) Dhs(i L (k”’;it‘k*“) q 0 and Dhs(i (k+1) g (k). () q0

for any sn S, thus implying that the first term of (B.6) is non-negative. It remains
to control the second term in (B.6). Towards this, a little algebra gives

( . )
i (k+1)l ie (k)}i (k)

(8.8) D, (i (k+1) (k);it(k)) - D
S )

h

he(i ®(s)) - hs(é(k)(s) - t(s), 1 ¥(s) - 0(s)°

( ) ( )
=-hs i ®(s)" + hs &®(s) .
€
1 ke é (k- 1)y i (K(e). @ (k)
mi (s)+ m@“‘ (s),i "™ (s)- @' '(s)
a { € (k- 1) o (k) ( (k) ) 1 ( (k) (k- 1), (k- 1))
= Trag Q' Y(s), e (s)e + uhs & '(s)" + EDhS @i ;it
[ ( ) 1 ( )]}
e e
- & V(s),i W(s) + uhg i W(s) + S0h. | ()t ke )
) aNopt
q 1+ au’
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Here, the first and the third lines follow from the definition (2.13) and the second in-
equality comes from the construction (3.7), whereas the last step invokes the definition
of the oracle (3.5). Substitution of (B.7) and (B.8) into (B.6) gives

(B.9) VI (s) - v (s)

1+ a
4 1- an°pt'
(B.10) c e Hawe)- @] fiwense)- e
1- € semalkr) u L y
1+ ¢ 2
q 1- anopt 1- aneval-

The case when h is strongly convex. When h is 1-strongly convex w.r.t. the | ;
norm, the objective function of subproblem (B.1) is 1*au_strongly convex w.r.t. the I 1
norm. Taking this together with the nyt-approximation guarantee in Assumption 3, we
can demonstrate that

1+ aul [P
(B.11) Taﬂé““l)(se) - (k) (ge)| 2 10 Topt forallkq 0and s°nS.
Additionally, the strong convexity assumption also implies that
(. ) 1) |
D, 1 *0(s%) - @M(s);1M(s°) g TleM(s) - i et (sl
1( 1
-3 e W(se) - i(k+1)(se)|12+ e W(se) - i<k>(sE)|12) - EIl«ia‘k)(se)- i W(se )Illz
11 [ \ 1l P
_ 2 —
q  le®(se)- ikl + le®(se)- i)l - Te®(se)- i 0(se)l
4| 2% arg 2
7| (k) ey i (k+1) e | _ t
q 1i79(s®)- i (), 1+ au’

where the third line results from Young's inequality, and the final step follows from
(B.11). We can develop a similar lower bound on D (i ®,& (k*1);i (k+1)) as well.
Taken together, these lower bounds give

1l ( ) (. )]

= (14 au)Dn, i W(s®),e M (5% )i (%) + D, i B0 (s®), e M(s%);i M(s°)

<

(
2+ au 1|| (k) fce s (k+l) (e |2 dlort
2+ au NTETTRS E ST
: (5°) - i i)(se) 2. Blart

J“k)(s - i (k(sey)| '12- Mopt.

In addition, it is easily seen that

la‘uk’(?e)- Qik’(se)lly i tenigse) i‘k’(se)'ll )
1 2a 2 2+ . ; 2
q - E 2+ au IQ&k)(Se)' (tlsk)(se)lly * 2aa II (k+1)(SE)- ! (k)(SE)||1
: 2 +ad. : 2
a9- 55 aung\ar it (se) - (k)(se)l L

Combining the above two inequalities with (B.10), we arrive at the advertised bound

3+ ¢
Vu(k+1)(5) - Vu(k)(s) q - ﬁf‘bpt-

<

n2
(2+ au)(1- a) &
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B.2. Step 2: Connecting the algorithm dynamic with a linear system.
Now we are ready to discuss how to control |Q] - ka)l y - In short, we intend to
establish the connection among several intertwined quantities and identify a simple
linear system that captures the algorithm dynamic.

Bounding |Q - uit**3 ], . From the definition of it(k*)in (3.7), we have

|Q[ - Uti(k+1)| ,
lat@; - wt)+ 1- aya)- Q)+ (- a)a- )l
alq - uit(k)||y + (1- a)||Qru- C)fuk)||y +(1- a)||Q(uk)- Q(:)|

a|Q[ - ut‘k’|ly +(1- a)la- Q¥+ (1 ane,

I
a y
(B.12) q
where the last inequality is a consequence of Assumption 2.
Bounding - mins.(Q* (s, a)- uittk*1)(s, a)). Applying the definition in (3.7)
once again, we obtain
(
- (s, a)- ut® (s, a)
) ( )
-a Qs a)- utl(s,a) + (1- a) @(s,a)- Q(s,a)

+al¥(s,a)- (s, a)

(B.13) q-a QMs,a)- ut™(s,a)’ + (1- a+ ci)neval+ CNopt,
where
{ 2a
1-a if hs is convex but not strongly convex,
Cr =
1= A Nevald

W if hs is 1-strongly convex w.r.t. the I 1 norm,
(B.14) (a +1)a ) .
I e if hs is convex but not strongly convex,
C2= (a+3)a
1- a

if hs is 1-strongly convex w.r.t. the | 1 norm.

Here, the last step of (B.13) follows from Assumption 2 as well as the following
relation:

[ ]
Q(s,a)- Q**(s,a)=a E V#(s®) - vIeU(s®) g c;n

+ Cc,n
eval
semP (t|s,a)

2 opt’

where we have made use of Lemma B.1. Taking the maximum over (s,a) on both
sides of (B.13) yields

( )

- min Q**)(s,a)- utk*t(s, a)
s,a

( )
(B.15) g - amin Ql(k’(s,a)- ut®(s,a)’ + (1- a+ ci)neval + CNopt-
S,a

Bounding |Q - Q{(kﬂ)ly. To begin with, let us decompose Q(s,a) -
Ql“”l)(s,a) into several parts. Invoking the relation (4.5) in Lemma 4.2 as well
as the property (2.8), we reach
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(B.16)
Q (s, a)- ka”’(s,[a)

[e ( ) 1l
=T (Q)(s,a)- r(s,a)+a E Qlti(se),i ((s®) - uh .1 *t)(s)

uh semP (t|s,a) u e ( ) ]
e
=T (Q)(s,a)- r(s,a)+a E [ ut ) (se),i k(se) - uh . i (K(s) ]
uh t semF‘(t| s,a) ] e S
- a E Q(k+1)(se’aE)_ U[(k+1)(se,ae)
semP(t[s,a),a® i (k+1)(se) ¢
{ m
= Tun(Q])(s,a)
- r(s,a)+a E up ) (se),e KU (s®) - uh . ek*Y(s)
s¢mP (t|s,a) e s
- ua E et(k+1)(se)'i (ke1)(ge) é(k+1)(se)e
semP(t|s,a) ]
( ) ( )
- hee i (s) + he &K (s)
_ (k+1)(ce ey _ (k+1)[ce ey]
a E Q (s®,a%) - ut (s®,a%)!.

m
semP (t |s,a),ae i (k+1)(se)

In wat follows, we control the three terms in (B.16) separately.
t To begin with, we repeat an argument similar to that for (A.9) to show that

Tun(Q()(s, a)
[ [

e (
- r(s,a)+a E ut 3 (s8),e K 1(s®) - uh . & k*1)(s)
semP (t|s,a) € s

= Tyn(Qy )(s,a) - Tun(t*V)(s, a)
qalQ - uiV] , -

)11

t The second term of (B.16) can be bounded by applying (B.8) with k replaced
by k+ 1:
k Tk
eit( (ge) kel ge) gl +1)(Se)e

) at
_ . < (k+1) R (k+1) _ oft
hse i (s) + hse & (s) q I+ an’

t As for the third term of (B.16), taking the maximum over all (s,a)n S s A
gives

( )

Ql*H(se,a%) - utk*)(s®,a%) q - min Ql*(s,a)- ut*M(s, a)
s,a

Taken together, the above bounds and the decomposition (B.16) lead to

I
- k
|ij Qi

( )
(B.17) q a|QL- ut“‘"l)|ly - amin Q*"Y(s,a)- ut*t(s,a) + a(l- a)nop.
s,a

A linear system of interest. Combining (B.12), (B.15), and (B.17), we reach the
following linear system:
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(B.18) Zx+1q Bzi + b,
where
[ 1
a a (k)
[ ] Q- Q|
a(l- ) aa a | [y
B:= 1-a a 0 , Z i = lar - ui(k)lvt ),
0 0 a - minsa Q¥(s,a)- ui®{(s,a)
a
a(2- 2a + ¢)nevar + a(l- + )N opt

(B.19) b:= (1- a)neval
(1- a+ Cl)neval + CQNopt

This linear system of three variables captures how the estimation error progresses as
the iteration count increases.

B.3. Step 3: Linear system analysis. In this step, we analyze the behavior of
the linear system (B.18) derived above. Observe that the eigenvalues and respective
eigenvectors of the matrix B are given by

(B.20) ai=a+ (1- a)a, az= a, az=_0,
[] [ ] [ 77
0 a
(B.Zl) vi= 1, vo= -1, vz= a-1
0 1 0

Armed with these, we can decompose zg in terms of the eigenvectors of B as follows:

(8.22)
la - Q?,
z0q |Q - ut@],
Q- ut@y,
1 [ | | | ot | o]
=—— (1 ala- Qto)l +alQ U|ﬂ°)|y +a Q- ui 0] Vi

aJlr(l-a)al_ ) v . y

+ |Q[ - ut@ v+ eyvs

1
q ail-il- ala

[IV I I | ]
Qa Q21 +2 la, uit?l' v,
| _ Yy a _ Yy

t
+ lqt - ui(0)|y Vo + e;v3,

where e; n R is some constant that does not affect our final result. Also, the vector b
defined in (B.19) satisfies

[

a(2- 2a + ci)nevar + a(l- + cz)nopt
lbq (1- a)nevar+ (1- a)nopt
[ (1- a+ ci)neval + CNopt

[ ]
(B.23) = (2- 22+ ci)nevar + (1- a+ cZ)nopt vi+ (1- a+ ci)nevar+ CNopt V2.

Using the decomposition in (B.22) and (B.23) and applying the system relation
(B.18) recursively, we can derive
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Zk+1
k+1 I'ﬂ( k-t
q B Zo + B b
t=0
q Bk+1
[ [

1 ' (0)|| r (O)|
S - + - |
ta+(1—a)a - Q v Q- uf y

. t[ ]

+ B (2- 2a + c)nevar+ (1- @+ c2)nopt Vi +
t=0

[ (| — | ‘ ()

= af 1Q) - Qf |y +2a(Q - ut |y

1- gkrl

+ 2 S22+ C)neval+ (1- @+ Cnopt V1

1

[

+ af*?t

- uit(c’)| +
Qu y

vy +

Q - ut® I|
L

Y

1087

Va2t e;Vv3

]

]

(1- a+ ci)nevar + CQNopt V2

]

_-__2_[(1' a+ C1)Neval + CZnOpt] va.

Recognizing that the first two entries of v, are nonpositive, we can discard the term

involving v2 and obtain

[
k+1

la - oMy

[Q - uf 1)|v

where

C:

T 11 4]

o aol valag ol !
q a¥ Q[-Q&O)y+2a Q[-uf‘(o)y +C

(2- 2a + c)nevar+ (1- a+ c2)nopt .

]

Making use of the fact that 1- a1 = (1- a)(1- a), we can conclude that

1
1-

C=

The above bound essentially says that

I
|Q[ _ QSHI)

and

)

1-a

1+
1

c2

[ |
l, aa ak |Q[ QEO)Iy +2a|Q[- ut©

]
Nopt

l Y

J

+ C

[ ]

4

|r-ut'(k+1| akq|r- tl)| +Ja|r—tu 0| )+
Q, itenl e gkl - ol LQ ol C.

Turning to V. (s) - Vu(k+l)(s), by an argument similar to that of (4.13), we have

VS (s)- V€ (s)
e

€
= Qu(s)- Qf(s), i t2)(s)

+ulhs(i M (s)) - h(i [ (s))) - eCl[,(S),i (k*t)(s) - iL(S)E

e

€

]

= Qi(s)- alm(s), i “41(s) + Dy, (i K1), 4g)
q IQL _ Q(k+1)| + uDp (i (k+1) i\N(k+1)_|-t(k+1))
L s ’ ’
y

€ €
+uDn, (M i) + ui () (s) - A\~ (s), (k1) (s) - gl (s),
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where the third step results from the standard three-point lemma. To control the
second term, we rearrange terms in (B.4) and reach at

e e ) 1 )
rope d - QM (s), i 7 (s) + uhe i KN (s)] 4 ~Dy, i I, 1 ;10

e e ( ) 1 | )
+ QM(s),e M*(s) - uhs & *)(s)" - *Dhs e tkrd) (k) jtlk)

e 1+ ad )
+

“Q¥(s), & () - i 6(s)” + 220 (1 (5)) - (i)

<

+ Lh0(s), 6 (1)) - (1))

[3

1+ a
: l:bhs(i (k+1)’k~(k+1);i(k+1))_

4

For the remaining terms, recall that it{x+1) - cik”)l n 1 hs(e **1)(s)) with some
constant ¢!, so we have

e
ubDp, (\~®* i Tgl) + u i‘“1’(5)-E?\“““l’(S),I"‘k*“(S)- g[£5)e

uhst\~**1)(s)) - uhs(i "(s)) - A (s) - F(s), Q" (s)
+u i (92 () o \~lT(s) 0D (5) - gr(s)

q ‘i 4(s)- \D(s),Ql (s) - uitkrD)”

- () - e (s), QL (s) - uFk N (s)'

(s - i D (s), @ (s) - ulkrd)”

z|| Q, (s)- uXk1)(s)

o]

Taken together, we conclude that

Vi(s)- vIKt(s)
| | a.

t
opt

q |QI ?(k*'l)“ + 2| a (s) - u\l((k+1)(5)|
] al
1+ a

+
| | 1+ au
q@+2) af 1qQ) - Q(O) +2alQ - uff‘o)

Mopt .
qop

Finally, plugging in the choices of c1 and ¢ (cf. (B.14)), we have C q C> when
{hs} is convex and C q Cz when {hs} is 1-strongly convex w.r.t. the |1 norm. In
addition, for the latter case, we can follow an argument similar to that of (4.14) to
demonstrate that

I "(s)- e{k)(s)ll

1
( )
qu 1((1- ala + alk |qu- Q(uo)lly + 2a|O{- ui(o>||y +u lcs,

which taken together with (B.11) gives
Sty |l iy el |l (K (5) - & M)l
||u(s) il (s)|1q||u(s) e W(s)l +|. (s) eu(s)|

I |
qU‘l((l-a)a+a |Qr Q(°)| +2a|Of U|(°)|

+ulcg+  BToP
I+ au

This concludes the proof.
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