
Sidecar: In-Network Performance Enhancements
in the Age of Paranoid Transport Protocols

Gina Yuan, David K. Zhang, Matthew Sotoudeh, Michael Welzl , Keith Winstein
Stanford University and University of Oslo

ABSTRACT

In response to ossification and privacy concerns, post-TCP
transport protocols such as QUIC are designed to be “para-
noid”—opaque to meddling middleboxes by encrypting and
authenticating the header and payload—making it impossible
for Performance-Enhancing Proxies (PEPs) to provide the
same assistance as before. We propose a research agenda
towards an alternate approach to PEPs, creating a sidecar

protocol that is loosely-coupled to the unchanged and opaque,
underlying transport protocol. The key technical challenge to
sidecar protocols is how to usefully refer to the packets of the
underlying connection without ossification. We have made
progress on this problem by creating a tool we call a quACK

(quick ACK), a concise representation of a multiset of numbers
that can be used to efficiently decode the randomly-encrypted
packet contents a sidecar has received. We implement the
quACK and discuss how to achieve several applications with
this approach: alternate congestion control, ACK reduction,
and PEP-to-PEP retransmission across a lossy subpath.

CCS CONCEPTS

• Networks → Network protocols; Network protocol design;
Transport protocols; Middle boxes / network appliances;

KEYWORDS

networks, network protocols, transport protocols, middle-
boxes, performance-enhancing proxy (PEP), QUIC

ACM Reference Format:

Gina Yuan, David K. Zhang, Matthew Sotoudeh, Michael Welzl ,
Keith Winstein. 2022. Sidecar: In-Network Performance Enhance-
ments in the Age of Paranoid Transport Protocols. In The 21st ACM

Workshop on Hot Topics in Networks (HotNets ’22), November 14–

15, 2022, Austin, TX, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3563766.3564113

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets ’22, November 14–15, 2022, Austin, TX, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564113

1 INTRODUCTION

In the 1970s, the Internet’s architects created TCP and IP as
different beasts. IP is spoken and understood by every host
and router. But in the canonical model, TCP is implemented
only in hosts [4, 28], while routers and other network com-
ponents simply exchange IP datagrams on a best-effort basis
without regard to their payloads.

TCP/IP benefited greatly from its end-to-end principles, but
in practice, the “right way” to implement TCP can depend on
the particulars of the network path—particulars that hosts are
typically unaware of. An appropriate retransmission timeout
or congestion-control scheme for a heavily multiplexed wired
network wouldn’t be ideal for paths that include a high-delay
satellite link, Wi-Fi with bulk ACKs and frequent reordering,
or a cellular WWAN [10, 22]. Moreover, end-to-end retrans-
missions can be wasteful when a long network path includes
a single hop with nontrivial noncongestive loss.

By the 1990s, many networks had broken from the canon-
ical model by deploying in-network TCP accelerators, also
known as Performance-Enhancing Proxies [2, 3, 5, 6, 8, 11,
12, 17, 24, 26]. These “PEPs” can insert themselves in the
middle of each TCP connection to change the network be-
havior over a specific subpath (Fig. 1(a)). Because TCP isn’t
encrypted or authenticated, PEPs achieve this without the
cooperation or knowledge of end hosts. A 2011 study esti-
mated that 25% of Internet paths include a TCP PEP [13],
and it’s likely that many users benefit—especially those on
unusual or innovative access networks for which the default
congestion-control or retransmission behavior of a faraway
server isn’t well-tuned.

PEPs also carry a big cost: protocol ossification [25]. When
a middlebox inserts itself in a connection and enforces its
preconceptions about what an IP payload represents, it can
thwart the transport protocol’s evolution, dropping traffic
between hosts that try to speak an upgraded version of the
protocol. TCP PEPs have hindered the deployment of new
TCP options and behaviors, such as multipath TCP [27].

In response to this ossification, and to an increased em-
phasis on privacy and security, post-TCP transport protocols
are designed to be “paranoid”—opaque and impervious to
meddling middleboxes, by encrypting and authenticating the
transport header and payload. The most popular of these is
QUIC [16], found in billions of deployed Web browsers and
millions of webservers [29], as well as encrypted protocols
used by applications such as Signal, Zoom, and Mosh.

QUIC’s encryption and authentication mean that connec-
tions can’t be “split” by a middlebox without host cooperation,

Sidecar Protocols HotNets ’22, November 14–15, 2022, Austin, TX, USA

them when receiving each packet. Both parties also main-
tain a count, and the sender maintains a log of sent packets.
To bound the size of the quACK while preserving a unique
solution, all power sum arithmetic is performed modulo the
largest prime that can be expressed in Ę bits.

When the receiver is ready to send a quACK, it sends the
Ę · Ī bits corresponding to its Ī power sums, and the count,
to the sender. The sender subtracts the received count from
its own count to determine the number of missing packets
ģ. Note that the number of bits used to represent the count
only needs to be big enough to represent this difference, and
the count itself can wraparound. If the difference also wraps
around, then the polynomial equations either cannot be solved
or the solutions do not correspond to packets in ď .

The sender decodes the missing packets in its log by solv-
ing the firstģ polynomial equations derived from the quACK,
mapping the identifiers to their original packets. If Ę is too
small, a decoded identifier may correspond to multiple candi-
date missing packets. The sender considers the fate of these
packets indeterminate, and interprets the results based on the
specific sidecar protocol. If Ī < ģ, decoding fails because
there are not enough equations to solve.

3.3 Practical Considerations

There are some practical considerations when using a
quACK and setting parameters. We discuss how small modi-
fications to the quACK can address these considerations.

Resetting the threshold. The threshold parameter should
only apply to the number of missing packets since the last re-
ceived quACK, rather than over the entire connection. When
decoding missing packets, the sender assumes they will never
be received and removes them from its log and power sums.
Thus these packets will not be counted in the threshold of the
next received quACK.

Re-ordered packets. Packets may also be re-ordered, causing
missing packets to later be received. Thus discarding missing
packets can be problematic. The sender can buffer missing
packets for a period of time before actually deleting them
from the log to allow the missing packet to be received.

In-flight packets. The sender may have logged many more
packets since when the receiver initially transmitted the quACK.
Say the sender has logged Ĥ′ packets and the quACK includes
Ĥ packets where Ĥ

′ − Ĥ > Ī . Rather than increasing Ī , the
sender can temporarily truncate the log suffix such that the
log has length Ĥ + Ī , considering the truncated packets to be
in transit. When the sender decodes the remaining log, it con-
siders any continuous suffix of missing packets to also be in
transit, instead of actually missing.

Exceeding the threshold. If the number of missing packets
exceeds the threshold, the sender and receiver must reset the
connection if they wish to use the quACK.

Dropped quACKs. The implementation is resilient to

quACKs that are dropped in transmission, since the power
sums in both the sender and receiver are cumulative.

4 EVALUATION

We demonstrate that our implementation of the quACK based
on power sums can both concisely represent and efficiently

decode the set of received packets from a list of sent packets.
Our code is shared at https://github.com/ygina/quack.

We evaluate our implementation on a 2019 MacBook Pro
running macOS Monterey v12.4 with a 2.4 GHz 8-Core Intel
i9 processor and 32 GB memory, representative of a client
end host. Our code, including all benchmarking code and the
two strawman solutions, is written in 1408 lines of C++.

A quACK that represents Ĥ = 1000 sent packets and up to
Ī = 20 missing packets with Ę = 32-bit identifiers takes 106
us to construct and 61 us to decode, and requires 82 bytes
to be transferred from the receiver to the sender. Using 32-
bit identifiers, there is a 0.000023% chance that a candidate
packet has an indeterminate result. In comparison, our two
strawmans use extraordinary bandwidth or computation.

We additionally show how modifying 1) the threshold num-
ber of missing packets Ī and 2) the number of identifier bits
Ę affects these metrics, and discuss how an end host could
select these parameters and 3) the communication frequency
that affects Ĥ based on the specific sidecar protocol.

4.1 Comparison to Strawman QuACKs

Construc- Decoding QuACK
tion Time Time Size (bits)

Strawman 1 222 us 126 us Ę · Ĥ = 32000

Strawman 2 387 ns ≈7e+06 days 256 + ę = 272

Power Sums 106 us 61 us Ī · Ę + ę = 656

Table 2: Strawmans compared to the power sum QuACK,

using Ĥ = 1000, Ī = 20, and ę = 16 bits to store the count.

All use Ę = 32-bit identifiers, which results in a 0.000023%

chance that a candidate packet has an indeterminate re-

sult. Average of 100 trials with warmup.

The strawman quACKs described in § 1 are unrealistic,
using either extraordinary space or computation (Table 2). In
comparison, the size of our power sum quACK is 82 bytes
(4000 bytes in Strawman 1), and is proportional only to the
threshold. The decoding time of the power sum quACK is 61
us (≈7e+06 days in Strawman 2).

In the following sections, we discuss how modifying the
quACK parameters Ī , Ĥ, and Ę affects these metrics, and ar-
gue how these results put the quACK within the latency and
bandwidth constraints of our three sidecar protocols.

4.2 Configuring QuACK Parameters

Construction Time The construction time is how long it
takes to construct a quACK (with threshold Ī) from a list of
Ĥ packets with Ę-bit identifiers. Typically, the construction

Sidecar Protocols HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES

[1] Runa Barik, Michael Welzl, Peyman Teymoori, Safiqul Islam, and
Stein Gjessing. 2020. Performance Evaluation of In-network Packet
Retransmissions using Markov Chains. In 2020 International Confer-

ence on Computing, Networking and Communications (ICNC). 10–16.
https://doi.org/10.1109/ICNC47757.2020.9049757

[2] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. 2001.
Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations. RFC 3135. (June 2001). https://doi.org/10.17487/
RFC3135

[3] C. Caini, R. Firrincieli, and D. Lacamera. 2006. PEPsal: a Performance
Enhancing Proxy designed for TCP satellite connections. In 2006 IEEE

63rd Vehicular Technology Conference, Vol. 6. https://doi.org/10.1109/
VETECS.2006.1683339

[4] D. Clark. 1988. The Design Philosophy of the DARPA Internet Proto-
cols. In Symposium Proceedings on Communications Architectures and

Protocols (SIGCOMM ’88). Association for Computing Machinery,
New York, NY, USA, 106–114. https://doi.org/10.1145/52324.52336

[5] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusudhan
Ravi, Nick McKeown, Ittai Abraham, and Isaac Keslassy. 2016. Virtu-
alized Congestion Control. In SIGCOMM. ACM, New York, NY, USA,
14.

[6] Paul Davern, Noor Nashid, Cormac J. Sreenan, and Ahmed H. Zahran.
2011. HTTPEP: a HTTP Performance Enhancing Proxy for Satellite
Systems. Int. J. Next Gener. Comput. 2, 3 (2011).

[7] David Eppstein and Michael T. Goodrich. 2011. Straggler Identification
in Round-Trip Data Streams via Newton’s Identities and Invertible
Bloom Filters. IEEE Trans. Knowl. Data Eng. 23, 2 (2011), 297–306.
https://doi.org/10.1109/TKDE.2010.132

[8] Viktor Farkas, Balázs Héder, and Szabolcs Nováczki. 2012. A Split
Connection TCP Proxy in LTE Networks. In 18th European Conference

on Information and Communications Technologies (EUNICE), Róbert
Szabó and Attila Vidács (Eds.), Vol. LNCS-7479. Springer, Budapest,
Hungary. https://doi.org/10.1007/978-3-642-32808-4_24

[9] Bryan Ford and Janardhan R. Iyengar. 2008. Breaking Up the Transport
Logjam. In 7th ACM Workshop on Hot Topics in Networks - HotNets-

VII, Calgary, Alberta, Canada, October 6-7, 2008, Carey L. Williamson,
David G. Andersen, and Steve D. Gribble (Eds.). ACM SIGCOMM,
85–90. http://conferences.sigcomm.org/hotnets/2008/papers/15.pdf

[10] Prateesh Goyal, Mohammad Alizadeh, and Hari Balakrishnan. 2017.
Rethinking Congestion Control for Cellular Networks. In Proceedings

of the 16th ACM Workshop on Hot Topics in Networks (HotNets-XVI).
Association for Computing Machinery, New York, NY, USA, 29–35.
https://doi.org/10.1145/3152434.3152437

[11] D. A. Hayes, D. Ros, and Ö. Alay. 2019. On the importance of TCP
splitting proxies for future 5G mmWave communications. In IEEE

LCN.
[12] Keqiang He et al. 2016. AC/DC TCP: Virtual Congestion Control

Enforcement for Datacenter Networks. In SIGCOMM. ACM, New
York, USA, 14.

[13] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh,
Mark Handley, and Hideyuki Tokuda. 2011. Is It Still Possible to
Extend TCP?. In Proceedings of the 2011 ACM SIGCOMM Confer-

ence on Internet Measurement Conference (IMC ’11). Association
for Computing Machinery, New York, NY, USA, 181–194. https:
//doi.org/10.1145/2068816.2068834

[14] Janardhan Iyengar and Bryan Ford. 2009. Flow Splitting with Fate
Sharing in a Next Generation Transport Services Architecture. (2009).
https://doi.org/10.48550/ARXIV.0912.0921

[15] Jana Iyengar and Ian Swett. 2021. QUIC Acknowledgement

Frequency. Internet-Draft draft-ietf-quic-ack-frequency-01. Inter-
net Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-ietf-quic-ack-frequency-01 Work in Progress.

[16] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based
Multiplexed and Secure Transport. RFC 9000. (May 2021). https:
//doi.org/10.17487/RFC9000

[17] Aman Kapoor, Aaron Falk, Theodore Faber, and Yuri Pryadkin. 2005.
Achieving faster access to satellite link bandwidth. In Proceedings

IEEE 24th Annual Joint Conference of the IEEE CS and ComSoc.,
Vol. 4. IEEE.

[18] Dzmitry Kliazovich, Simone Redana, and Fabrizio Granelli. 2012.
Cross-Layer Error Recovery in Wireless Access Networks: The ARQ
Proxy Approach. Int. J. Commun. Syst. 25, 4 (apr 2012), 461–477.
https://doi.org/10.1002/dac.1271

[19] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. 2021. Beyond
QUIC v1: A First Look at Recent Transport Layer IETF Standardization
Efforts. IEEE Communications Magazine 59, 4 (2021), 24–29. https:
//doi.org/10.1109/MCOM.001.2000877

[20] Zsolt Krämer, Mirja Kühlewind, Marcus Ihlar, and Attila Mihály. 2021.
Cooperative Performance Enhancement Using QUIC Tunneling in 5G
Cellular Networks. In Proceedings of the Applied Networking Research

Workshop (ANRW ’21). Association for Computing Machinery, New
York, NY, USA, 49–51. https://doi.org/10.1145/3472305.3472320

[21] Zsolt Krämer, Sándor Molnár, Marcus Pieskä, and Attila Mihály. 2020.
A Lightweight Performance Enhancing Proxy for Evolved Protocols
and Networks. In 2020 IEEE 25th International Workshop on Computer

Aided Modeling and Design of Communication Links and Networks

(CAMAD). 1–6. https://doi.org/10.1109/CAMAD50429.2020.9209304
[22] Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel

Dubois, Emmanuel Lochin, Francklin Simo, and David
Pradas. 2021. QUIC: Opportunities and threats in SAT-
COM. International Journal of Satellite Communications

and Networking (2021). https://doi.org/10.1002/sat.1432
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sat.1432

[23] Yizhou Li, Xingwang Zhou, Mohamed Boucadair, Jianglong Wang,
and Fengwei Qin. 2020. LOOPS (Localized Optimizations on Path Seg-

ments) Problem Statement and Opportunities for Network-Assisted Per-

formance Enhancement. Internet-Draft draft-li-tsvwg-loops-problem-
opportunities-06. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-li-tsvwg-loops-problem-opportunities-06 Work
in Progress.

[24] A. Mihály et al. 2017. Supporting multi-domain congestion control by
a lightweight PEP. In 2017 IINTEC.

[25] G. Papastergiou et al. 2017. De-Ossifying the Internet Transport Layer:
A Survey and Future Perspectives. IEEE Communications Surveys

Tutorials (2017).
[26] Michele Polese, Marco Mezzavilla, Menglei Zhang, Jing Zhu, Sundeep

Rangan, Shivendra Panwar, and Michele Zorzi. 2017. milliProxy: A
TCP proxy architecture for 5G mmWave cellular systems. In 2017 51st

Asilomar Conference on Signals, Systems, and Computers. 951–957.
https://doi.org/10.1109/ACSSC.2017.8335489

[27] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012.
How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP. In Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation (NSDI’12). USENIX
Association, USA, 29.

[28] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-End Arguments
in System Design. ACM Trans. Comput. Syst. 2, 4 (nov 1984), 277–288.
https://doi.org/10.1145/357401.357402

[29] Johannes Zirngibl, Philippe Buschmann, Patrick Sattler, Benedikt
Jaeger, Juliane Aulbach, and Georg Carle. 2021. It’s over 9000: Analyz-
ing Early QUIC Deployments with the Standardization on the Horizon.
In Proceedings of the 21st ACM Internet Measurement Conference.
Association for Computing Machinery, New York, NY, USA, 261–275.
https://doi.org/10.1145/3487552.3487826

