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ABSTRACT

In response to ossification and privacy concerns, post-TCP
transport protocols such as QUIC are designed to be “para-
noid”—opaque to meddling middleboxes by encrypting and
authenticating the header and payload—making it impossible
for Performance-Enhancing Proxies (PEPs) to provide the
same assistance as before. We propose a research agenda
towards an alternate approach to PEPs, creating a sidecar

protocol that is loosely-coupled to the unchanged and opaque,
underlying transport protocol. The key technical challenge to
sidecar protocols is how to usefully refer to the packets of the
underlying connection without ossification. We have made
progress on this problem by creating a tool we call a quACK

(quick ACK), a concise representation of a multiset of numbers
that can be used to efficiently decode the randomly-encrypted
packet contents a sidecar has received. We implement the
quACK and discuss how to achieve several applications with
this approach: alternate congestion control, ACK reduction,
and PEP-to-PEP retransmission across a lossy subpath.
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1 INTRODUCTION

In the 1970s, the Internet’s architects created TCP and IP as
different beasts. IP is spoken and understood by every host
and router. But in the canonical model, TCP is implemented
only in hosts [4, 28], while routers and other network com-
ponents simply exchange IP datagrams on a best-effort basis
without regard to their payloads.

TCP/IP benefited greatly from its end-to-end principles, but
in practice, the “right way” to implement TCP can depend on
the particulars of the network path—particulars that hosts are
typically unaware of. An appropriate retransmission timeout
or congestion-control scheme for a heavily multiplexed wired
network wouldn’t be ideal for paths that include a high-delay
satellite link, Wi-Fi with bulk ACKs and frequent reordering,
or a cellular WWAN [10, 22]. Moreover, end-to-end retrans-
missions can be wasteful when a long network path includes
a single hop with nontrivial noncongestive loss.

By the 1990s, many networks had broken from the canon-
ical model by deploying in-network TCP accelerators, also
known as Performance-Enhancing Proxies [2, 3, 5, 6, 8, 11,
12, 17, 24, 26]. These “PEPs” can insert themselves in the
middle of each TCP connection to change the network be-
havior over a specific subpath (Fig. 1(a)). Because TCP isn’t
encrypted or authenticated, PEPs achieve this without the
cooperation or knowledge of end hosts. A 2011 study esti-
mated that 25% of Internet paths include a TCP PEP [13],
and it’s likely that many users benefit—especially those on
unusual or innovative access networks for which the default
congestion-control or retransmission behavior of a faraway
server isn’t well-tuned.

PEPs also carry a big cost: protocol ossification [25]. When
a middlebox inserts itself in a connection and enforces its
preconceptions about what an IP payload represents, it can
thwart the transport protocol’s evolution, dropping traffic
between hosts that try to speak an upgraded version of the
protocol. TCP PEPs have hindered the deployment of new
TCP options and behaviors, such as multipath TCP [27].

In response to this ossification, and to an increased em-
phasis on privacy and security, post-TCP transport protocols
are designed to be “paranoid”—opaque and impervious to
meddling middleboxes, by encrypting and authenticating the
transport header and payload. The most popular of these is
QUIC [16], found in billions of deployed Web browsers and
millions of webservers [29], as well as encrypted protocols
used by applications such as Signal, Zoom, and Mosh.

QUIC’s encryption and authentication mean that connec-
tions can’t be “split” by a middlebox without host cooperation,
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them when receiving each packet. Both parties also main-
tain a count, and the sender maintains a log of sent packets.
To bound the size of the quACK while preserving a unique
solution, all power sum arithmetic is performed modulo the
largest prime that can be expressed in Ę bits.

When the receiver is ready to send a quACK, it sends the
Ę · Ī bits corresponding to its Ī power sums, and the count,
to the sender. The sender subtracts the received count from
its own count to determine the number of missing packets
ģ. Note that the number of bits used to represent the count
only needs to be big enough to represent this difference, and
the count itself can wraparound. If the difference also wraps
around, then the polynomial equations either cannot be solved
or the solutions do not correspond to packets in ď .

The sender decodes the missing packets in its log by solv-
ing the firstģ polynomial equations derived from the quACK,
mapping the identifiers to their original packets. If Ę is too
small, a decoded identifier may correspond to multiple candi-
date missing packets. The sender considers the fate of these
packets indeterminate, and interprets the results based on the
specific sidecar protocol. If Ī < ģ, decoding fails because
there are not enough equations to solve.

3.3 Practical Considerations

There are some practical considerations when using a
quACK and setting parameters. We discuss how small modi-
fications to the quACK can address these considerations.

Resetting the threshold. The threshold parameter should
only apply to the number of missing packets since the last re-
ceived quACK, rather than over the entire connection. When
decoding missing packets, the sender assumes they will never
be received and removes them from its log and power sums.
Thus these packets will not be counted in the threshold of the
next received quACK.

Re-ordered packets. Packets may also be re-ordered, causing
missing packets to later be received. Thus discarding missing
packets can be problematic. The sender can buffer missing
packets for a period of time before actually deleting them
from the log to allow the missing packet to be received.

In-flight packets. The sender may have logged many more
packets since when the receiver initially transmitted the quACK.
Say the sender has logged Ĥ′ packets and the quACK includes
Ĥ packets where Ĥ

′ − Ĥ > Ī . Rather than increasing Ī , the
sender can temporarily truncate the log suffix such that the
log has length Ĥ + Ī , considering the truncated packets to be
in transit. When the sender decodes the remaining log, it con-
siders any continuous suffix of missing packets to also be in
transit, instead of actually missing.

Exceeding the threshold. If the number of missing packets
exceeds the threshold, the sender and receiver must reset the
connection if they wish to use the quACK.

Dropped quACKs. The implementation is resilient to

quACKs that are dropped in transmission, since the power
sums in both the sender and receiver are cumulative.

4 EVALUATION

We demonstrate that our implementation of the quACK based
on power sums can both concisely represent and efficiently

decode the set of received packets from a list of sent packets.
Our code is shared at https://github.com/ygina/quack.

We evaluate our implementation on a 2019 MacBook Pro
running macOS Monterey v12.4 with a 2.4 GHz 8-Core Intel
i9 processor and 32 GB memory, representative of a client
end host. Our code, including all benchmarking code and the
two strawman solutions, is written in 1408 lines of C++.

A quACK that represents Ĥ = 1000 sent packets and up to
Ī = 20 missing packets with Ę = 32-bit identifiers takes 106
us to construct and 61 us to decode, and requires 82 bytes
to be transferred from the receiver to the sender. Using 32-
bit identifiers, there is a 0.000023% chance that a candidate
packet has an indeterminate result. In comparison, our two
strawmans use extraordinary bandwidth or computation.

We additionally show how modifying 1) the threshold num-
ber of missing packets Ī and 2) the number of identifier bits
Ę affects these metrics, and discuss how an end host could
select these parameters and 3) the communication frequency
that affects Ĥ based on the specific sidecar protocol.

4.1 Comparison to Strawman QuACKs

Construc- Decoding QuACK
tion Time Time Size (bits)

Strawman 1 222 us 126 us Ę · Ĥ = 32000

Strawman 2 387 ns ≈7e+06 days 256 + ę = 272

Power Sums 106 us 61 us Ī · Ę + ę = 656

Table 2: Strawmans compared to the power sum QuACK,

using Ĥ = 1000, Ī = 20, and ę = 16 bits to store the count.

All use Ę = 32-bit identifiers, which results in a 0.000023%

chance that a candidate packet has an indeterminate re-

sult. Average of 100 trials with warmup.

The strawman quACKs described in § 1 are unrealistic,
using either extraordinary space or computation (Table 2). In
comparison, the size of our power sum quACK is 82 bytes
(4000 bytes in Strawman 1), and is proportional only to the
threshold. The decoding time of the power sum quACK is 61
us (≈7e+06 days in Strawman 2).

In the following sections, we discuss how modifying the
quACK parameters Ī , Ĥ, and Ę affects these metrics, and ar-
gue how these results put the quACK within the latency and
bandwidth constraints of our three sidecar protocols.

4.2 Configuring QuACK Parameters

Construction Time The construction time is how long it
takes to construct a quACK (with threshold Ī) from a list of
Ĥ packets with Ę-bit identifiers. Typically, the construction
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