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Abstract. Behaviors that are produced solely through geometrically
complex three-dimensional interactions of soft-tissue muscular elements,
and which do not move rigid articulated skeletal elements, are a chal-
lenge to mechanically model. This complexity often leads to simulations
requiring substantial computational time. We discuss how using a quasi-
static approach can greatly reduce the computational time required to
model slow-moving soft-tissue structures, and then demonstrate our tech-
nique using the biomechanics of feeding behavior by the marine mollusc,
Aplysia californica. We used a conventional 2™ order (from Newton’s
equations), forward dynamic model, which required 14s to simulate 1s
of feeding behavior. We then used a quasi-static reformulation of the
same model, which only required 0.35s to perform the same task (a 40-
fold improvement in computation speed). Lastly, we re-coded the quasi-
static model in Python to further increase computation speed another
3-fold, creating a model that required just 0.12s to model 1s of feed-
ing behavior. Both quasi-static models produce results that are nearly
indistinguishable from the original 2°¢ order model, showing that quasi-
static formulations can greatly increase the computation speed without
sacrificing model accuracy.
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1 Introduction

Understanding the neural control of behavior requires understanding both the
nervous system and the muscles that it controls [1]. This often is facilitated by
combining models of the nervous system [5] with forward kinetic models of the
body [16]. A widely used model for such research has been the feeding appa-
ratus of the marine mollusc, Aplysia californica, which has an experimentally
tractable nervous system, composed of relatively few, large neurons, combined
with a musculature that is easily experimented upon. These features have made
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it a frequently used model system for the study of neural control [4]. Computer
models of complex systems can greatly assist in understanding their fundamen-
tal properties, but a problem has arisen because of a major difference in the
simulation times required to run models of neuronal function compared to those
simulating the musculature: for example, the neuronal models of Li et al. [6]
and Webster-Wood et al. [14] require 0.1 s of computation time to simulate 1s of
activity. In contrast, a commensurate model of the biomechanics of the buccal
mass [12] requires 14's of computation time to simulate the mechanics of that 1s
of behavior. These large computational requirements of the mechanical models
have provided a substantial impediment to any research that involves evolu-
tionary algorithms, machine learning, or any iterative technique that require
running models large numbers of times. We have refined the 2°¢ order kinetic
biomechanical model of [12] into a 0" order quasi-static form by using an alge-
braic reformulation, which reduces the computational time of the model by over
40 fold, thus making the entire model more compatible for research techniques
that require large numbers of iterations. This algebraic refomulation technique
is applicable for any slow-moving system.

Our biomechanical model system is the feeding apparatus of the marine mol-
lusc, Aplysia californica [2,12]. This feeding apparatus is called ‘the buccal mass’,
and has four key anatomical components. First, there is a spherical grasping
structure, the “radula odontophore”, which is moved toward the mouth (pro-
traction), grasps food, and then moves back toward the esophagus (retraction)
to deposit food (hereafter referred to as the ‘odontophore’). Second, there is a
sheet of muscle, the “I2”, posterior to the odontophore, which, when activated,
moves the odontophore forward. Third, there is a large circular muscle anterior
to the odontophore, the “I3”, which squeezes around the circumference of the
odontophore. And fourth, there is a muscular structure called “the hinge” which
anchors the ventral-most part of the odontophore to the surrounding tissue of the
head. This acts to pull the odontophore back toward the esophagus. These four
parts of the buccal mass were modeled using a 2nd order Newtonian formulation
in [12].

2 Model

We have re-formulated the kinetic model of [12]. In this model [12], the four
components of the Aplysia buccal mass are modeled as follows (Fig. 1): (1) odon-
tophore is a sphere, (2) the I2 muscle is a sheet posterior to the odontophore,
(3) the I3 muscle is a torus through which the odontophore passes and which
can deliver either a forward or backwards force depending on the odontophore’s
position, and (4) the hinge is an elastic attachment connecting the odontophore
to an external anchor. These three forcing agents generate the main forces in
translation on the odontophore for grasping food and passing it back to the
esophagus. The tensions in the 12 and I3 muscles are modeled as Hill type mus-
cles with non-linear activation [10,12,15] with identical parameters as [12]. The
hinge is modeled using both Maxwell and Kelvin visco-elastic elements in paral-
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lel, following the method of [11,12]. The complete mechanical system is shown
schematically in Fig.1.

2.1 Odontophore and 12, I3 Muscles

The odontophore is represented by a sphere of radius R, with mass M. The 12
muscle lies posterior to the odontophore and is modeled as hemispherical object
with sheet-like extensions Fig. 1(b). In the 2D cross-sectional view Fig.(1a), the
12 muscle is the combination of AH (sheet like structure), HH’ (hemispherical
part), and H'A’ (sheet like structure). I3 muscle is modeled as a torus anterior
to I2 with mass m and cross-sectional radius r (see Fig. 1).

2.2 Assumptions

The center of the toroidal muscle I3 is the origin O of our coordinate system.
The horizontal (anterior-posterior) direction is the X axis, and the Y axis is
orthogonal to this passing through O. The location center of the odontophore,
E, is constrained to move only along the X axis Fig. 1. The mechanics of the
rest of the system are subsequently derived from the following assumptions.

— The I3 torus volume is constant, i.e., V = 272y(t)r?(t) = Constant

— All the muscles and the odontophore remain in contact throughout. Contact
condition: z2(t) +y%(t) = (R+r(t))?

— The line AG connecting the center G of the minor radius of the torus and
the contact point A of the 12 muscle to the I3 muscle is always parallel to X
axis.

The force from 12 and the hinge both act directly on the odontophore, moving
it horizontally, and thus these two forces can be summed (the sum of these forces
will be referred to as ‘F;’ in the subsequent equation of motion). The constraint
on I3’s position causes force from the I3 to act vertically, with the angle of
contact () between the I3 and the odontophore acting to mediate the resultant
force. Consequently, the I3 force on the odontophore is calculated independently
and called ‘Fy’.

2.3 Governing Equations

This geometry leads to the fundamental equation of motion for the entire system
(Eq.1), from [12], Eq. 3 we have

(mi + Fy)cos(0) = (Mi — Fy)sin(0) (1)
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where F is the force on the odontophore caused by 12 and the hinge, while F5
is the force on the odontophore caused by I3. Fy(z,t) and Fy(x,t) can be solved
in terms of the muscle geometry: 0, y,x, and r are then calculated for the each
timestep, which then yields the linear acceleration of the odontophore, &. The
acceleration is then integrated twice to calculate the position of the odontophore,
x(t). Details and full model can be found in [12].

2.4 Reformulation

In simulations of buccal mass feeding behavior [12], the majority of the mechani-
cal energy generated by the muscles is stored by elastic and visco-elastic elements
of the hinge.

The kinetic energy (% mass x velocity?) due to the motion of the sys-
tem is very low, with a maximum value of 2.66703 x 10~® J. The dissipation
of energy due to viscous fluid drag surrounding the odontophore (% Coeffi-
cient of dragxdensity of water x (velocity)?x area x displacement) is, at most,
4.13178 x 10~? J. In contrast, the elastic energy of the system (% elastic constant
x displacement?) has a maximum of 5.50 x 1074 J, over 4 orders of magnitude
higher than the kinetic energy or viscous damping(parameters taken from [12]).
Less than 0.1% of the energy in the system is kinetic or dissipated by damping
(damping coefficient x velocity x displacement). We thus propose the following
reformulation of (Eq. 1), where we approximate & and ¢ with 0. This is an exam-
ple of a ‘quasi-static’ approximation [7-9] - and reduces the 2nd order differential
equation to a much simpler equation of static equilibrium (Eq. 2):

0=F, Cot(d) + Fy 2)

Within the expressions of F} and F5, however, there are velocity dependent
terms for the Force-Velocity properties of the 12 and the I3 muscles [12,16],
which do affect the elastic energy in the system and thus cannot be removed. To
show where these velocity terms occur, we expand Eq. (2) as follows

21 Tra (2, y, &, 7, activation)Cos(p) + 2nTrs(z, y, &, 7, activation)Cot(0) — Hingeforce =0 (3)

where T7o and T3 are the muscle tensions for the 12 and I3 muscles, respec-
tively and ZAHQ = ¢ (Fig. 1).
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We make one final substitution to bring these equations down to a zeroth
order formulation. To produce a purely position-dependent equation (i.e., x, y,
and r dependent only), the velocity terms (&) are approximated at each timestep

as & = —%=%2. Then Eq. (3) can be expressed as
20 Tra (2, y, %, r, activation)Cos(¢) + 2nT3(z, y, % r, activation)Cot(0) — Hinge force = 0. (4)

The equation of motion of the odontophore is Equation (4) with the added
constraints that I3 is iso-volumetric (V = 27%y(¢)r?(t) =Constant) and that I3
must be in contact with the odontophore (2% +y? = (R+7)?)). This produces a
system where one variable (z) can be solved for its static equilibrium position.

At each time step we summed all of the forces that protracted the odon-
tophore (positive), and all the forces that retracted the odontophore (negative),
to find the equilibrium point where these forces are equal; i.e. the position where
the sum of the forces on the odontophore is zero Fig. 2. The position of these
equilibrium points varied as a function of muscle activation, and tracking the
movement of these equilibrium points over time resulted in an approximation for
odontophore position . These equilibrium points were found numerically using
Newton’s method. In the Python formulation, these equations were solved using
a Gauss-Newton algorithm with gradient descent (fsolve command) [13].

3 Results and Discussion

We simulated the complete 24 order model [12] in Mathematica (Wolfram) [3]
using the semi-implicit Euler method [14] for 60 s of odontophore motion. We set
the initial position at ¢ = 0 as x = —5mm. At the beginning of the simulation the
odontophore moves from its initial position to its resting equilibrium state. We
activated 12 to protract the odontophore, and then let 12 relax, which resulted
in a retraction of the odontophore Fig. 3. It required 14s of computer processing
time to simulate 1s of behavior Fig. 3. Next, we simulated the same equations
using our quasi-static formulation, which required only 0.13s of computer pro-
cessing time to simulate 1s of behavior; a 107 times increase in computational
speed Fig. 5. The results closely resemble results obtained from the original 279
order formulation Fig. 3 with the maximum difference in position observed at
the end of retraction Fig. 3c. This was the result of the rapid loss of muscle
tension causing the odontophore to move at a relatively high velocity. There was
a small temporal disparity between models, which translated into a brief spike of
increased positional difference. The system time constant is 2.45s [12] and this
spike of discrepancy lasts for less than 0.01 s, which is too short a period for the
muscles to react or change behavior.
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Fig. 1. a) Schematic figure of a 2D mid-sagittal view of the buccal mass system. Grey
sphere, the odontophore; cyan, the 12 muscle comprised of hemispherical (solid line)
and sheet-like (dotted line) elements; blue, section through the toroidal I3 muscle.
The hinge is a passive elastic element anchoring the odontophore to the back of the
head. See text for full details. b) Schematic 3D construction of the buccal mass: the
odontophore (grey sphere) is surrounded by the hemispherical 12 muscle (cyan) which
attaches anteriorly to the I3 ring muscle (blue). (Color figure online)

The majority of this computational speed increase (Fig.5) was because the
quasi-static formulation was numerically stable for step sizes of 0.01 s, while the
2" order model required a step size of 0.0008s. As the inertia term is present
in the 2" order model, it takes step size of 0.0008 s to accurately follow acceler-
ation in the system. This step size is required because the mechanical resonant-
frequency of the odontophore-hinge system is of the order 1000 Hz, requiring a
very small step size to stably model it using the 2°¢ order system. This vibration
is not biologically relevant to the system which is why the quasi-static model
(which disregards this vibration) accurately reflects movements despite a much
larger step size.
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Fig. 2. The locations of equilibrium points, where the resultants of all the forces are
zero. The red lines represent the positive and magenta dotted lines represent the nega-
tive parts of the resultant force. a) the profile of the forces when no muscles are active;
passive forces within 12 and the hinge create a stable equilibrium point (EP) at an
odontophore displacement of -4 mm. b) Profile of the forces when 12 is 30% activated.
This results in a stable equilibrium point occurring at +2 mm. c¢) Profile of the forces
when 13 is 30% activated. This results in an unstable equilibrium point (UEP) at a
displacement of 0 mm (the location at which the I3 is squeezing directly on the cen-
tral axis of the odontophore). There is a stable equilibrium point at a displacement of
+5 mm where 13 force is equal and opposite to the force of the hinge. There is a second
a stable equilibrium point at =5 mm, where the I3 force is equal and opposite to the
passive forces of 12. d) Profile of the forces when both 12 and 13 are 30% activated.
There is an unstable equilibrium at a displacement of —1.5mm, which occurs when
the hinge and I3 forces are equal to the force of the active I2. There are two stable
equilibrium points, one at +5.5 mm where I3 and 12 forces are equal and opposite to
the hinge, and at —4.5 mm where I3 force is equal and opposite to 12 force.

We simulated a second behavior where both 12 and I3 muscles were activated
Fig. 4. The computation time for this simulation was the same as the simulation
where only the 12 muscle was activated. As with the previous simulation, the
quasi-static model and 2°4 order model generated very similar output for odon-
tophore position Fig. 4 with the quasi-static model requiring less than 5% of the
computer processing time than the 2"4 order model. This demonstrates that our
quasi-static reformulation holds for more complex simulations of Aplysia feeding
behavior.
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Fig. 3. Examples of 2" order and quasi-static simulations of activating I2 within the
buccal mass. a) Firing frequency function of motor neurons (MN) driving 12 where
freq(t) = 18 Hz for 0s <t < 15s, 255 < ¢t < 40s or otherwise 0. b) The resulting
displacement of the odontophore (x) as simulated by the 2°¢ order (teal, solid line)
and quasi-static (green, dotted line) models. The initial rapid displacement to —4 mm
at the beginning of the simulation corresponds to the stable equilibrium that arises
from purely passive forces in the buccal mass as shown in Fig. 2a. (¢) The difference
between the numerical values of solution z using the two models. The inset in (b)

shows a magnified-version of the difference in the time interval [45s, 465s]. (Color figure
online)
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Fig. 4. Examples of 2" order and quasi-static simulations of activating both 12 and I3

within the buccal mass. a) Firing frequency function of motor neurons (MN) driving
12 (orange) where freq(t) = 18 Hz for 0s < ¢t < 155, 255 < ¢t < 40s or otherwise
0 and driving I3 (red) where freq(t) = 18 Hz for 11s < ¢ < 20s , 45s < t < 50s
or otherwise 0. b) The resulting displacement of the odontophore (z) as simulated by
the 2" order (teal, solid line) and quasi-static (green, dotted line) models. (¢) The
difference between the numerical values of solution x using the two models. The inset
in (b) shows a magnified-version of the difference in the time interval [24.6s, 24.95s].
(Color figure online)
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Fig. 5. Bar chart comparison of computation time of different models calculated using
Mathematica and Python languages.
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