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Abstract—Generative adversarial networks (GANs) have re-
cently been proposed for the synthesis of RF micro-Doppler
signatures to address the issue of low sample support and enable
the training of deeper neural networks (DNNs) for enhanced RF
signal classification. But GANs suffer from systemic kinematic
inconsistencies that decrease performance when GAN-synthesized
data is used for training DNNs in human activity recognition.
As a solution to this problem, this paper proposes the design
of a multi-branch GAN (MBGAN), which integrates domain
knowledge into its architecture, and physics-aware metrics based
on correlation and curve-matching in the loss function. The
quality of the synthetic samples generated is evaluated via image
quality metrics, the ability to synthesize data that reflects human
physical properties and generalize to broader subject profiles,
and the achieved classification accuracy. Our experimental results
show the proposed approach generates synthetic data for training
that more accurately matches target kinematics, resulting in an
increase of 9% in classification accuracy when classifying 14
different ambulatory human activities.

Index Terms—radar, micro-Doppler, generative adversarial
networks, physics-aware machine learning, gait analysis

I. INTRODUCTION

Short-range radars have been widely used in a variety of
applications in recent years, including border control and
security, monitoring daily activities [1], sensing for smart
environments [2], and human-computer interfaces [3] via
gesture [4] and sign language recognition [5]. Radars are
low-cost, non-contact sensors that can work remotely in an
indoor environment without acquiring personal imagery of the
environment or user. As a result, they are non-intrusive to the
user while simultaneously enabling constant monitoring of the
surrounding environment.

The classification of human activities based on their micro-
Doppler [6], [7] signatures has been a key feature in all of
these investigations. Because of the increased availability of
memory capacity and ever-increasing processing speeds of
GPUs, the use of deep learning-assisted solutions in radar
signal processing has exploded in recent years. These algo-
rithms’ results are usually dependent on a substantial amount
of training data of high signal-to-noise ratio (SNR). However,
in practice the amount of data acquired is typically greatly
limited and unbalanced due to the time and cost associated
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with gathering human subjects’ data with radar. Moreover,
the participants used to acquire training data are typically not
adequately representative of the great variation in human gait
resulting from differences in age, agility, height, and speed.

Consequently, there has been much work on the synthesis of
micro-Doppler signatures for training deep models [8]. These
works may be grouped according to two principle approaches:
(1) synthesis by taking the time-frequency transform of the ex-
pected radar return computed from a skeletal model comprised
of point targets animated using motion capture (MOCAP)
data, and (2) direct synthesis of the micro-Doppler signature
using generative adversarial network (GANs) trained from a
small number of measured signatures. Model-based synthesis
from MOCAP [9], [10], [11], [12], [13], [14], [15] has the
advantage of allowing estimation of the resulting target micro-
Doppler for any desired antenna-target geometry. Although
the MOCAP data itself is still subject-specific data, a recently
proposed diversification technique [16] that applies data aug-
mentation to the underlying skeleton has allows for relatively
few MOCAP measurements to be used to generate thousands
of statistically independent animations, which properly span
the range of expected human profiles. However, one major
drawback is that model-based data synthesis does not account
for changes in signal-to-noise ratio, sensor-related artifacts,
non-stationary clutter, interference or signal dispersion induced
by frequency-dependent barriers such as walls. In contrast,
GANs have been shown effective in modeling sensor imperfec-
tions, noise and clutter in radar human activity data synthesis
[17]. A wide range of GANs have been utilized in synthesizing
radar micro-Doppler signatures for human motion recognition
[18], [19], [20], [21].

However, previous research [20], [22] has revealed that
GAN-generated RF micro-Doppler signatures exhibit systemic
flaws in generation of target kinematics, which correspond to
physically impossible features in the synthetic data. Examples
of some of these kinematic flaws include disjoint components,
malformed shapes, inconsistencies in peak values, subdued
regions, and additional non-zero micro-Doppler components
that make the signature resemble a different activity class
altogether. A hard, impulsive fall may instead resemble a
slower progressive fall. A walking signature may include a
period over which the person is actually stopped and not
moving at all. These kinematic aberrations can significantly
degrade classification accuracy when the synthetic data is
used for training. In prior work [20], we proposed a Principle
Component Analysis (PCA)-based sifter that would identify
outliers and remove flawed samples - removing 9,000 outliers
from the 40,000 synthetic samples generated actually boosted
the classification performance by%10.
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This work proposes a physics-aware machine learning
(PhML) [23] approach that integrates domain knowledge of
human motion into the design of GAN architecture and loss
functions to improve the accuracy with which human micro-
Dopper signatures are synthesized using GANs. Because the
envelope constrains the maximum velocity incurred during
motion and differences between human gaits is captured by
the envelope, it is essential that the process for generating
synthetic samples consistently and realistically replicates the
envelopes characteristics of ambulatory classes. Thus, we aim
to preclude gross kinematic errors in synthetic samples by sup-
plying the signature envelopes as inputs to additional branches
in the discriminator and utilizing an additional physics-based
loss term in the GAN loss function. While Section II provides
an overview and description of PhML, Section III details
physics-aware GAN design for micro-Doppler signature syn-
thesis, proposing both architectural modifications and the uti-
lization of physics-based metrics in the loss function. Section
IV presents results for the proposed approach on a 14-class
ambulatory activity recognition problem. The impact of the
proposed physics-aware GAN design on accurately reflecting
gait asymmetry and generalizing to physical profiles outside
that of the specific test subjects used during training is eval-
uated. The results show that the proposed approach increases
the efficacy of GAN-synthesized signatures for training deep
models for human activity recognition.

II. PHYSICS-AWARE MACHINE LEARNING

Physics-aware machine learning (PhML) is an emerging
field within ML that strives to integrate physics-based models
with data-driven deep learning to reap the benefits of both
approaches. Physics-based models represent the high level of
domain knowledge gained from a study of the electromagnetic
backscatter from surfaces and objects over the years. It can
also capture phenomenological factors pertinent to the sensing
scenario as well as known sensor properties. However, physics-
based models are less adept at capturing the nuances of
environment-specific, sensor-specific, or subject-specific prop-
erties. Here, deep learning can provide tremendous insight
through data-driven learning.

Unfortunately, in sensing problems, it is not common to
have a large volume of data. The limitations in training sample
support ultimately also limit the accuracy and efficacy of deep
learning in RF sensing. Moreover, no model is perfect - while
more complex models could surely be developed to improve
accuracy, the dynamic nature of the sensing environment
ensures that there will always be some part of the signal
that is unknown. This is where leveraging data-driven deep
learning can provide a powerful tool when used in tandem
with physics-based models. The resulting hybrid approach,
PhML, combines the strengths of deep learning and physics-
based modeling to optimize trade-offs (Figure 1) between
prior versus new knowledge, models vs. data, uncertainty,
complexity, and computation time, for greater accuracy and
robustness.

Much of current literature involving physics-aware machine
learning has focused on the solution of ordinary differential

Fig. 1. The physics-aware machine learning (PhML) trade-off.

equations (ODEs) [24], [25], data-driven discovery of physical
laws [26], [27], uncertainty quantification [28] and data gen-
eration. One goal is to synthesize data used for validation on
simulated data in the cases where acquiring real measurements
is not feasible. Another goal is for physics-guided initialization
to pre-train deep models. The question of whether GAN-
generated samples conform to physical constraints has recently
been raised in the context of turbulent flow simulation, where
both deterministic constraints (conservation laws) [29] and
statistical constraints (energy spectrum of turbulent flows)
[30] have been proposed for incorporation into the loss func-
tion. These constraints were shown to yield improvements
in performance relative to that attained by standard GANs.
This improvement was attributed to the synthetic samples
accurately emulating certain physical properties of the system,
while also significantly reducing (by up to %80) the training
time.

This work contributes to the broad area of physics-aware
GAN design via the development of architectural modifica-
tions and metrics for kinematic fidelity for loss regularization
specifically to improve the accuracy in representing human
micro-Doppler signatures. It builds upon prior works [31],
[32], which explored the potential of adding an auxiliary
branch using small-scale datasets. In [31], a multi-branch GAN
taking only the upper envelope of the micro-Doppler signature
was considered. Visual observation was used to examine
the effect of adding an additional branch on the synthetic
signatures generated, as well as the differences in feature
distribution revealed using t-distributed stochastic neighbor
embedding (t-SNE). A dataset comprised of 271 real samples
from five different walking styles (normal walking, limping
with one or both legs, walking with a cane in sync with the
leg, and out of sync with the leg) was collected and utilized.
It was observed that adding the additional branch caused a
greater degree of overlap in the feature distributions of the
real and synthetic samples. In [32], a 300-sample dataset
comprised of five different walking styles (walking towards the
radar, walking on toes, short steps, scissors gait, and walking
with a cane) was utilized to evaluate metrics for assessing
the kinematic fidelity of GAN-synthesized samples. It was
shown that the inclusion of the dynamic time warping distance,
discrete Frechet distance or Pearson correlation as physics-
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based metrics in the loss function further increased the degree
of overlap in the feature distributions of real and synthetic
samples and resulted in an increase in classification accuracy.

The contributions of the current manuscript in relation to
these preliminary results are

1) The development and comparison of architectural vari-
ants of physics-aware GANs (PhGAN): Not just the
addition of a single auxiliary branch taking as input
the upper envelope, but also configurations involving a
single branch with the lower envelope as input, and two
branches with both upper and lower envelope as input
are considered. The efficacy of envelope-based metrics
for capturing physics-based loss is also evaluated.

2) The evaluation of proposed PhGAN designs on a much
larger dataset involving 14 different ambulatory classes:
As such, it represents a much greater challenge of
kinematic fidelity in synthetic data, which is manifested
in the minute differences in the micro-Doppler signature
for each type of gait and in the much higher dimension-
ality of the classification problem.

3) The detailed quantitative analysis of the characteristics
of the synthetic samples: This includes an analysis of
the impact of the amount and quality of the generated
synthetic data. Our objective is to generate not just more
data but better data. We evaluate the consistency with
real signatures based on mean square error (MSE), and
structural similarity index measure (SSIM), as well as
gait asymmetry. We also examine the physical properties
of the synthetic data samples and whether they ade-
quately span different body sizes, as reflected in stride
duration.

III. RF DATA AND PRE-PROCESSING

The data for this study were collected with a TI AWR1642
single-chip 76-GHz to 81-GHz automotive radar in an indoor
laboratory environment. The radar was placed on a table 1.5
meters up from the ground facing a walkway that was 6 meters
long and 3 meters wide. Data was acquired for 14 different
ambulatory activities, which were articulated while moving
towards the radar. These activities included various gaits
(walking, short steps, walking with cane or crutches, skip-
ping, scissors gait, walking on toes, marching, and limping)
and daily activities (vacuuming the floor, dragging furniture,
walking while carrying a load in one or both hands, or putting
books on a bookshelf). Limping was facilitated by wrapping a
leg brace around one of the legs to immobilize the knee, while
a box of books was utilized as the load carried with both hands
and a laptop bag was carried with just one hand. A chair was
weighed down with a box of books and dragged backwards,
while vacuuming involved a forward and backward movement
of the vacuum. Each activity was articulated for a duration of
15 seconds and was repeated 10 times by each participant,
resulting in a total of 100 samples for each activities. A total
of 10 participants with varying ages, gender, height and weight
participated in this study, as summarized in Table I.

The raw complex RF data were first reshaped in a 2D matrix
based on the fast time and slow time samples. A Fast Fourier

TABLE I
PROFILE OF PARTICIPANTS.

Fig. 2. Examples of acquired micro-Doppler data.

Transform (FFT) was applied in the fast-time dimension to
generate the range profile. Afterwards, a fourth order butter-
worth high pass filter was applied to remove static clutter.
Finally, the micro-Doppler signature was computed by finding
the spectrogram, S(t, ω), which is the square modulus of the
short-time Fourier transform, of the signal x(t), which spans
the appropriate range bins. For a window function w(t), the
spectrogram is found as

S(t, ω) =

∣∣∣∣∣
∫ ∞

−∞
w(t− u)x(u)du

∣∣∣∣∣
2

. (1)

Several examples of the resulting signatures are shown in
Figure 2.

IV. PHYSICS-AWARE GAN DESIGN FOR MICRO-DOPPLER

The baseline GAN architecture used in this work is the
Wasserstein GAN with gradient-penalty (WGAN-GP) [33]
because it provides stable training by minimizing an approxi-
mation of the Earth-Mover’s distance (EMD) [34] rather than
the Jenson-Shannon (JS) divergence [35] used in the original
GAN formulation [36]. EMD is a method for evaluating the
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Fig. 3. WGAN-GP generated spectrograms with kinematic errors.

dissimilarity between two multi-dimensional distributions in
some feature space where individual features are compared
based on a given distance measure, which is known as the
ground distance. If one distribution is thought of as a mass
of earth in space, and the other as a collection of holes in
that same space, the EMD represents the amount of work
corresponding to transporting a unit of earth by a unit ground
distance. Unlike JS and Kullback-Leibler (KL) divergence, EM
distance offers a meaningful and smooth representation of the
distance between two distributions when they are placed in
lower dimensional manifolds without overlaps. As a result,
even when the generator is not producing quality images, the
gradients are smoother and consequently the network learns
better.

The training stability of GANs can be improved by penal-
izing the norm of the gradient of the critic with respect to
its input [37]. The Wasserstein GAN with Gradient Penalty
(WGAN-GP) has been utilized widely for radar data aug-
mentation in various applications, such as ground penetrating
radar imaging [38], human activity recognition [39], [40], [41],
ground target recognition [42], denoising of micro-Doppler
signatures [43], and synthetic aperture radar (SAR) imaging
[44]. In principle, the concepts developed in this paper could
also be applied to other GAN variants.

A. Kinematic Inconsistencies in GAN-Synthesized Samples

Although the distance measures utilized in the WGAN-
GP architecture capture the statistical distance between the
distributions of features, these features may not directly relate
to the physical properties of human movements. The micro-
Doppler signature provided at the input to a GAN is just
an image-based representation of frequency versus time. The
features automatically learned by a GAN trained based on
statistical distance thus capture spatial relationships between
pixels in the input images. They do not embody physical
constraints imposed by the structure of the human body,
joint rotations, or the expected electromagnetic backscatter.
Consequently, it is perhaps not surprising that WGAN-GP
generated signatures results in synthesis of signatures whose
features are statistically similar but physically erroneous.

As an example, consider the WGAN-GP synthesized sig-
natures shown in Figure 3 for five different classes of human
activity. Key features that set apart many human gaits are the
torso and leg dynamics. Yet in many of these signatures, the
torso and leg trajectories are obscured, erratic, malformed, and
do not reflect a received power level that is consistent with
distance. Other physically impossible flaws in the data include
disjoint components, which would not be possible because
the human body is a connected system, or rearrangements
of the data so that the signature corresponds to a different
activity. For example, the skipping signature shown in Figure
3 includes an interval of zero Doppler frequency, which
corresponds to a person skipping, stopping and then potentially
doing a different motion - not to continuous skipping.

While kinematic sifting can be devised to remove outliers
and boost classification performance [20], the objective of
the proposed physics-aware GAN design is to preclude the
generation of such physically inconsistent samples in the first
place.

B. Architectural Modification

Micro-Doppler signatures represent the variation of radial
speed versus time of each point on the body from which
the RF signal is backscattered. Thus, the upper envelope
provides an upper bound on maximum speed towards the radar,
while the lower envelope indicates the maximum speed away
from the radar. Accuracy in synthesizing signature envelopes
is significant not only due to the aforementioned physical
reason, but also because the differences in human gait is
primarily captured by the motion of the legs, which provides
the dominant trajectory reflected in the signature envelope.
Important micro-Doppler features, such as average velocity,
maximum foot swing velocity, period, the phase between
leg and torso, foot swing time, the range profile Doppler
frequency, total bandwidth of the Doppler signal, offset of the
total Doppler, normalized standard deviation of the Doppler
signal strength, and period of the limb motion are all derived
from the micro-Doppler signature’s envelope [45], [46]. Thus,
ensuring consistency in the envelop of synthesized signatures
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Fig. 4. Upper and lower envelope extraction at different threshold conditions.

with that of measured data is essential for enabling accurate
recognition of human gait.

The envelope for a real or synthesized micro-Doppler signa-
ture can be extracted by using an energy threshold method [47]
in which for each slow time index, all energy of each fast time
sample is accumulated, and the envelope is identified when
the summation exceeds the 90% or 3% of the total energy
for the upper and lower envelope, respectively. The effect of
the threshold (TH) on the extracted envelopes is illustrated
in Figure 4. Notice that the use of more stringent thresholds
(e.g. upper 98%/ lower 1%) results in closer tracing of minute
fluctuations in the signature. This may result in over-fitting
the envelope and accentuation of movements not fundamental
to the gait being synthesized. Selection of a threshold too
lax, however, could result in over smoothing of key envelope
features. The threshold utilized in this work was selected so
as pick up the gross movements of the legs, while avoiding
rapid fluctuations.

To inform the GAN of envelope-based features, we propose
adding additional branches to the discriminator that take as
input the envelope, thereby influencing decisions on how fake
or real the generated samples are. In the single-envelope
Multi-Branch GAN (MBGAN), only one additional auxiliary
branch taking the upper envelope as input is added. In the
dual-envelope MBGAN, both upper and lower envelopes are
provided as inputs to two additional auxiliary branches in the
discriminator. Both variants are depicted in Fig. 5.

The generator first synthesizes samples from a 100-
dimensional latent space noise vector. These generated sam-
ples are passed into the discriminator’s main branch. The en-
velope is used as input to the auxiliary branch, which extracts
features, and flattens the outputs before concatenation with the
features from the main branch. All features are passed into the
final dense layer. Then, the discriminator takes the batch of
real samples and their envelopes to compare the similarities

Fig. 5. Single and Dual Envelope MBGAN.

between the distribution of real and fake signatures. Based on
this comparison, the discriminator scores whether the samples
are fake or real on a scale of 0 to 1. The detailed structure
of the generator and multi-branch discriminator is shown in
Figure 6. The generator consists of 10 2D-convolutional layers,
where each of the layers are followed by a batch normalization
with 0.9 momentum and a Rectified Linear Unit (ReLU)
activation function with the exception of the last convolutional
layer, which is only followed by a tanh activation function.
The number of filters, kernel and stride size for each layer
are labeled over each convolutional unit in Figure 6 using the
notation “n (#filters) k (kernel size) and s (stride size)”. The
main branch of the discriminator is an 7-layer CNN, where
each layer is followed by a Leaky-ReLU activation function.
The auxiliary branch is comprised of three 1D-convolutional
layers. The outputs of the dense layers are concatenated with
the flattened output of the main discriminator. The features
extracted by the main branch of the discriminator are flattened
and vector-concatenated with the features extracted from the
1D envelope in the auxiliary branch.

C. Modification of Loss Function

Another way in which GANs can be informed about
physics-based constraints is through modification of the loss
function over which the weights are optimized. Current state-
of-the-art GAN formulations utilize statistical measures of
distance when computing loss. For example, the loss function
for a standard WGAN-GP architecture utilizes a loss function
of the following form:

LD = {D(x)−D(G(z))}+GP (2)

where LD is the critic loss and GP is the gradient penalty
given as,

GP = λ
(
||∇x̂D(x̂)||

)2

, (3)

In the above expression, D(x) is the discriminator’s estimate
of the probability that real data instance x is real; G(z) is
the generator’s output when given noise z; D(G(z)) is the
discriminator’s estimate of the probability that a fake instance
is real.
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Fig. 6. Architecture of the Generator and the Discriminator’s Branches. (BN: Batch Normalization, n: number of filters, k: kernel size, s: stride).

However, statistical similarity between real and synthetic
samples does not necessarily guarantee physics-based sim-
ilarity or conformity with physical properties. Because the
statistical similarity metrics take as input images of the micro-
Doppler signature, the resulting distance metrics are more
reflective of spatial similarity. Thus, a key element of physics-
aware design is to reformulate the loss function to include a
physics-based loss term that can inform the network of errors
that are not captured by the critic loss. In this case, the new
proposed loss function is

LD = {D(x)−D(G(z))}+GP + λPLphysics, (4)

where Lphysics is the physics-based loss term regulated with
the hyperparameter λP . Most generally, the physics-based loss
is defined as any computable metric that is indicative of how
well the synthetic samples resemble the real samples. Because
the approach proposed in this work focuses on accurate
representation of physical bounds on velocity, as determined
by the micro-Doppler signature envelopes, the physics-based
loss term is designed as a metric that captures the degree of
similarity between the envelopes of synthetic and real micro-
Doppler signatures.

D. Physics-Based Distance Metric

If the envelope is considered as a time-series or a curve,
the choice of the distance metric is tied to the ability of the
metric to produce a significant quantitative difference between
the two envelopes based on how dissimilar/similar they are. In
prior work [32], curve matching based distance metrics were
shown to outperform correlation based metrics. In this work,
three different distance metrics have been compared in terms
of their ability to quantify the similarity of envelopes across
all classes:

1) Dynamic Time Wrapping (DTW) distance: DTW mea-
sures the similarity between two temporal sequences
that do not sync up with each other perfectly due
to the variation in time or speed. To determine the
similarity independent of certain non-linear fluctuations,

the sequences are ”warped” non-linearly in the time
dimension.

2) Discrete Fréchet Distance (DFD) : Discrete Fréchet
distance [48] is a measure of similarity between curves
that consider both the location and ordering of the
points along the curves. DFD takes into account the
flow of the two curves because the pairs of points
whose distance contributes to the Fréchet distance sweep
continuously along their respective curves. This makes
it a better measure of similarity for curves.

3) Euclidean Distance: Euclidean distance is calculated as
the square root of the sum of the squared differences
between the two vectors. It is also known as the L2 −
norm.

To evaluate which metric exhibited the greatest sensitivity
and separation across classes, a subset of 100 WGAN-GP
synthesized samples are randomly selected for each of the 14
classes of activities recorded in this work. For each synthetic
sample, the DTW, DFD, and Euclidean distances between the
envelopes of the synthetic sample and each real test sample
is computed and averaged. The mean value of each distance
metric for each activity class is plotted as a marker for each

Fig. 7. Distance Metrics Comparison.
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synthetic sample, as shown in Figure 7. This way of visually
representing the mean distance metrics allows interpretation
of sensitivity across synthetic samples, metric utilized, and
each activity class. Observe that the values reported for both
Euclidean distance and DFD do not exhibit much spread
across classes, clumping up below a distance of 500 for
each synthetic sample. In contrast, the DTW exhibits great
numerical spread across values of 100 to 4000, with the 14
markers for each class given a particular sample also being
visually differentiable. Consequently, the DTW is selected as
the preferred metric for computing physics-based loss.

E. Depth of Networks

The influence of the depth of the generator and discriminator
on the kinematic fidelity of the resulting synthetic images is
evaluated through an ablation study in which the generator and
discriminator depths are independently varied and the resulting
DTW metrics compared. First, the depth of the discriminator
in the baseline WGAN-GP model was fixed at a depth of 7,
while the generator was varied between depths (D) of 4 and
10. The resulting DTW distance and network complexity, as
indicated by the number of trainable parameters, is tabulated in
Table II for the class ”vacuuming the floor.” As the generator
depth increases, the matching between the real and synthetic
signature envelopes, as measured via the DTW distance,
improves. Thus, a generator depth of 10 layers is selected,
while the depth of the discriminator is varied between 4 and 7
layers. Increasing the depth of the discriminator also resulted
in a continual decrease in the DTW distance, implying a better
match between synthetic and real envelopes. Thus, a depth of
7 layers was used for the main branch of the discriminator.
Because the use of deeper models increases the chance of
mode collapse, a generator network depth beyond 10 and
discriminator network depth beyond 7 was not selected.

The impact of the depth of the auxiliary branches is also
shown in Table II. Increasing the depth to three layers results
in significant improvement in envelope matching, as indicated
by the decrease in DTW distance. Thus, three convolutional
layers were utilized in the auxiliary branches of both the single
and dual MBGAN architectures.

TABLE II
ABLATION STUDY ON THE GENERATOR AND DISCRIMINATOR

ARCHITECTURE.

V. OTHER DESIGN CONSIDERATIONS

The efficacy of the proposed MBGAN architecture with
regularized physics-aware loss was validated on a fourteen-
class human activity micro-Doppler dataset. In this section,
first the radar system and experimental procedure utilized
for data collection is described. Next, specific considerations
that relate to the efficacy of the design are evaluated in
turn: namely, the efficacy of envelope extraction in noise, the
effect of the auxiliary branch and physics-aware loss on GAN
training convergence, model complexity and training time.

A. Envelope Extraction in Noise

An important factor in real-world environments is the clutter
and noise present in the spectrogram, which could result in
masking of the envelopes and hence degrade the fidelity of
envelope extraction. Although ground clutter is filtered out,
the power of the received RF signal attenuates proportionally
to 1/R4, where R is the distance between the person and
the radar. In this case, the background of the spectrogram will
appear increasingly noisy (or, conversely, the motion signature
increasingly weak). To examine the effect of noise on envelope
extraction, Gaussian noise with varying power is added to
the measured images to generate signatures with signal-to-
noise ratio (SNR) varying between 1 dB and 13 dB. Then, an
adaptive 2D Wiener filter [49] for kernel size (5,5) is used to
mitigate noise prior to envelope extraction.

The efficacy of envelope extraction is quantified by comput-
ing the DTW distance between the envelopes of the noisy and
noiseless spectrograms. As shown in Figure 8, application of
the Wiener filter enables envelope extraction to be effectively
accomplished for SNRs above 3dB. For 3 dB to 13 dB, the

Fig. 8. Effect of noise on accuracy of extracted envelope as quantified by
DTW distance between envelopes of noisy and noiseless signatures.
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Fig. 9. Comparison of synthesized signatures generated from several GAN variants and proposed PhLR-MBGAN architecture.

DTW distance varies between 477 and 1069. But lower than
3 dB, for each single decibel reduction in SNR, the DTW
distance doubles, resulting in an exponential increase in the
distance from the noiseless spectrogram. Below 3 dB, the
extracted spectrogram visually appears increasingly random,
as opposed to conforming to the salient micro-Doppler profile.
For the indoor environment considered in this work, a 10 dB
drop in SNR would occur when the person was roughly twice
the distance - i.e., 12 meters away. Implementation of more
sophisticated envelope extraction and denoising techniques,
however, would extend the range of efficacy.

B. Training of GAN Models

The generator, main and auxiliary branch discriminator were
built using Keras 2.3.1 Functional API with TensorFlow 2.2.3
backend. The Codes were run on a TITAN v3 GPUs. The
envelope extraction can be done using python and pass it as
an input into the discriminator, or can be directly implemented
using Keras Lambda layers within the discriminator. The
generator and the discriminator were trained with an Adam
optimizer [50] with a learning rate of 0.0001, β1 of 0.5 and
β2 of 0.9. For training, 80% of measured data were utilized.
While training the GAN, an ablation study was conducted
which comprises of the following training scenarios:

1) Baseline WGAN-GP: The WGAN-GP architecture [51]
was trained as a baseline model with a gradient penalty
λ of 10 and a training ratio of 5 (discriminator iteration
per generator iteration).

2) PhLR-WGAN-GP: In this architecture, the discriminator
loss of WGAN-GP is modified by adding physics-based

loss regularization computing using the DTW distance
between the envelopes of real and GAN-synthesized
samples. The regularization parameter λP is empirically
selected as 0.1.

3) Single-MBGAN: In this architecture, the upper envelope
is provided as input to a single auxillary branch, while
the main discriminator branch takes as input the micro-
Doppler signature. The auxillary branch is comprised of
1D convolutional blocks, as shown in figure 6(c), before
it is concatenated with the main branch discriminator.
The loss function is not modified, remaining the same
as that used in WGAN-GP.

4) Dual-MBGAN: In this case, the discriminator is com-
parised of two auxiliary branches, which take as input
the upper and lower envelopes of the micro-Doppler
signature. Both auxillary branches consist of 1D con-
volutional blocks, where the outputs are concatenated
with that of the main branch of the discriminator.

5) PhLR-Dual-MBGAN: This architecture includes both
the upper and lower envelopes as two auxiliary discrim-
inator branches. Consequently two physics-based loss
terms for each envelope are added in Equation 3 and
regularised with the same λP .

6) PhLR-MBGAN: This architecture includes both an aux-
iliary discriminator branch taking as input the upper
envelope, as well as the physics-based loss regularization
using the DTW distance.

A comparison of the signatures generated using the afore-
mentioned architectures is given in Figure 9. WGAN-GP sig-
natures exhibit weak depiction of the envelopes and the torso
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Fig. 10. Convergence of GAN training.

response, which is represented by the strongest (peak) return
in the signature (usually colored reddish). When a physics-
based loss term is added to the WGAN-GP architecture, the
torso response becomes more evident and the depiction of leg
swings is improved - but not yet well enough to be comparable
to the real data. The addition of auxiliary branches further
improves the envelope and strengthens the torso response.
However, it is only when the upper envelope is utilized in
an auxiliary branch, while the loss function is also augmented
with a physics-based loss term, that the resulting synthetic
samples closely resemble the read data, and is especially adept
at synthesizing each peak in the micro-Doppler shift distinctly
and accurately.

C. Convergence and Computational Complexity

When the model loss does not settle down during the
training process, a neural network fails to converge. A failure
to converge in the case of a GAN refers to the discriminator
and generator failing to find an equilibrium. The most common
way to identify this type of failure is that the loss for the
discriminator has gone to zero [52]. The most prevalent cause
of this type of loss is the generator producing junk images that
the discriminator can easily detect.

To assess the impact of the architectural modifications and
physics-based loss term on network training and convergence,
the discriminator losses observed in each architecture are
compared in Figure 10.

During the training of all the GAN scenarios, the following
discriminator losses are observed as shown in Figure 10. The
discriminator loss is stable and non-zero for all of them, which
indicates the convergence of GAN. For PhLR-WGAN-GP and
PhLR-MBGAN, the loss drops to 77 and get into stable stage
at around 150 iterations. On the other hand, Single and Dual-
MBGAN reached to the stable training earlier compared to
the WGAN-GP and the stable training is achieved when the
discriminator loss drops to around 13.71.

However, the inclusion of envelopes as auxiliary branches
in discriminator increases the number of trainable parameters
and hence increases the training time. For instance, to reach

to 10000 iterations, WGAN-GP takes 25 minutes, whereas
single envelope MBGAN & PhLR-MBGAN takes 48 minutes
and dual-envelope MBGAN takes 73 minutes. All the models
have been trained for 40,000 iterations to generate the final
synthetic signatures.

VI. RESULTS AND ANALYSIS

In this section, the effect of the multi-branch discriminator
and physics-based loss function is quantified using standard
image metrics, classification accuracy and the gait abnormality
replication capability.

A. Quality measures of GAN Synthesized Signatures
The quality of micro-Doppler spectrograms synthesized by

the different GAN models are quantified by measuring mean
square error (MSE) [53]and structural similarity index metric
(SSIM) [54] between the real and GAN generated signatures.

MSE =
1

NxNy

∑
x,y

[R(x, y)− S(x, y)]2 (5)

SSIM = l(R,S)α.c(R,S)β .s(R,S)γ (6)

MSSIM =
1

NxNy

∑
x,y

SSIM(R,S) (7)

where, R(x, y) and S(x, y) are the real and synthetic image
and Nx and Ny are the height and width of the image.
l, c, r refer to luminance, contrast and structural measures,
and α = β = γ = 1. A total of 200 synthetic samples
are randomly chosen for each class and the mean MSE and
mean SSIM (MSSIM) are measured comparing with the real
test images using Equations 5 and 7. Table III shows the
quality measures using MSE and SSIM for all the scenarios
of GAN models described in subsection V-B. These numbers
can be better visualised with the box-plot of Figure 11, which
shows that the PhLR-MBGAN generated signatures with the
greatest similarity and lowest MSE relative to the real test
samples. In this fashion, WGAN-GP which is the baseline
model, generates signatures with lower structural similarity
and higher MSE.
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TABLE III
QUALITY MEASURES OF GAN SYNTHESIZED SIGNATURES.

Fig. 11. Box plot to compare SSIM and MSE for all the GAN models .

B. Classification Accuracy

Another way to evaluate the efficacy of GAN-synthesized
signatures is to consider the resulting classification accuracy -
the better the synthetic signatures, the higher the classification
accuracy. A convolutional auto-encoder, which consists of
3 convolutional blocks, is utilized for classification due to
its efficacy in classifying datasets with low training sample
support [55]. In each block, there are two convolutional layers,
followed by a concatenation and a maxpooling layer. The
concatenation technique provides multilevel feature extraction.
CAEs use unsupervised pre-training to initialize the network
near a good local minima. After training the CAE model, the
decoder was removed, the output of the encode is flattened
and two fully connected layers with 128 and 64 neurons are
added, each of them are followed by a dropout of 0.65 and 0.55
respectively. At the output, a softmax layer with 14 nodes is
employed for classification. During training, the ADAM [50]
optimizer was utilized, along with a batch size of 64, learning
rate of 0.00008 and 70 epochs.

Table IV shows the classification accuracy achieved when
training the CAE separately with the synthetic data generated
by all 6 GAN variants and testing with the real data that has
not been utilized in GAN training. Of the 100 real samples
per class, 80% is reserved for training, while 20% is utilized

TABLE IV
CLASSIFICATION ACCURACY USING CAE WHILE TRAINING WITH

GAN-SYNTHESIZED DATA.

in testing. Thus, 80 samples per class are used to train a
GAN, which is, in turn, generates 500 synthetic samples per
class. As more real data is utilized together with the GAN-
synthesized samples for training, the resulting classification
accuracy increases. Whereas training on GAN-synthesized
samples alone results in 48.57% accuracy, the inclusion of real
samples increases the accuracy to as high as 89.23%. However,
if only real data is used during training, an accuracy of just
80.36% is achieved. Thus, the proposed approach results in a
9% performance improvement over the use of real data alone.

The PhLR-MBGAN model shows superior accuracy com-
pared to all other methods, which reflects the efficacy of
the modified discriminator and loss function. The addition of
one auxiliary branch increases accuracy by 3% as compared
to the baseline WGAN-GP model. The effect of utilizing
different discriminator architectures is captured by Table V,
which provides not just the resulting classification accuracy
but also a comparison of image quality metrics. For this
ambulatory dataset, the dual-branch variant actually results in
a slightly lower accuracy, indicating that the lower envelope
does not capture any significant kinematic features. This makes
sense for this dataset, as all activities were conducted towards
the radar, resulting in a pre-domominantly positive micro-
Doppler signature. It is also interesting to note that just
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adding a physics-based loss term without any architectural
modifications does not make a significant impact, as may be
observed by comparing the results of the WGAN-GP with that
of the PhLR-WGAN-GP.

The effect of utilizing varying amounts of GAN-synthesized
data is shown in Figure 12. Although utilizing an increasing
number of synthetic samples in training does increase the
accuracy, it may be observed that beyond 5,250 samples, the
curve begins to flatten, implying less benefit in using additional
synthetic samples.

C. Impact of Aspect Angle on Optimal PhGAN Architecture

In this study, all activities were articulated toward the radar.
Therefore, it is necessary to assess the performance of the
proposed MBGAN in synthesizing spectrograms for activities
performed at different directions and aspect angles. Towards
this aim, participants were asked to walk away from the radar
along the radar line-of-sight and along a skewed diagonal. A
total of 100 samples for each angle were collected, 80% of
which were used in GAN training. Then the GAN synthesized
samples were generated using the PhLR-MBGAN with an
upper envelope as an auxiliary branch, a lower envelope as
an auxiliary branch, and both envelopes as two auxiliary
branches. An example of PhLR-MBGAN (lower envelope)
synthesized sample is shown in Figure 13. A total of 500
samples were generated for each case. The quality of the
generated signatures is evaluated with SSIM and MSE metrics,
which are tabulated in Figure 13. For motion articulated
away from the radar, the micro-Doppler signature contains
predominantly negative frequencies, and the key kinematic
features are captured by the lower, not the upper envelope.
Thus, the utilization of a single auxiliary branch taking as
input the lower envelope offers better quality synthetic samples
than using the other two variants, including that of the dual-
auxiliary branch PhLR-Dual-MBGAN.

When the person walks along a diagonal, however, there is
a greater balance between positive and negative frequencies,
thus the gap between the GAN variants is reduced. In this case,
the use of the lower envelope alone only slightly surpasses that
of using both envelopes in a dual branch architecture. These
results show that while the selection of an auxiliary branch
taking as input of the upper or lower envelopes is primarily
dependent upon the dominant direction of motion (towards or
away), the precise angle at which the person is moving does
not have a significant impact on the preferable architecture.
When there is no dominant direction or a balance in positive
and negative Doppler components is expected, a dual-branch
architecture may be preferred.

D. Effect of Envelope on Gait Asymmetry

In the case of normal walking, the reflection from both legs
is equal and hence symmetric nature of walking is observed in
spectrograms. However, in the case of any gait abnormality, the
weaker leg moves slowly towards the radar, compared to the
stronger foot, hence the reflection from that leg will be much
less compared to the strong foot. Therefore, gait asymmetry is
visible in the micro-Doppler signatures. The asymmetry index

TABLE V
ABLATION STUDY ON DISCRIMINATOR MODULE.

Fig. 12. Effect of utilizing varying amounts of real and GAN-synthesed data
for CAE training on resulting classification accuracy.

Fig. 13. Effect of direction and aspect angles on PhLR-MBGAN synthesized
Data. (Left) PhLR-MBGAN (lower envelope) synthesized samples. (Right)
Image quality assessment usign SSIM MSE.

(ASI) is measured based on the spread of Doppler frequency
of stronger and weaker feet using the following formula [56]:

ASI =
|DSWeak −DSStrong|

DSStrong
100% (8)

where DSWeak and DSStrong stand for the Doppler shift of
weaker and stronger foot respectively. For each spectrogram,
an average ASI is calculated from all the pairs of strong
and weak foot’s Doppler shift. For the class ’walking with
crutches,’ Figure 14 shows that the PhLR-MBGAN synthe-
sized signatures better span the variations in ASI represented
by the real data samples than the baseline WGAN-GP synthe-
sized signatures.
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Since this gait asymmetry is captured in an upper envelope,
the PhLR-MBGAN should produce signatures with the same
degree of asymmetry as real spectrograms. In the contrary,
WGAN-GP generated signatures lack adequately replicating
this gait asymmetry. The box plot in Figure 8, shows that the
first and 3rd quartile of ASI index for all the samples from
PhLR-MBGAN fall within the first and third quartile of real
samples. The median of PhLR-MBGAN (0.3) is also close to
the real sample’s median (0.35). In contrast, the median ASI of
WGAN generated samples is 0.2, which is off by about 0.15
compared to the real samples. These statistics indicate how
effectively the envelope feature captures the micro-Doppler
properties. In this case, the gait asymmetry is replicated very
effectively with the proposed physics-aware GAN model.

E. Generalizability of PhLR-MBGAN

In the proposed physics-aware GAN design, so far we
have demonstrated that the inclusion of upper envelope in
the architecture and in loss function has a positive impact
on signatures quality and activity recognition performance.
But, does this come in for the expanse of generalization
capability of the GAN? In other words, does the inclusion
of envelope only push the PhLR-MBGAN to the state of
complete memorization of the training instances? To answer
this, we ran the following experiment: The participants in our
study had various heights ranging from 1.57m to 1.905m.
We train the PhLR-MBGAN with the data from the shorter
participants with the height ranging from 1.57m to 1.67m.
We would like to find out whether the GANs can generate
synthetic signatures containing the gait properties, i.e., stride
duration, of taller participants (height range 1.72m to 1.905m).
The time between the consecutive heel strike of the same foot
is the stride duration/time. In the case of normal walking, the
stride duration of a tall person is higher than the short person.
First, we find the stride duration of all the real samples and
separate the samples with a stride time of 1.4 seconds or less.
Then, we train the GAN with these detached signatures of
shorter stride duration. We will investigate whether GAN can
generate signatures with stride time higher than 1.4 sec. To find
the stride time, the torso velocity (maximum energy at each
time index) is first calculated from the spectrograms, as shown
in red color at figure 15 (a). Then, the torso acceleration is
calculated, by differentiating the torso velocity (figure 15 (b)).
This acceleration is filtered with a first-order Butterworth low
pass filter of 2Hz cut-off frequency. Each peaks in this figure

Fig. 14. Comparison of Asymmetry Index of synthetic samples with real
samples for the class ’walking with crutches’.

Fig. 15. Finding stride duration. (a) Torso velocity extraction; (b) Torso
acceleration; (c) acceleration after butterworth filter

15 (c) is an step [57]. The time gap between two consecutive
peaks is step duration and the time gap between every two
consecutive even or odd peaks (for example, 1st and 3rd, 2nd
and 4th, 3rd and 5th, etc ) are stride duration.

The histograms in Figure 16 depict the real and GAN
generated samples distributed over different stride duration.
The top right histogram shows the distribution of the training
samples with stride rate less than 1.4 sec. The bottom row
shows the histograms of GAN generated samples, While
training the PhLR-MBGAN and WGAN-GP with these real
samples of shorter strides. It is evident from the histograms
that the GAN can generate the data with stride duration higher
than 1.4 sec. PhLR-MBGAN generates 79 samples with stride
duration higher than 1.4 sec out of 500 samples; whereas the
WGAN-GP generated 90 samples with stride duration higher
than 1.4 sec. The signature that PhLR-MBGAN generates has
a maximum stride duration of 1.738 sec, whereas WGAN-GP
could generate a maximum stride duration of 1.71 sec. This
indicates that even though we are putting more constraint in
the loss function and architecture, this does not necessarily
restrict the PhLR-MBGAN’s generalization capability, nor
does it increase the memorization.

VII. CONCLUSION

In this paper, we designed physics-aware GANs to syn-
thesize RF micro-Doppler signatures with enhanced kine-
matic fidelity. The designed multi-branch GAN (MBGAN)
architectures integrate the envelopes of the signatures as the
auxiliary branches into the discriminator and add a physics-
based constraint into the discriminator loss function. It was
shown that the architectural modification alone can improve
the quality of the generated signatures; however, inclusion
of both the envelope and physics-based losses provided the
most accurate synthetic signatures. The latter were manifested
in distinct torso response, accurate Doppler shift and consis-
tent periodicity. We considered classification of 14 different
ambulatory activities and showed that training with Single-
MBGAN and PhLR-MBGAN, respectively, generated 3% and
6% improvements in comparison with the baseline WGAN-
GP. Image quality metrics were applied and affirmed that
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Fig. 16. PhLR-MBGAN generates signatures with stride duration higher than
1.4 sec, even though training samples only contains signatures with stride
duration less than 1.4 sec. Adding envelope does not dim off PhLR-MBGAN’s
ability to generate the variation of training samples.

PhLR-MBGAN generated signatures achieve higher struc-
tural similarities and and lower mean square error compared
to other variations of MBGAN. Moreover, gait asymmetry
present in the real signatures were well replicated in PhLR-
MBGAN generated signatures. Finally, our results showed
that the modification of architecture and loss function do not
constrain the ability of PhLR-MBGAN to generate out-of-
subject variations in the training samples. Although the paper
focused on human activities, the proposed synthesis technique
can be beneficial to a broad range of applications involving
micro-Doppler synthesis, where the maximal instantaneous
frequencies underlie the motion’s uniqueness.
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