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Abstract

Bioinformatic analysis—such as genome assembly quality assessment, alignment summary statistics,
relative synonymous codon usage, file format conversion, and processing and analysis—is integrated into
diverse disciplines in the biological sciences. Several command-line pieces of software have been
developed to conduct some of these individual analyses, but unified toolkits that conduct all these
analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has,
upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel
processing and analysis of genome assemblies, multiple sequence alignments, coding sequences,
sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive
examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic
codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately
estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic
genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices.
BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely

available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi

(https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud

(https://anaconda.org/jIsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for

requesting new features are available online (https://jlsteenwyk.com/BioKIT).




Introduction

Bioinformatics is the application of computational tools to process and analyze biological data, such as
nucleotide or amino acid sequences in the form of genome assemblies, gene annotations, and multiple
sequence alignments (Bayat 2002). Diverse disciplines in the biological sciences rely on bioinformatic
methods and software (Wren 2016). Researchers have acknowledged the need to consider diverse types of
biological scientists with different levels of experience, including those with no experience — such as
students in classroom settings, when developing software (Kumar and Dudley 2007). It is also essential to
implement high standards of software development that ensure software functionality and archival
stability (Mangul ef al. 2019b, 2019a). For example, code quality can be improved by utilizing tests that
help ensure faithful function of code and facilitate debugging (Darriba et al. 2018). More specifically,
integration tests examine end-to-end functionality of software, whereas unit tests evaluate the
functionality of smaller chunks of code. Both tests ensure specific inputs result in expected outputs. As a
result, the development of effective and user-friendly software for diverse biologists often requires an

interdisciplinary team of software engineers, biologists, and others.

Even though numerous bioinformatic pieces of software are available, there are still several barriers to
creating seamless and reproducible workflows (Kim ez a/. 2018). This issue in part stems from different
pieces of software requiring different input file formats, being unable to account for non-standard
biological phenomena, such as the use of alternative genetic codes, or can only be executed using web
servers or graphical user interfaces, which cannot be incorporated into high-throughput pipelines. Another
factor is that multiple pieces of software or custom scripts are typically needed to execute different steps
in a larger bioinformatic pipeline; for example, bioinformatic workflows often rely on one software/script
for converting file formats, another software/script for translating sequences using standard and non-
standard genetic codes, another software/script to examine the properties of genomes or multiple
sequence alignments, and so on. As a result, maintaining efficacious bioinformatic workflows is

cumbersome (Kulkarni et al. 2018). To address this need, package and workflow managers have



facilitated stringing together numerous pieces of software. An alternative approach to addressing this
issue is the development of multi-purpose toolkits that contain diverse processing and analysis functions
and therefore reduce the overall number of pieces of software users need to install regardless of the use of

package and workflow managers.

To address this need, we—an interdisciplinary team of software engineers, evolutionary biologists,
molecular biologists, microbiologists, and others—developed BioKIT, a versatile toolkit that currently
has 42 functions, several of which were requested by the research community, that conduct routine and
novel processing and analysis of diverse sequence files including genome assemblies, multiple sequence
alignments, protein coding sequences, and sequencing data (Table 1). Functions implemented in BioKIT
facilitate a wide variety of standard bioinformatic analyses, including processing and analysis of protein
coding sequences (e.g., translation using 26 genetic codes including user-specified translation tables, GC
content at the first, second, and third codon positions, and relative synonymous codon usage), evaluation
of genome assembly quality (e.g., N50, L50, assembly size, guanine-cytosine (GC) content, number of
scaffolds, and others), and the calculation of multiple sequence alignment properties (i.e., number of taxa,
alignment length, the number of constant sites, the number of parsimony-informative sites, and the
number of variable sites). To demonstrate the utility of BioKIT, we calculated relative synonymous codon
usage in 171 fungal genomes, estimated codon optimization in each gene from two Saccharomyces
budding yeast species using a novel metric, gene-wise relative synonymous codon usage (gRSCU),
examined the genome assembly quality of 901 eukaryotic genomes, and evaluated the properties of 10
phylogenomic data matrices. We hope that BioKIT will improve reproducibility and accessibility of
diverse bioinformatic analysis, serve as an effective teaching tool, and facilitate discovery in the

biological sciences.

Materials and Methods




BioKIT is an easy-to-install command-line software that conducts diverse bioinformatic analyses. BioKIT
is written in the Python programming language and has few dependencies, namely Biopython (Cock et al.

2009) and NumPy (Van Der Walt ef al. 2011).

BioKIT currently has 42 functions that process and analyze sequence files such as genome assemblies,
multiple-sequence alignments, protein coding sequences, and sequencing data (Table 1). Processing
functions include those that convert various file formats, subset sequence reads from FASTQ files,
rename entries in FASTA files, and others. Analysis functions include those that trim sequence reads in
FASTQ files according to quality and length thresholds, calculate relative synonymous codon usage,
estimate codon optimization, and others. Where applicable, BioKIT functions can also take standard

output as input thereby enabling the use of POSIX pipes.

Details about each function, their usage, tutorials, and other information such as how to request additional

functions can be found in the online documentation (https://jlsteenwyk.com/BioKIT). To demonstrate the

utility of BioKIT, we highlight four use-cases: (i) determination of relative synonymous codon usage
using different genetic codes, (ii) determination of a novel metric for estimation of gene-wise codon
optimization, gene-wise relative synonymous codon usage (gRSCU), (iii) genome assembly quality

assessment, and (iv) summarizing properties of multiple sequence alignments.

Examining features of coding sequences including relative synonymous codon usage

BioKIT contains multiple functions that process or analyze protein coding sequences including translating
protein coding sequences into amino acids. One distinct advantage of BioKIT is its ability to account for
diverse genetic codes (currently, BioKIT comes complete with 26 genetic codes) or take as input a user-
defined translation table. Other coding sequence-related analyses include determining the GC content at

the first, second, and third codon positions.



Here, we highlight the relative synonymous codon_usage function, which calculates relative
synonymous codon usage, the ratio of the observed frequency of synonymous codons to an expected
frequency in which all synonymous codons are used equally (Xu et al. 2008). In this analysis,
overrepresented codons have relative synonymous codon usage values greater than one whereas
underrepresented codons have relative synonymous codon usage values less than one. Relative
synonymous codon usage values of one fit the neutral expectation. The

relative_synonymous _codon_usage function can be used with one of 26 genetic codes including user-
specified translation tables. The ability of BioKIT to account for diverse genetic codes, which cannot be
done by other currently available software, makes it uniquely suitable for analyses of lineages that contain
multiple genetic codes (Krassowski ef al. 2018; LaBella ef al. 2019). Other software that conduct similar

analyses include DAMBE and GCUA (Mclnerney 1998; Xia 2013).

We also highlight the gene wise_relative_synonymous _codon_usage function, which calculates a novel
metric, gRSCU, to examine biases in codon usage among individual genes encoded in a genome.
Specifically, the gRSCU is calculated by determining the mean or median relative synonymous codon
usage value for all codons in each gene based on their genome-wide values. Thus, BioKIT calculates
relative synonymous codon usage for each codon based on codon usage in an entire set of protein coding
genes, individually reexamines each gene and the relative synonymous codon usage value for each codon
therein, and then determines the mean or median relative synonymous codon usage value for the

individual gene. The formula for the mean gRSCU calculation is as follows:

J_LRSCU;
gRSCU% = —/———
n
where gRSCU? is the gene that gRSCU is being calculated for, RSCU; is the relative synonymous codon
usage value (calculated from all protein coding genes in a genome) for the ith codon of j codons in a gene,

and » is the number of codons in a gene. To evaluate within-gene variation in relative synonymous codon

usage, BioKIT also reports the standard deviation of relative synonymous codon usage values for each



gene. Like the relative_synonymous_codon_usage function, gRSCU can be calculated using alternative
genetic codes including user-specified ones. Taken together, these functions can be used individually or in
tandem to investigate diverse biological phenomena, including codon usage bias (Brandis and Hughes

2016; LaBella et al. 2019) while also accounting for diverse genetic codes.

Genome assembly quality assessment

Determination of genome assembly properties is essential when evaluating assembly quality (Hunt et al.
2013; Gurevich et al. 2013). To facilitate these analyses, the genome_assembly metrics function in
BioKIT calculates 14 diverse properties of genome assemblies that evaluate assembly quality and
characteristics including:

« assembly size: sum length of all contigs/scaffolds;

* L.50 (and L90): the number of contigs/scaffolds that make up 50% (or, in the case of L90, 90%) of the
total length of the genome assembly;

* N50 (and N90): the length of the contig/scaffold which, along with all contigs/scaffolds longer than or
equal to that contig/scaffold, contain 50% (or, in the case of N90, 90%) the length of a particular genome
assembly;

¢ GC content: fraction of total bases that are either G or C;

» number of scaffolds: total number of contigs/scaffolds;

» number and sum length of large scaffolds: total number and sum length of contigs/scaffolds above 500
nucleotides in length (length threshold of a “large scaffold” can be modified by the user); and

* frequency of nucleotides: fraction of occurrences for adenine (A), thymine, (T), G, and C nucleotides.

Each metric can also be called using individual functions (e.g., the n50 function calculates the N50 of an
assembly and the number of large scaffolds function calculates the number of large scaffolds in an
assembly). We anticipate the ability of BioKIT to summarize genome assembly properties will be helpful

for assessing genome quality as well as in comparative studies of genome properties, such as the



evolution of genome size and GC content (Walker et al. 2015; Shen et al. 2020). Other pieces of software
that conduct similar analyses include QUAST, REAPR, and GenomeQC (Hunt et al. 2013; Gurevich et

al. 2013; Manchanda et al. 2020).

Processing and assessing the properties of multiple sequence alignments

Multiple sequence alignments—the alignment of three or more biological sequences—contain a wealth of
information. To facilitate easy use and manipulation of multiple sequence alignments, BioKIT
implements 16 functions that process or analyze alignments including: generating consensus sequences;
generating a position-specific score matrix (which represents the frequency of observing a particular
amino acid or nucleotide at a specific position); recoding an alignment using different schemes, such as
the RY-nucleotide scheme for nucleotide alignments (Woese et al. 1991; Phillips et al. 2001) or the
Dayhoft-6, S&R-6, and KGB-6 schemes for amino acid alignments (Embley et al. 2003; Kosiol et al.
2004; Hrdy et al. 2004; Susko and Roger 2007); converting alignments among the following formats:
FASTA, Clustal, MAF, Mauve, PHYLIP, PHYLIP-sequential, PHYLIP-relaxed, and Stockholm;
extracting entries in FASTA files; removing entries from FASTA file; removing short sequences from a

FASTA file; and others.

We highlight the alignment summary function, which calculates numerous summary statistics for a
multiple sequence alignment, a common step in many molecular evolutionary analyses (Winterton et al.
2018; Plomion et al. 2018). More specifically, the alignment summary function calculates:

* alignment length: the total number of sites in an alignment;

» number of taxa: the total number of sequences in an alignment;

» number of parsimony-informative sites: a site in an alignment with at least two distinct nucleotides or
amino acids that each occur at least twice;

* number of variable sites: a site in an alignment with at least two distinct nucleotides or amino acids;

» number of constant sites: sites with the same nucleotide or amino acid (excluding gaps); and



* the frequency of all character states: the fraction of occurrence for all nucleotides or amino acids (including

gap characters represented as ‘-’ or ‘?” in an alignment.

Like the genome_assembly metrics function, each metric can be calculated individually (e.g., the
constant_sites function calculates the number of constant sites in an alignment and the
character_frequency function calculates the frequency of all character states). We anticipate the
alignment_summary function will assist researchers in statistically evaluating the properties of their
alignments, which may help guide subsampling strategies in phylogenomic studies (Edwards 2016;
Mongiardino Koch 2021). Other pieces of software that perform similar operations include AMAS
(Borowiec 2016) and Mesquite (Mesquite Project Team 2014). One advantage of BioKIT compared to
other software (such as Phyutility (Smith and Dunn 2008)) the ability to calculate diverse summary

statistics.

Implementing high standards of software development

Archival instability is a concern for bioinformatic tools and threatens the reproducibility of bioinformatic
research. For example, in an analysis that aimed to evaluate the “installability” of bioinformatic software,
28% of over 36,000 bioinformatic tools failed to properly install due to implementation errors (Mangul et
al. 2019b). To ensure archival stability of BioKIT, we implemented a previously established protocol
(Steenwyk et al. 2020, 2021b, 2021a; Steenwyk and Rokas 2021b) for high standards of software
development and design practices. More specifically, we wrote 339 unit and integration tests that ensure
faithful functionality of BioKIT and span 95.35% of the codebase. We also implemented a continuous
integration pipeline, which builds, packages, installs, and tests the functionality of BioKIT across Python
versions 3.6, 3.7, 3.8, and 3.9. To accommodate diverse installation workflows, we also made BioKIT

freely available under the MIT license across popular platforms including GitHub

(https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the

Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). To make BioKIT more user-




friendly, we wrote online documentation, user tutorials, and instructions for requesting new features

(https://jlsteenwyk.com/BioKIT). We anticipate our strategy to implement high standards of software

development, coupled to our approach to decrease barriers to software usage (e.g., easy installation and
extensive documentation), will address instabilities observed among many bioinformatic software and

increase the long-term usability of BioKIT.

Results and Discussion

Relative synonymous codon usage in 107 budding yeast and filamentous fungi

To demonstrate the utility of BioKIT in analyzing protein coding sequences, we calculated the relative
synonymous codon usage of all codons in the protein coding sequences of 103 Eurotiomycetes
(filamentous fungi) and 68 Saccharomycetes (budding yeasts) genomes obtained from the RefSeq
database of NCBI (Figure 1). This example also demonstrates the flexibility of BioKIT to account for
non-standard genetic codes, which are observed among some budding yeasts that use the CUG codon to
encode a serine or alanine rather than a leucine (Krassowski et al. 2018). Hierarchical clustering of
relative synonymous codon usage values per codon (columns in Figure 1) revealed similar patterns across
groups of codons. For example, CUA, AUA, and GUA—three of the four codons that end in UA—were
underrepresented in all fungi. Hierarchical clustering of relative synonymous codon usage values per
species (rows in Figure 1) revealed filamentous fungi and budding yeasts often clustered separately. For
example, UGA, GUG, AAC, UAC, AAG, UUC, UCC, ACC, GCC, CGC, CUG, AUC, GUC, CUC, and
GGC are more often overrepresented among filamentous fungi in comparison to budding yeasts; in
contrast, UUG, GUU, CCA, and GGU are more often overrepresented among budding yeasts in
comparison to filamentous fungi. Variation within each lineage was also observed; for example, UUA
was underrepresented in most, but not all, budding yeasts. These findings demonstrate how BioKIT can

be used to examine patterns of RSCU in a single genome or across species.



Patterns of gene-wise codon usage bias can be used to assess codon optimization and predict steady-
state gene expression levels

To evaluate the utility of BioKIT in examining gene-wise codon usage biases, we calculated the mean and
median gRSCU value, a novel metric introduced in the present manuscript, for individual protein coding
genes in the genome of the baker’s yeast Saccharomyces cerevisiae (Figure 2A). Mean and median
gRSCU values were often, but not always, similar—the average absolute difference between mean and
median gRSCU is 0.05 + 0.04. In S. cerevisiae, as well as other organisms, genes encoding ribosomal
components and histones are known to be codon optimized and highly expressed (Sharp ef al. 1986;
Hershberg and Petrov 2009; LaBella et al. 2021). Therefore, we hypothesized that genes with high
gRSCU values will have functions related to ribosomes or histones because patterns of gene-wise codon
usage bias may be indicative of codon optimization. Supporting this hypothesis, examination of the 10
genes with the highest mean gRSCU revealed five genes with ribosome-related functions [RPL41B
(YDL133C-A), mean gRSCU: 1.60; RPL41A (YDL184C), mean gRSCU: 1.58; RPS14A (YCRO031C),
mean gRSCU: 1.44; RPS9B (YBR189W), mean gRSCU: 1.43; and RPL18A (YOL120C), mean gRSCU:
1.43] and four genes with histone-related functions [HHF1 (YBR009C), mean gRSCU: 1.45; HTA2
(YBLO003C), mean gRSCU: 1.44; HHF2 (YNL0O30W), mean gRSCU: 1.43; and HTA1 (YDR225W),
mean gRSCU: 1.43]. Examination of the 10 most optimized genes according to median gRSCU revealed
similar observations wherein nine genes had ribosome-related functions [RPS14A (YCRO031C), median
gRSCU: 1.48; RPS12 (YOR369C), median gRSCU: 1.40; RPS30B (YOR182C), median gRSCU: 1.40;
RPP2A (YOL039W), median gRSCU: 1.40; RPL18A (YOL120C), median gRSCU; RPS3 (YNL178W),
median gRSCU: 1.40; RPL13B (YMR142C), median gRSCU: 1.40; RPPO (YLR340W), median gRSCU:
1.40; and RPSOB (YLR048W), median gRSCU: 1.40]. More broadly, genes associated with the 60S and
40S ribosomal units (gold color in Figure 2A) tended to have high gRSCU values. These results suggest

gRSCU values may be useful for estimating codon optimization.



To further explore the relationship between gRSCU and codon optimization, we compared gRSCU values
to the values of the tRNA adaptation index, a measure of codon optimization (Sabi and Tuller 2014), in S.
cerevisiae as well as in steady state gene expression data from Saccharomyces mikatae (LaBella et al.
2019). In S. cerevisiae, strong correlation was observed between mean gRSCU and tRNA adaptation
index values (Figure 2B) and a less robust, but still significant, correlation was observed between median
gRSCU and tRNA adaptation index values (Figure 2C). Examination of gRSCU and gene expression data
from S. mikatae revealed a robust correlation (Figure 2E and 2F) suggesting gRSCU, and in particular the

mean gRSCU, can serve as a measure of gene-wise codon optimization.

Genome assembly quality and characteristics among 901 eukaryotic genomes

Other functions in BioKIT can facilitate, but are not limited to, examining data quality, a prerequisite for
many downstream analyses. For example, BioKIT can be useful in examining genome assembly quality
and characteristics. To do so, we calculated 14 diverse genome assembly metrics among 901 scaffold-
level haploid assemblies of eukaryotic genomes, which were obtained from NCBI, and span three major
classes of animals (Mammalia; N = 350), plants (Magnoliopsida; N = 336), and fungi (Eurotiomycetes; N
= 215). Genome assembly properties exhibited variation both within and between the three classes
(Figure 3). For example, fungi had the smallest average genome size of 32.71 £+ 7.04 Megabases (Mbs)
whereas mammals had the largest average genome size of 2,645.50 + 487.48 Mbs. Extensive variation in
genome size within each class corroborates previous findings of extreme genome size variation among
eukaryotes (Elliott and Gregory 2015). Variation in GC content, a genome property that has been actively
investigated for decades (Galtier ef al. 2001; Romiguier et al. 2010; Serres-Giardi et al. 2012), was
observed among the three eukaryotic classes—animals, plants, and fungi had an average GC content of
0.40 = 0.04, 0.35 +£ 0.04, and 0.49 + 0.03, respectively. Lastly, there was wide variation in genome
assembly metrics associated with continuity of assembly. For example, the average N50 values for
animals, plants, and fungi were 12,287.64 &+ 25,317.31 Mbs, 5,030.15 £ 19,358.58 Mbs, and 1,370.77

1,552.13 Mbs, respectively. Taken together, these results demonstrate BioKIT can assist researchers in



examining genome assembly quality but can also be used for studying genome evolution—such as the

evolution of genome size and GC content.

Properties of multiple sequence alignment from 10 phylogenomic studies

The properties of multiple sequence alignments are routinely used to evaluate aspects of alignment
information content (Shen ef al. 2016b)—such as in phylogenomic and systematic studies (Oliveira ef al.
2011; Pyron et al. 2013). To demonstrate the utility of BioKIT in calculating summary statistics for
multiple sequence alignments, we calculated six properties across 10 previously published phylogenomic
data matrices of amino acid sequences (Misof et al. 2014; Nagy et al. 2014; Whelan et al. 2015; Struck et
al. 2015; Yang et al. 2015; Chen et al. 2015; Borowiec et al. 2015; Shen et al. 2016¢, 2018; Steenwyk et
al. 2019) (Figure 4). Phylogenomic data matrices varied in the number of taxa (mean = 109.50 £ 87.26;
median = 94; max = 343; min = 36). Alignment length is associated with greater phylogenetic accuracy
and bipartition support (Shen et al. 2016b); however, recent analyses suggest that in some instances
shorter alignments that contain a wealth of informative sites (such as parsimony-informative sites) harbor
robust phylogenetic signal (Steenwyk et al. 2020). Interestingly, the longest observed alignment
(1,806,035 sites; Chen, Vertebrates in Figure 4) (Chen et al. 2015) contained the highest number of
constant sites (N = 610,994), which are phylogenetically uninformative, as well as the highest number of
variable sites (N = 1,195,041), which are phylogenetically informative (Shen et al. 2016b). In contrast to
the multiple sequence alignment of vertebrate sequences, the second longest alignment of budding yeast
sequences (1,162,805 sites; Shen, 332 Yeast in Figure 4) has few constant sites (N = 2,761) and many
parsimony-informative (N = 1,152,145) and variable sites (N = 1,160,044). This observation may be
driven in part by the rapid rate of budding yeast evolution compared to animals (Shen et al. 2018). These

results demonstrate BioKIT is useful in summarizing properties of multiple sequence alignments.

The utility, intent, and future of BioKIT



The exemplary analyses discussed in the present manuscript represent a small fraction of the ways to
implement BioKIT. To further demonstrate how BioKIT may be used in multi-step bioinformatic
workflows, we depict how BioKIT can be incorporated into genome assembly workflows, genomic
analysis pipelines, and phylogenomic workflows (Figure 5). Taken together, these analyses demonstrate
how BioKIT, alone or in tandem with other software, can facilitate the execution of diverse bioinformatic

pipelines.

As noted throughout the manuscript, there are numerous other tools that perform similar functions to
BioKIT. Our intent is not to replace these toolkits but provide a convenient package that conducts diverse
analyses. Toolkits that conduct diverse analyses, like BioKIT, can help facilitate the long-term stability of
bioinformatic workflows — such as those created using SnakeMake — by reducing the number of
dependencies. We also believe BioKIT can be used as an effective teaching tool. The first step in teaching
bioinformatics is often downloading and installing software, however, this step can be challenging and
time-consuming due to lack of experience, differing installation requirements, and installation errors.

Thus, BioKIT helps overcome this hurdle in the classroom.

Future releases of BioKIT will likely feature improvements in its scope and speed. BioKIT is a
community-driven tool, thus, users are encouraged to request new functions or contribute their own. We
recommend following standard GitHub operating procedures when doing so. In brief, new functions can
be requested as GitHub issues and novel functions can be developed in a separate branch and then
integrated into the main branch (or the distributed package). To help ensure long-term stability of
BioKIT, users should write integration and unit tests for new functions prior to requesting to add them to
the main branch. Beyond other functions, visualizing results will be considered in future releases of
BioKIT. For the present manuscript, visualization of results was done with ggplot2 (Wickham 2009),
pheatmap (Kolde 2012), and ggpubfigs (Steenwyk and Rokas 2021a) in the R programming language.

Other future improvements may be related to the speed of BioKIT. Although numerous functions are



relatively fast—for example, summarizing genome assembly metrics took 1.25 and 2.55 seconds for the
genomes of S. cerevisiae and Aspergillus fumigatus—some functions, especially those that process large
files, such as FASTQ files, may benefit from codebase modifications that improve speed. Speed

improvements will likely be guided by user needs.

Conclusion

BioKIT is a multi-purpose toolkit that has diverse applications for bioinformatics research. The utilities
implemented in BioKIT aim to facilitate the execution of seamless bioinformatic workflows that handle
diverse sequence file types. Implementation of state-of-the-art software development and design
principles in BioKIT help ensure faithful function and archival stability. BioKIT will be helpful for
bioinformaticians with varying levels of expertise and biologists from diverse disciplines including

molecular biology.

Data Availability

BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT),

PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud

(https://anaconda.org/jIsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for

requesting new features are available online (https://jlsteenwyk.com/BioKIT).
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Figures and figure legends

Figure 1. Relative synonymous codon usage across 171 fungal genomes. Relative synonymous codon
usage (RSCU) was calculated from the coding sequences of 103 Eurotiomycetes (filamentous fungi) and
68 Saccharomycetes (budding yeasts) genomes obtained from NCBI. Hierarchical clustering was
conducted across the fungal species (rows) and codons (columns). Eight groups of clustered rows were
identified; seven groups of clustered columns were identified. Broad differences were observed in the
RSCU values of Eurotiomycetes and Saccharomycetes genomes. For example, Saccharomycetes tended
to have higher RSCU values for the AGA codon, whereas Eurotiomycetes tended to have higher RSCU
values for the CUG codon. To account for the use of an alternative genetic code in budding yeast
genomes from the CUG-Ser1 and CUG-Ser2 lineages (Krassowski et al. 2018), the alternative yeast
nuclear code—which is one of 26 alternative genetic codes incorporated into BioKIT—was used during
RSCU determination. User’s may also provide their own genetic code if it is unavailable in BioKIT.
Overrepresented codons (RSCU>1) are depicted in a gold gradient; underrepresented codons (RSCU<1)
are depicted in a blue gradient. RSCU values greater than 2 are depicted with the maximum gold color.
Eurotiomycetes are depicted in grey; Saccharomycetes are depicted in green. This figure was made using

pheatmap (Kolde 2012).

Figure 2. Mean gene-wise relative synonymous codon usage accurately estimates codon
optimization. (A) Gene-wise relative synonymous codon usage (gRSCU), the mean (x-axis) or median
(y-axis) relative synonymous codon usage value per gene (based on RSCU values calculated from the
entire set of protein coding genes), was calculated from the coding sequences of the model budding yeast
Saccharomyces cerevisiae. (B, C) In S. cerevisiae, a significant correlation was observed between tRNA
adaptation index (tAl), a well-known measure of codon optimization (Sabi and Tuller 2014), and mean as
well as median gRSCU (1> = 0.52, p < 0.001 and r* = 0.25, p < 0.001, respectively; Pearson's Correlation
Coefficient). (D) Using previously published data, a correlation is observed between median log2 gene

expression and tAl in Saccharomyces mikatae (LaBella et al. 2019), which is evidence of tAl values



being indicative of codon optimization. Comparison of mean and median gRSCU (E and F, respectively)
and median log2 gene expression revealed similarly strong correlations (r* = 0.57, p < 0.001 and r* = 0.41,
p <0.001, respectively; Pearson's Correlation Coefficient). Of note, mean gRSCU had a strong
correlation to gene expression than median gRSCU. Each gene is represented by a dot. In panel A, the
size of each dot represents the standard deviation of RSCU values observed in the gene and the color of
each dot represents if the protein encoded by the gene has functions related to the 60S and 40S ribosomal

subunits (gold) or a different function (blue).

Figure 3. Summary of genome assembly metrics across 901 genomes from three eukaryotic classes.
Nine hundred and one scaffold-level genome assemblies from three major eukaryotic classes (215
Eurotiomycetes (kingdom: Fungi), 336 Magnoliopsida (kingdom: Plantae), 350 Mammalia (kingdom:
Animalia)) were obtained from NCBI and examined for diverse metrics including assembly size, GC
content, frequency of A, T, C, and G, N50, N90, L50, L90, number of scaffolds, number of large
scaffolds (defined as being greater than 500 nucleotides, which can be modified by the user), sum length
of large scaffolds, and longest scaffold in the assembly. Bar plots represent the mean for each taxonomic
class. Error bars represent the standard deviation of values. This figure was made using ggplot2

(Wickham 2009) and ggpubfigs (Steenwyk and Rokas 2021a).

Figure 4. Summary metrics among multiple sequence alignments from phylogenomic studies.
Multiple sequence alignments of amino acid sequences from ten phylogenomic data matrices (Misof ef al.
2014; Nagy et al. 2014; Whelan et al. 2015; Struck et al. 2015; Yang et al. 2015; Chen et al. 2015;
Borowiec et al. 2015; Shen et al. 2016¢, 2018; Steenwyk et al. 2019) were examined for five metrics:
number of taxa, alignment length, number of constant sites, number of parsimony-informative sites, and
number of variable sites. The x-axis depicts the last name of the first author of the phylogenomic study
followed by a description of the organisms that were under study. The abbreviation PI represents

parsimony-informative sites. Although excluded here for simplicity and clarity, BioKIT also determines



character state frequency (nucleotide or amino acid) when summarizing alignment metrics. This figure

was made using ggplot2 (Wickham 2009) and ggpubfigs (Steenwyk and Rokas 2021a).

Figure 5. BioKIT can be incorporated into diverse bioinformatic workflows. This flowchart depicts
how BioKIT can be incorporated into numerous bioinformatic pipeline using genome assembly (left),
genome analysis (middle), and phylogenomic analysis (right) as examples. For each workflow, steps that

can be executed by BioKIT are depicted in bold-faced font.



Table 1. Summary of 42 functions available in BioKIT at the time of publication
. o Type of o Example software that performs this
Function name Description function Input data Citation function
Multiple-
alignment length Calculate alignment length Analysis | sequence file in NA AMAS (Borowiec 2016)
FASTA format
(Woese et al. 1991;
Multiole- Embley et al. 2003;
. . Recode alignments using . pe Kosiol et al. 2004; Custom scripts (Hernandez and Ryan
alignment recoding Processing | sequence file in i
reduced character states Hrdy et al. 2004; 2021)
FASTA format
Susko and Roger
2007)
Summarize diverse properties of Multiple- AMAS (Borowiec 2016); custom scripts
alignment summary o multiple se uencg alli) ament Analysis | sequence file in NA (Shen et al. 2016b); PhyKIT (Steenwyk
ple seq & FASTA format et al. 2021a)
Multiple-
consensus_sequence Generates a consensus sequence | Analysis | sequence file in | (Sternke et al. 2019) Geneious (https://www.geneious.com)
FASTA format
Determine the number of Multiple-
constant_sites o . Analysis | sequence file in | (Kumar et al. 2016) IQ-TREE (Minh et al. 2020)
- constant sites in an alignment
FASTA format
. . . . D.etermn.le the nu.mber' of . . Multiple- . AMAS (Borowiec 2016); custom scripts
parsimony_informative_sites parsimony-informative sites in Analysis | sequence filein | (Kumar et al. 2016)
. (Shen et al. 2016b)
an alignment FASTA format
Generates a position specific Multiple-
position_specific_score matrix ap P Analysis | sequence file in | (Gribskov et al. 1987) BLAST+ (Camacho et al. 2009)
score matrix for an alignment
FASTA format
Determine the number of Multiple- AMAS (Borowiec 2016); custom scripts
variable_sites variable sites in an alienment Analysis | sequence file in (Shen et al. 2016b) (Shen et al. 2016b); PhyKIT (Steenwyk
& FASTA format et al. 2021a)
Determine the GC content of the Protein coding
gc_content_first_position first codon position among Analysis sequences in (Bentele et al. 2013) Custom scripts (Bentele et al. 2013)
protein coding sequences FASTA format
Determine the GC content of the Protein coding
gc_content_second_position second codon position among Analysis sequences in (Bentele et al. 2013) Custom scripts (Bentele et al. 2013)

protein coding sequences

FASTA format




Determine the GC content of the

Protein coding

gc_content_third position third codon position among Analysis sequences in (Bentele et al. 2013) Custom scripts (Bentele et al. 2013)
protein coding sequences FASTA format
. . . . Protein coding
gene_w1se_rzlatlve_synonymous_ Calculate gene-wclise relative Analysis sequences in This study This study
codon_usage synonymous codon usage FASTA format
relative_synonymous_codon usag | Calculate relative synonymous . Protein codl.ng
- e - codon usage Analysis sequences in (Xu et al. 2008) MEGA (Kumar et al. 2016)
FASTA format
Translate protein coding Protein coding
translate_sequence sequences to amino acid Processing | sequences in NA EMBOSS (Rice et al. 2000)
sequences FASTA format
. Y Sequence reads
fastq read lengths Examine the distribution of read Analysis in FASTQ NA FQStat (Chanumolu ef al. 2019)
lengths
format
Sequence reads
subset_pe_ fastq reads Down sample paired-end reads | Processing in FASTQ NA SeqgKit (Shen et al. 2016a)
format
Sequence reads
subset_se fastq reads Down sample single-end reads | Processing in FASTQ NA SeqKit (Shen et al. 2016a)
format
. . Sequence reads
trim_pe_fastq reads T;ﬁlglﬁiflziiigﬁg;a?;r::}iz;ldzn Analysis in FASTQ NA Trimmomatic (Bolger ef al. 2014)
format
. Trim single-end reads based on . Sequence reads . .
trim_se_fastq_reads . Analysis in FASTQ NA Trimmomatic (Bolger et al. 2014)
quality and length thresholds format
Trim adapters from paired-end Sequence reads
trim_pe_adapters_fastq reads reads and implement length Analysis in FASTQ NA Trimmomatic (Bolger et al. 2014)
thresholds format
Trim adapters from single-end Sequence reads
trim se adapters fastq reads reads and implement length Analysis in FASTQ NA Trimmomatic (Bolger ef al. 2014)
thresholds format
FASTA file of . .
gc_content Determine GC content Analysis nucleotide (Romiguier ef al. custom scripts (Shen et al. 2016b); GC-

sequences

2010)

Profile (Gao and Zhang 2006)




Determine diverse properties of FASTA file of . )
genome_assembly metrics a genome assembly for quality Analysis a genome (Gurevich et al. 2013) QUAST (Glﬁewtc h tetla3021%13), REAPR
assessment and characterization assembly (Hunt e al. )
FASTA file of
150 L50 Analysis a genome (Gurevich et al. 2013) QUAST (Gurevich et al. 2013)
assembly
FASTA file of
190 L90 Analysis a genome (Gurevich et al. 2013) QUAST (Gurevich et al. 2013)
assembly
longest_scaffold l(Elegteegf:;lti;?i f?ﬁg;&%ﬁe Analysis FASTA file (Gurevich et al. 2013) Custom scripts (Ou et al. 2020)
FASTA file of
n50 N50 Analysis a genome (Gurevich et al. 2013) QUAST (Gurevich et al. 2013)
assembly
FASTA file of
n90 N90 Analysis a genome (Gurevich et al. 2013) QUAST (Gurevich et al. 2013)
assembly
Determine the number and
length of scaffolds longer than
number of large scaffolds 500 nucleotides. Length Analysis FASTA file NA QUAST (Gurevich et al. 2013)
threshold of 500 nucleotides can
be modified by the user
number_of scaffolds Deteg‘ig‘}ﬁ;‘g‘iﬁ:“ of Analysis | FASTA file NA QUAST (Gurevich ef al. 2013)
sum_of scaffold lengths Detemﬁtﬁz’g é‘f:fth ofall | Analysis | FASTA file NA QUAST (Gurevich ef al. 2013)
Determine the frequency of each
character. Gaps are assumed to . Biostrings
character_frequency be representléd as ‘?” and ‘-’ Analysis FASTA file NA (https://rdrr.io/bioc%Biostrings/)
characters
faidx Get sequence egile;y from FASTA Processing | FASTA file NA SAMtools (Li et al. 2009)
Converts multiple sequence FASTA,
file format converter alignments from one formatto | Processing | Clustal, MAF, NA ALTER (Glez-Pena et al. 2010)

another

Mauve, Phylip,




Phylip-
sequential,
Phylip-relaxed,
and Stockholm

multiple line to single line fast

Reformat sequences to be

FASTX-Toolkit

a represented on one line Processing FASTA file NA (http://hannonlab.cshl.edu/fastx_toolkit/)
remove_fasta_entry Remove sequence based on entry Processing | FASTA file NA NA
identifier
remove_short_sequences Remove short sequences Processing | FASTA file NA NA
. . . FASTX-Toolkit
rename_fasta entries Rename FASTA entries Processing FASTA file NA (http://hannonlab.cshl.edu/fastx_toolkit/)
reorder by sequence length Reorder Fﬁi;?l entries by Processing | FASTA file NA SeqKit (Shen et al. 2016a)
Generate sequence complements
sequence complement in the forward or reverse Processing FASTA file (Britten 1998) EMBOSS (Rice et al. 2000)
direction
sequence_length Calculate the length of each 1\ oo | FASTA file NA bioawk (https://github.com/Ih3/bioawk)
- FASTA file
single line to multiple line fast Reformat sequences to be Processing FASTA file NA FASTX-Toolkit

a

represented on multiple lines

(http://hannonlab.cshl.edu/fastx_toolkit/)
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