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Abstract 

Bioinformatic analysis—such as genome assembly quality assessment, alignment summary statistics, 

relative synonymous codon usage, file format conversion, and processing and analysis—is integrated into 

diverse disciplines in the biological sciences. Several command-line pieces of software have been 

developed to conduct some of these individual analyses, but unified toolkits that conduct all these 

analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, 

upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel 

processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, 

sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive 

examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic 

codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately 

estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic 

genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. 

BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely 

available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi 

(https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud 

(https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for 

requesting new features are available online (https://jlsteenwyk.com/BioKIT).  



Introduction 

Bioinformatics is the application of computational tools to process and analyze biological data, such as 

nucleotide or amino acid sequences in the form of genome assemblies, gene annotations, and multiple 

sequence alignments (Bayat 2002). Diverse disciplines in the biological sciences rely on bioinformatic 

methods and software (Wren 2016). Researchers have acknowledged the need to consider diverse types of 

biological scientists with different levels of experience, including those with no experience – such as 

students in classroom settings, when developing software (Kumar and Dudley 2007). It is also essential to 

implement high standards of software development that ensure software functionality and archival 

stability (Mangul et al. 2019b, 2019a). For example, code quality can be improved by utilizing tests that 

help ensure faithful function of code and facilitate debugging (Darriba et al. 2018). More specifically, 

integration tests examine end-to-end functionality of software, whereas unit tests evaluate the 

functionality of smaller chunks of code. Both tests ensure specific inputs result in expected outputs. As a 

result, the development of effective and user-friendly software for diverse biologists often requires an 

interdisciplinary team of software engineers, biologists, and others. 

 

Even though numerous bioinformatic pieces of software are available, there are still several barriers to 

creating seamless and reproducible workflows (Kim et al. 2018). This issue in part stems from different 

pieces of software requiring different input file formats, being unable to account for non-standard 

biological phenomena, such as the use of alternative genetic codes, or can only be executed using web 

servers or graphical user interfaces, which cannot be incorporated into high-throughput pipelines. Another 

factor is that multiple pieces of software or custom scripts are typically needed to execute different steps 

in a larger bioinformatic pipeline; for example, bioinformatic workflows often rely on one software/script 

for converting file formats, another software/script for translating sequences using standard and non-

standard genetic codes, another software/script to examine the properties of genomes or multiple 

sequence alignments, and so on. As a result, maintaining efficacious bioinformatic workflows is 

cumbersome (Kulkarni et al. 2018). To address this need, package and workflow managers have 



facilitated stringing together numerous pieces of software. An alternative approach to addressing this 

issue is the development of multi-purpose toolkits that contain diverse processing and analysis functions 

and therefore reduce the overall number of pieces of software users need to install regardless of the use of 

package and workflow managers. 

 

To address this need, we—an interdisciplinary team of software engineers, evolutionary biologists, 

molecular biologists, microbiologists, and others—developed BioKIT, a versatile toolkit that currently 

has 42 functions, several of which were requested by the research community, that conduct routine and 

novel processing and analysis of diverse sequence files including genome assemblies, multiple sequence 

alignments, protein coding sequences, and sequencing data (Table 1). Functions implemented in BioKIT 

facilitate a wide variety of standard bioinformatic analyses, including processing and analysis of protein 

coding sequences (e.g., translation using 26 genetic codes including user-specified translation tables, GC 

content at the first, second, and third codon positions, and relative synonymous codon usage), evaluation 

of genome assembly quality (e.g., N50, L50, assembly size, guanine-cytosine (GC) content, number of 

scaffolds, and others), and the calculation of multiple sequence alignment properties (i.e., number of taxa, 

alignment length, the number of constant sites, the number of parsimony-informative sites, and the 

number of variable sites). To demonstrate the utility of BioKIT, we calculated relative synonymous codon 

usage in 171 fungal genomes, estimated codon optimization in each gene from two Saccharomyces 

budding yeast species using a novel metric, gene-wise relative synonymous codon usage (gRSCU), 

examined the genome assembly quality of 901 eukaryotic genomes, and evaluated the properties of 10 

phylogenomic data matrices. We hope that BioKIT will improve reproducibility and accessibility of 

diverse bioinformatic analysis, serve as an effective teaching tool, and facilitate discovery in the 

biological sciences. 

 

Materials and Methods 



BioKIT is an easy-to-install command-line software that conducts diverse bioinformatic analyses. BioKIT 

is written in the Python programming language and has few dependencies, namely Biopython (Cock et al. 

2009) and NumPy (Van Der Walt et al. 2011). 

 

BioKIT currently has 42 functions that process and analyze sequence files such as genome assemblies, 

multiple-sequence alignments, protein coding sequences, and sequencing data (Table 1). Processing 

functions include those that convert various file formats, subset sequence reads from FASTQ files, 

rename entries in FASTA files, and others. Analysis functions include those that trim sequence reads in 

FASTQ files according to quality and length thresholds, calculate relative synonymous codon usage, 

estimate codon optimization, and others. Where applicable, BioKIT functions can also take standard 

output as input thereby enabling the use of POSIX pipes. 

 

Details about each function, their usage, tutorials, and other information such as how to request additional 

functions can be found in the online documentation (https://jlsteenwyk.com/BioKIT). To demonstrate the 

utility of BioKIT, we highlight four use-cases: (i) determination of relative synonymous codon usage 

using different genetic codes, (ii) determination of a novel metric for estimation of gene-wise codon 

optimization, gene-wise relative synonymous codon usage (gRSCU), (iii) genome assembly quality 

assessment, and (iv) summarizing properties of multiple sequence alignments. 

 

Examining features of coding sequences including relative synonymous codon usage 

BioKIT contains multiple functions that process or analyze protein coding sequences including translating 

protein coding sequences into amino acids. One distinct advantage of BioKIT is its ability to account for 

diverse genetic codes (currently, BioKIT comes complete with 26 genetic codes) or take as input a user-

defined translation table. Other coding sequence-related analyses include determining the GC content at 

the first, second, and third codon positions.  

 



Here, we highlight the relative_synonymous_codon_usage function, which calculates relative 

synonymous codon usage, the ratio of the observed frequency of synonymous codons to an expected 

frequency in which all synonymous codons are used equally (Xu et al. 2008). In this analysis, 

overrepresented codons have relative synonymous codon usage values greater than one whereas 

underrepresented codons have relative synonymous codon usage values less than one. Relative 

synonymous codon usage values of one fit the neutral expectation. The 

relative_synonymous_codon_usage function can be used with one of 26 genetic codes including user-

specified translation tables. The ability of BioKIT to account for diverse genetic codes, which cannot be 

done by other currently available software, makes it uniquely suitable for analyses of lineages that contain 

multiple genetic codes (Krassowski et al. 2018; LaBella et al. 2019). Other software that conduct similar 

analyses include DAMBE and GCUA (McInerney 1998; Xia 2013).  

 

We also highlight the gene_wise_relative_synonymous_codon_usage function, which calculates a novel 

metric, gRSCU, to examine biases in codon usage among individual genes encoded in a genome. 

Specifically, the gRSCU is calculated by determining the mean or median relative synonymous codon 

usage value for all codons in each gene based on their genome-wide values. Thus, BioKIT calculates 

relative synonymous codon usage for each codon based on codon usage in an entire set of protein coding 

genes, individually reexamines each gene and the relative synonymous codon usage value for each codon 

therein, and then determines the mean or median relative synonymous codon usage value for the 

individual gene. The formula for the mean gRSCU calculation is as follows: 

𝑔𝑅𝑆𝐶𝑈௔ ൌ  
∑ 𝑅𝑆𝐶𝑈௜
௝
௜ୀଵ

𝑛
  

where gRSCUa is the gene that gRSCU is being calculated for, RSCUi is the relative synonymous codon 

usage value (calculated from all protein coding genes in a genome) for the ith codon of j codons in a gene, 

and n is the number of codons in a gene. To evaluate within-gene variation in relative synonymous codon 

usage, BioKIT also reports the standard deviation of relative synonymous codon usage values for each 



gene. Like the relative_synonymous_codon_usage function, gRSCU can be calculated using alternative 

genetic codes including user-specified ones. Taken together, these functions can be used individually or in 

tandem to investigate diverse biological phenomena, including codon usage bias (Brandis and Hughes 

2016; LaBella et al. 2019) while also accounting for diverse genetic codes. 

 

Genome assembly quality assessment 

Determination of genome assembly properties is essential when evaluating assembly quality (Hunt et al. 

2013; Gurevich et al. 2013). To facilitate these analyses, the genome_assembly_metrics function in 

BioKIT calculates 14 diverse properties of genome assemblies that evaluate assembly quality and 

characteristics including: 

• assembly size: sum length of all contigs/scaffolds; 

• L50 (and L90): the number of contigs/scaffolds that make up 50% (or, in the case of L90, 90%) of the 

total length of the genome assembly; 

• N50 (and N90): the length of the contig/scaffold which, along with all contigs/scaffolds longer than or 

equal to that contig/scaffold, contain 50% (or, in the case of N90, 90%) the length of a particular genome 

assembly; 

• GC content: fraction of total bases that are either G or C; 

• number of scaffolds: total number of contigs/scaffolds; 

• number and sum length of large scaffolds: total number and sum length of contigs/scaffolds above 500 

nucleotides in length (length threshold of a “large scaffold” can be modified by the user); and 

• frequency of nucleotides: fraction of occurrences for adenine (A), thymine, (T), G, and C nucleotides. 

 

Each metric can also be called using individual functions (e.g., the n50 function calculates the N50 of an 

assembly and the number_of_large_scaffolds function calculates the number of large scaffolds in an 

assembly). We anticipate the ability of BioKIT to summarize genome assembly properties will be helpful 

for assessing genome quality as well as in comparative studies of genome properties, such as the 



evolution of genome size and GC content (Walker et al. 2015; Shen et al. 2020). Other pieces of software 

that conduct similar analyses include QUAST, REAPR, and GenomeQC (Hunt et al. 2013; Gurevich et 

al. 2013; Manchanda et al. 2020). 

 

Processing and assessing the properties of multiple sequence alignments 

Multiple sequence alignments—the alignment of three or more biological sequences—contain a wealth of 

information. To facilitate easy use and manipulation of multiple sequence alignments, BioKIT 

implements 16 functions that process or analyze alignments including: generating consensus sequences; 

generating a position-specific score matrix (which represents the frequency of observing a particular 

amino acid or nucleotide at a specific position); recoding an alignment using different schemes, such as 

the RY-nucleotide scheme for nucleotide alignments (Woese et al. 1991; Phillips et al. 2001) or the 

Dayhoff-6, S&R-6, and KGB-6 schemes for amino acid alignments (Embley et al. 2003; Kosiol et al. 

2004; Hrdy et al. 2004; Susko and Roger 2007); converting alignments among the following formats: 

FASTA, Clustal, MAF, Mauve, PHYLIP, PHYLIP-sequential, PHYLIP-relaxed, and Stockholm; 

extracting entries in FASTA files; removing entries from FASTA file; removing short sequences from a 

FASTA file; and others. 

We highlight the alignment_summary function, which calculates numerous summary statistics for a 

multiple sequence alignment, a common step in many molecular evolutionary analyses (Winterton et al. 

2018; Plomion et al. 2018). More specifically, the alignment_summary function calculates: 

• alignment length: the total number of sites in an alignment; 

• number of taxa: the total number of sequences in an alignment; 

• number of parsimony-informative sites: a site in an alignment with at least two distinct nucleotides or 

amino acids that each occur at least twice; 

• number of variable sites: a site in an alignment with at least two distinct nucleotides or amino acids; 

• number of constant sites: sites with the same nucleotide or amino acid (excluding gaps); and 



• the frequency of all character states: the fraction of occurrence for all nucleotides or amino acids (including 

gap characters represented as ‘-’ or ‘?’ in an alignment. 

 

Like the genome_assembly_metrics function, each metric can be calculated individually (e.g., the 

constant_sites function calculates the number of constant sites in an alignment and the 

character_frequency function calculates the frequency of all character states). We anticipate the 

alignment_summary function will assist researchers in statistically evaluating the properties of their 

alignments, which may help guide subsampling strategies in phylogenomic studies (Edwards 2016; 

Mongiardino Koch 2021). Other pieces of software that perform similar operations include AMAS 

(Borowiec 2016) and Mesquite (Mesquite Project Team 2014). One advantage of BioKIT compared to 

other software (such as Phyutility (Smith and Dunn 2008)) the ability to calculate diverse summary 

statistics. 

 

Implementing high standards of software development 

Archival instability is a concern for bioinformatic tools and threatens the reproducibility of bioinformatic 

research. For example, in an analysis that aimed to evaluate the “installability” of bioinformatic software, 

28% of over 36,000 bioinformatic tools failed to properly install due to implementation errors (Mangul et 

al. 2019b). To ensure archival stability of BioKIT, we implemented a previously established protocol 

(Steenwyk et al. 2020, 2021b, 2021a; Steenwyk and Rokas 2021b) for high standards of software 

development and design practices. More specifically, we wrote 339 unit and integration tests that ensure 

faithful functionality of BioKIT and span 95.35% of the codebase. We also implemented a continuous 

integration pipeline, which builds, packages, installs, and tests the functionality of BioKIT across Python 

versions 3.6, 3.7, 3.8, and 3.9. To accommodate diverse installation workflows, we also made BioKIT 

freely available under the MIT license across popular platforms including GitHub 

(https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the 

Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). To make BioKIT more user-



friendly, we wrote online documentation, user tutorials, and instructions for requesting new features 

(https://jlsteenwyk.com/BioKIT). We anticipate our strategy to implement high standards of software 

development, coupled to our approach to decrease barriers to software usage (e.g., easy installation and 

extensive documentation), will address instabilities observed among many bioinformatic software and 

increase the long-term usability of BioKIT. 

 

Results and Discussion 

Relative synonymous codon usage in 107 budding yeast and filamentous fungi 

To demonstrate the utility of BioKIT in analyzing protein coding sequences, we calculated the relative 

synonymous codon usage of all codons in the protein coding sequences of 103 Eurotiomycetes 

(filamentous fungi) and 68 Saccharomycetes (budding yeasts) genomes obtained from the RefSeq 

database of NCBI (Figure 1). This example also demonstrates the flexibility of BioKIT to account for 

non-standard genetic codes, which are observed among some budding yeasts that use the CUG codon to 

encode a serine or alanine rather than a leucine (Krassowski et al. 2018). Hierarchical clustering of 

relative synonymous codon usage values per codon (columns in Figure 1) revealed similar patterns across 

groups of codons. For example, CUA, AUA, and GUA—three of the four codons that end in UA—were 

underrepresented in all fungi. Hierarchical clustering of relative synonymous codon usage values per 

species (rows in Figure 1) revealed filamentous fungi and budding yeasts often clustered separately. For 

example, UGA, GUG, AAC, UAC, AAG, UUC, UCC, ACC, GCC, CGC, CUG, AUC, GUC, CUC, and 

GGC are more often overrepresented among filamentous fungi in comparison to budding yeasts; in 

contrast, UUG, GUU, CCA, and GGU are more often overrepresented among budding yeasts in 

comparison to filamentous fungi. Variation within each lineage was also observed; for example, UUA 

was underrepresented in most, but not all, budding yeasts. These findings demonstrate how BioKIT can 

be used to examine patterns of RSCU in a single genome or across species. 

 



Patterns of gene-wise codon usage bias can be used to assess codon optimization and predict steady-

state gene expression levels 

To evaluate the utility of BioKIT in examining gene-wise codon usage biases, we calculated the mean and 

median gRSCU value, a novel metric introduced in the present manuscript, for individual protein coding 

genes in the genome of the baker’s yeast Saccharomyces cerevisiae (Figure 2A). Mean and median 

gRSCU values were often, but not always, similar—the average absolute difference between mean and 

median gRSCU is 0.05 ± 0.04. In S. cerevisiae, as well as other organisms, genes encoding ribosomal 

components and histones are known to be codon optimized and highly expressed (Sharp et al. 1986; 

Hershberg and Petrov 2009; LaBella et al. 2021). Therefore, we hypothesized that genes with high 

gRSCU values will have functions related to ribosomes or histones because patterns of gene-wise codon 

usage bias may be indicative of codon optimization. Supporting this hypothesis, examination of the 10 

genes with the highest mean gRSCU revealed five genes with ribosome-related functions [RPL41B 

(YDL133C-A), mean gRSCU: 1.60; RPL41A (YDL184C), mean gRSCU: 1.58; RPS14A (YCR031C), 

mean gRSCU: 1.44; RPS9B (YBR189W), mean gRSCU: 1.43; and RPL18A (YOL120C), mean gRSCU: 

1.43] and four genes with histone-related functions [HHF1 (YBR009C), mean gRSCU: 1.45; HTA2 

(YBL003C), mean gRSCU: 1.44; HHF2 (YNL030W), mean gRSCU: 1.43; and HTA1 (YDR225W), 

mean gRSCU: 1.43]. Examination of the 10 most optimized genes according to median gRSCU revealed 

similar observations wherein nine genes had ribosome-related functions [RPS14A (YCR031C), median 

gRSCU: 1.48; RPS12 (YOR369C), median gRSCU: 1.40; RPS30B (YOR182C), median gRSCU: 1.40; 

RPP2A (YOL039W), median gRSCU: 1.40; RPL18A (YOL120C), median gRSCU; RPS3 (YNL178W), 

median gRSCU: 1.40; RPL13B (YMR142C), median gRSCU: 1.40; RPP0 (YLR340W), median gRSCU: 

1.40; and RPS0B (YLR048W), median gRSCU: 1.40]. More broadly, genes associated with the 60S and 

40S ribosomal units (gold color in Figure 2A) tended to have high gRSCU values. These results suggest 

gRSCU values may be useful for estimating codon optimization. 

 



To further explore the relationship between gRSCU and codon optimization, we compared gRSCU values 

to the values of the tRNA adaptation index, a measure of codon optimization (Sabi and Tuller 2014), in S. 

cerevisiae as well as in steady state gene expression data from Saccharomyces mikatae (LaBella et al. 

2019). In S. cerevisiae, strong correlation was observed between mean gRSCU and tRNA adaptation 

index values (Figure 2B) and a less robust, but still significant, correlation was observed between median 

gRSCU and tRNA adaptation index values (Figure 2C). Examination of gRSCU and gene expression data 

from S. mikatae revealed a robust correlation (Figure 2E and 2F) suggesting gRSCU, and in particular the 

mean gRSCU, can serve as a measure of gene-wise codon optimization.  

 

Genome assembly quality and characteristics among 901 eukaryotic genomes 

Other functions in BioKIT can facilitate, but are not limited to, examining data quality, a prerequisite for 

many downstream analyses. For example, BioKIT can be useful in examining genome assembly quality 

and characteristics. To do so, we calculated 14 diverse genome assembly metrics among 901 scaffold-

level haploid assemblies of eukaryotic genomes, which were obtained from NCBI, and span three major 

classes of animals (Mammalia; N = 350), plants (Magnoliopsida; N = 336), and fungi (Eurotiomycetes; N 

= 215). Genome assembly properties exhibited variation both within and between the three classes 

(Figure 3). For example, fungi had the smallest average genome size of 32.71 ± 7.04 Megabases (Mbs) 

whereas mammals had the largest average genome size of 2,645.50 ± 487.48 Mbs. Extensive variation in 

genome size within each class corroborates previous findings of extreme genome size variation among 

eukaryotes (Elliott and Gregory 2015). Variation in GC content, a genome property that has been actively 

investigated for decades (Galtier et al. 2001; Romiguier et al. 2010; Serres-Giardi et al. 2012), was 

observed among the three eukaryotic classes—animals, plants, and fungi had an average GC content of 

0.40 ± 0.04, 0.35 ± 0.04, and 0.49 ± 0.03, respectively. Lastly, there was wide variation in genome 

assembly metrics associated with continuity of assembly. For example, the average N50 values for 

animals, plants, and fungi were 12,287.64 ± 25,317.31 Mbs, 5,030.15 ± 19,358.58 Mbs, and 1,370.77 ± 

1,552.13 Mbs, respectively. Taken together, these results demonstrate BioKIT can assist researchers in 



examining genome assembly quality but can also be used for studying genome evolution—such as the 

evolution of genome size and GC content. 

 

Properties of multiple sequence alignment from 10 phylogenomic studies 

The properties of multiple sequence alignments are routinely used to evaluate aspects of alignment 

information content (Shen et al. 2016b)—such as in phylogenomic and systematic studies (Oliveira et al. 

2011; Pyron et al. 2013). To demonstrate the utility of BioKIT in calculating summary statistics for 

multiple sequence alignments, we calculated six properties across 10 previously published phylogenomic 

data matrices of amino acid sequences (Misof et al. 2014; Nagy et al. 2014; Whelan et al. 2015; Struck et 

al. 2015; Yang et al. 2015; Chen et al. 2015; Borowiec et al. 2015; Shen et al. 2016c, 2018; Steenwyk et 

al. 2019) (Figure 4). Phylogenomic data matrices varied in the number of taxa (mean = 109.50 ± 87.26; 

median = 94; max = 343; min = 36). Alignment length is associated with greater phylogenetic accuracy 

and bipartition support (Shen et al. 2016b); however, recent analyses suggest that in some instances 

shorter alignments that contain a wealth of informative sites (such as parsimony-informative sites) harbor 

robust phylogenetic signal (Steenwyk et al. 2020). Interestingly, the longest observed alignment 

(1,806,035 sites; Chen, Vertebrates in Figure 4) (Chen et al. 2015) contained the highest number of 

constant sites (N = 610,994), which are phylogenetically uninformative, as well as the highest number of 

variable sites (N = 1,195,041), which are phylogenetically informative (Shen et al. 2016b). In contrast to 

the multiple sequence alignment of vertebrate sequences, the second longest alignment of budding yeast 

sequences (1,162,805 sites; Shen, 332 Yeast in Figure 4) has few constant sites (N = 2,761) and many 

parsimony-informative (N = 1,152,145) and variable sites (N = 1,160,044). This observation may be 

driven in part by the rapid rate of budding yeast evolution compared to animals (Shen et al. 2018). These 

results demonstrate BioKIT is useful in summarizing properties of multiple sequence alignments. 

 

The utility, intent, and future of BioKIT 



The exemplary analyses discussed in the present manuscript represent a small fraction of the ways to 

implement BioKIT. To further demonstrate how BioKIT may be used in multi-step bioinformatic 

workflows, we depict how BioKIT can be incorporated into genome assembly workflows, genomic 

analysis pipelines, and phylogenomic workflows (Figure 5). Taken together, these analyses demonstrate 

how BioKIT, alone or in tandem with other software, can facilitate the execution of diverse bioinformatic 

pipelines. 

 

As noted throughout the manuscript, there are numerous other tools that perform similar functions to 

BioKIT. Our intent is not to replace these toolkits but provide a convenient package that conducts diverse 

analyses. Toolkits that conduct diverse analyses, like BioKIT, can help facilitate the long-term stability of 

bioinformatic workflows – such as those created using SnakeMake – by reducing the number of 

dependencies. We also believe BioKIT can be used as an effective teaching tool. The first step in teaching 

bioinformatics is often downloading and installing software, however, this step can be challenging and 

time-consuming due to lack of experience, differing installation requirements, and installation errors. 

Thus, BioKIT helps overcome this hurdle in the classroom. 

 

Future releases of BioKIT will likely feature improvements in its scope and speed. BioKIT is a 

community-driven tool, thus, users are encouraged to request new functions or contribute their own. We 

recommend following standard GitHub operating procedures when doing so. In brief, new functions can 

be requested as GitHub issues and novel functions can be developed in a separate branch and then 

integrated into the main branch (or the distributed package). To help ensure long-term stability of 

BioKIT, users should write integration and unit tests for new functions prior to requesting to add them to 

the main branch. Beyond other functions, visualizing results will be considered in future releases of 

BioKIT. For the present manuscript, visualization of results was done with ggplot2 (Wickham 2009), 

pheatmap (Kolde 2012), and ggpubfigs (Steenwyk and Rokas 2021a) in the R programming language. 

Other future improvements may be related to the speed of BioKIT. Although numerous functions are 



relatively fast—for example, summarizing genome assembly metrics took 1.25 and 2.55 seconds for the 

genomes of S. cerevisiae and Aspergillus fumigatus—some functions, especially those that process large 

files, such as FASTQ files, may benefit from codebase modifications that improve speed. Speed 

improvements will likely be guided by user needs. 

 

Conclusion 

BioKIT is a multi-purpose toolkit that has diverse applications for bioinformatics research. The utilities 

implemented in BioKIT aim to facilitate the execution of seamless bioinformatic workflows that handle 

diverse sequence file types. Implementation of state-of-the-art software development and design 

principles in BioKIT help ensure faithful function and archival stability. BioKIT will be helpful for 

bioinformaticians with varying levels of expertise and biologists from diverse disciplines including 

molecular biology. 

 

Data Availability 

BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), 

PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud 

(https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for 

requesting new features are available online (https://jlsteenwyk.com/BioKIT).  
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Figures and figure legends 

Figure 1. Relative synonymous codon usage across 171 fungal genomes. Relative synonymous codon 

usage (RSCU) was calculated from the coding sequences of 103 Eurotiomycetes (filamentous fungi) and 

68 Saccharomycetes (budding yeasts) genomes obtained from NCBI. Hierarchical clustering was 

conducted across the fungal species (rows) and codons (columns). Eight groups of clustered rows were 

identified; seven groups of clustered columns were identified. Broad differences were observed in the 

RSCU values of Eurotiomycetes and Saccharomycetes genomes. For example, Saccharomycetes tended 

to have higher RSCU values for the AGA codon, whereas Eurotiomycetes tended to have higher RSCU 

values for the CUG codon. To account for the use of an alternative genetic code in budding yeast 

genomes from the CUG-Ser1 and CUG-Ser2 lineages (Krassowski et al. 2018), the alternative yeast 

nuclear code—which is one of 26 alternative genetic codes incorporated into BioKIT—was used during 

RSCU determination. User’s may also provide their own genetic code if it is unavailable in BioKIT. 

Overrepresented codons (RSCU>1) are depicted in a gold gradient; underrepresented codons (RSCU<1) 

are depicted in a blue gradient. RSCU values greater than 2 are depicted with the maximum gold color. 

Eurotiomycetes are depicted in grey; Saccharomycetes are depicted in green. This figure was made using 

pheatmap (Kolde 2012). 

 

Figure 2. Mean gene-wise relative synonymous codon usage accurately estimates codon 

optimization. (A) Gene-wise relative synonymous codon usage (gRSCU), the mean (x-axis) or median 

(y-axis) relative synonymous codon usage value per gene (based on RSCU values calculated from the 

entire set of protein coding genes), was calculated from the coding sequences of the model budding yeast 

Saccharomyces cerevisiae. (B, C) In S. cerevisiae, a significant correlation was observed between tRNA 

adaptation index (tAI), a well-known measure of codon optimization (Sabi and Tuller 2014), and mean as 

well as median gRSCU (r2 = 0.52, p < 0.001 and r2 = 0.25, p < 0.001, respectively; Pearson's Correlation 

Coefficient). (D) Using previously published data, a correlation is observed between median log2 gene 

expression and tAI in Saccharomyces mikatae (LaBella et al. 2019), which is evidence of tAI values 



being indicative of codon optimization. Comparison of mean and median gRSCU (E and F, respectively) 

and median log2 gene expression revealed similarly strong correlations (r2 = 0.57, p < 0.001 and r2 = 0.41, 

p < 0.001, respectively; Pearson's Correlation Coefficient). Of note, mean gRSCU had a strong 

correlation to gene expression than median gRSCU. Each gene is represented by a dot. In panel A, the 

size of each dot represents the standard deviation of RSCU values observed in the gene and the color of 

each dot represents if the protein encoded by the gene has functions related to the 60S and 40S ribosomal 

subunits (gold) or a different function (blue). 

 

Figure 3. Summary of genome assembly metrics across 901 genomes from three eukaryotic classes. 

Nine hundred and one scaffold-level genome assemblies from three major eukaryotic classes (215 

Eurotiomycetes (kingdom: Fungi), 336 Magnoliopsida (kingdom: Plantae), 350 Mammalia (kingdom: 

Animalia)) were obtained from NCBI and examined for diverse metrics including assembly size, GC 

content, frequency of A, T, C, and G, N50, N90, L50, L90, number of scaffolds, number of large 

scaffolds (defined as being greater than 500 nucleotides, which can be modified by the user), sum length 

of large scaffolds, and longest scaffold in the assembly. Bar plots represent the mean for each taxonomic 

class. Error bars represent the standard deviation of values. This figure was made using ggplot2 

(Wickham 2009) and ggpubfigs (Steenwyk and Rokas 2021a). 

 

Figure 4. Summary metrics among multiple sequence alignments from phylogenomic studies. 

Multiple sequence alignments of amino acid sequences from ten phylogenomic data matrices (Misof et al. 

2014; Nagy et al. 2014; Whelan et al. 2015; Struck et al. 2015; Yang et al. 2015; Chen et al. 2015; 

Borowiec et al. 2015; Shen et al. 2016c, 2018; Steenwyk et al. 2019) were examined for five metrics: 

number of taxa, alignment length, number of constant sites, number of parsimony-informative sites, and 

number of variable sites. The x-axis depicts the last name of the first author of the phylogenomic study 

followed by a description of the organisms that were under study. The abbreviation PI represents 

parsimony-informative sites. Although excluded here for simplicity and clarity, BioKIT also determines 



character state frequency (nucleotide or amino acid) when summarizing alignment metrics. This figure 

was made using ggplot2 (Wickham 2009) and ggpubfigs (Steenwyk and Rokas 2021a). 

 

Figure 5. BioKIT can be incorporated into diverse bioinformatic workflows. This flowchart depicts 

how BioKIT can be incorporated into numerous bioinformatic pipeline using genome assembly (left), 

genome analysis (middle), and phylogenomic analysis (right) as examples. For each workflow, steps that 

can be executed by BioKIT are depicted in bold-faced font. 

  



Table 1. Summary of 42 functions available in BioKIT at the time of publication 

Function name Description 
Type of 
function 

Input data  Citation 
Example software that performs this 

function 

alignment_length Calculate alignment length Analysis 
Multiple-

sequence file in 
FASTA format 

NA AMAS (Borowiec 2016) 

alignment_recoding 
Recode alignments using 
reduced character states 

Processing 
Multiple-

sequence file in 
FASTA format 

(Woese et al. 1991; 
Embley et al. 2003; 
Kosiol et al. 2004; 
Hrdy et al. 2004; 
Susko and Roger 

2007) 

Custom scripts (Hernandez and Ryan 
2021) 

alignment_summary 
Summarize diverse properties of 
a multiple sequence alignment 

Analysis 
Multiple-

sequence file in 
FASTA format 

NA 
AMAS (Borowiec 2016); custom scripts 
(Shen et al. 2016b); PhyKIT (Steenwyk 

et al. 2021a) 

consensus_sequence Generates a consensus sequence Analysis 
Multiple-

sequence file in 
FASTA format 

(Sternke et al. 2019) Geneious (https://www.geneious.com) 

constant_sites 
Determine the number of 

constant sites in an alignment 
Analysis 

Multiple-
sequence file in 
FASTA format 

(Kumar et al. 2016) IQ-TREE (Minh et al. 2020) 

parsimony_informative_sites 
Determine the number of 

parsimony-informative sites in 
an alignment 

Analysis 
Multiple-

sequence file in 
FASTA format 

(Kumar et al. 2016) 
AMAS (Borowiec 2016); custom scripts 

(Shen et al. 2016b) 

position_specific_score_matrix 
Generates a position specific 
score matrix for an alignment 

Analysis 
Multiple-

sequence file in 
FASTA format 

(Gribskov et al. 1987) BLAST+ (Camacho et al. 2009) 

variable_sites 
Determine the number of 

variable sites in an alignment 
Analysis 

Multiple-
sequence file in 
FASTA format 

(Shen et al. 2016b) 
AMAS (Borowiec 2016); custom scripts 
(Shen et al. 2016b); PhyKIT (Steenwyk 

et al. 2021a) 

gc_content_first_position 
Determine the GC content of the 

first codon position among 
protein coding sequences 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Bentele et al. 2013) Custom scripts (Bentele et al. 2013) 

gc_content_second_position 
Determine the GC content of the 

second codon position among 
protein coding sequences 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Bentele et al. 2013) Custom scripts (Bentele et al. 2013) 



gc_content_third_position 
Determine the GC content of the 

third codon position among 
protein coding sequences 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Bentele et al. 2013) Custom scripts (Bentele et al. 2013) 

gene_wise_relative_synonymous_
codon_usage 

Calculate gene-wise relative 
synonymous codon usage 

Analysis 
Protein coding 
sequences in 

FASTA format 
This study This study 

relative_synonymous_codon_usag
e 

Calculate relative synonymous 
codon usage 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Xu et al. 2008) MEGA (Kumar et al. 2016) 

translate_sequence 
Translate protein coding 
sequences to amino acid 

sequences 
Processing 

Protein coding 
sequences in 

FASTA format 
NA EMBOSS (Rice et al. 2000) 

fastq_read_lengths 
Examine the distribution of read 

lengths 
Analysis 

Sequence reads 
in FASTQ 

format 
NA FQStat (Chanumolu et al. 2019) 

subset_pe_fastq_reads Down sample paired-end reads Processing 
Sequence reads 

in FASTQ 
format 

NA SeqKit (Shen et al. 2016a) 

subset_se_fastq_reads Down sample single-end reads Processing 
Sequence reads 

in FASTQ 
format 

NA SeqKit (Shen et al. 2016a) 

trim_pe_fastq_reads 
Trim paired-end reads based on 

quality and length thresholds 
Analysis 

Sequence reads 
in FASTQ 

format 
NA Trimmomatic (Bolger et al. 2014) 

trim_se_fastq_reads 
Trim single-end reads based on 
quality and length thresholds 

Analysis 
Sequence reads 

in FASTQ 
format 

NA Trimmomatic (Bolger et al. 2014) 

trim_pe_adapters_fastq_reads 
Trim adapters from paired-end 

reads and implement length 
thresholds 

Analysis 
Sequence reads 

in FASTQ 
format 

NA Trimmomatic (Bolger et al. 2014) 

trim_se_ adapters_fastq_reads 
Trim adapters from single-end 

reads and implement length 
thresholds 

Analysis 
Sequence reads 

in FASTQ 
format 

NA Trimmomatic (Bolger et al. 2014) 

gc_content Determine GC content Analysis 
FASTA file of 

nucleotide 
sequences 

(Romiguier et al. 
2010) 

custom scripts (Shen et al. 2016b); GC-
Profile (Gao and Zhang 2006) 



genome_assembly_metrics 
Determine diverse properties of 
a genome assembly for quality 

assessment and characterization 
Analysis 

FASTA file of 
a genome 
assembly 

(Gurevich et al. 2013) 
QUAST (Gurevich et al. 2013); REAPR 

(Hunt et al. 2013) 

l50 L50 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al. 2013) QUAST (Gurevich et al. 2013) 

l90 L90 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al. 2013) QUAST (Gurevich et al. 2013) 

longest_scaffold 
Determine the length of the 

longest entry in a FASTA file 
Analysis FASTA file (Gurevich et al. 2013) Custom scripts (Ou et al. 2020) 

n50 N50 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al. 2013) QUAST (Gurevich et al. 2013) 

n90 N90 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al. 2013) QUAST (Gurevich et al. 2013) 

number_of_large_scaffolds 

Determine the number and 
length of scaffolds longer than 

500 nucleotides. Length 
threshold of 500 nucleotides can 

be modified by the user 

Analysis FASTA file NA QUAST (Gurevich et al. 2013) 

number_of_scaffolds 
Determine the number of 

FASTA entries 
Analysis FASTA file NA QUAST (Gurevich et al. 2013) 

sum_of_scaffold_lengths 
Determine the total length of all 

FASTA entries 
Analysis FASTA file NA QUAST (Gurevich et al. 2013) 

character_frequency 

Determine the frequency of each 
character. Gaps are assumed to 

be represented as ‘?’ and ‘-’ 
characters 

Analysis FASTA file NA 
Biostrings 

(https://rdrr.io/bioc/Biostrings/) 

faidx 
Get sequence entry from FASTA 

file 
Processing FASTA file NA SAMtools (Li et al. 2009) 

file_format_converter 
Converts multiple sequence 

alignments from one format to 
another 

Processing 
FASTA, 

Clustal, MAF, 
Mauve, Phylip, 

NA ALTER (Glez-Pena et al. 2010) 



Phylip-
sequential, 

Phylip-relaxed, 
and Stockholm 

multiple_line_to_single_line_fast
a 

Reformat sequences to be 
represented on one line 

Processing FASTA file NA 
FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) 

remove_fasta_entry 
Remove sequence based on entry 

identifier  
Processing FASTA file NA NA 

remove_short_sequences Remove short sequences Processing FASTA file NA NA 

rename_fasta_entries Rename FASTA entries Processing FASTA file NA 
FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) 

reorder_by_sequence_length 
Reorder FASTA entries by 

length 
Processing FASTA file NA SeqKit (Shen et al. 2016a) 

sequence_complement 
Generate sequence complements 

in the forward or reverse 
direction 

Processing FASTA file (Britten 1998) EMBOSS (Rice et al. 2000) 

sequence_length 
Calculate the length of each 

FASTA file 
Analysis FASTA file NA  bioawk (https://github.com/lh3/bioawk) 

single_line_to_multiple_line_fast
a 

Reformat sequences to be 
represented on multiple lines 

Processing FASTA file NA 
FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) 
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