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Abstract 

Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often 

rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 

one or more species—a phenomenon observed among several important families of genes such as 

transporters and transcription factors—are often ignored because identifying and retrieving SC-OGs 

nested within them is challenging. To address this issue and increase the number of markers used in 

molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to 

simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs 

identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning 

procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred 

across seven eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the 

remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. 

Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, 

even in complex datasets that contain a whole genome duplication, complex patterns of duplication and 

loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in 

the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution 

data matrices, a critical step for robustly inferring and exploring the tree of life.  



Introduction 

Molecular evolution studies, such as species tree inference, genome-wide surveys of selection, 

evolutionary rate estimation, measures of gene-gene coevolution, and others typically rely on single-copy 

orthologs (SC-OGs), a group of homologous genes that originated via speciation and are present in 

single-copy among species of interest [1–6]. In contrast, paralogs—homologous genes that originated via 

duplication and are often members of large gene families—are typically absent from these studies (Fig 1). 

Gene families of orthologs and paralogs often encode functionally significant proteins such as 

transcription factors, transporters, and olfactory receptors [7–10]. The exclusion of SC-OGs from gene 

families has not only hindered our understanding of their evolution and phylogenetic informativeness but 

is also artificially reducing the number of gene markers available for molecular evolution studies. 

Furthermore, as the number of species and / or their evolutionary divergence increases in a dataset, the 

number of SC-OGs decreases [11,12]; case in point, no SC-OGs were identified in a dataset of 42 plants 

[11]. As the number of available genomes across the tree of life continues to increase, our ability to 

identify SC-OGs present in many taxa will become more challenging. 

 

In light of these issues, several methods have been developed to account for paralogs in specific types of 

molecular evolution studies—for example, in species tree reconstruction [13]. Methods such as 

SpeciesRax, STAG, ASTRAL-PRO, and DISCO can be used to infer a species tree from a set of SC-OGs 

and gene families composed of orthologs and paralogs [11,14–16]. Other methods such as PHYLDOG 

[17] and guenomu [18] jointly infer the species and gene trees, but require abundant computational 

resources, which has hindered their use for large datasets. Other software, such as PhyloTreePruner, can 

conduct species-specific inparalog trimming [19]. Agalma, as part of a larger automated phylogenomic 

workflow, can prune gene trees into maximally inclusive subtrees wherein each species, strain, or 

organism is represented by one sequence [20]. Similarly, OMA identifies subgroups of single-copy 

orthologs using graph-based clustering of sequence similarity scores [21]. Although these methods have 

expanded the numbers of gene markers used in species tree reconstruction, they were not designed to 



facilitate the retrieval of as broad a set of SC-OGs as possible for downstream molecular evolution studies 

such as surveys of selection. Furthermore, the phylogenetic information content of these gene families 

remains unknown, calling into question their usefulness. 

 

To address this need and measure the information content of subgroups of single-copy orthologous genes, 

we developed OrthoSNAP, a novel algorithm that identifies SC-OGs nested within larger gene families 

via tree decomposition and species-specific inparalog pruning. We term SC-OGs identified by 

OrthoSNAP as SNAP-OGs because they were retrieved using a splitting and pruning procedure. The 

efficacy of OrthoSNAP and the information content of SNAP-OGs was examined across seven eukaryotic 

datasets, which include species with complex evolutionary histories (e.g., whole genome duplication) or 

complex gene sequence data (e.g., transcriptomes, which typically have multiple transcripts per protein-

coding gene). These analyses revealed OrthoSNAP can substantially increase the number of orthologs for 

downstream analyses such as phylogenomics and surveys of selection. Furthermore, we found that the 

information content of SNAP-OGs was statistically indistinguishable from that of SC-OGs suggesting the 

inclusion of SNAP-OGs in downstream analyses is likely to be as informative. These analyses indicate 

that SNAP-OGs identified by OrthoSNAP hold promise for increasing the number of markers used in 

molecular evolution studies, which can, in turn, be used for constructing and interpreting the tree of life. 

 

Results 

OrthoSNAP is a novel tree traversal algorithm that conducts tree splitting and species-specific inparalog 

pruning to identify SC-OGs nested within larger gene families (Fig. 1C). OrthoSNAP takes as input a 

gene family phylogeny and associated FASTA file and can output individual FASTA files populated with 

sequences from SNAP-OGs as well as the associated Newick tree files (Fig. 2). During tree traversal, tree 

uncertainty can be accounted for by OrthoSNAP by collapsing poorly supported branches. In a set of 

seven eukaryotic datasets that contained 9,821 SC-OGs, we used OrthoSNAP to identify an additional 

10,704 SNAP-OGs. Using a combination of multivariate statistics and phylogenetic measures, we 



demonstrate that SNAP-OGs and SC-OGs have similar phylogenetic information content in all seven 

datasets. This observation was consistent across datasets where the identification of large numbers of SC-

OGs is challenging: flowering plants that have complex patterns of gene duplication and loss (15 SC-OGs 

and 653 SNAP-OGs), a lineage of budding yeasts wherein half of the species have undergone an ancient 

whole-genome duplication event (2,782 SC-OGs and 1,334 SNAP-OGs), and a dataset of transcriptomes 

where many genes are represented by multiple transcripts (390 SC-OGs and 2,087 SNAP-OGs). Lastly, 

similar patterns of support were observed among the 252 SC-OGs and the 1,428 SNAP-OGs in a 

contentious branch in the tree of life. Taken together, these results suggest that OrthoSNAP is helpful for 

expanding the set of gene markers available for molecular evolutionary studies, even in datasets where 

inference of orthology has historically been difficult due to complex evolutionary history or complex data 

characteristics.  

 

SC-OGs and SNAP-OGs have similar information content 

To compare SC-OGs and SNAP-OGs, we first independently inferred orthologous groups of genes in 

three eukaryotic datasets of 24 budding yeasts (none of which have undergone whole-genome 

duplication), 36 filamentous fungi (Aspergillus and Penicillium species), and 26 mammals including 

humans, dogs, pigs, elephants, sloths, and others (Table S1). There was variation in the number of SC-

OGs and SNAP-OGs in each lineage (S1 Fig; Table S2). Interestingly, the ratio of SNAP-OGs : SC-OGs 

among budding yeasts, filamentous fungi, and mammals was 0.83 (1,392 : 1,668), 0.46 (2,035 : 4,393), 

and 5.53 (1,775 : 321), respectively, indicating SNAP-OGs can substantially increase the number of gene 

markers in certain lineages. The number of SNAP-OGs identified in a gene family with multiple 

homologs in one or more species also varied (S2 Fig).  

 

Similar orthogroup occupancy and best fitting models of substitutions were observed among SC-OGs and 

SNAP-OGs (S3 Fig; Table S3), raising the question of whether SC-OGs and SNAP-OGs have similar 

information content. To answer this, the information content among multiple sequence alignments and 



phylogenetic trees from SC-OGs and SNAP-OGs (S4 Fig; Table S4) was compared across nine 

properties—Robinson-Foulds distance [22], relative composition variability [23], and average bootstrap 

support, for example—using multivariate analysis and statistics as well as information theory-based 

phylogenetic measures. Principal component analysis enabled qualitative comparisons between SC-OGs 

and SNAP-OGs in reduced dimensional space and revealed a high degree of similarity (Fig 3, S5 Fig). 

Multivariate statistics—namely, multi-factor analysis of variance—facilitated a quantitative comparison 

of SC-OGs and SNAP-OGs and revealed no difference between SC-OGs and SNAP-OGs (p = 0.63, F = 

0.23, df = 1; Table S5) and no interaction between the nine properties and SC-OGs and SNAP-OGs (p = 

0.16, F = 1.46, df = 8). Similarly, multi-factor analysis of variance using an additive model, which 

assumes each factor is independent and there are no interactions (as observed here), also revealed no 

differences between SC-OGs and SNAP-OGs (p = 0.65, F = 0.21, df = 1). Next, we calculated tree 

certainty, an information theory-based measure of tree congruence from a set of gene trees, and found 

similar levels of congruence among phylogenetic trees inferred from SC-OGs and SNAP-OGs (Table S6). 

Taken together, these analyses demonstrate that SC-OGs and SNAP-OGs have similar phylogenetic 

information content. 

 

We next aimed to determine if SC-OGs and SNAP-OGs have greater phylogenetic information content 

than a random null expectation. Groups of genes reflecting a random null expectation were constructed by 

randomly selecting a single sequence from representative species in multi-copy orthologous genes 

(hereafter referred to as Random-GGs for random combinations of orthologous and paralogous groups of 

genes) in the budding yeast (N=647), filamentous fungi (N=999), and mammalian (N=954) datasets. 

Random-GGs were aligned, trimmed, and phylogenetic trees were inferred from the resulting multiple 

sequence alignments. Random-GG phylogenetic information was also calculated. Across each dataset, 

significant differences were observed among SC-OGs, SNAP-OGs, and Random-GGs (p < 0.001, F = 

189.92, df = 4; Multi-factor ANOVA). Further examination of differences revealed Random-GGs are 

significantly different compared to SC-OGs and SNAP-OGs (p < 0.001 for both comparisons; Tukey 



honest significant differences (THSD) test) in the budding yeast dataset. In contrast, SC-OGs and SNAP-

OGs are not significantly different (p = 0.42; THSD). The same was also true for the dataset of 

filamentous fungi and mammals—specifically, Random-GGs were significantly different from SC-OGs 

and SNAP-OGs (p < 0.001 for each comparison in each dataset; THSD), whereas SC-OGs and SNAP-

OGs were not significantly different (p = 1.00 for filamentous fungi dataset; p = 0.42 for dataset of 

mammals; THSD). Principal component analysis revealed Robinson-Foulds distances (a measure of tree 

accuracy wherein lower values represent greater tree accuracy), and relative composition variability (a 

measure of alignment composition bias wherein lower values represent less compositional bias), often 

drove differences among Random-GGs, SC-OGs, and SNAP-OGs across the datasets. In all datasets, SC-

OGs and SNAP-OGs outperformed the null expectation in tree accuracy and were less compositionally 

biased (Table 1). These findings suggest SNAP-OGs and SC-OGs are similar in phylogenetic information 

content and outperform the null expectation. 

 

SC-OGs and SNAP-OGs have similar performances in complex datasets 

Complex biological processes and datasets pose a serious challenge for identifying markers for molecular 

evolution studies. To test the efficacy of OrthoSNAP in scenarios of complex evolutionary histories and 

datasets, we executed the same workflow described above—ortholog calling, sequence alignment, 

trimming, tree inference, and SNAP-OG detection—on three new datasets: (1) 30 plants known to have 

complex histories of gene duplication and loss [24–26]; (2) 30 budding yeast species wherein half of the 

species originated from a hybridization event that gave rise to a whole genome duplication followed by 

complex patterns of loss and duplication [27–30]; and (3) 20 choanoflagellate transcriptomes, which 

contain thousands more transcripts than genes [31,32]; for orthology inference software, multiple 

transcripts per gene appear similar to artificial gene duplicates. 

 

Corroborating previous results, OrthoSNAP successfully identified SNAP-OGs that can be used 

downstream for molecular evolution analyses. Specifically, using a species-occupancy threshold of 50% 



in the plant, budding yeast, and choanoflagellate datasets, 653, 1,334, and 2,087 SNAP-OGs were 

identified, respectively (Table 2). In comparison, 15 SC-OGs were identified in the plant dataset; 2,782 in 

the budding yeast dataset; and 390 in the choanoflagellate dataset. (Note, there are likely more SC-OGs 

than SNAP-OGs in budding yeasts because their genomes are relatively small and therefore do not have 

as many duplicate gene copies compared to other lineages, such as plants. Nonetheless, OrthoSNAP still 

substantially increases the number of markers in a phylogenomic data matrix.) To explore the impact of 

orthogroup occupancy, SNAP-OGs were also identified using a minimum occupancy threshold of four 

taxa. This resulted in the identification of substantially more SNAP-OGs: 15,854 in plants; 4,199 in 

budding yeasts; and 11,556 in choanoflagellates. Furthermore, these were substantially higher than the 

number of SC-OGs identified using a minimum orthogroup occupancy of four taxa: 200 in plants; 3,566 

in budding yeasts; and 2,438 in choanoflagellates. These findings support previous observations that 

incorporating OrthoSNAP into ortholog identification workflows can substantially increase the number of 

available loci. 

 

SC-OGs and SNAP-OGs have similar patterns of support in a contentious branch in the tree of life 

To further evaluate the information content of SNAP-OGs, we compared patterns of support among SC-

OGs and SNAP-OGs in a difficult-to-resolve branch in the tree of life. Specifically, we evaluated the 

support between three hypotheses concerning deep evolutionary relationships among eutherian mammals: 

(1) Xenarthra (eutherian mammals from the Americas) and Afrotheria (eutherian mammals from Africa) 

are sister to all other Eutheria [33,34]; (2) Afrotheria are sister to all other Eutheria [35,36]; and (3) 

Xenarthra are sister to a clade of both Afrotheria and Eutheria (Fig 4A). Resolution of this conflict has 

important implications for understanding the historical biogeography of these organisms. To do so, we 

first obtained protein-coding gene sequences from six Afrotheria, two Xenarthra, 12 other Eutheria, and 

eight outgroup taxa from NCBI (Table S7), which represent all annotated and publicly genome 

assemblies at the time of this study (Table S8). Using the protein translations of these gene sequences as 

input to OrthoFinder, we identified 252 SC-OGs shared across taxa; application of OrthoSNAP identified 



an additional 1,428 SNAP-OGs, which represents a greater than five-fold increase in the number of gene 

markers for this dataset (Table S8). There was variation in the number of SNAP-OGs identified per 

orthologous group of genes (S6 Fig). The highest number of SNAP-OGs identified in an orthologous 

group of genes was 10, which was a gene family of olfactory receptors; olfactory receptors are known to 

have expanded in the evolutionary history of eutherian mammals [8]. The best fitting substitution models 

were similar between SC-OGs and SNAP-OGs (S7 Fig).  

 

Two independent tests examining support between alternative hypotheses of deep evolutionary 

relationships among eutherian mammals revealed similar patterns of support between SC-OGs and 

SNAP-OGs. More specifically, no differences were observed in gene support frequencies—the number of 

genes that support one of three possible hypotheses at a given branch in a phylogeny—without or with 

accounting for single-gene tree uncertainty by collapsing branches with low support values (p = 0.26 and 

p = 0.05, respectively; Fisher’s exact test with Benjamini-Hochberg multi-test correction; Fig 4B; Table 

S9). A second test of single-gene support was conducted wherein individual gene log likelihoods were 

calculated for each of the three possible topologies. The frequency of gene-wise support for each topology 

was determined. No differences were observed in gene support frequency using the log likelihood 

approach (p = 0.52, respectively; Fisher’s exact test). Examination of patterns of support in a contentious 

branch in the tree of life using two independent tests revealed SC-OGs and SNAP-OGs are similar and 

further supports the observation that they contain similar phylogenetic information. 

 

In summary, 415,129 orthologous groups of genes across seven eukaryotic datasets contained 9,821 SC-

OGs; application of OrthoSNAP identified an additional 10,704 SNAP-OGs, thereby more than doubling 

the number of gene markers. Comprehensive comparison of the phylogenetic information content among 

SC-OGs and SNAP-OGs revealed no differences in phylogenetic information content. Strikingly, this 

observation held true across datasets with complex evolutionary histories and when conducting 

hypothesis testing in a difficult-to-resolve branch in the tree of life. These findings suggest that SNAP-



OGs may be useful for diverse studies of molecular evolution ranging from genome-wide surveys of 

selection, phylogenomic investigations, gene-gene coevolution analyses, and others. 

 

Discussion 

Molecular evolution studies typically rely on SC-OGs. Recently developed methods can integrate gene 

families of orthologs and paralogs into species tree inference but are not designed to broadly facilitate the 

retrieval of gene markers for molecular evolution analyses. Furthermore, the phylogenetic information 

content of gene families of orthologs and paralogs remains unknown. This observation underscores the 

need for algorithms that can identify SC-OGs nested within larger gene families, which can be in turn be 

incorporated into diverse molecular evolution analyses, and a comprehensive assessment of their 

phylogenetic properties. 

 

To address this need, we developed OrthoSNAP, a tree splitting and pruning algorithm that identifies 

SNAP-OGs, which refers to SC-OGs nested within larger gene families wherein species specific 

inparalogs have also been pruned. Comprehensive examination of the phylogenetic information content of 

SNAP-OGs and SC-OGs from seven empirical datasets of diverse eukaryotic species revealed that their 

content is similar. Inclusion of SNAP-OGs increased the size of all seven datasets, sometimes 

substantially. We note that our results are qualitatively similar to those reported recently by Smith et al. 

[37], which retrieved SC-OGs nested within larger families from 26 primates and examined their 

performance in gene tree and species tree inference. Three noteworthy differences are that we also 

conduct species-specific inparalog trimming, provide a user-friendly command-line software for SNAP-

OG identification, and evaluated the phylogenetic information content of SNAP-OGs and SC-OGs across 

seven diverse phylogenomic datasets. We also note that our algorithm can account for diverse types of 

paralogy—outparalogs, inparalogs, and species-specific inparalogs—whereas other software like 

PhyloTreePruner, which only conducts species-specific inparalog trimming [19], and Agalma, which 

identifies single-copy outparalogs and inparalogs [20], can account for some, but not all, types of paralogs 



(Table S10). Another difference between OrthoSNAP and other approaches is that Agalma and 

PhyloTreePruner both require rooted phylogenies. In contrast, OrthoSNAP will automatically midpoint 

root phylogenies or accept pre-rooted phylogenies as input. Furthermore, these algorithms are not 

designed to handle transcriptomic data wherein multiple transcripts per gene will be interpreted as multi-

copy orthologs. Thus, OrthoSNAP allows for greater user flexibility and accounts for more diverse 

scenarios, leading to, at least in some instances, the identification of more loci for downstream analyses 

(S8 Fig). Notably, these software are also different from sequence similarity graph-based inferences of 

subgroups of single-copy orthologous genes—such as the algorithm implemented in OMA [21]. In other 

words, OrthoSNAP identifies subgroups of single-copy orthologous genes by examining evolutionary 

histories, rather than sequence similarity values. Moreover, examination of evolutionary histories 

facilitates the identification of species-specific inparalogs. Finally, our results, together with other studies, 

demonstrate the utility of SC-OGs that are nested within larger families [15,20,37,38].  

 

Despite the ability of OrthoSNAP to identify additional loci for molecular evolution analyses, there were 

instances wherein SNAP-OGs were not identified in multi-copy orthologous groups of genes. We discuss 

three reasons that contribute to why SNAP-OGs could not be identified among some genes—specifically, 

gene families with sequence data from <50% of the taxa; gene families with complex evolutionary 

histories (for example, HGT and duplication/loss patterns); and gene families with evolutionary histories 

that differ from the species tree (for example, due to analytical factors, such as sampling and systematic 

error, or biological factors, such as lineage sorting or introgression/hybridization [39–41]). Notably, the 

first reason can, but does not always, result in inability to infer SNAP-OGs and can be, to a certain extent, 

addressed (e.g., by lowering the orthogroup occupancy threshold in OrthoSNAP), whereas the other two 

reasons are more challenging because they often result in a genuine absence of single-copy orthologs. 

Furthermore, the actual number of single-copy orthologs (either those nested within multi-copy orthologs 

or not) for any given group of organisms is not known, making it difficult to determine how many SNAP-



OGs and SC-OGs one should expect to recover. Notably, this issue has long challenged researchers, even 

when ortholog identification is performed by also taking genome synteny into account [27].  

 

Next, we discuss some practical considerations when using OrthoSNAP. In the present study, we inferred 

orthology information using OrthoFinder [42], but several other approaches can be used upstream of 

OrthoSNAP. For example, other graph-based algorithms such as OrthoMCL and OMA [21,43] or 

sequence similarity-based algorithms such as orthofisher [44], can be used to infer gene families. 

Similarly, sequence similarity search algorithms like BLAST+ [45], USEARCH [46], and HMMER [47], 

can be used to retrieve homologous sets of sequences that are used as input for OrthoSNAP. Other 

considerations should also be taken during the multi-copy tree inference step. For example, inferring 

phylogenies for all orthologous groups of genes may be a computationally expensive task. Rapid tree 

inference software—such as FastTree or IQTREE with the “-fast” parameter [48,49]—may expedite these 

steps (but users should be aware that this may result in a loss of accuracy in inference [50]).  

 

We suggest employing “best practices” when inferring groups of putatively orthologous genes, including 

SNAP-OGs. Specifically, orthology information can be further scrutinized using phylogenetic methods. 

Orthology inference errors may occur upstream of OrthoSNAP; for example, SNAP-OGs may be 

susceptible to erroneous inference of orthology during upstream clustering of putatively orthologous 

genes. One method to identify putatively spurious orthology inference is by identifying long terminal 

branches [51]. Terminal branches of outlier length can be identified using the “spurious_sequence” 

function in PhyKIT [52]. Other tools, such as PhyloFisher, UPhO, and other orthology inference pipelines 

employ similar strategies to refine orthology inference [53–55]. Lastly, we acknowledge that future 

iterations of OrthoSNAP may benefit from incorporating additional layers of information, such as 

sequence similarity scores or synteny. Even though OrthoSNAP did identify SNAP-OGs in some 

complex datasets where synteny has previously been very helpful, such as the budding yeast dataset, other 



ancient and rapidly evolving lineages may benefit from synteny analysis to dissect complex relationships 

of orthology [51,56–58].  

 

Taken together, we suggest that OrthoSNAP is useful for retrieving single-copy orthologous groups of 

genes from gene family data and that the identified SNAP-OGs have similar phylogenetic information 

content compared to SC-OGs. In combination with other phylogenomic toolkits, OrthoSNAP may be 

helpful for reconstructing the tree of life and expanding our understanding of the tempo and mode of 

evolution therein. 

 

Methods 

OrthoSNAP availability and documentation 

OrthoSNAP is available under the MIT license from GitHub (https://github.com/JLSteenwyk/orthosnap), 

PyPi (https://pypi.org/project/orthosnap), and the Anaconda cloud 

(https://anaconda.org/JLSteenwyk/orthosnap). OrthoSNAP is also freely available to use via the LatchBio 

(https://latch.bio/) cloud-based console (dedicated interface link: 

https://console.latch.bio/explore/65606/info). Documentation describes the OrthoSNAP algorithm, 

parameters, and provides user tutorials (https://jlsteenwyk.com/orthosnap). 

 

OrthoSNAP algorithm description and usage 

We next describe how OrthoSNAP identifies SNAP-OGs. OrthoSNAP requires two files as input: one is 

a FASTA file that contains two or more homologous sequences in one or more species and the other the 

corresponding gene family phylogeny in Newick format. In both the FASTA and Newick file, users must 

follow a naming scheme—wherein species, strain, or organism identifiers and gene sequences identifiers 

are separated by a vertical bar (also known as a pipe character or “|”)—which allows OrthoSNAP to 

determine which sequences were encoded in the genome of each species, strain, or organism. After 

initiating OrthoSNAP, the gene family phylogeny is first mid-point rooted (unless the user specifies the 

https://github.com/JLSteenwyk/orthosnap
https://pypi.org/project/orthosnap
https://anaconda.org/JLSteenwyk/orthosnap
https://latch.bio/
https://console.latch.bio/explore/65606/info
https://jlsteenwyk.com/orthosnap


inputted phylogeny is already rooted) and then SNAP-OGs are identified using a tree-traversal algorithm. 

To do so, OrthoSNAP will loop through the internal branches in the gene family phylogeny and evaluate 

the number of distinct taxa identifiers among children terminal branches. If the number of unique taxon 

identifiers is greater than or equal to the orthogroup occupancy threshold (default: 50% of total taxa in the 

inputted phylogeny; users can specify an integer threshold), then all children branches and termini are 

examined further; otherwise, OrthoSNAP will examine the next internal branch. Next, OrthoSNAP will 

collapse branches with low support (default: 80, which is motivated by using ultrafast bootstrap 

approximations [59] to evaluate bipartition support; users can specify an integer threshold) and conduct 

species-specific inparalog trimming wherein the longest sequence is maintained, a practice common in 

transcriptomics. However, users can specify whether the shortest sequence or the median sequence (in the 

case of three or more sequences) should be kept instead. Users can also pick which species-specific 

inparalog to keep based on branch lengths (the longest, shortest, or median branch length in the case of 

having three or more sequences). Species-specific inparalogs are defined as sequences encoded in the 

same genome that are sister to one another or belong to the same polytomy [19]. The resulting set of 

sequences is examined to determine if one species, strain, or organism is represented by one sequence and 

ensure these sequences have not yet been assigned to a SNAP-OG. If so, they are considered a SNAP-

OG; if not, OrthoSNAP will examine the next internal branch. When SNAP-OGs are identified, FASTA 

files of SNAP-OG sequences are outputted. Users can also output the subtree of the SNAP-OG using an 

additional argument. 

 

The principles of the OrthoSNAP algorithm are also described using the following pseudocode: 

FOR internal branch in midpoint rooted gene family phylogeny: 

> IF orthogroup occupancy among children termini is greater than or equal to orthogroup occupancy 

threshold; 

>> Collapse poorly supported bipartitions and trim species-specific inparalogs; 

>> IF each species, strain, or organism among the trimmed set of species, strains, or organisms is 



represented by only one sequence and no sequences being examined have been assigned to a SNAP-OG 

yet; 

>>> Sequences represent a SNAP-OG and are outputted to a FASTA file 

>> ELSE 

>>> examine next internal branch 

> ELSE 

>> examine next internal branch 

ENDFOR 

 

To enhance the user experience, arguments or default values are printed to the standard output, a progress 

bar informs the user of how of the analysis has been completed, and the number of SNAP-OGs identified 

as well as the names of the outputted FASTA files are printed to the standard output. 

 

Development practices and design principles to ensure long-term software stability 

Archival instabilities among software threatens the reproducibility of bioinformatics research [60]. To 

ensure long-term stability of OrthoSNAP, we implemented previously established rigorous development 

practices and design principles [44,52,61,62]. For example, OrthoSNAP features a refactored codebase, 

which facilitates debugging, testing, and future development. We also implemented a continuous 

integration pipeline to automatically build, package, and install OrthoSNAP across Python versions 3.7, 

3.8, and 3.9. The continuous integration pipeline also conducts 57 unit and integration tests, which span 

95.90% of the codebase and ensure faithful function of OrthoSNAP. 

 

Dataset generation 

To generate a dataset for identifying SNAP-OGs and comparing them to SC-OGs, we first identified 

putative groups of orthologous genes across four empirical datasets. To do so, we first downloaded 

proteomes for each dataset, which were obtained from publicly available repositories on NCBI (Table S1 



and S7) or figshare [51]. Each dataset varied in its sampling of sequence diversity and in the evolutionary 

divergence of the sampled taxa. The dataset of 24 budding yeasts spans approximately 275 million years 

of evolution [51]; the dataset of 36 filamentous fungi spans approximately 94 million years of evolution 

[63]; the dataset of 26 mammals spans approximately 160 million years of evolution [64]; and the dataset 

of 28 eutherian mammals—which was used to study the contentious deep evolutionary relationships 

among eutherian mammals—concerns an ancient divergence that occurred approximately 160 million 

years ago [65]. Putatively orthologous groups of genes were identified using OrthoFinder, v2.3.8 [42], 

with default parameters, which resulted in 46,645 orthologous groups of genes with at least 50% 

orthogroup occupancy (Table S8). 

 

To infer the evolutionary history of each orthologous group of genes, we first individually aligned and 

trimmed each group of sequences using MAFFT, v7.402 [66], with the “auto” parameter and ClipKIT, 

v1.1.3 [61], with the “smart-gap” parameter, respectively. Thereafter, we inferred the best-fitting 

substitution model using Bayesian information criterion and evolutionary history of each orthologous 

group of genes using IQ-TREE2, v2.0.6 [49]. Bipartition support was examined using 1,000 ultrafast 

bootstrap approximations [59]. 

 

To identify SNAP-OGs, the FASTA file and associated phylogenetic tree for each gene family with 

multiple homologs in one or more species was used as input for OrthoSNAP, v0.0.1 (this study). Across 

40,011 gene families with multiple homologs in one or more species in all datasets, we identified 6,630 

SNAP-OGs with at least 50% orthogroup occupancy (S1 Fig; Table S8). Unaligned sequences of SNAP-

OGs were then individually aligned and trimmed using the same strategy as described above. To 

determine gene families that were SC-OGs, we identified orthologous groups of genes with at least 50% 

orthogroup occupancy and each species, strain, or organism was represented by only one sequence—

6,634 orthologous groups of genes were SC-OGs.  

 



Measuring and comparing information content among SC-OGs and SNAP-OGs 

To compare the information content of SC-OGs and SNAP-OGs, we calculated nine properties of 

multiple sequence alignments and phylogenetic trees associated with robust phylogenetic signal in the 

budding yeasts, filamentous fungi, and mammalian datasets (Table S4). More specifically, we calculated 

information content from phylogenetic trees such as measures of tree certainty (average bootstrap 

support), accuracy (Robinson-Foulds distance (Robinson and Foulds, 1981)), signal-to-noise ratios 

(treeness (Phillips and Penny, 2003)), and violation of clock-like evolution (degree of violation of a 

molecular clock or DVMC (Liu et al., 2017)). Information content was also measured among multiple 

sequence alignments by examining alignment length and the number of parsimony-informative sites, 

which are associated with robust and accurate inferences of evolutionary histories (Shen et al., 2016) as 

well as biases in sequence composition (RCV (Phillips and Penny, 2003)). Lastly, information content 

was also evaluated using metrics that consider characteristics of phylogenetic trees and multiple sequence 

alignments such as the degree of saturation, which refers to multiple substitutions in multiple sequence 

alignments that underestimate the distance between two taxa (Philippe et al., 2011), and treeness / RCV, a 

measure of signal-to-noise ratios in phylogenetic trees and sequence composition biases (Phillips and 

Penny, 2003). For tree accuracy, phylogenetic trees were compared to species trees reported in previous 

studies [51,63,64]. All properties were calculated using functions in PhyKIT, v1.1.2 [52]. The function 

used to calculate each metric and additional information are described in Table S4. 

 

Principal component analysis across the nine properties that summarize phylogenetic information content 

was used to qualitatively compare SC-OGs and SNAP-OGs in reduced dimensional space. Principal 

component analysis, visualization, and determination of property contribution to each principal 

component was conducted using factoextra, v1.0.7 [67], and FactoMineR, v2.4 [68], in the R, v4.0.2 

(https://cran.r-project.org/), programming environment. Statistical analysis using a multi-factor ANOVA 

was used to quantitatively compare SC-OGs and SNAP-OGs using the res.aov() function in R. 

 

https://cran.r-project.org/


Information theory-based approaches were used to evaluate incongruence among SC-OGs and SNAP-

OGs phylogenetic trees. More specifically, we calculated tree certainty and tree certainty-all [69–71], 

which are conceptually similar to entropy values and are derived from examining support among a set of 

gene trees and the two most supported topologies or all topologies that occur with a frequency of ≥5%, 

respectively. More simply, tree certainty values range from 0 to 1 in which low values are indicative of 

low congruence among gene trees and high values are indicative of high congruence among gene trees. 

Tree certainty and tree certainty-all values were calculated using RAxML, v8.2.10 [72].  

 

To examine patterns of support in a contentious branch concerning deep evolutionary relationships among 

eutherian mammals, we calculated gene support frequencies and ∆GLS. Gene support frequencies were 

calculated using the “polytomy_test” function in PhyKIT, v1.1.2 [52]. To account for uncertainty in gene 

tree topology, we also examined patterns of gene support frequencies after collapsing bipartitions with 

ultrafast bootstrap approximation support lower than 75 using the “collapse” function in PhyKIT. To 

calculate gene-wise log likelihood values, partition log-likelihoods were calculated using the “wpl” 

parameter in IQ-TREE2 [49], which required as input a phylogeny in Newick format that represented 

either hypothesis one, two, or three (Fig 4A) and a concatenated alignment of SC-OGs and SNAP-OGs 

with partition information. Thereafter, the log likelihood values were used to assign genes to the topology 

they best supported. Inconclusive genes, defined as having a gene-wise log likelihood difference of less 

than 0.01, were removed. 

 

The same methodologies—orthology inference, multiple-sequence alignment, trimming, tree inference, 

SNAP-OG identification, and phylogenetic information content calculations—were also applied to three 

additional datasets that represent complex datasets. Specifically, 30 plants (with a history of extensive 

gene duplication and loss events), 30 budding yeast species (15 of which experienced whole-genome 

duplication), and 20 choanoflagellate transcriptomes (where typically multiple transcripts correspond to a 

single protein-coding gene) [31,32]. 



 

Data Availability 

All results and data presented in this study are available from figshare (doi: 

10.6084/m9.figshare.16875904). 
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Tables and Table legends 

 

Dataset OG type RF distance RCV 

Budding yeasts 

SC-OGs 0.19 ± 0.12 0.19 ± 0.05 

SNAP-OGs 0.18 ± 0.11 0.18 ± 0.06 

Random-GGs 0.65 ± 0.27 0.27 ± 0.13 

Filamentous Fungi 

SC-OGs 0.27 ± 0.13 0.12 ± 0.05 

SNAP-OGs 0.27 ± 0.12 0.12 ± 0.06 

Random-GGs 0.87 ± 0.11 0.21 ± 0.13 

Mammals 

SC-OGs 0.56 ± 0.22 0.13 ± 0.06 

SNAP-OGs 0.51 ± 0.23 0.11 ± 0.07 

Random-GGs 0.61 ± 0.30 0.15 ± 0.10 

 

Table 1. SC-OGs and SNAP-OGs are more accurate and have less compositional biases than 

Random-GGs. The first column is the dataset being examined. The second column describes the type of 

group of genes. The third column is the Robinson-Foulds distances, a measure of tree distance wherein 

higher values reflect greater inaccuracies. The fourth column is the relative composition variability, a 

measure of alignment composition bias wherein higher values indicate greater biases. In all datasets, SC-

OGs and SNAP-OGs had better scores compared to a null expectation. RF: Robinson-Foulds distance; 

RCV: relative composition variability. Values represent mean and standard deviations. 

  



Dataset Challenge 
Total 

OGs 

SC-OGs 

(50% min. 

occupancy 

threshold) 

SNAP-

OGs (50% 

min. 

occupancy 

threshold) 

SC-OGs 

(4 species 

min. 

threshold) 

SNAP-

OGs (4 

species 

min. 

threshold) 

Plants (N=30) 

Evolutionary 

histories with 

extensive gene 

duplication and loss 

events 

83,034 15 653 200 15,854 

Budding yeasts 

(N=30) 

Half of the species 

used experienced 

hybridization and 

whole-genome 

duplication 

followed by 

extensive loss of 

paralogs 

11,422 2,782 1,334 3,566 4,199 

Choanoflagellates 

(N=20) 

Transcriptomes, 

where often 

multiple transcripts 

correspond to a 

274,028 390 2,087 2,438 11,556 



single protein-

coding gene 

 

Table 2. OrthoSNAP identifies SNAP-OGs in complex datasets. SC-OG identification can be difficult 

due to complex evolutionary histories (e.g., hybridization, whole genome duplication, and complex 

patterns of gene duplication and loss such as in the datasets of budding yeasts and plants) and analytical 

artifacts (e.g., transcriptomes with more transcripts than genes such as the choanoflagellate dataset). 

OrthoSNAP successfully identified SNAP-OGs in each dataset. Lowering the occupancy threshold of a 

SNAP-OG to a minimum of four enabled the identification of substantially more SNAP-OGs. 

 

  



Figures and Figure Legends 

 

Figure 1. Cartoon depiction of three classes of paralogs: outparalogs, inparalogs, and coorthologs. 

(A) Paralogs refer to related genes that have originated via gene duplication, such as genes M, N, and O. 

(B) Outparalogs and inparalogs refer to paralogs that are related to one another via a duplication event 

that took place prior to or after a speciation event, respectively. With respect to the speciation event that 

led to the split of taxa A, B, and C from D, genes M, N, and O are outparalogs because they arose prior to 

the speciation event; genes O1 and O2 in taxa A, B, and C are inparalogs because they arose after the 

speciation event. Species-specific inparalogs are paralogous genes observed only in one species, strain, or 

organism in a dataset, such as gene N1 and N2 in species A. Species-specific inparalogs N1 and N2 in 

species A are also coorthologs of gene N in taxa B, C, and D; the same is true for inparalogs O1 and O2 

from species A, which are coorthologs of gene O from species D. (C) Cartoon depiction of SNAP-OGs 

identified by OrthoSNAP. 

 
Figure 2. Cartoon depiction of OrthoSNAP workflow. (A) OrthoSNAP takes as input two files: a 

FASTA file of a gene family with multiple homologs observed in one or more species and the associated 

gene family tree. The outputted file(s) will be individual FASTA files of SNAP-OGs. Depending on user 

arguments, individual Newick tree files can also be outputted. (B) A cartoon phylogenetic tree that 

depicts the evolutionary history of a gene family and five SNAP-OGs therein. While identifying SNAP-

OGs, OrthoSNAP also identifies and prunes species-specific inparalogs (e.g., species2|gene2-copy_0 and 

species2|gene2-copy_1), retaining only the inparalog with the longest sequence, a practice common in 

transcriptomics. Note, OrthoSNAP requires that sequence naming schemes must be the same in both 

sequences and follow the convention in which a species, strain, or organism identifier and gene identifier 

are separated by pipe (or vertical bar; “|”) character.  

 



Figure 3. SC-OGs and SNAP-OGs have similar phylogenetic information content. To evaluate 

similarities and differences between SC-OGs (orange dots) and SNAP-OGs (blue dots), we examined 

each gene’s phylogenetic information content by measuring nine properties of multiple-sequence 

alignments and phylogenetic trees. We performed these analyses on 12,764 gene families from three 

datasets—24 budding yeasts (1,668 SC-OGs and 1,392 SNAP-OGs) (A), 36 filamentous fungi (4,393 SC-

OGs and 2,035 SNAP-OGs) (B), and 26 mammals (321 SC-OGs and 1,775 SNAP-OGs) (C). Principal 

component analysis revealed striking similarities between SC-OGs and SNAP-OGs in all three datasets. 

For example, the centroid (i.e., the mean across all metrics and genes) for SC-OGs and SNAP-OGs, 

which is depicted as an opaque and larger dot, are very close to one another in reduced dimensional space. 

Supporting this observation, multi-factor analysis of variance with interaction effects of the 6,630 SNAP-

OGs and 6,634 SC-OGs revealed no difference between SC-OGs and SNAP-OGs (p = 0.63, F = 0.23, df 

= 1) and no interaction between the nine properties and SC-OGs and SNAP-OGs (p = 0.16, F = 1.46, df = 

8). Multi-factor analysis of variance using an additive model yielded similar results wherein SC-OGs and 

SNAP-OGs do not differ (p = 0.65, F = 0.21, df = 1). There are also very few outliers of individual SC-

OGs and SNAP-OGs, which are represented as translucent dots, in all three panels. For example, SNAP-

OGs outliers at the top of panel C are driven by high treeness/RCV values, which is associated with a 

high signal-to-noise ratio and/or low composition bias [23]; SNAP-OG outliers at the right of panel C are 

driven by high average bootstrap support values, which is associated with greater tree certainty [69]; and 

the single SC-OG outlier observed in the bottom right of panel C is driven by a SC-OG with a high 

degree of violation of a molecular clock [73], which is associated with lower tree certainty [74]. Multiple-

sequence alignment and phylogenetic tree properties used in principal component analysis and 

abbreviations thereof are as follows: average bootstrap support (ABS), degree of violation of the 

molecular clock (DVMC), relative composition variability, Robinson-Foulds distance (RF distance), 

alignment length (Aln. len.), the number of parsimony informative sites (PI sites), saturation, treeness 

(tness), and treeness/RCV (tness/RCV). The data underlying this Figure can be found in figshare (doi: 

10.6084/m9.figshare.16875904). 



 

Figure 4. SC-OGs and SNAP-OGs display similar patterns of support in a contentious branch 

concerning deep evolutionary relationships among eutherian mammals. (A) Two leading hypotheses 

for the evolutionary relationships among Eutheria, which have implications for the evolution and 

biogeography of the clade, are that Afrotheria and Xenarthra are sister to all other Eutheria (hypothesis 

one; blue) and that Afrotheria are sister to all other Eutheria (hypothesis two; pink). The third possible, 

but less well supported topology, is that Xenarthra are sister to Eutheria and Afrotheria. (B) Comparison 

of gene support frequency (GSF) values for the three hypotheses among 252 SC-OGs and 1,428 SNAP-

OGs using an α level of 0.01 revealed no differences in support (p = 0.26, Fisher’s exact test with 

Benjamini-Hochberg multi-test correction). Comparison after accounting for gene tree uncertainty by 

collapsing bipartitions with ultrafast bootstrap approximation support lower than 75 (SC-OGs collapsed 

vs. SNAP-OGs collapsed) also revealed no differences (p = 0.05; Fisher’s exact test with Benjamini-

Hochberg multi-test correction). (C) Examination of the distribution of frequency of topology support 

using gene-wise log-likelihood scores revealed no difference between SNAP-OGs and SC-OGs support 

for the three topologies (p = 0.52; Fisher’s exact test). The data underlying this Figure can be found in 

figshare (doi: 10.6084/m9.figshare.16875904). 

  



Supporting Information 

 

S1 Fig. Numbers of orthogroups, single-copy orthogroups, orthogroups with one or more homologs 

in one species, and the number of SNAP-OGs identified for each dataset. (A) The total number of 

orthogroups with at least 50% ortholog occupancy for each dataset. (B) The number of single-copy 

orthologs (SC-OGs) for each dataset (with at least 50% taxon occupancy). (C) The number of multi-copy 

orthologs (or orthologous groups of genes wherein one or more species is represented by two or more 

sequences; MC-OGs) for each dataset (with at least 50% taxon occupancy). (D) The number of SNAP-

OGs identified in each dataset (with at least 50% taxon occupancy). Note that the numbers depicted in 

panel A reflect the sum of the numbers of SC-OGs and MC-OGs in panels B and C. The data underlying 

this Figure can be found in figshare (doi: 10.6084/m9.figshare.16875904). 

 

S2 Fig. The number of SNAP-OGs identified in orthologous groups of genes with two or more 

homologs in one or more species. The number of SNAP-OGs per orthologous group of genes is depicted 

on the x-axis. For example, in the budding yeasts dataset, 977 gene families had one SNAP-OG each. The 

highest number of SNAP-OGs identified in a single orthologous group of genes in each dataset were as 

follows: in budding yeasts, five SNAP-OGs were identified in one orthologous group of genes that 

encode transcriptional activators; in filamentous fungi, five SNAP-OGs were identified in each of two 

orthologous groups of genes that encode multi-facilitator superfamily transporters and amino acid 

permeases; and in mammals, four SNAP-OGs were identified in each of three orthologous groups of 

genes that encode voltage-gated potassium channels, casein kinases, and a tropomyosin family of actin-

binding proteins. The data underlying this Figure can be found in figshare (doi: 

10.6084/m9.figshare.16875904). 

 
S3 Fig. The 10 most frequent best-fitting substitutions models are similar between SC-OGs and 

SNAP-OGs. The top 10 most frequently observed best-fitting substitutions models were similar between 



SC-OGs and SNAP-OGs among (A) 1,668 SC-OGs and 1,392 SNAP-OGs in budding yeasts, (B) 4,393 

SC-OGs and 2,035 SNAP-OGs in filamentous fungi, and (C) 321 SC-OGs and 1,775 SNAP-OGs in 

mammals. For example, the LG+F+I+G4 model was the most frequently observed best-fitting substitution 

model in SC-OGs and SNAP-OGs from budding yeasts. The data underlying this Figure can be found in 

figshare (doi: 10.6084/m9.figshare.16875904). 

 

S4 Fig. Distributions of information content among SNAP-OGs and SC-OGs. Boxplot and violin plot 

distributions of nine properties representative of phylogenetic information are depicted SNAP-OGs (blue) 

and SC-OGs (orange) in the (A) 1,668 SC-OGs and 1,392 SNAP-OGs in budding yeasts, (B) 4,393 SC-

OGs and 2,035 SNAP-OGs in filamentous fungi, and (C) 321 SC-OGs and 1,775 SNAP-OGs in 

mammals. Abbreviations are as follows: average bootstrap support (ABS), degree of violation of the 

molecular clock (DVMC), relative composition variability, Robinson-Foulds distance (RF distance), 

alignment length (Aln. len.), the number of parsimony informative sites (PI sites), saturation, treeness 

(tness), and treeness/RCV (tness/RCV). The data underlying this Figure can be found in figshare (doi: 

10.6084/m9.figshare.16875904). 

 
S5 Fig. Quality of representation and contributions of properties of phylogenetic information 

content during principal component analysis. Principal component analysis was used to qualitatively 

compare the similarities and differences between SNAP-OGs and SC-OGs (Fig 3). The leftmost figure in 

each panel of budding yeasts (A), filamentous fungi (B), and mammals (C) represents the quality of 

representation for each property across all principal components. The next two figures depict the 

contribution of each property (or variable) to the first and second dimension in reduced dimensional 

space. The red dashed line represents equal contributions from each variable. The data underlying this 

Figure can be found in figshare (doi: 10.6084/m9.figshare.16875904). 

 
S6 Fig. The number of SNAP-OGs identified in an orthologous group of genes with two or more 

homologs in one or more species for the dataset used to examine a contentious branch in the tree of 



life. The number of SNAP-OGs per orthologous group of genes is depicted on the x-axis. For example, a 

single SNAP-OG was identified in 1,330 gene families with two or more homologs in one or more 

species, whereas four SNAP-OGs were identified in two gene families with two or more homologs in one 

or more species. The data underlying this Figure can be found in figshare (doi: 

10.6084/m9.figshare.16875904). 

 
S7 Fig. The ten most frequently observed best-fitting substitutions models are similar between SC-

OGs and SNAP-OGs in the dataset used to examine a contentious branch in the tree of life. Similar 

best-fitting substitutions models were observed between 252 SC-OGs and 1,428 SNAP-OGs in a dataset 

of mammals, which was used to investigate patterns of support in a contentious branch in the tree of life 

concerning deep evolutionary relationships among placental mammals. The data underlying this Figure 

can be found in figshare (doi: 10.6084/m9.figshare.16875904). 

 
S8 Fig. Cartoon comparison of different tree decomposition algorithms. Using the phylogeny 

presented in Figure 1B (panel A) and Figure 2B (panel B), different tree decomposition algorithms are 

compared. (A) OrthoSNAP will identify four SNAP-OGs whereas DISCO and the maximally inclusive 

strategies will each identify three subgroups of orthologous genes. PhyloTreePruner will not identify any 

subgroups of single-copy orthologous genes. (B) OrthoSNAP will identify five subgroups of single-copy 

orthologous genes (light blue) by identifying maximally inclusive subgroups—subtrees where each taxon 

is represented by a single sequence—and maximally inclusive subgroups after species-specific inparalog 

trimming (species-specific inparalogs are shown in orange). In contrast, DISCO and maximally inclusive 

strategies will identify three SC-OGs, in part, because they do not account for species-specific inparalogs. 

PhyloTreePruner, which only prunes species-specific inparalogs, will not identify any subgroups of 

single-copy orthologous genes due to the presence of more ancient duplication events. 

  



S1 table. Species and accessions for proteomes used in each dataset. This table details the species used 

for the budding yeasts, filamentous fungi, and mammalian datasets. All proteomes from budding yeasts 

were downloaded from Shen et al. (2018) Cell. Proteomes from filamentous fungi and mammals were 

downloaded from NCBI and their accessions and assembly names are provided. 

 

S2 table. Number of orthogroups examined. A table of the number of orthogroups, the number of SC-

OGs, the number of gene families with orthologs and paralogs (MC-OGs), and the number of SNAP-OGs 

examined in the present study. 

 

S3 table. Ortholog occupancy for each dataset. A table summarizing the average and standard 

deviation of taxon completeness in SC-OGs and SNAP-OGs. 

 

S4 table. Nine properties of phylogenetic information content. Phylogenetic information content of 

SC-OGs and SNAP-OGs were examined using the nine properties described here. The abbreviation, 

description, additional notes, and function in PhyKIT used to calculate each property are listed here. 

 

S5 table. Multi-factor analysis of variance results reveals no substantial differences between SC-

OGs and SNAP-OGs. Degree of freedom, sum of squares, mean square, F-value and p-value for multi-

factorial analysis of variance are shown here. Multi-factorial analysis of variance was conducting 

accounting for potential interaction effects as well as using an additive model, which does not account for 

interaction effects. 

 

S6 table. Tree certainty and tree certainty-all results. Examining tree certainty and tree certainty-all 

revealed similar levels of incongruence among gene trees inferred using SC-OGs and SNAP-OGs. 

 



S7 table. Dataset for examining deep evolutionary relationships among eutherian mammals. The 

NCBI accession, assembly name, name in files, and ingroup/outgroup designations are detailed here for 

each proteome used. 

 

S8 table. Number of orthogroups examined among eutherian mammals. A table of the number of 

orthogroups, the number of SC-OGs, the number of gene families with orthologs and paralogs (MC-

OGs), and the number of SNAP-OGs examined among eutherian mammals. 

 

S9 table. Gene support frequency results among ancient eutherian mammalian relationships. Gene 

support frequency results reveal similar levels of support between the three hypotheses concerning deep 

evolutionary divergences among mammals. Multi-test corrected p-values are also shown here. 

 

S10 table. Comparison between different algorithms that identify subgroups of orthologous genes 

or conduct species-specific inparalog trimming. Notably, OrthoSNAP provides the most user flexibility 

and handles the most use cases. 
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