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Summary 

Examination of the changes in order and arrangement of homologous genes is key for 

understanding the mechanisms of genome evolution in eukaryotes. Previous comparisons 

between eukaryotic genomes have revealed considerable conservation across species that 

diverged hundreds of millions of years ago (e.g. vertebrates1–3, bilaterian animals4,5, and 

filamentous fungi6). However, understanding how genome organization evolves within and 

between eukaryotic major lineages remains underexplored. We analyzed high-quality genomes 

of 120 representative budding yeast species (subphylum Saccharomycotina) spanning ~400 

million years of eukaryotic evolution to examine how their genome organization evolved and to 

compare it to the evolution of animal and plant genome organization7. We found that the decay 

of both macrosynteny (the conservation of homologous chromosomes) and microsynteny (the 

conservation of local gene content and order) was strongly associated with evolutionary 

divergence across budding yeast major clades. However, whereas macrosynteny decayed very 

fast, within ~100 million years, the microsynteny of many genes – especially genes in metabolic 

clusters (e.g., in the GAL gene cluster8) – was much more deeply conserved both within major 

clades and across the subphylum. We further found that when genomes with similar evolutionary 

divergence times were compared, budding yeasts had lower macrosynteny conservation than 

animals and filamentous fungi but higher conservation than angiosperms. In contrast, budding 

yeasts had levels of microsynteny conservation on par with mammals, whereas angiosperms 

exhibited very low conservation. Our results provide new insight into the tempo and mode of the 

evolution of gene and genome organization across an entire eukaryotic subphylum.  

https://paperpile.com/c/EAtwni/y6293+gSeHO+nKn2l
https://paperpile.com/c/EAtwni/cDupm+ZYWhB
https://paperpile.com/c/EAtwni/NuW9n
https://paperpile.com/c/EAtwni/zEjUI
https://paperpile.com/c/EAtwni/dovfk


 

 

Results and Discussion 

Macrosynteny is conserved only in closely related budding yeast species 

To examine the conservation of macrosynteny, we constructed Oxford dot plots comparing the 

chromosomal positions of homologous genes between the genomes of four representative 

species, Saccharomyces cerevisiae (Saccharomycetaceae clade), Candida albicans (CUG-Ser1 

clade), Ogataea parapolymorpha (Pichiaceae clade), and Yarrowia lipolytica 

(Dipodascaceae/Trichomonascaceae clade) and all other 119 budding yeast species (Figures 1, 

S1, Data S1).  

 

We found similar trends of decay of macrosynteny conservation in all four anchored species 

(Figures 1, S1). For example, the genome organization of both S. cerevisiae and C. albicans was 

nearly collinear when compared to their closest species relatives Saccharomyces paradoxus (16 

chromosomes; macrosynteny conservation index (CI) = 0.99) and Candida dubliniensis (8 

chromosomes; CI = 0.99), respectively, with most homologous genes lying on the diagonal of 

each chromosome (Figure 1). However, macrosynteny became less conserved as the 

evolutionary divergence between the species compared increased. For example, the Oxford dot 

plots between C. albicans and the more distantly related Candida parapsilosis (CI = 0.52) and 

Spathaspora passalidarum (CI = 0.72), two species estimated to have diverged ~60 and ~73 

MYA, respectively, reveal multiple translocations and inversions and much more scrambled 

orders and locations of homologous genes (Figure 1A). This pattern suggests that homologous 

genes are still largely conserved within homologous chromosomes, but their gene order and 

location are diverging; this phenomenon has been previously observed in filamentous fungi and 

referred to as mesosynteny6. More strikingly, macrosynteny conservation appears to be almost 
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completely lost once the evolutionary divergence of the budding yeast genomes compared 

reaches ~100 million years (CI < ~0.25) in all four anchored species (Figures 1, S1).  

 

It is well known that macrosynteny can decay due to large-scale mutations that alter chromosome 

structure, such as chromosomal duplications and various types of rearrangements (e.g., 

inversions, translocations, etc.)9. However, our macrosynteny analysis suggests that budding 

yeast macrosynteny decays at a faster rate compared to other major eukaryotic lineages, such as 

bilaterians2,5 and filamentous fungi6, both lineages that also diverged more than 400 MYA. For 

example, we found a higher CI in filamentous fungi (using Zymoseptoria tritici as an anchor 

species) and bilaterian animals (using Patinopecten yessoensis, the scallop, as an anchor species) 

than in budding yeasts (Figure S2). For example, comparisons between scallop and amphioxus 

(Branchiostoma lanceolatum) genomes, which diverged more than 500 MYA, exhibited high 

macrosynteny conservation, with many large conserved chromosomal blocks (Figure S2A, CI = 

0.65). These results contrast with the much lower levels of macrosynteny conservation observed 

between pairs to budding yeast species that diverged ~80–100 MYA (Figures 1, S1). The degree 

of macrosynteny conservation in filamentous fungi is also higher than that of budding yeasts. For 

example, the CI between Z. tritici and Pseudocercospora fijiensis, two species that diverged ~80 

MYA10, is 0.73 (Figure S2C), whereas that of S. cerevisiae and Nakaseomyces castellii is 0.26, 

even though the two species diverged around the same time (Figure 1). In contrast, the 

conservation of budding yeast macrosynteny is higher than that of angiosperm genomes (Figure 

S2B); for example, Arabidopsis thaliana and Brassica rapa diverged ~ 26 MYA but showed 

much lower macrosynteny conservation (CI = 0.39) that C. albicans and C. parapsilosis (~60 

MYA divergence, CI = 0.52) (Figure 1A). The lower levels of macrosynteny conservation in 
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angiosperms are probably due to multiple rounds of the large-scale gene or entire genome 

duplications11. 

 

The differences in the pace of macrosynteny decay might also be associated with differences in 

the generation time of organisms in these lineages. For example, the generation time of budding 

yeasts (e.g., 1.5 hours for S. cerevisiae and C. albicans12) is thought to be shorter than that of 

filamentous fungi in the subphylum Pezizomycotina (e.g., 2-3 hours for Aspergillus nidulans13). 

These results are also consistent with a recent study showing that the amino acid sequence 

substitution rate of budding yeast genomes is higher than that of filamentous fungi14. 

Interestingly, a previous study also suggested that the chromosome rearrangements (per Mb) are 

about 50-fold higher in budding yeasts than in vertebrate genomes15. Thus, the faster rate of 

macrosynteny decay of budding yeasts compared to filamentous fungi may be due to both their 

shorter generation times and higher mutation rates. 

 

Conserved microsynteny within major clades and across the budding yeast subphylum 

Previous results have suggested that macro- or microsynteny conservation is poor across fungal 

genomes, even between congeneric species6. To explore the evolution of microsynteny in major 

clades of budding yeasts, as well as across the entire subphylum, we examined the syntenic 

conservation of homologous genes across the genomes of 120 budding yeast species (Figure 2). 

The entire microsynteny network is composed of all syntenic homologous genes, where genes 

are the nodes of the network, and the conservation of synteny between genes is the edges of the 

network. The budding yeast microsynteny network contains 566,379 nodes (genes) and 

6,310,014 edges (instances of conservation of synteny between homologous genes). To identify 
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homologous genes whose microsynteny has been conserved across or within budding yeasts, we 

decomposed the entire microsynteny network into 17,010 (number of nodes ≥ 3) nonoverlapping 

subnetworks (see Methods). These syntenic subnetworks varied with respect to the number of 

genes involved, from the minimum size of three genes to up to 743 genes (see Figshare 

Repository), reflecting the differences and dynamics of microsynteny conservation across gene 

families and yeast major clades. Subnetworks with larger gene sizes could correspond to genes 

that have undergone the whole genome and/or segmental duplication events7, tandem 

duplications, and/or genes that are highly conserved across the entire subphylum. For example, 

plasma membrane ABC transporters, ATPase, Rab family GTPase, Hsp70, and Hsp40 protein 

families were identified as the largest subnetworks in budding yeasts.  

 

Even though macrosynteny is not conserved within major clades or across the budding yeast 

subphylum, we did identify 946 syntenic subnetworks (5.56% of all subnetworks) that were 

largely conserved (i.e., present in at least 80% of the genomes examined) across the budding 

yeast subphylum. The remaining ~95% of these 17,010 subnetworks are mostly specific to 

individual major clades, indicating that a large proportion of yeast genomes are highly reshuffled 

in a lineage-specific manner, with many specific subnetworks for a particular major clade (e.g., 

Saccharomycetaceae, CUG-Ser1 clade, etc.) (Figure 2). Compared to the microsynteny networks 

of mammals and angiosperms, two lineages diverged much more recently than budding yeasts 

(~170 vs. ~400 MYA) (Figures S3A, S3B), we found that the overall pattern of conservation of 

microsynteny in budding yeasts is more similar to that of angiosperms (where ~8.7% of 

subnetworks are conserved across angiosperms) than to the mammal network (where ~66% of 

subnetworks are conserved across mammals) (Figure S3)7.   

https://paperpile.com/c/EAtwni/zEjUI
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To directly compare the rates of microsynteny decay between budding yeasts, mammals, and 

angiosperms, we plotted the patterns of microsynteny conservation for two budding yeast clades 

whose estimated times of origins are comparable to those of mammals and angiosperms: the 

clade of Saccharomycetaceae + Saccharomycodaceae (~170 MYA) and the CUG-Ser1 major 

clade (~200 MYA) (Figures S3C, S3D). We found that the overall microsynteny is more 

conserved in budding yeasts and mammals than angiosperms, suggesting that angiosperm 

genomes are highly fractionated and reshuffled. 

 

Different rates of microsynteny evolution in major eukaryotic lineages 

Eukaryotic genomes differ substantially in their structure and organization across lineages. To 

assess the overall impact of evolutionary divergence on budding yeast microsyntenic 

conservation, we summarized the shared syntenic percentage of homologous genes for all 

pairwise comparisons into a heatmap matrix organized using the same species phylogenetic order 

as in Figure S3E. We found that budding yeast genomes show clear major clade-specific patterns 

of microsynteny conservation, with many syntenic homologous genes found between genomes 

within each major clade but few found between genomes that belong to different major clades. 

One exception to this pattern was Hanseniaspora vineae, which belongs to the family 

Saccharomycodaceae. H. vineae shares a higher syntenic percentage of homologous genes with 

genomes of species in the Saccharomycetaceae family (average = 50.89%) than it does with H. 

valbyensis and H. uvarum (average = 39.87%), two other members of the genus Hanseniaspora 

that also belong to the family Saccharomycodaceae (Figure S3F). Both H. valbyensis and H. 

uvarum lost many DNA repair genes, underwent rapid genome evolution, and have highly 



 

 

variable ploidies compared to other budding yeasts16. Furthermore, the genomes of 

Hanseniaspora species have been shown to be highly dynamic17. These results suggest the fast-

evolving Hanseniaspora genomes also underwent extensive rearrangements, possibly driven by 

the loss of DNA repair genes. 

 

To examine the relationship between synteny conservation and evolutionary divergence, we first 

calculated the pairwise syntenic percentage of homologous genes and the evolutionary distance 

(tip-to-tip distance in the phylogeny) between the S. cerevisiae genome and those of all other 119 

species in our dataset (Figure 3A). We also performed the same analysis using C. albicans, O. 

parapolymorpha, and Y. lipolytica (6 chromosomes) (Figures 3B, 3C, 3D) as references. In all 

cases, we found that conservation of microsynteny decreases (and evolutionary distance 

increases) in relation to divergence time. The overall trend of the decay of microsynteny is very 

similar for all species (Pearson’s correlation coefficient: p < 2.2e-16) (Figure 3). Interestingly, 

we found that closely related species exhibit high conservation of microsynteny, and the pairwise 

syntenic percentage decreases exponentially with increasing divergence time for divergence 

times below 200 MYA. Distantly related budding yeast species that diverged more than 200 

MYA exhibit very low syntenic percentages of homologous genes that decrease very slowly with 

increasing evolutionary distance, indicating there is a small percentage of genes whose 

microsynteny is conserved across the subphylum, whose origin dates to 400 MYA (Figure 3). To 

examine if there are functional constraints associated with homologous genes whose 

microsynteny is conserved across the subphylum, we identified 301 subnetworks that are widely 

conserved across budding yeasts (see Methods). Gene ontology enrichment analysis of these 

genes shows that they are significantly enriched in metabolism-related terms (Data S2). These 

https://paperpile.com/c/EAtwni/rWtAH
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results are consistent with previous work suggesting that genes in the same metabolic pathway 

are significantly clustered in eukaryotic18 and fungal19,20 genomes.  

 

We then compared the association between microsynteny conservation and evolutionary 

divergence between budding yeasts, angiosperms, and mammals (Figure 3E, Data S3). We found 

that angiosperms tend to show lower levels of microsynteny conservation than mammals and 

budding yeasts (Figure 3E). Moreover, we examined the association between gene gain/loss and 

microsynteny conservation. We used OrthoFinder to identify the numbers of shared orthologs 

within budding yeasts, mammals, and angiosperms and summarized the number of shared 

orthologs in each clade (Figure S3F). In general, we found similar numbers of shared orthologs 

across the three lineages, although their number decreases slightly as evolutionary distance 

increases (Figure S3F). Angiosperms did not exhibit a higher degree of gene gain/loss compared 

to budding yeasts and mammals (Figure S3F), so the lack of synteny conservation in 

angiosperms might be due to the repeated occurrence of WGD events and / or their higher 

content of transposable elements9.  

 

Large-scale gene duplication events are potentially widespread in budding yeasts   

Gene and genome duplication are thought to have been key contributors to the evolution of 

biodiversity21. We next examined the evolution of all genes in our 120 budding yeast genomes 

with respect to different modes of gene duplication as part of our microsynteny pipeline. We 

identified duplicated genes using duplicate_gene_classfier employed in MCScanx and classified 

them into one of the five categories (Figure S4, Data S4): those being derived from whole 
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genome or segmental duplication (WGD/SD), those from tandem duplication (TD), those from 

proximal duplication (PD), those from dispersed duplications (DD), and those that are singletons.  

 

It is well known that S. cerevisiae and its close relatives (i.e., the WGD clade) arose from ancient 

whole-genome duplication caused by allopolyploidization and followed by massive gene loss22–

24. As expected, we found higher percentages of WGD/SD-derived genes in the genomes of 

species from the WGD clade, including S. cerevisiae (10.8% WGD-derived genes). Moreover, 

we also identified other instances of homologous genes (350 subnetworks) whose microsynteny 

is conserved in a manner consistent with the WGD event in the Saccharomycetaceae WGD clade 

(colored in yellow) (Figure 2). Surprisingly, we found several species in the WGD clade that 

contained very few WGD-derived genes, such as the opportunistic pathogen Candida 

(Nakaseomyces) glabrata (0.27% WGD-derived genes) and its close relatives (“glabrata group”) 

(Figure S4). Since WGD is often followed by extensive loss of duplicated genes22,25, our results 

are consistent with previous work suggesting that the “glabrata group” experienced higher rates 

of gene loss after WGD events compared to other species in WGD clade26. This finding is also 

largely consistent with previous results suggesting that the “glabrata group” lineage reduced its 

set of protein-coding genes after separation from other post-WGD yeasts27.  

 

A higher frequency of predicted WGD/SD-derived genes is also observed in certain species in 

the Dipodascaceae/Trichomonascaceae clade, such as Nadsonia fulvescens (5.22%), Geotrichum 

candidum (7.26%), Blastobotrys raffinofermentans (6.28%), and Wickerhamiella versatilis 

(4.44%). Larger percentages of WGD/SD-derived genes are also identified in individual species 

in Lipomycetaceae, Phaffomycetaceae, and Pichiaceae clades (Figure 4). Although further 

https://paperpile.com/c/EAtwni/FB6cX+eDOjB+JvPdJ
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analyses are warranted, these results suggest that segmental duplications and even whole genome 

duplication events might be more widespread in budding yeasts than previously recognized (see 

also28). 

 

The GAL gene cluster may have originated in the GAL10 genomic neighborhood 

The conservation of macrosynteny decayed very fast in budding yeast genomes but the 

microsynteny of some genomic regions was much more deeply conserved both within major 

clades and across the subphylum. Studying the deep conservation of gene order can illuminate 

the relationship between genome architecture and organismal function and ecology20,29,30. For 

example, the physical linkage of the structural genes GAL1, GAL7, and GAL10 of the GALactose 

utilization pathway in diverse budding yeast genomes has been used as a model for 

understanding the evolution of metabolic gene clusters in eukaryotes8,31,32. By examining the 

microsynteny subnetworks and the gene organizations of the GAL1, GAL7, and GAL10 genes 

across the 120 species (Figure 4), we found that GAL10 genes show greater conservation of their 

microsynteny than GAL1 and GAL7 across budding yeast genomes. This raises the hypothesis 

that the GAL gene clusters of budding yeasts might have originated in the GAL10 syntenic 

neighborhood (see Star Methods for more details).  

 

Conclusion 

In this study we examined the tempo and mode of evolution of genome organization within 

budding yeasts and compared it to those observed in other fungi, animals, and plants. We 

identified two distinct modes of evolution of genome organization in budding yeasts: (1) at the 

large-scale chromosome-level of organization, we found a faster decay of macrosynteny 
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conservation compared to filamentous fungi and animals, which is corroborated by findings of 

rapid chromosome structure evolution in budding yeasts from the genus Lachancea33; (2) at the 

small-scale gene-level of organization, we identified both deeply conserved and lineage-specific 

instances of conservation of microsynteny across budding yeast genomes. The decay in 

microsynteny is generally correlated with evolutionary divergence, suggesting that it is most 

likely a neutral process18. In contrast, the microsynteny of certain genes is much more deeply 

conserved, suggesting that there are selective advantages to the evolutionary maintenance20,34. 

These results provide a robust framework to explore the evolution of fungal and eukaryotic 

genome organization.  
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Figure Legends 

Figure 1. The decay of macrosynteny conservation between Saccharomyces cerevisiae, 

Candida albicans, and their close relatives in the budding yeast subphylum 

A. Oxford dot plots of homologous genes between C. albicans and three representative closely 

related species. The colored dots correspond to homologous genes from the chromosomes of C. 

dubliniensis, C. parapsilosis, or Spathaspora passalidarum and C. albicans, with chromosome 

boundaries indicated and sorted based on chromosomal size. The time-calibrated species tree on 

the left was obtained from a previous study of 332 budding yeast species35. B. An Oxford dot 

plot of homologous genes between S. cerevisiae and three representative closely related species. 

Note the lack of conservation of macrosynteny after ~100 million years of divergence in both 

lineages. C. Macrosynteny conservation index between C. albicans and all other 119 budding 

yeast genomes. D. Macrosynteny conservation index between S. cerevisiae and all other 119 

budding yeast genomes. Related to Figures. S1, S2 and Data S1. 

 

Figure 2. Microsynteny is conserved within major clades of budding yeasts, as well as 

across the entire subphylum 

Phylogenomic microsynteny profiling of all budding yeast subnetworks (size ≥ 3 genes). The X-

axis corresponds to the phylogeny of the 120 budding yeast species used in this study, which was 

taken from a previous study 35 . Gene copy numbers of orthogroups are labeled in different 

colors. Some of the blocks of orthogroups that display lineage-specific conservation of 

microsynteny are also labeled, including the block of homologous genes stemming from the 

whole genome duplication (WGD) event in Saccharomycetaceae and whose microsynteny is 

conserved. Note that microsynteny appears to be conserved for other instances of WGD or large-

https://paperpile.com/c/EAtwni/OoPpY
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scale segmental duplications in the subphylum. Overall, the microsynteny of budding yeasts is 

less conserved than mammals but more conserved than angiosperms. Related to Figures S3, S4, 

Data S1, S2 and S4.   

 

Figure 3. Conservation of microsynteny decays at the same rate within budding yeasts but 

at different rates in budding yeasts, mammals, and angiosperms.  

A. Plot of pairwise conservation of microsynteny (syntenic percentage; in turquoise color) and 

evolutionary distance (tip-to-tip distance in the phylogeny; in orange color) versus divergence 

time (in million years) between the S. cerevisiae genome and those of all other 119 other 

budding yeast species. We also performed the same analysis using (B) C. albicans and (C) 

Ogataea parapolymorpha (D) Yarrowia lipolytica as references. The Pearson correlation 

coefficient (Pearson’s r) between the evolutionary distance and divergence time estimated was 

calculated using R. (E) Microsynteny conservation versus evolutionary distance for the lineages 

of budding yeasts, angiosperms, and mammals. Note that comparisons of genomes with similar 

levels of evolutionary distance (i.e., mammals and budding yeasts) tend to show higher levels of 

microsynteny conservation than angiosperms. (F) The correlation between the number of shared 

orthologs and microsynteny conservation is largely similar across mammals, angiosperms, and 

budding yeasts. Related to Data S3.  

 

Figure 4. Conservation of microsynteny of the structural genes involved in GALactose 

metabolism (GAL1, GAL7, and GAL10) suggests that the ancestor of the GAL gene cluster 

of S. cerevisiae and C. albicans likely originated in the GAL10 genomic neighborhood. 

A. The microsynteny subnetworks for the GAL1, GAL7, and GAL10 genes in budding yeasts. 



 

 

Nodes represent genes, and edges represent syntenic relationships between genes. Node colors 

represent different GAL genes: GAL1 (dark purple); GAL3 (light purple); GAL7 (orange); GAL10 

(green). Yellow nodes represent duplicated GAL genes. B. Genomic organization of GAL 

metabolic cluster genes in different major clades of the budding yeast subphylum. Grey lines 

correspond to syntenic relationships between homologous genes. The rectangle dotted box 

represents GAL gene clusters of species that contain multiple GAL1 genes. Only one copy of 

GAL1 was identified in our synteny subnetwork of Lipomyces starkeyi and Lipomyces 

mesembrius, whereas three copies of GAL1 were identified previously (LaBella et al. 2021; 

Harrison et al. 2021; Haase et al. 2021). Interestingly, the two copies of GAL1 absent from our 

subnetwork are more similar in their sequences to the GAL1 genes of filamentous fungi but are 

adjacent to the GAL7 and GAL10 gene in genomes of L. starkeyi and L. mesembrius (See Results 

and Discussion section for more details). Thus, we labeled the two additional copies of GAL1 in 

L. starkeyi and L. mesembrius as syntenic to other GAL1 genes in dotted grey lines.  
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Lead Contact, Antonis Rokas (antonis.rokas@vanderbilt.edu). 

  

Materials Availability 
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Data and Code Availability 

 All genome assemblies, data matrices, dop plot analyses and related figures and tables are 

deposited at a Figshare repository and are publicly available as of the date of publication. 

The public link to the repository is available via the link: 

https://doi.org/10.6084/m9.figshare.19508752. The DOI is listed in the key resources 

table. 

 All original code is deposited at a Figshare repository and is publicly available as of the 

date of publication. The public link to the repository is available via the link: 

https://doi.org/10.6084/m9.figshare.19508752. DOIs are listed in the key resources table. 

 Any additional information required to reanalyze the data reported in this study is 

available from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Sequence data 

To collect a high-quality set of genomes to study the evolution of budding yeast genome 

organization, we first retrieved the 332 publicly available Saccharomycotina yeast genomes, 

gene annotations, species trees, and Bayesian time-calibrated trees from a recent comprehensive 

genomic study of the Saccharomycotina yeasts35. To reduce the burden of computation but retain 

the breadth of genetic diversity of major yeast lineages where the genomes of more than 10 

species are available, we retained higher-quality genomes based on their genome assembly 

statistics, including the number of contigs (< 100 contigs), N50 size (> 500 kb), and BUSCO 

completeness (> 90% completeness); this was the case for the major clades Saccharomycetaceae, 

Pichiaceae, Phaffomycetaceae, CUG-Ser1 clade, and Dipodascaceae/Trichomonascaceae. For 
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major clades where the genomes of fewer than 10 species are available, we used a relaxed 

filtering strategy based on the number of contigs (<700 contigs) and N50 size (> 100 kb). The 

final dataset contained 120 budding yeast genomes; detailed information about these genomes 

can be found in Data S1. Each genome containing all protein sequences was searched against the 

Saccharomycotina_odb9 database36.  

 

METHOD DETAILS 

Quantification and statistical analysis 

Macrosynteny analyses. To examine the conservation of macrosynteny, we constructed 

Oxford dot plots comparing the chromosomal positions of homologous genes using the genomes 

of S. cerevisiae (from the Saccharomycetaceae major lineage), C. albicans (from the CUG-Ser1 

clade), Ogataea parapolymorpha (from Pichiaceae clade), and Yarrowia lipolytica (from 

Dipodascaceae/Trichomonascaceae clade) as the anchor species and all other genomes as the 

target species, respectively. Oxford dot plots are a common method for examining the 

conservation of macrosynteny between pairs of genomes. For example, a comparison of two 

perfectly collinear genomes (i.e., two genomes whose orthologous genes are 100% syntenic) 

gives a series of dots that lie on the main diagonal. The dense rectangular blocks of dots also 

imply conserved macrosynteny in which genes are conserved within homologous chromosomes 

but with randomized orders and orientations (also referred to as mesosynteny in fungi6). 

Chromosomal inversions and translocations can also be visualized on dot plots by diagonal lines 

on an opposite slope, and genes on a chromosome of one species are syntenic with two or more 

chromosomes, respectively.  
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Examination of macrosynteny was conducted using the odp pipeline (Figshare repository). 

Briefly, we looked for homologous chromosomes between the anchor and target genomes by 

plotting the protein coordinates of reciprocal best BlastP 37 hits (evalue < 1e-5). To avoid biasing 

our analyses due to linked paralogs (most of which are recent tandem duplications relative to the 

ancient chromosome-scale events of interest), we considered only a single paralog per 

chromosome/contig in our analyses.  

 

For each of the four anchor species, we selected all other 119 species at increasing evolutionary 

distances based on a well-established, time-calibrated genome-scale budding yeast phylogeny35. 

To quantify the degree of conservation of macrosynteny, for each dotplot, we computed the 

conservation, an established quantitative measure of the degree of macrosynteny conservation 

index, across the budding yeast subphylum. This conservation index is calculated by counting 

the number of one-to-one orthologous gene pairs whose genes are in homologous 

chromosomes/scaffolds and dividing it by the number of one-to-one orthologs whose genes 

reside in non-homologous chromosomes/scaffolds3,5. The conservation index between two given 

genomes ranges from 0 (no macrosynteny conservation) to 1 (highly conserved macrosynteny). 

We used Fisher’s exact test (p < 0.05) for the significance of the relatedness of homologous 

scaffolds described in ref. 2.  

 

To compare the conservation of macrosynteny of budding yeasts to other major eukaryotic 

lineages, we also constructed Oxford dot plots between representative species of filamentous 

fungi (using the major plant pathogen Zymoseptoria tritici as an anchor species), bilaterians 

(using the scallop Patinopecten yessoensis, a well-established model for studies of macrosynteny 

https://paperpile.com/c/EAtwni/zGjpz
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conservation in animals, as an anchor species) and angiosperms (using Arabidopsis thaliana as 

anchor species).  

 

Microsynteny network construction.  To examine the evolution of microsynteny of the 

budding yeast subphylum, we used the pipeline from Zhao and Schranz7. Briefly, we used 

DIAMOND v.0.9.14.11538 to perform all inter- and intra-pairwise all-vs.-all protein similarity 

searches using default parameters. In total, 14,280 whole-genome comparisons were conducted 

for 120 budding yeast genomes. Next, we used MCScanX 39 to identify pairwise synteny blocks 

between species; each synteny block must have at least four homologous genes within a set of 20 

colinear genes in the two species compared. The syntenic percentage between each pair of 

species compared was calculated using the number of syntenic pairs relative to the total number 

of genes38. 

 

We merged syntenic gene pairs from all inter- and intra-species synteny blocks into one two-

columned tabular-format file, which can serve as an undirected synteny network/graph and be 

further analyzed or visualized in various tools. In this synteny network, nodes are genes, edges 

stand for syntenic relationships between nodes, and edge lengths in this study have no meaning 

(unweighted). Further details can be found in the GitHub tutorial 

(https://github.com/zhaotao1987/SynNet-Pipeline). 

 

The entire network, consisting of millions of nodes, was split into individual subnetworks (which 

can be thought of orthogroups or gene families whose synteny is conserved) using the Infomap 

method employed in igraph40. The sizes of individual subnetworks were determined by 

https://paperpile.com/c/EAtwni/zEjUI
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considering topological edge connections. The final microsynteny network of budding yeasts 

contains rows and columns. Each row represents a syntenic subnetwork, and each column 

represents a genome. The value for each cell represents the number of genes from each genome 

in a given subnetwork. All genomes are arranged based on phylogenetic relationships. The 

dissimilarity index of all subnetworks was calculated using the Jaccard method of the vegan 

package41, then hierarchically clustered by “ward.D”, and visualized by R package Pheatmap42. 

We only kept subnetworks that contained three or more genes. The correlation between the 

evolutionary distance and divergence time was calculated using Pearson’s correlation coefficient 

using the cor.test function in R package stats v.3.6.243. 

 

To gain insight into the functional categories of subnetworks whose microsynteny is conserved 

across the budding yeast subphylum, we first selected those subnetworks that contain genes from 

at least 80% of genomes or > 96 species and from at least 10 major clades but are also present in 

Lipomycetaceae, the major clade that is the sister group to all other clades. We then conducted 

gene ontology (GO) enrichment analysis using Goatools44 using S. cerevisiae genes from these 

subnetworks as representatives.  

 

To compare the dynamics and properties of the entire microsynteny networks in budding yeasts 

to other major eukaryotic lineages, we retrieved genomes and microsynteny networks from 87 

mammalian and 107 angiosperm genomes from a previous study 7). To examine the association 

between gene gain/loss and microsynteny conservation, we conducted OrthoFinder 45 analyses 

for each dataset to summarize the number of shared orthologs of each lineage against S. 

cerevisiae, Homo sapiens, and Arabidopsis thaliana, respectively.  
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Phylogenetic signal and tree reconstruction. To investigate if microsynteny information 

can be used in genome-scale phylogenetic reconstruction, we first tested whether individual 

subnetworks contain phylogenetic signal based on our time-calibrated tree using Phytools46. We 

quantified the information for each individual subnetwork by fitting three alternative models that 

describe different evolutionary dynamics: the Brownian-motion model (BM: describes a random 

motion of trait evolution along branches in the phylogeny, with an increase in trait variance 

centered around the initial value at the root of the tree47), the Ornstein-Uhlenbeck model (OU: 

describes that once traits have adaptively evolved, stabilizing selection pulls the trait values 

around an adaptive optimum for the trait48), the Early-Burst model (EB: describes exponentially 

increasing or decreasing rates of evolution over time-based on the assumption that niches are 

saturated by accumulating species within a lineage49), Comparisons of the goodness of fit for 

these models were performed through the Akaike Information Criterion (AIC)50.  

 

The “synteny-based tree” was then reconstructed using the Syn-MRL pipeline, which combines 

synteny network analysis, matrix representation, and maximum likelihood phylogenetic 

inference51. Briefly, Syn-MRL proceeded by encoding the phylogenomic synteny network 

obtained above into a binary data matrix, where rows represent species, columns represent 

subnetworks, and each cell was coded as a binary character (presence or absence of an individual 

subnetwork in a given species). Tree estimation was based on maximum-likelihood as 

implemented in IQ-TREE 2.1.252, using the binary MK+R+FO model (a Jukes-Cantor type 

model for discrete morphological data)53. The topological robustness of the topology was 

evaluated by 1,000 ultrafast bootstrap replicates54. We quantified the degree of incongruence for 
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every internode by considering all prevalent conflicting bipartitions between “synteny-based 

tree” and “sequenced-based tree” derived from the previous analysis (sequence tree derived from 

2408OG data matrix) using the “compare” function in Gotree version 1.13.6 

(https://github.com/evolbioinfo/gotree). 

 

It has been suggested microsynteny could be used as an additional marker for phylogenomic 

analyses55,56. We found that 98.8% of microsyntenic subnetworks (16,807 / 17,010) contain 

strong phylogenetic signal (p-value < 0.05) (Figshare repository). Inference and subsequent 

comparison of the “synteny-based tree” method to two standard approaches of phylogenomic 

inference (“sequence-based tree”), namely maximum likelihood (ML) analyses based on 

concatenation and coalescence, showed that the tree inferred using microsynteny information 

shared 88.03% of bipartitions with the concatenation tree and 87.29% with the coalescence tree 

(Figshare repository); for reference, the trees inferred from concatenation and coalescence 

approaches shared 97.4% of bipartitions. These results, together with other recent findings57, 

suggest that microsynteny may be a useful, additional marker for phylogenomic studies. 

 

To estimate the divergence time of previous mammalian and angiosperm datasets, we first 

retrieved the protein sequences from 87 mammalian and 107 angiosperm genomes 

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BDMA7A)7.  To 

obtain the “single-copy” orthologs for both mammalian and angiosperm genomes, we conducted 

Benchmarking Universal Single-Copy Orthologs (BUSCO) v5.1.3 58 analysis and 

mammalia_odb10 and embryophyta_odb10 databases for each genome, respectively. To 

minimize missing data and computational burden, we retained 3\00 single-copy BUSCO genes 
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that are present in all taxa. For both mammalian and angiosperm datasets, we used the 

concatenation approach with a single model using IQ-TREE and used the r8s algorithm v. 1.70 59 

to conduct divergence time estimation without any fossil calibrations except for the root position 

(set as 170 MYA) based on the previous study 7. 

 

Synteny network for the Galactose (GAL) clustering genes  

To examine the evolution of the GAL gene cluster of budding yeasts, the GAL1, GAL7, and 

GAL10 genes were obtained from the comparative analysis of the GAL pathway in budding 

yeasts 60. All subnetworks containing GAL genes were extracted from the total network of 120 

budding yeast genomes identified above. The subnetworks for GAL1, GAL7, and GAL10 genes 

were then imported and visualized in Cytoscape 3.7.061.  

 

The conservation of macrosynteny decayed very fast in budding yeast genomes but the 

microsynteny of some genomic regions was much more deeply conserved both within major 

clades and across the subphylum. Studying the deep conservation of gene order can illuminate 

the relationship between genome architecture and organismal function and ecology20,29,30. For 

example, the physical linkage of the structural genes GAL1, GAL7, and GAL10 of the GALactose 

utilization pathway in diverse budding yeast genomes has been used as a model for 

understanding the evolution of metabolic gene clusters in eukaryotes8,31,32. To further delve into 

an example of deep microsynteny conservation across the budding yeast subphylum, we 

examined the microsynteny subnetworks and the gene organizations of the GAL1, GAL7, and 

GAL10 genes across the 120 species (Figure 4).  
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For GAL1, which is found in three subnetworks, we found that most GAL1 genes reside in a 

single subnetwork that contains homologs from most budding yeast species; the GAL1 genes 

from several early-diverging species (e.g., Lipomyces, Trigonopsis, Blastobotrys) are in another 

subnetwork that is loosely connected to the first subnetwork (Figure 4A). As expected, we also 

found that GAL3 genes (which are paralogs of GAL1 from the yeast WGD event) are still 

syntenic to GAL1 in the Saccharomycetaceae WGD clade and are part of the largest GAL1 

subnetwork (Figure 4A). It should be noted that our analyses identified only one copy of GAL1 

from Lipomyces starkeyi and Lipomyces mesembrius, whereas three copies of GAL1 gene were 

identified in our previous analyses8,60,62 (Figure 4B). Interestingly, the two copies of GAL1 genes 

absent from this analysis are adjacent to the GAL7 and GAL10 gene in genomes of L. starkeyi 

and L. mesembrius. We manually blasted these two GAL1 genes and found that both genes are 

indeed GAL1 genes predicted to encode galactokinases, but their best hits are from filamentous 

fungi (subphylum Pezizomycotina), instead of Saccharomycotina. Notably, we found that the 

GAL1 genes in Yarrowia species formed a distinct third subnetwork, suggesting that the synteny 

of the genomic neighborhoods of these genes is not conserved in other budding yeasts. 

Moreover, GAL7, which is found in four subnetworks, exhibits a pattern of microsynteny 

conservation largely congruent with that of GAL1; the only difference is that the GAL7 genes of 

Trigonopsis and Blastobotrys species, in addition to those of Yarrowia, also formed their own 

subnetworks (Figure 4B).  

 

Finally, we found that GAL10 is in two subnetworks, which are more conserved than those of 

GAL1 and GAL7 (Figure 4C). Most GAL10 genes are part of a large subnetwork, but the GAL10 

genes of many species in the Dipodascaceae / Trichomonascaceae clade are part of a second 

https://paperpile.com/c/EAtwni/LSeJm+dovfk+FYeZ4


 

 

subnetwork that is connected to the first (Figure 4A). In contrast to the GAL1 and GAL7 

subnetworks, we found that the GAL10 genes from Yarrowia and Trigonopsis species also reside 

in the major subnetwork (Figure 4A). These results suggest that GAL10 genes show greater 

conservation of their microsynteny than GAL1 and GAL7 across budding yeast genomes, raising 

the hypothesis that the GAL gene clusters of budding yeasts might have originated in the GAL10 

syntenic neighborhood. 

 

  



 

 

Supplemental Data 

 

Data S1. Summary information of 120 budding yeast genomes used in this study. Related to 

Figures 1, 2. 

 

Data S2. Gene ontology enrichment analysis of 301 conserved subnetworks across budding yeast 

genomes. Related to Figure 2. 

 

Data S3. Summary of evolutionary distances, divergence time and microsyntenic percentage across 

mammal, angiosperm and budding yeast datasets. Related to Figure 3. 

 

Data S4. Summary of predicted gene duplication categories of 120 budding yeast genomes. Related 

to Figure 2. 
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Figure S1. The decay of macrosynteny conservation between Ogataea parapolymorpha, Yarrowia 

lipolytica, and their close relatives in the budding yeast subphylum. Related to Figure 1.  

(A) Oxford dot plots of homologous genes between O. parapolymorpha and three representative closely 

related species. The colored dots correspond to homologous genes from the chromosomes, with 

chromosome boundaries indicated and sorted based on chromosomal size. The time-calibrated species 

tree on the left was obtained from a previous study of 332 budding yeast speciesS1. (B) An Oxford dot 

plot of homologous genes between Y. lipolytica and two representative closely related species. (C) 

Macrosynteny conservation index between O. parapolymorpha and all other 119 budding yeast genomes. 

(D) Macrosynteny conservation index between Y. lipolytica and all other 119 budding yeast genomes. 

Note the lack of conservation of macrosynteny after ~100 million years of divergence in both lineages. 

Supplemental Figures



 

Figure S2. Macrosynteny conservation between representative species within bilaterian animals, 

angiosperm plants, and filamentous fungi. Related to Figure 1.  

(A) Oxford dot plots of homologous genes between scallop (Patinopecten yessoensis) and two 

representative bilaterian species: amphioxus (Branchiostoma floridae) and spotted gar (Lepisosteus 

oculatus). (B) Oxford dot plots of homologous genes between Arabidopsis thaliana and two other 

flowering plants. (C) Oxford dot plots of homologous genes between Zymoseptoria tritici and two 

representative filamentous fungal species. The colored dots correspond to homologous genes from the 

chromosomes, with chromosome boundaries indicated and sorted based on chromosomal size.  



 

Figure S3.  Microsynteny conservation of budding yeast, mammalian, and angiosperm genomes. 

Related to Figure 2.  

(A) Microsynteny conservation of 87 mammalian genomesS2. (B) Microsynteny conservation of 107 

angiosperm genomesS2. (C) Microsynteny conservation across 29 genomes of the CUG-Ser1 major clade 

of budding yeasts. (D) Microsynteny conservation across 43 genomes of clade including the 

Saccharomycetaceae + Saccharomycodaceae major clades of budding yeasts. The Y axis in panels A 

through D shows orthogroups with conserved microsynteny; different gene copy numbers of orthogroups 

with conserved microsynteny are labeled in different colors. The X axis corresponds to species within 

different clades. (E) Pairwise microsynteny comparisons of 120 budding yeast genomes. Species are 

arranged according to the species phylogeny derived from the previous studyS1; the branches 

corresponding to different major clades of budding yeasts are shown in different colors. Overall, the 

percentage of syntenic homologous genes varied in a lineage-specific manner, with higher percentages 

observed in comparisons of closely related species. (F) The dotted box represents Hanseniaspora, a genus 

of budding yeasts previously shown to exhibit extensive variation in its evolutionary rates among its 

species. Note that the slow-evolving H. vineae exhibits higher microsynteny conservation percentages 

with genomes from the sister lineage Saccharomycetaceae than fast-evolving Hanseniaspora species.  
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Figure S4. The number of genes predicted to be derived from different modes of duplication in 120 

budding yeast genomes. Related to Figure 2.  

WGD: whole-genome or segmental duplication, TD: tandem duplication, PD: proximal duplication, and 

DSD: dispersed duplication. Note that the scales of different duplication modes are different for 

illustration purposes.   
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