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ABSTRACT

Ulam’s method is a popular discretization scheme for stochastic operators that involves the construction of a transition probability matrix
controlling a Markov chain on a set of cells covering some domain. We consider an application to satellite-tracked undrogued surface-ocean
drifting buoy trajectories obtained from the National Oceanic and Atmospheric Administration Global Drifter Program dataset. Motivated
by the motion of Sargassum in the tropical Atlantic, we apply Transition Path Theory (TPT) to drifters originating off the west coast of Africa
to the Gulf of Mexico. We find that the most common case of a regular covering by equal longitude-latitude side cells can lead to a large
instability in the computed transition times as a function of the number of cells used. We propose a different covering based on a clustering of
the trajectory data that is stable against the number of cells in the covering. We also propose a generalization of the standard transition time
statistic of TPT that can be used to construct a partition of the domain of interest into weakly dynamically connected regions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144706

. INTRODUCTION

Sargassum is a pelagic seaweed that plays a crucial role in the
ecosystem of the Sargasso Sea and surrounding areas of the North
Atlantic.' Large rafts of the seaweed drift through the Caribbean and
into the Gulf of Mexico before being circulated into the Sargasso Sea
by the Gulf Stream where it is replenished yearly.” These Sargassum
clumps provide a habitat to a diverse contingent of invertebrate,
fish, and other fauna far away from land. In addition, the Sargasso

Transition Path Theory (TPT) provides a rigorous statistical char-
acterization of the ensemble of trajectories connecting directly,
i.e., without detours, two disconnected (sets of) states in a Markov
chain, a stochastic process that undergoes transitions from one
state to another with probability depending on the state attained
in the previous step. Markov chains can be constructed using
trajectory data via counting of transitions between cells cover-
ing the domain spanned by trajectories. With sparse trajectory
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data, the use of regular cells is observed to result in unstable esti-
mates of the total duration of transition paths. Using Voronoi
cells resulting from k-means clustering of the trajectory data, we
obtain stable estimates of this TPT statistic, which is generalized
to frame the remaining duration of transition paths. This remain-
ing duration is a new TPT statistic suitable for investigating
connectivity.

Sea contributes to approximately 7% of the global net biological
carbon pump due to the abundance of Sargassum and the commu-
nity of organisms it houses.” In 2011, islands in the Caribbean Sea
and beaches in South Florida were inundated with abnormally large
quantities of Sargassum." Since then, waves of Sargassum have been
reported regularly in these locations as well as in western Africa and
northern Brazil. Although beached Sargassum can add nutrients to
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coastal soils,’ it also creates offensive smells and can result in the
destruction of some habitats.” Large scale cleanup of beaches costs
millions annually and can negatively impact tourism in the affected
regions.

The study of the transport of Sargassum across the ocean has
attracted much interest. Satellite-tracked drifter trajectory data from
the National Oceanic and Atmospheric Administration (NOAA)
Global Drifter Program (GDP)° have been used to infer the evolu-
tion of the density of Sargassum. Since Sargassum tends to remain on
the surface of the ocean, windage effects must be taken into account.
Drifters are placed into the ocean with a drogue, a kind of anchor
that helps the drifter move with the surface currents, by resisting
wind slippage and wave-induced drift. Drogues often detach them-
selves after some time, leaving a drifter that is more susceptible to
wind and wave effects. In Beron-Vera et al.,” motivated by this con-
sideration, it is demonstrated that the motion of undrogued drifters
tracks the actual satellite-inferred density of Sargassum more closely
than the drogued counterparts. To do this, the North Atlantic is dis-
cretized into a large number of small cells, which define the states of
a Markov chain whose transition probability matrix is constructed
based on the initial and final locations of drifter trajectory data on a
certain time interval. Provided certain technical conditions are sat-
isfied by this Markov chain, Transition Path Theory (TPT)*’ can be
applied to identify bottlenecks and fluxes between a source and a
target state. In Beron-Vera et al.,” by taking the source to be a single
cell off the coast of West Africa, and the target to be the Gulf of Mex-
ico, two prominent paths taken by drifters are revealed. The first is a
“direct” path along the Great Atlantic Sargassum Belt;'’ the shape of
this path is in agreement with the satellite-derived density of Sar-
gassum in this region. The second is an “indirect” southern path
whereby drifters circulate toward the Gulf of Guinea before even-
tually traveling westward along the coast of northern Brazil into the
Caribbean."’

The time taken to transition between the source and the target
is another statistic that can be computed using TPT. It was noticed
that the method of Beron-Vera et al.” provides a transition time,
which is highly sensitive to the number of boxes chosen to cover
the domain, creating some distrust in the results. This motivated the
development of a new kind of covering, which leads to transition
times that are stable as a function of the number of cells in the parti-
tion. Briefly, this involves clustering the data and generating a cover-
ing based on the boundaries of the clusters. Thus, requesting a finer
grid tends to result in the division of larger cells while leaving distant
cells unchanged. Since we take the stability of the transition time as
a metric for the trustworthiness of the application of TPT, we review
this statistic by proposing a more general one. This new statistic has
the properties that it (1) gives the standard transition time as a spe-
cial case (so long as the source is a single cell) and (2) provides means
for partitioning the flow domain to investigate connectivity.

The remainder of this paper is organized as follows. In Sec. 11,
we review the theoretical framework of the discretization scheme
we apply to the trajectory data in our domain. In Sec. I1I, we apply
this discretization scheme to obtain a Markov chain suitable for the
application of TPT. We compute transition times and other statistics
for two standard kinds of coverings based on regular grids of squares
and hexagons to understand their shortcomings. We then propose
a different discretization scheme based on the k-means clustering
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algorithm which is then shown to be significantly more stable. We
also investigate the effect of the transition time step through which
the trajectory data are temporally “sliced” for both regular cover-
ings and our new covering. In Sec. IV, we introduce our generalized
transition time and demonstrate how it can be used to obtain a par-
tition of our domain into weakly dynamically connected regions.
The proof that our generalized transition time reduces to the stan-
dard transition time of TPT in the appropriate limit is given in the
Appendix. Finally, Sec. V summarizes our results and conclusions.

Il. BACKGROUND
A. Trajectory discretization

We consider data sets consisting of a series of J disconnected
trajectories x; (£), x2(1), . . ., x;(t) in X, where X is a subset of the two-
sphere. Each trajectory x;(t) consists of a number of observations
regularly spaced in time by At units. We suppose that each trajectory
is generated by the same underlying nondeterministic dynamical
map L, which takes elements of X to X-valued random variables on
the appropriate probability space equipped with Lebesgue measure
m. Let f € L' (X) be almost-every non-negative and normalized such
that |[f]|;1 = 1. If £ has a stochastic kernel K(x,y) : X x X — R*
such that £(x) ~ K(x,-), where fx K(,y) dm(y) = 1, then we can
define the Perron-Frobenius operator, also known as a transfer
operator, P : L'(X) — L(X) as'

Pfiy) = /f(x)K(x,y) dm(x). o
X

The Perron-Frobenius operator describes how an initial distribu-
tion is pushed forward by the underlying dynamics. We can study
the action of £ numerically by discretizing the Perron-Frobenius
operator and using the known trajectory data.

The most widely used discretization scheme is Ulam’s
method.'>"* Let {By,...,By} be a partition of X into disjoint sets
and let 1p(x) be the indicator function on the set B, which gives
1 when x € B and 0 otherwise. Ulam’s method can be interpreted
as a Galerkin projection’” of P onto the subspace spanned by
{1p,,...,1py}. By choosing basis functions {m(B,»)fllgi (x)}, we
have that the discretization of P is an N-dimensional linear opera-
tor P given by a matrix (P;) such that P;; is the transition probability
from B; to B;.'>" Since P acts on {m(B,‘)_1 1, (x)}, P;j, by Eq. (1), we
have

_ 13,‘ (x) _ 1

The matrix P is a row-stochastic transition probability matrix, which
is the discretized analog of K(x, y). Note that the factor m(B;)~" in
the choice of basis functions is what ensures that P is (row) stochasti-
cized. For computational purposes, we approximate Eq. (2) in terms
of the trajectory data as'®

b Lo X Ln e ®) (x4 D)
DI CAG)

ij
where T is some multiple of At. This approach has been used
in numerous applications.'*-** The transition probability matrix P
defines a Markov chain on N states such that the ith state is thought

3
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of as a delta distribution of mass located at the center of B;. In a prac-
tical setting, T must be chosen large enough such that the Markov
property holds to suitable precision. In summary, the procedure for
the translation of trajectory data into a transition probability matrix
involves two main degrees of freedom: (1) a choice of covering of the
computational domain by disjoint boxes and (2) a choice of T. We
return to these issues in Secs. III A and 111 C, respectively.

B. Transition path theory

We summarize the key results of Transition Path Theory (TPT)
here; details can be found in a series of works.*””*"" We use Pr(-)
and Ex[-] to indicate probabilities and expectations, respectively.
To begin, we consider a discrete Markov chain (X,),cz on a finite
state space S with row-stochastic transition probability matrix P. It
is assumed that the Markov chain is both ergodic (irreducible) and
mixing (aperiodic) and homogeneous in time. It follows that there
exists a unique stationary distribution 7, which satisfies 7P = 7.
We take X, = 7 so that our Markov chain is stationary, that is, we
have X,, = nP" = & for all n € Z. We define the first passage time
toasetD C Sas

7 (n) = inflk > 0 : X,,4 € D}, (4)
and the last exit time from ID as
7 (n) ;== inf{k > 0: X,,_ € D}. (5)

The last exit time is a stopping time with respect to the time-reversed
process (X_,),cz> namely, the Markov chain on S with transition

probability matrix P~ = (P};) whose entries are given by
p; = p ©)
i = o P

Let A,B be two nonintersecting subsets of S such that neither is
reachable in one step starting from the other. Following the nomen-
clature used in physical chemistry literature, at time # we say that the
process is forward-reactive R (n) [respectively, backward-reactive,
R~ (n)] according to the realization of the events,

Rt(n) = {r]f;(n) < tg(n)}. 7)

Then, the process is reactive at time n according to the realization of
the event R(n), where

R(n) == {R"(n) UR" (n)}. 8)

In summary, a trajectory is reactive at time » if its most recent visit to
A UB was to A, it is currently outside of A U B, and its next visit to
A U B will be to B. One thinks of A as a source and B as a target for
some process. Associated to the forward and backward reactivities
are the forward and backward committors g (1) defined for i € S by

g (n) == Pr(R*(n) | X, = i). ©)

We comment briefly on the intuition behind the committors. Note
that it is not decidable at time n whether a process is forward reac-
tive at time n. If an ensemble of trajectories each have X,, = i, then
only some fraction of trajectories will hit B before A; this fraction
is exactly g; (n). States with large values of g; (1) tend to be close
to B in the sense that there is a short path from i to B but, in gen-
eral, this need not be the case. A similar intuition for g; (n) holds
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for the time-reversed Markov chain. The committors are the funda-
mental quantities of transition path theory since they contain all of
the information about the (infinite) past and future.

One can show™ that in the case of a homogeneous and station-
ary Markov chain, the committors are independent of n and satisfy
linear matrix equations

Yoo Py’ i¢AUB,
g =10, i€,
1, iceB

and
Zjes Pjq;, i¢ AUB,

q =11, i€ A, (10)
0, ieB.

Using the committors, a number of statistics can be computed for
reactive trajectories. First, we have the reactive density

wrB(n) .= Pr(X, =i, R(n)) = q;mq;, i¢AUB.  (11)

States with large reactive densities relative to their neighbors are
interpreted as bottlenecks for reactive trajectories. We also define
the reactive current

[ ) = Pr(X, =i, R (n), Xps1 =},
R*(n+ 1) =q; mPyq, ijeS, (12)
as well as the effective reactive current
+ . AB __ (AB
= max{ i i ,0}. (13)
The effective reactive current is a B-facing gradient of the reactive
density; it identifies pairs of states with a large net flow of probability.
Finally, and of particular importance, here is the transition time t*E.
The original definition by Vanden-Eijnden® of t*B is as the limiting
ratio of the time spent during reactive transitions from A to B to

the rate of reactive transitions leaving A. In Ref. 30, the following
expression is provided in the discrete case:

B . Pr(R(n)) Yics ni®

Pr(R*(n+1),X, € A) ZieA,jesfzﬁm (14)

In Sec. IV, we will introduce a generalization of the transition
time, which will allow us to express Eq. (14) as a straightforward
expectation.

C. Open systems and connectivity

In many cases, the trajectory data are given on an open domain,
and further processing is required to obtain a suitable Markov chain.
We follow Miron et al.”* and subsequent works and introduce a
two-way nirvana state to create a closed system. Suppose that all tra-
jectory data are contained inside a domain Y C X. We partition Y as
Y = Y° U w such that 3Y C w and || <« |Y°|. We then construct
a covering by N boxes of Y© with one additional box appended cor-
responding to the whole of w, the nirvana state. Applying Eq. (3), we
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obtain a row-stochastic transition matrix of the form
0—0 O—w

P= (fwo i ) (15)
where P79 is N x N, P9~“is N x 1,and P*~%is 1 x N. Note that
trajectories which begin and end in the nirvana state are ignored.
In general, we are only interested in reactive trajectories that do
not visit this extra nirvana state. This requirement is equivalent to
making the replacements A - AU w and B — B U w in the basic
TPT formulas. One can show’* that this is also equivalent to leav-
ing A and B unchanged, but replacing P with the row-substochastic
matrix P°~© and 7 by restriction of the stationary distribution of
Eq. (15) to O. We apply the latter method due to the convenience of
computation.

Depending on the shape of the data, P°”° may not an
irreducible, aperiodic matrix. To remedy this, we apply Tarjan’s
algorithm’ to extract the largest strongly connected component of
P90, Then, P99 is modified to remove all other states includ-
ing contributions from trajectories, which pass through the removed
states. The final result is that we have an irreducible, aperiodic
matrix that avoids the nirvana state and is suitable for use in the
formulation of TPT above.

I1l. TRANSITION TIME STABILITY AND COVERINGS
A. Regular coverings

We apply the methods described in Sec. II to drifter trajectory
data obtained from the NOAA Global Drifter Program (GDP)." In
particular, we use quarter-daily interpolated data of the positions
of drifters in the tropical Atlantic. We are primarily interested in
undrogued drifter trajectories as these may be more accurate mod-
els for the motion of Sargassum than their drogued counterparts,
as noted in the Introduction. After discarding sections of trajecto-
ries which still have their drogue, we must choose a time step T, cf.
Sec. I A. Following, e.g., Beron-Vera et al.,”* we choose T = 5 days,
a timescale much longer than the Lagrangian decorrelation time
scale for the ocean of 1day.”” This ensures that the assumption of
Markovianity will hold to suitable accuracy. In general, Eq. (3) is
used except where trajectories contain holes or the length of the tra-
jectory is shorter than T. After obtaining the transition matrix, we
apply Eq. (11) to calculate the reactive density, choosing A con-
centrated off the coast of West Africa (a single box centered at
17°N, 18° W) and B as the Gulf of Mexico (boxes west of 90°W
and in [10°N, 30°N]). We cover the computational domain with 760
boxes, resulting in boxes with side lengths of about 2.4°, of which 463
both contained data and were not disconnected. We will sometimes
refer to this partition loosely as a partition into “squares,” keeping
in mind that the covering actually exists on a 2-sphere. Figure 1
shows the distribution of raw counts in the squares. The calculation
of the reactive density was repeated with a covering of 780 boxes.
The results are shown in Fig. 2.

In addition to the dramatic difference in the density of u*%, we
find that t*B = 9.81yr for the coarser partition (Fig. 2, top panel)
and t*B = 186 yr for the finer partition (Fig. 2, bottom panel). In
general, changing the number of boxes in the covering results in
u*® graphs that oscillate between patterns similar to the distribu-
tions in Fig. 2. We will first address the question of why a small
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39°N . R —
counts )%
27°N (3.3>< 103)
1.0
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FIG. 1. The number of xo (f) points falling in each box of the covering. There were
382793 total trajectories.

change in the number of boxes in the covering can lead to a large
change in these TPT statistics. Note that these large changes are not
caused by our choice of A or B, it is an issue caused by the nature
of coverings by a regular grid of squares. A fundamental issue with
a covering by squares is that an addition of even a small number of
boxes can result in a shift in the location of every box in the covering.
When dealing with sparse trajectory data, this can radically change
the outflow in certain regions of the space. This is observed in Fig. 2
in the region [75°W, 20°W] x [20°N, 39°N]. Here, the bottom panel
of Fig. 2 shows a much larger portion of reactive density, apparently

39°N
oy
27°N . (W)
1.0
os
15°N | o4
G| o
= | |
2N
n -
| |
9°s |
100°W 80°W 60°W 10°W 20°W 0° 15°E
39°N
. “Al 1/8
27°N .
1.0
0.8
15°N - - o4
0.2
0
A
*N| g 'q
m Discon.
9°s
100°W 80°W 60°W 40°W 20°W 0° 15°E

FIG. 2. (Top panel) The eighth-root transformation of the reactive density
u”® in the North Atlantic constructed from GDP undrogued drifter data.
The computational domain was initialized with 760 square boxes. Boxes colored
in black contained data but were removed due to being part of a reducible subset
of the directed graph associated with the Markov chain resulting from discretizing
the drifter motion using Ulam’s method. (Bottom panel) As in the top panel, but
with an initialization of 780 boxes.
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FIG. 3. As in Fig. 2 but with a hexagonal covering. The computational domain
in the top (respectively, bottom) panel was initialized with 820 (respectively, 840)
boxes.

suggesting that particles tend to circulate in this area before even-
tually finding the more direct path from A to B highlighted in the
top panel of Fig. 2. Note also that this region is sparsely populated as
shown in Fig. 1.

Another option for a regular covering is by hexagons.
Hexagons could be considered a more natural choice than squares
since the distance between the centers of adjacent hexagons is con-
stant. In Ref. 33, a hexagonal covering provided by the H3 spatial
index** was used to construct the transition matrix. We choose the
same parameters as for the squares, but instead cover the computa-
tional domain by a regular grid of hexagons. This is repeated twice
with a small difference in the number of initial cells; the results are
shown in Fig. 3. Again, we find that a small change in the number
of covering cells leads to a large change in transition path theory
statistics. In addition to the differences in the reactive densities,
we find t*® = 25.6yr for the coarser partition (Fig. 3, top panel)
and t*B = 156 yr for the finer partition (Fig. 3, bottom panel). The
essential problem is the same for both square and hexagonal cov-
erings, namely, that it is not clear which resulting statistics should
be trusted. One would hope that variations in a scalar statistic such
as t*B would settle as the number of boxes increases, but this is not
the case with regular coverings. Motivated by these examples, we
propose another kind of covering that addresses this issue.

B. Voronoi coverings

We propose that instead of covering the domain with a regular
grid, we instead cluster the observations and draw polygons based
on the cluster boundaries. The intended result should be that data
points that are close to each other should tend to end up in the
same box, and, hence, the derived transition matrix should be robust
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against small changes in box number. There are a number of clus-
tering algorithms; for the current application, we have chosen to use
the k-means method.”* This is a hard clustering algorithm, which
is guaranteed to converge and create n clusters (if possible) when
requested. In addition, k-means is straightforward to implement and
is built into the clustering packages of many popular languages. The
output of k-means is a collection of centroids such that each data
point belongs to the cluster defined by its closest centroid in terms
of Euclidean distance. Hence, we can define the polygons covering
the computational domain using a Voronoi tessellation; cf. e.g., Bur-
rough, McDonnell, and Lloyd.”” While this kind of technique is used
in the chemical literature,” we emphasize that our goal in generating
these clusters is to increase the stability of TPT statistics. We com-
pute the intersection of the convex hull of the data with the Voronoi
tessellation to reduce the size of the outer cells for clearer visualiza-
tion. Performing the same reactive density calculation as in Sec. I1T A
gives the results shown in Fig. 4. The picture is rather insensitive to
the number of boxes considered, which we quantify below.

For this covering, we find t*B = 2.34 yr. Note that Fig. 4 does
not contain any disconnected polygons, and, in general, the Voronoi
covering is less prone to disconnections although they are still possi-
ble. To compare the stability of this method to the regular coverings
discussed previously, we compute t*B for a number of boxes sizes
between 20 and 600 as shown in Fig. 5. We see that the Voronoi
covering produces significantly more stable transition times of con-
sistently reasonable magnitudes. To understand this, we note that
the addition of a small number of clusters does not tend to have
a large global effect as observed for regular coverings. Requesting
more clusters tends to subdivide larger clusters or create more where
the data are dense and leave others untouched.

The Voronoi covering has some drawbacks. First, although
the k-means algorithm is a relatively fast clustering algorithm and
amenable to parallelization if necessary, it is still roughly two orders
of magnitude slower computationally than the regular coverings.
This first attempt may be improved by alternate clustering algo-
rithms; for instance, Prinz et al.”” studied faster clustering algorithms
with comparable results. In addition, the initial guess for the loca-
tion of centroids in the typical k-means algorithm is random. We
find that the variation in t*® caused by variations in this initial guess
is roughly five steps on average, much smaller than those coming
from the change in box size. We recommend running the clustering
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FIG. 4. Asin Fig. 2, but with a Vioronoi covering generated by k-means with 500
clusters.
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FIG.5. The transition time of Eq. (14) for various box sizes and polygon coverings.
The horizontal axis shows the number of boxes remaining after boxes with no
data were removed, e.g., 600 boxes for a square covering is the result of an initial
covering of 1000 boxes.

algorithm multiple times to check that the initial guess has not acci-
dentally found an undesirable local maximum. Finally, we note that
the nature of the algorithm means that it is difficult to add boxes
in specific locations, but this also applies for non-adaptive regular
coverings.

C.The timestep T

As mentioned in Sec. IIT A, the time step T = 5 days was cho-
sen based on time scales arising from the Lagrangian characteristics
(decorrelation) in the upper ocean. Here, we explore the validity of
this choice based on the stability of the transition time. Figure 6
shows this transition time as a function of both box number and
time step T both for a regular square covering and the Voronoi cov-
ering. Reading across the horizontal axis for a fixed T, we see the
same results as in Fig. 5, namely, that the transition time is stable
against box number for the Voronoi covering but not for the reg-
ular covering. For a fixed box number, reading up the vertical axis
generally shows that T = 0.5 days tends to have a slightly higher t*&
but for T > 0.5 days, there is very little variation for both the regu-
lar and Voronoi coverings. When T = 0.5 days, there are enough
trajectories that do not leave their initial cells that the transition
matrix is very strongly diagonal; this serves to increase the transi-
tion time. As discussed previously, small changes in the number of
boxes for a regular covering can result in global shifts in the loca-
tions of boxes in the covering. However, small changes in T do not
generally have this behavior since increasing T still leaves the same
number of observations (modulo a small number of points left off at
the end) and, hence, for sufficiently long trajectories, the effect is not
felt to a significant degree. With real data, there will, of course, be an
upper limit to T beyond which results cease to become trustworthy
due to lack of communication between boxes and large numbers of
short trajectories being rejected. What we observe here, regardless
of considerations related to the Lagrangian decorrelation time of the
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FIG. 6. (Top panel) The transition time of Eq. (14) with a regular covering of
squares for various box sizes and time steps. The horizontal axis shows the num-
ber of boxes after boxes with no data removed. For a regular hexagonal covering,
the graph looks very similar. (Bottom panel) As in the top panel, but using the
Voronoi covering described in Sec. Il B.

ocean, is that the lower limit for obtaining stable transition times is
roughly 1 day.

IV. A GENERALIZED TRANSITION TIME

In this section, we present a generalization of Eq. (14), which
can be used to obtain a partition of the computational domain based
on the time it takes to reach B from an arbitrary cell. The aim of this
generalization is to provide local information, that is, information
about reactive trajectories at a particular state that have already left
the source A. Let

ch:L¢B:§:RM;N+. (16)
LeS

We define the remaining time t® for all n € Z as

@:{hhﬁwﬁﬂ&=awm+an¢B -

0, ieB.
A similar formula is referred to as the lead time in Finkel et al.”’ In

the Appendix, we establish the following Lemma:
Lemma 1: Equation (17) satisfies a set of linear equations,

Pyq}" ; .
1 ) — 9B, -,
B = + ZJECJr ees Pied; ieC (18)
0, ieB.
When A contains only one state, we also have that
B|  _ (AB
o, =" +1, (19)

where t*B is defined in Eq. (14).
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FIG. 7. The remaining time of Eq. (17) for a Voronoi covering with 500 cells with
the effective reactive current of Eq. (13) overlaid. The remaining time can be parti-
tioned into three regions via k-means clustering such that states from each region
have similar remaining times. The regions are shown as level sets demarcated by
the solid and dashed black lines. The average remaining times in each region
are: 4.0yr (solid line interior), 2.8 yr (between solid and dashed lines), and 1.3 yr
(outside both solid and dashed lines).

By applying Lemma 1, we can compute the remaining time for
each box in a given covering. We choose a Voronoi covering with
500 boxes, similar to the construction of Fig. 4. To build a remaining-
time-based dynamical geography, we partition the remaining times
into three clusters via k-means. We show the outline of this geog-
raphy overlaid with the effective reactive current of Eq. (13) in
Fig. 7. The dynamical geography obtained here is similar to the
one obtained in Beron-Vera et al.” by other means. We see that
the longest times are found near the Gulf of Guinea and the most
subtropical North Atlantic. This is consistent with the drifter data:
there is a large inflow to the Gulf of Guinea, making drifters near
the West coast of Africa cause a large pileup of trajectories in this
region. Similarly, the Gulf Stream pushes drifters up and out of
the Gulf of Mexico such that they are unlikely to transition back
into the Gulf in a short time once they pass the coast of Florida.
Consequently, the dynamical geography provided by the remain-
ing time is related to the distance between states and the target, but
they are not interchangeable; the remaining time provides additional
information.

Examining the reactive current, we recover the two main tran-
sition paths observed in Beron-Vera et al.,” namely, the direct west-
ward path and the indirect path which initially moves toward the
Gulf of Guinea before circulating westward across the equatorial
Atlantic. Not only does the direct path have a larger effective current,
the transition times are also shorter. In general, there is a noticeable
separation between westward and eastward-bound currents south of
the source A. We note here that the remaining time of a state need
not be positively correlated with its effective current. For example,
the effective currents are roughly equal in the Gulf of Guinea and
northern portion of the Gulf of Mexico but the remaining times are
significantly different.

V. CONCLUSIONS

When Ulam’s method is applied to trajectory data, the space
must be partitioned into a covering to discretize the motion and
thereby construct a transition probability matrix. We have shown
that two types of standard coverings made up of regular grids of

ARTICLE scitation.org/journalicha

squares and hexagons result in unstable transition times when Tran-
sition Path Theory (TPT) is applied to the induced Markov chain.
Changing the number of squares or hexagons in the covering leads
to global shifts in their location, producing untrustworthy results
for TPT statistics. We proposed a different kind of covering that
partitions the space into Voronoi cells based on k-means clustering
of the observations. This covering leads to transition times, which
are stable against the number of requested clusters. This algorithm
was chosen for simplicity and effectiveness, but there are many
clustering algorithms that could be explored, in particular, with con-
sideration toward improving computational performance for large
data sets. In addition, we found that the transition time does not
depend strongly on the time step through which the trajectory data
are sliced for time steps between 1 and 5 days for undrogued drifters
in the tropical/subtropical Atlantic. Finally, we introduced a gen-
eralization of the standard TPT transition time, which contains
the standard TPT transition time as a special case. Clustering cells
based on this generalized transition time produce a partition of the
domain, which reveals weakly dynamically connected regions.
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APPENDIX: PROOF OF LEMMA 1

We first establish that Eq. (17) can be written as the solution to
the system of linear equations in Eq. (18). In what follows, we repeat-
edly use the Markov property and the stationarity of our chain. First,
we have that

Pr(X,p1 =j| X, =i, R*(n+ 1))
_ PrX =, RT(n+1) | X, =)

- (A1)
PriRt(n+1) | X, =1)
Pyq
= ="\ (A2)
> ees Pl

Note that the condition that our Markov chain is ergodic does not
necessarily imply that Y, Pieq; # 0 for all i ¢ B. There can exist
a series of states for which the only path between them and B passes
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through A. Hence, an “interior” state whose neighbors all have
q; = Owillhave ", s Piq; # 0. To address this case, we introduce
the set of states

Cr=1i¢B: ) Pugi>0 (A3)
LeS
and restrict £ to these states. Therefore, Eq. (A2) is well-defined.
Taking i ¢ B in Eq. (17), we condition on the value of X, and use
the fact that 7 (n + 1) = 1 + 15 (n + 2) on the event that X,,,, ¢ B
to obtain
Pyq
, 1+ — 8
t% = ZJEC+ > res Pied?
0, ieB.

B +
t®, ieCt, (Ad)

We will now show that Eq. (17) with i = A coincides with Eq. (14).
We compute the quantity Z(n) = Pr(R™(n), Rt (n)). For the time n
to be reactive, there must be a last visit to A at some time ¢ < n,
and the next visit to A UB must be to B at least n — £ steps later.
Therefore, we can write

Z(n) = Pr(X, e ART(L+1),15(€+1) >n—1L) (A5

t<n

=Y Pr(tf(t+1)=n—£|X, €A R (L+1)
l<n
x Pr(X, € A,RT(£+1)). (A6)
By the stationarity of our process, Pr(X, € A, R"(¢ + 1)) is indepen-
dent of ¢, so we have

Z(n) = Pr (X,1 e A, R*(n+ 1))

x Zpr(rﬂ;(z+ 1)>n—€]X, €A R(E+1D). (A7)
t<n
Applying the stationary property again and re-indexing the sum
over £ gives

Z(n) =Pr (X, € A, R"(n+1))

o0
X Y Pr(tf(n+1)> €| X, € AR (n+1). (AS8)
=1
Since for a nonnegative discrete random variable X we have Ex[X]
=) o1 P(X = k), we conclude that

Z(n) =Pr (X, € A, R"(n+1))
x (-14+Ex[tg(n+ 1D | X, =i, R"(n+1]), (A9)

which implies that Vanden-Eijden’s"’ t*® and Eq. (17) with i = A
differ by one step, i.e., they are identical except that t*® does not
“count” the first step to leave A.

DATA AVAILABILITY

The data employed in this paper are openly available from the
NOAA Global Drifter Program at http://www.aoml.noaa.gov/phod/
dac/. The computations were carried out using Julia; a package
has been developed, which is distributed from https://github.com/
70Gage70/UlamMethod.jl.
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