
Model-Based Deep Learning
This article reviews leading strategies for designing systems whose operation combines
domain knowledge and data via model-based deep learning in a tutorial fashion.

By NIR SHLEZINGER , Member IEEE, JAY WHANG, YONINA C. ELDAR , Fellow IEEE,
AND ALEXANDROS G. DIMAKIS , Fellow IEEE

ABSTRACT | Signal processing, communications, and con-

trol have traditionally relied on classical statistical modeling

techniques. Such model-based methods utilize mathemati-

cal formulations that represent the underlying physics, prior

information, and additional domain knowledge. Simple classi-

cal models are useful but sensitive to inaccuracies and may

lead to poor performance when real systems display complex

or dynamic behavior. On the other hand, purely data-driven

approaches that are model-agnostic are becoming increasingly

popular as datasets become abundant and the power of mod-

ern deep learning pipelines increases. Deep neural networks

(DNNs) use generic architectures that learn to operate from

data and demonstrate excellent performance, especially for

supervised problems. However, DNNs typically require mas-

sive amounts of data and immense computational resources,

limiting their applicability for some scenarios. In this article,

we present the leading approaches for studying and design-

ing model-based deep learning systems. These are methods

that combine principled mathematical models with data-driven

systems to benefit from the advantages of both approaches.

Such model-based deep learning methods exploit both partial

domain knowledge, via mathematical structures designed for

specific problems, and learning from limited data. Among the

applications detailed in our examples for model-based deep

learning are compressed sensing, digital communications, and

tracking in state-space models. Our aim is to facilitate the

design and study of future systems at the intersection of

Manuscript received 3 November 2021; revised 7 September 2022;
accepted 13 February 2023. Date of publication 1 March 2023; date of current
version 17 May 2023. (Corresponding author: Nir Shlezinger.)

Nir Shlezinger is with the School of Electrical and Computer Engineering (ECE),
Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel (e-mail:
nirshl@bgu.ac.il).

Jay Whang is with the Department of Computer Science (CS), The University of
Texas at Austin, Austin, TX 78712 USA (e-mail: jaywhang@cs.utexas.edu).

Yonina C. Eldar is with the Faculty of Mathematics and Computer Science (CS),
Weizmann Institute of Science, Rehovot 7632706, Israel (e-mail:
yonina@weizmann.ac.il).

Alexandros G. Dimakis is with the Department of Electrical and Computer
Engineering (ECE), The University of Texas at Austin, Austin, TX 78712 USA
(e-mail: dimakis@austin.utexas.edu).

Digital Object Identifier 10.1109/JPROC.2023.3247480

signal processing and machine learning that incorporate the

advantages of both domains.

KEYWORDS | Deep learning; model-based machine learning;

signal processing.

I. I N T R O D U C T I O N
Traditional signal processing is dominated by algorithms
that are based on simple mathematical models that are
hand-designed from domain knowledge. Such knowledge
can come from statistical models based on measurements
and an understanding of the underlying physics or from
the fixed deterministic representation of the particular
problem at hand. These domain-knowledge-based process-
ing algorithms, which we refer to henceforth as model-
based methods, carry out inference based on knowledge
of the underlying model relating the observations at hand
and the desired information. Model-based methods do
not rely on data to learn their mapping though data are
often used to estimate a small number of parameters.
Fundamental techniques, such as the Kalman filter and
message-passing algorithms, belong to the class of model-
based methods. Classical statistical models rely on simpli-
fying assumptions (e.g., linear systems, and Gaussian and
independent noises) that make inference tractable, under-
standable, and computationally efficient. On the other
hand, simple models frequently fail to represent nuances
of high-dimensional complex data and dynamic variations.

The incredible success of deep learning, e.g., on
vision [1], [2], and challenging games, such as Go [3] and
Starcraft [4], has initiated a general data-driven mindset.
It is currently prevalent to replace simple principled mod-
els with purely data-driven pipelines, trained with mas-
sive labeled datasets. In particular, deep neural networks
(DNNs) can be trained in a supervised way end-to-end
to map inputs to predictions. The benefits of data-driven
methods over model-based approaches are twofold: First,
purely data-driven techniques do not rely on analytical
approximations and, thus, can operate in scenarios where
analytical models are not known. Second, for complex

0018-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 465
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2234-929X
https://orcid.org/0000-0003-4358-5304
https://orcid.org/0000-0002-4244-7033

Shlezinger et al.: Model-Based Deep Learning

systems, data-driven algorithms are able to recover fea-
tures from observed data that are needed to carry out
inference [5]. This is sometimes difficult to achieve ana-
lytically, even when complex models are perfectly known.

The computational burden of training and utilizing
highly parametrized DNNs, as well as the fact that massive
datasets are typically required to train such DNNs to learn
a desirable mapping, may constitute major drawbacks in
various signal processing, communications, and control
applications. This is particularly relevant for hardware-
limited devices, such as mobile phones, unmanned aerial
vehicles, and Internet-of-Things (IOT) systems, which are
often limited in their ability to utilize highly parametrized
DNNs [6] and require adapting to dynamic conditions.
Furthermore, DNNs are commonly utilized as black boxes;
understanding how their predictions are obtained and
characterizing confidence intervals tends to be quite chal-
lenging. As a result, deep learning does not yet offer
the interpretability, flexibility, versatility, and reliability of
model-based methods [7].

The limitations associated with model-based methods
and black-box deep learning systems gave rise to a mul-
titude of techniques for combining signal processing and
machine learning to benefit from both approaches. These
methods are application-driven and are, thus, designed
and studied in light of a specific task. For example,
the combination of DNNs and model-based compressed
sensing (CS) recovery algorithms was shown to facili-
tate sparse recovery [8], [9] and enable CS beyond the
domain of sparse signals [10], [11]; deep learning was
used to empower regularized optimization methods [12],
[13], while model-based optimization contributed to the
design of DNNs for such tasks [14]. Digital communi-
cation receivers are used DNNs to learn to carry out
and enhance symbol detection and decoding algorithms
in a data-driven manner [15], [16], [17], while symbol
recovery methods enabled the design of model-aware deep
receivers [18], [19], [20], [21]. The proliferation of hybrid
model-based/data-driven systems, each designed for a
unique task, motivates establishing a concrete systematic
framework for combining domain knowledge in the form
of model-based methods and deep learning, which is the
focus of this article.

In this article, we review leading strategies for designing
systems whose operation combines domain knowledge and
data via model-based deep learning in a tutorial fashion.
To that aim, we present a unified framework for studying
hybrid model-based/data-driven systems, without focusing
on a specific application, while being geared toward fam-
ilies of problems typically studied in the signal processing
literature. The proposed framework divides systems com-
bining model-based signal processing and deep learning
into two main strategies: The first category includes DNNs
whose architecture is specialized to the specific problem
using model-based methods, referred to here as model-
aided networks. The second one, which we refer to as DNN-
aided inference, consists of techniques in which inference is

Fig. 1. Division of model-based deep learning techniques into

categories and subcategories.

carried out by a model-based algorithm whose operation
is augmented with deep learning tools. This integration
of model-agnostic deep learning tools allows one to use
model-based inference algorithms while having access only
to partial domain knowledge. Based on this division,
we provide concrete guidelines for studying, designing,
and comparing model-based deep learning systems. An
illustration of the proposed division into categories and
subcategories is depicted in Fig. 1.

We begin by discussing the high-level concepts of model-
based, data-driven, and hybrid schemes. Since we focus
on DNNs as the current leading data-driven technique,
we briefly review basic concepts in deep learning, ensuring
that the tutorial is accessible to readers without a back-
ground in deep learning. We then elaborate on the fun-
damental strategies for combining model-based methods
with deep learning. For each such strategy, we present a
few concrete implementation approaches in a systematic
manner, including established approaches, such as deep
unfolding, which was originally proposed in 2010 by
Gregor and LeCun [8], as well as recently proposed
model-based deep learning paradigms, such as DNN-aided
inference [22] and neural augmentation [23]. For each
approach, we formulate system design guidelines for a
given problem, provide detailed examples from the recent
literature, and discuss its properties and use-cases. Each
of our detailed examples focuses on a different application
in signal processing, communications, and control, demon-
strating the breadth and the wide variety of applications
that can benefit from such hybrid designs. We conclude
this article with a summary and a qualitative comparison
of model-based deep learning approaches, along with a
description of some future research topics and challenges.
We aim to encourage future researchers and practitioners
with a signal processing background to study and design
model-based deep learning.

This overview article focuses on strategies for design-
ing architectures whose operation combines deep learning
with model-based methods, as illustrated in Fig. 1. These
strategies can also be integrated into existing mechanisms
for incorporating model-based domain knowledge in the
selection of the task for which data-driven systems are

466 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

applied, as well as in the generation and manipulation of
the data. An example of a family of such mechanisms for
using model-based knowledge in the selection of the appli-
cation and the data is the learning-to-optimize framework,
which is the focus of growing attention in the context of
wireless networks’ design [24], [25], [26]; this framework
advocates the usage of pretrained DNNs for realizing fast
solvers for complex optimization problems, which rely on
objectives and constraints formulated based on domain
knowledge, along with the usage of model-based gener-
ated data for off-line training. An additional related family
is that of channel autoencoders, which integrates mathe-
matical modeling of random communication channels as
layers of deep autoencoders to design channel codes [27],
[28] and compression mechanisms [29].

The rest of this article is organized as follows. Section II
discusses the concepts of model-based methods compared
to data-driven schemes and how they give rise to the
model-based deep learning paradigm. Section III reviews
some basics of deep learning. The main strategies for
designing model-based deep learning systems, i.e., model-
aided networks and DNN-aided inference, are detailed
in Sections IV and V, respectively. Finally, we provide a
summary and discuss some future research challenges in
Section VI.

II. M O D E L - B A S E D V E R S U S
D ATA - D R I V E N I N F E R E N C E
We begin by reviewing the main conceptual differences
between model-based and data-driven inference. To that
aim, we first present a mathematical formulation of a
generic inference problem. Then, we discuss how this
problem is tackled from a purely model-based perspec-
tive and from a purely data-driven one, where, for the
latter, we focus on deep learning as a family of generic
data-driven approaches. We then formulate the notion
of model-based deep learning based on these distinct
strategies.

A. Inference Systems

The term inference refers to the ability to conclude based
on evidence and reasoning. While this generic definition
can refer to a broad range of tasks, we focus, in our
description, on systems that estimate or make predictions
based on a set of observed variables. In this wide family of
problems, the system is required to map an input variable
x ∈ X into a prediction of a label variable s ∈ S, denoted
ŝ, where X and S are referred to as the input space and
the label space, respectively. An inference rule can, thus,
be expressed as

f : X 7→ S (1)

and the space of inference mappings is denoted by F .
We use l(·) to denote a cost measure defined over F ×
X × S, dictated by the specific task [30, Ch. 2]. The
fidelity of an inference mapping is measured by the risk
function, also known as the generalization error, given by

Ex,s∼px,s{l(f,x, s)}, where px,s is the underlying statisti-
cal model relating the input and the label. The goal of both
model-based methods and data-driven schemes is to design
the inference rule f(·) to minimize the risk for a given
problem. The main difference between these strategies is
what information is utilized to tune f(·).

B. Model-Based Methods

Model-based algorithms, also referred to as hand-
designed methods [31], set their inference rule, i.e., tune f

in (1) to minimize the risk function, based on domain
knowledge. The term domain knowledge typically refers to
prior knowledge of the underlying statistics relating the
input x and the label s.

In particular, an analytical mathematical expression
describing the underlying model, i.e., px,s, is required.
Model-based algorithms can provably implement the
risk-minimizing inference mapping, e.g., the maximum a
posteriori probability (MAP) rule. While computing the
risk-minimizing rule is often computationally prohibitive,
various model-based methods approximate this rule at
controllable complexity and, in some cases, also provably
approach its performance. This is typically achieved using
iterative methods comprised of multiple stages, where
each stage involves generic mathematical manipulations
and model-specific computations.

Model-based methods do not rely on data to learn their
mapping, as illustrated in the right part of Fig. 2, though
data are often used to estimate unknown model param-
eters. In practice, accurate knowledge of the statistical
model relating the observations and the desired informa-
tion is typically unavailable, and thus, applying such tech-
niques commonly requires imposing some assumptions on
the underlying statistics, which, in some cases, reflects the
actual behavior, but may also constitute a crude approx-
imation of the true dynamics. In the presence of inac-
curate model knowledge, either as a result of estimation
errors or due to enforcing a model, which does not fully
capture the environment, the performance of model-based
techniques tends to degrade. This limits the applicability
of model-based schemes in scenarios where, e.g., px,s is
unknown, costly to estimate accurately, or too complex to
express analytically.

C. Data-Driven Schemes

Data-driven systems learn their mapping from data. In a
supervised setting, data are comprised of a training set
consisting of nt pairs of inputs and their corresponding
labels, denoted {(xt, st)}nt

t=1. Data-driven schemes do not
have access to the underlying distribution and, thus, can-
not compute the risk function. As a result, the inference
mapping is typically tuned based on an empirical risk
function, referred to henceforth as loss function, which, for

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 467
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 2. Illustration of model-based versus data-driven inference. The red arrows correspond to the computation performed before the

particular inference data are received.

an inference mapping f , is given by

L(f) =
1

nt

nt∑
t=1

l(f,xt, st). (2)

Since one can usually form an inference rule, which
minimizes the empirical loss (2) by memorizing the data,
i.e., overfit, data-driven schemes often restrict the domain
of feasible inference rules [30, Ch. 2]. A leading strategy
in data-driven systems, upon which deep learning is based,
is to assume some highly expressive generic parametric
model on the mapping in (1) while incorporating opti-
mization mechanisms to avoid overfitting and allow the
resulting system to infer reliably with new data samples.
In such cases, the inference rule is dictated by a set of
parameters denoted θ, and thus, the system mapping is
written as fθ.

The conventional application of deep learning imple-
ments fθ using a DNN architecture, where θ represents
the weights of the network. Such highly parametrized net-
works can effectively approximate any Borel measurable
mapping as follows from the universal approximation the-
orem [32, Ch. 6.4.1]. Therefore, by properly tuning their
parameters using sufficient training data, as we elaborate
on in Section III, one should be able to obtain the desirable
inference rule.

Unlike model-based algorithms, which are specifically
tailored to a given scenario, purely data-driven methods
are model-agnostic, as illustrated in the left part of Fig. 2.
The unique characteristics of the specific scenario are
encapsulated in the learned weights. The parametrized
inference rule, e.g., the DNN mapping, is generic and can
be applied to a broad range of different problems. While
standard DNN structures are highly model-agnostic and
are commonly treated as black boxes, one can still incorpo-
rate some level of domain knowledge in the selection of the
specific network architecture. For instance, when the input
is known to exhibit temporal correlation, architectures

based on recurrent neural networks (RNNs) [33] or atten-
tion mechanisms [34] are often preferred. Alternatively,
in the presence of spatial patterns, one may utilize convo-
lutional layers [35]. An additional method to incorporate
domain knowledge into a black box DNN is by preprocess-
ing the input via, e.g., feature extraction.

The generic nature of data-driven strategies induces
some drawbacks. Broadly speaking, learning a large num-
ber of parameters requires a massive dataset to train
on. Even when a sufficiently large dataset is avail-
able, the resulting training procedure is typically lengthy
and involves a high computational burden. Finally, the
black-box nature of the resulting mapping implies that
data-driven systems in general lack interpretability, making
it difficult to provide performance guarantees and insights
into the system operation.

D. Model-Based Deep Learning

Completely separating existing literature into
model-based versus data-driven is a subjective and
debatable task. Instead, we focus on some approaches
that clearly lie in the middle ground to give a useful
overview of the landscape. The considered families of
methods incorporate domain knowledge in the form of an
established model-based algorithm, which is suitable for
the problem at hand, while combining capabilities to learn
from data via deep learning techniques.

Model-based deep learning schemes tune their mapping
of the input x based on both data, e.g., a labeled training
set {(xt, st)}nt

t=1, as well as some domain knowledge,
such as partial knowledge of the underlying distribution
px,s. Such hybrid data-driven model-aware systems can
typically learn their mappings from smaller training sets
compared to purely model-agnostic DNNs and commonly
operate without full accurate knowledge of the underlying
model upon which model-based methods are based.

Most existing techniques for implementing inference
rules in a hybrid model-based/data-driven fashion are

468 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

designed for a specific application, i.e., to solve a given
problem rather than formulate a systematic methodol-
ogy. Nonetheless, one can identify a common rationale
for categorizing existing schemes in a systematic manner
that is not tailored to a specific scenario. In particular,
model-based deep learning techniques can be divided into
two main strategies, as illustrated in Fig. 2. These strate-
gies may each be further specialized to various different
tasks, as we show in the sequel. The first of the two,
which we refer to as model-aided networks, utilizes DNNs
for inference; however, rather than using conventional
DNN architectures, here, a specific DNN tailored for the
problem at hand is designed by following the operation
of suitable model-based methods. The second strategy,
which we call DNN-aided inference systems, uses conven-
tional model-based methods for inference; however, unlike
purely model-based schemes, here, specific parts of the
model-based algorithm are augmented with deep learning
tools, allowing the resulting system to implement the algo-
rithm while learning to overcome partial or mismatched
domain knowledge from data.

The systematic categorization of model-based deep
learning methodologies can facilitate the study and design
of future techniques in different and diverse application
areas. One may also propose schemes that combine aspects
from both categories, building upon the understanding of
the characteristics and gains of each approach, discussed
in the sequel. Since both strategies rely on deep learning
tools, we first provide a brief overview of key concepts
in deep learning in Section III, after which we elaborate
on model-aided networks and DNN-aided inference in
Sections IV and V, respectively.

III. B A S I C S O F D E E P L E A R N I N G
Here, we cover the basics of deep learning required to
understand the DNN-based components in the model-
based/data-driven approaches discussed later. Our aim is
to equip the reader with the necessary foundations upon
which our formulations of model-based deep learning sys-
tems are presented.

As discussed in Section II-C, in deep learning, the target
mapping is constrained to take the form of a parametrized
function fθ : X → S. In particular, the inference mapping
belongs to a fixed family of functions F specified by a
predefined DNN architecture, which is represented by a
specific choice of the parameter vector θ. Once the function
class F and the loss function L are defined, where the
latter is dictated by the training data (2) while possibly
including some regularization on θ, one may attempt to
find the function, which minimizes the loss within F , i.e.,

θ∗ = arg min
fθ∈F

L(fθ). (3)

A common challenge in optimizing based on (3) is to
guarantee that the inference mapping learned using the
data-based loss function rather than the model-based risk

function will not overfit and be able to generalize, i.e., infer
reliably from new data samples. Since the optimization in
(3) is carried out over θ, we write the loss as L(θ) for
brevity.

The above formulation naturally gives rise to three
fundamental components of deep learning: the DNN archi-
tecture that defines the function class F , the task-specific
loss function L(θ), and the optimizer that dictates how
to search for the optimal fθ within F . Therefore, our
review of the basics of deep learning commences with a
description of the fundamental architecture and optimizer
components in Section III-A. We then present several repre-
sentative tasks along with their corresponding typical loss
functions in Section III-B.

A. Deep Learning Preliminaries

The formulation of the parametric empirical risk in (3)
is not unique to deep leaning and is in fact common
to numerous machine learning schemes. The strength of
deep learning, i.e., its ability to learn accurate complex
mappings from large datasets, is due to its use of DNNs
to enable a highly expressive family of function classes F ,
along with dedicated optimization algorithms for tuning
the parameters from data. In the following, we discuss the
high-level notion of DNNs, followed by a description of
how they are optimized.

1) Neural Network Architecture: DNNs implement para-
metric functions comprised of a sequence of differentiable
transformations called layers, whose composition maps the
input to a desired output. Specifically, a DNN fθ consisting
of k layers {h1, . . . , hk} maps the input x to the output
ŝ = fθ(x) = hk ◦ · · · ◦ h1(x), where ◦ denotes the function
composition. Since each layer hi is itself a parametric
function, the parameters’ set of the entire network fθ is the
union of all of its layers’ parameters, and thus, fθ denotes
a DNN with parameters θ. The architecture of a DNN refers
to the specification of its layers {hi}ki=1.

A generic formulation that captures various
parametrized layers is that of an affine transformation,
i.e., h(x) = Wx + b whose parameters are {W , b}.
For instance, in fully connected (FC) layers, also referred
to as dense layers, one can optimize {W , b} to take
any value. Another extremely common affine transform
layer is convolutional layers. Such layers apply a set of
discrete convolutional kernels to signals that are possibly
comprised of multiple channels, e.g., tensors. The vector
representation of their output can be written as an affine
mapping of the form Wx+ b, where x is the vectorization
of the input, and W is constrained to represent multiple
channels of discrete convolutions [32, Ch. 9]. These
convolutional neural networks (CNNs) are known to
yield a highly parameter-efficient mapping that captures
important invariances such as translational invariance in
image data.

While many commonly used layers are affine, DNNs rely
on the inclusion of nonlinear layers. If all the layers of a

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 469
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

DNN were affine, the composition of all such layers would
also be affine, and thus, the resulting network would only
represent affine functions. For this reason, layers in a DNN
are interleaved with activation functions, which are simple
nonlinear functions applied to each dimension of the input
separately. Activations are often fixed, i.e., their mapping
is not parametric and is thus not optimized in the learning
process. Some notable examples of widely used activation
functions include the rectified linear unit (ReLU) defined
as ReLU(x) = max{x, 0} and the sigmoid σ(x) = (1 +

exp(−x))−1.

2) Choice of Optimizer: Given a DNN architecture and
a loss function L(θ), finding a globally optimal θ that
minimizes L is a hopelessly intractable task, especially at
the scale of millions of parameters or more. Fortunately,
the recent success of deep learning has demonstrated that
gradient-based optimization methods work surprisingly
well despite their inability to find global optima. The
simplest such method is gradient descent, which iteratively
updates the parameters

θq+1 = θq − ηq∇θL(θq) (4)

where ηq is the step size that may change as a function of
the step count q. Since the gradient ∇θL(θq) is often too
costly to compute over the entire training data, it is esti-
mated from a small number of randomly chosen samples
(i.e., a minibatch). The resulting optimization method is
called minibatch stochastic gradient descent and belongs to
the family of stochastic first-order optimizers.

Stochastic first-order optimization techniques are
well-suited for training DNNs because their memory usage
grows only linearly with the number of parameters, and
they avoid the need to process the entire training data
at each step of optimization. Over the years, numerous
variations of stochastic gradient descent have been pro-
posed. Many modern optimizers, such as RMSProp [36]
and Adam [37], use statistics from previous parameter
updates to adaptively adjust the step size for each param-
eter separately (i.e., for each dimension of θ).

B. Common Deep Learning Tasks

As detailed above, the data-driven nature of deep learn-
ing is encapsulated in the dependence of the loss func-
tion on the training data. Thus, the loss function not
only implicitly defines the task of the resulting system
but also dictates what kind of data is required. Based
on the requirements placed on the training data, prob-
lems in deep learning largely fall under three different
categories: supervised, semisupervised, and unsupervised.
Here, we define each category and list some example tasks
and their typical loss functions.

1) Supervised Learning: In supervised learning, the
training data consist of a set of input-label pairs
{(xt, st)}nt

t=1, where each pair takes values in X × S.

As discussed in Section II-C, the goal is to recover a
mapping fθ that minimizes the risk function, i.e., the
generalization error. This is done by optimizing the DNN
mapping fθ using the data-based empirical loss function
L(θ) (2). This setting encompasses a wide range of prob-
lems, including regression, classification, and structured
prediction, through a judicious choice of the loss function.
In the following, we review commonly used loss functions
for classification and regression tasks.

a) Classification: Perhaps, one of the most widely
known success stories of DNNs, classification (image clas-
sification in particular), has remained a core benchmark
since the introduction of AlexNet [38]. In this setting,
we are given a training set {(xt, st)}nt

t=1 containing input-
label pairs, where each xt is a fixed-size input, e.g.,
an image, and st is the one-hot encoding of the class. Such
one-hot encoding of class c can be viewed as a probability
vector for a K-way categorical distribution, with K = |S|,
with all probability mass placed on class c.

The DNN mapping fθ for this task is appropriately
designed to map an input xt to the probability vector
ŝt ≜ f(xt) = ⟨ŝt,1, . . . , ŝt,K⟩, where ŝt,c denotes the
cth component of ŝt. This parametrization allows for the
model to return a soft decision in the form of a categorical
distribution over the classes.

A natural choice of loss function for this setting is the
cross-entropy loss, defined as

LCE(θ) =
1

nt

nt∑
t=1

K∑
c=1

st,c(− log ŝt,c). (5)

For a sufficiently large set of independent identically dis-
tributed (i.i.d.) training pairs, the empirical cross-entropy
loss approaches the expected cross-entropy measure,
which is minimized when the DNN output matches the true
conditional distribution ps|x. Consequently, minimizing the
cross-entropy loss encourages the DNN output to match
the ground-truth label, and its mapping closely approaches
the true underlying posterior distribution when properly
trained.

The formulation of the cross-entropy loss (5) implicitly
assumes that the DNN returns a valid probability vector,
i.e., ŝt,c ≥ 0 and

∑K
c=1 ŝt,c = 1. However, there is no

guarantee that this will be the case, especially at the begin-
ning of training when the parameters of the DNN are more
or less randomly initialized. To guarantee that the DNN
mapping yields a valid probability distribution, classifiers
typically employ the softmax function (e.g., on top of the
output layer), given by

Softmax(x) =

〈
exp(x1)∑d
i=1 exp(xi)

, . . . ,
exp(xd)∑d
i=1 exp(xi)

〉

where xi is the ith entry of x. Due to the exponentiation
followed by normalization, the output of the softmax

470 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

function is guaranteed to be a valid probability vector.
In practice, one can compute the softmax function of the
network outputs when evaluating the loss function, rather
than using a dedicated output layer.

b) Regression: Another task where DNNs have been
successfully applied is regression, where one attempts to
predict continuous variables instead of categorical ones.
Here, the labels {st} in the training data represent some
continuous value, e.g., in R or some specified range [a, b].

Similar to the usage of softmax layers for classifica-
tion, an appropriate final activation function σ is needed,
depending on the range of the variable of interest. For
example, when regressing on a strictly positive value,
a common choice is σ(x) = exp(x) or the softplus activa-
tion σ(x) = log(1+exp(x)) so that the range of the network
fθ is constrained to be the positive reals. When the output
is to be limited to an interval [a, b], then one may use the
mapping σ(x) = a + (b− a)(1 + tanh(x))/2.

Arguably, the most common loss function for regression
tasks is the empirical mean square error (MSE), i.e.,

LMSE(θ) =
1

nt

nt∑
t=1

(st − ŝt)
2. (6)

2) Unsupervised Learning: In unsupervised learning,
we are only given a set of examples {xt}nt

t=1 without
labels. Since there is no label to predict, unsupervised
learning algorithms are often used to discover interesting
patterns present in the given data. Common tasks in this
setting include clustering, anomaly detection, generative
modeling, and compression.

a) Generative models: One goal in unsupervised learn-
ing of a generative model is to train a generator network
Gθ(z) such that the latent variables z, which follow a sim-
ple distribution, such as standard Gaussian, are mapped
into samples obeying a distribution similar to that of the
training data [32, Ch. 20]. For instance, one can train
a generative model to map Gaussian vectors into images
of human faces. A popular type of DNN-based generative
model that tries to achieve this goal is generative adver-
sarial network (GAN) [39], which has shown remarkable
success in many domains.

GANs learn the generative model by employing a dis-
criminator network Dφ to assess the generated samples,
thus avoiding the need to mathematically handcraft a loss
measure quantifying their quality. The parameters {θ,φ}
of the two networks are learned via adversarial training,
where θ and φ are updated in an alternating manner. The
two networks Gθ and Dφ “compete” against each other to
achieve opposite goals: Gθ tries to fool the discriminator,
whereas Dφ tries to reliably distinguish real examples from
the fake ones made by the generator.

Various methods have been proposed to train generative
models in this adversarial fashion, including, e.g., the
Wasserstein GAN [40], [41], the least-squares GAN [42],
the Hinge GAN [43], and the relativistic average GAN [44].

For simplicity, in the following, we describe the original
GAN formulation of [39]. Here, Dφ : X → [0, 1] is a binary
classifier trained to distinguish real examples xt from the
fake examples generated by Gθ, and the GAN loss function
is the minmax loss.

The loss is optimized in an alternating fashion by tun-
ning the discriminator φ to minimize LD(·) for a given
generator θ, followed by a corresponding optimization of
the generator based on its loss LG(·). These loss measures
are given by

LD(φ|θ) =
−1

2nt

nt∑
t=1

log Dφ(xt) + log
(
1−Dφ

(
Gθ(zt)

))
LG(θ|φ) =

−1

nt

nt∑
t=1

log log Dφ

(
Gθ(zt)

)
.

Here, the latent variables {zt} are drawn from its known
prior distribution for each minibatch.

Among currently available deep generative models,
GANs achieve the best sample quality at an unprece-
dented resolution. For example, the current state-of-the-art
model StyleGAN2 [45] is able to generate high-resolution
(1024 × 1024) images that are nearly indistinguishable
from real photographs to a human observer. That said,
GANs do come with several disadvantages as well. The
adversarial training procedure is known to be unstable,
and many tricks are necessary for practice to train a large
GAN. Also, because GANs do not offer any probabilistic
interpretation, it is difficult to objectively evaluate the
quality of a GAN.

b) Autoencoders: Another well-studied task in unsu-
pervised learning is the training of an autoencoder, which
has many uses such as dimensionality reduction and repre-
sentation learning. An autoencoder consists of two neural
networks: an encoder fenc : X 7→ Z and a decoder fdec :

Z 7→ X , where Z is some predefined latent space. The
primary goal of an autoencoder is to reconstruct a signal x
from itself by mapping it through fdec ◦ fenc.

The task of autoencoding may seem pointless at first;
indeed, one can trivially recover x by setting Z = X
and fenc, fdec to be identity functions. The interesting case
is when one imposes constraints that limit the ability of
the network to learn the identity mapping [32, Ch. 14].
One way to achieve this is to form an undercomplete
autoencoder, where the latent space Z is restricted to be
lower dimensional than X , e.g., X = Rn and Z = Rm

for some m < n. This constraint forces the encoder to
map its input into a more compact representation while
retaining enough information so that the reconstruction is
as close to the original input as possible. Additional mech-
anisms for preventing an autoencoder from learning the
identity mapping include imposing a regularizing term on
the latent representation, as done in sparse autoencoders
and contractive autoencoders, or alternatively, by distort-
ing the input to the system, as carried out by denoising

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 471
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

autoencoders [32, Ch. 14.2]. A common metric used to
measure the quality of reconstruction is the MSE loss.
Under this setting, we obtain the following loss function
for training:

LMSE (fenc, fdec)=
1

nt

nt∑
t=1

∥xt−fdec(fenc(xt))∥22 . (7)

3) Semisupervised Learning: Semisupervised learning
lies in the middle ground between the above two cate-
gories, where one typically has access to a large amount of
unlabeled data and a small set of labeled data. The goal is
to leverage the unlabeled data to improve performance on
some supervised tasks to be trained on the labeled data.
As labeling data is often a very costly process, semisu-
pervised learning provides a way to quickly learn desired
inference rules without having to label all of the available
unlabeled data points.

Various approaches have been proposed in the literature
to utilize unlabeled data for a supervised task; see the
detailed survey [46]. One such common technique is to
guess the missing labels while integrating dedicated mech-
anisms to boost confidence [47]. This can be achieved by,
e.g., applying the DNN to various augmentations of the
unlabeled data [48] while combining multiple regulariza-
tion terms for encouraging consistency and low-entropy
of the guessed labels [49], as well as training a teacher
DNN using the available labeled data to produce guessed
labels [50].

IV. M O D E L - A I D E D N E T W O R K S
Model-aided networks implement model-based deep
learning by using model-aware algorithms to design deep
architectures. Broadly speaking, model-aided networks
implement the inference system using a DNN, similar
to conventional deep learning. Nonetheless, instead of
applying generic off-the-shelf DNNs, the rationale here
is to tailor the architecture specifically for the scenario
of interest, based on a suitable model-based method.
By converting a model-based algorithm into a model-aided
network, which learns its mapping from data, one typically
achieves improved inference speed, as well as overcome
partial or mismatched domain knowledge. In particular,
model-aided networks can learn missing model parame-
ters, such as channel matrices [19], dictionaries [51], and
noise covariances [52], as part of the learning procedure.
Alternatively, it can be used to learn a surrogate model
for which the resulting inference rule best matches the
training data [53].

Model-aided networks obtain dedicated DNN architec-
tures by identifying structures in a model-based algorithm
that one would have utilized for the problem given full
domain knowledge and sufficient computational resources.
Such structures can be given in the form of an iterative
representation of the model-based algorithm, as exploited
by deep unfolding detailed in Section IV-A, or via a block

diagram algorithmic representation, which neural building
blocks rely upon, as presented in Section IV-B. The dedi-
cated neural network is then formulated as a discrimina-
tive architecture [54], [55] whose trainable parameters,
intermediate mathematical manipulations, and intercon-
nections follow the operations of the model-based algo-
rithm, as illustrated in Fig. 3.

In the following, we describe these methodologies in a
systematic manner. In particular, our presentation of each
approach commences with a high-level description and
generic design outline, followed by one or two concrete
model-based deep learning examples from the literature,
and concludes with a summarizing discussion. For each
example, we first detail the system model and model-based
algorithm from which it originates. Then, we describe
the hybrid model-based/data-driven system by detailing
its architecture and training procedure, and present some
representative quantitative results.

A. Deep Unfolding

Deep unfolding [56], also referred to as deep unrolling,
converts an iterative algorithm into a DNN by designing
each layer to resemble a single iteration. Deep unfolding
was originally proposed by Greger and LeCun [8], where
a deep architecture was designed to learn to carry out
the iterative soft thresholding algorithm (ISTA) for sparse
recovery. Deep unfolded networks have since been applied
in various applications in image denoising [57], [58],
sparse recovery [9], [31], [59], dictionary learning [51],
[60], communications [18], [19], [61], [62], [63], [64],
ultrasound [65], and superresolution [66], [67], [68].
A recent review can be found in [7].

1) Design Outline: The application of deep unfolding
to design a model-aided deep network is based on the
following steps.

1) Identify an iterative optimization algorithm that is
useful for the problem at hand. For instance, recov-
ering a sparse vector from its noisy projections can be
tackled using ISTA, unfolded into LISTA in [8].

2) Fix a number of iterations in the optimization algo-
rithm.

3) Design the layers to imitate the free parameters of
each iteration in a trainable fashion.

4) Train the overall resulting network end-to-end.
The selection of the free parameters to learn in the third
step determines the resulting trainable architecture. One
can set these parameters to be the hyperparameters of the
iterative optimizer (such as step size), thus leveraging data
to automatically determine parameters typically selected
by hand [53]. Alternatively, the architecture may be
designed to learn the parameters of the objective optimized
in each iteration, thus achieving a more abstract family
of inference rules compared with the original iterative
algorithm, or even convert the operation of each iteration
into a trainable neural architecture. We next demonstrate
how this rationale is translated into concrete architectures,

472 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 3. Model-aided DNN illustration: (a) model-based algorithm comprised of a series of model-aware computations and generic

mathematical steps and (b) DNN whose architecture and interconnections are designed based on the model-based algorithm. Here, data can

be used to train the overall architecture end-to-end, typically requiring the intermediate mathematical steps to be either differentiable or

well-approximated by a differentiable mapping.

using two examples: the first is the DetNet system of [18]
that unfolds projected gradient descent optimization; the
second is the unfolded dictionary learning for Poisson
image denoising proposed in [51].

2) Example 1: Deep Unfolded Projected Gradient Descent:
Projected gradient descent is a simple and common itera-
tive algorithm for tackling constrained optimization. While
the projected gradient descent method is quite generic
and can be applied in a broad range of constrained
optimization setups, in the following, we focus on its
implementation for symbol detection in linear memoryless
multiple-input–multiple-output (MIMO) Gaussian chan-
nels. In such cases, where the constraint follows from
the discrete nature of digital communication symbols, the
iterative projected gradient descent gives rise to the DetNet
architecture proposed in [18] via deep unfolding.

a) System model: Consider the problem of symbol
detection in linear memoryless MIMO Gaussian channels.
The task is to recover the K-dimensional vector s from the

N × 1 observations x, which are related via

x = Hs + w. (8)

where H is a known deterministic N × K channel matrix
and w consists of N i.i.d. Gaussian random variables (RVs).
For our presentation, we consider the case in which the
entries of s are symbols generated from a binary phase
shift keying (BPSK) constellation in a uniform i.i.d. man-
ner, i.e., S = {±1}K . In this case, the MAP rule given
an observation x becomes the minimum distance estimate,
given by

ŝ = arg min
s∈{±1}K

∥x−Hs∥2. (9)

b) Projected gradient descent: While directly solving
(9) involves an exhaustive search over the 2K possible
symbol combinations, it can be tackled with affordable
computational complexity using the iterative projected
gradient descent algorithm. This method, whose derivation
is detailed in Appendix VI-A, is summarized as Algorithm 1,

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 473
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

where PS(·) denotes the projection operator into S, which,
for BPSK constellations, is the elementwise sign function.

Algorithm 1 Projected Gradient Descent for Sys-
tem Model (8)
Init: Fix step-size η > 0. Set initial guess ŝ0

1 for q = 0, 1, . . . do
2 Update

ŝq+1 = PS
(
ŝq − ηHT x + ηHT Hŝq

)
.

3 end
Output: Estimate ŝ = sq .

c) Unfolded DetNet: DetNet unfolds the projected gra-
dient descent iterations, repeated until convergence in
Algorithm 1, into a DNN, which learns to carry out this
optimization procedure from data. To formulate DetNet,
we first fix a number of iterations Q. Next, a DNN with
Q layers is designed, where each layer imitates a single
iteration of Algorithm 1 in a trainable manner.

Architecture: DetNet builds upon the observation that
the update rule in Step 2 of Algorithm 1 consists of two
stages: gradient descent computation, i.e., gradient step
ŝq − ηHTx + ηHTHŝq; and projection, namely, applying
PS(·). Therefore, each unfolded iteration is represented
as two sublayers. The first sublayer learns to compute the
gradient descent stage by treating the step size as a learned
parameter and applying an FC layer with ReLU activation
to the obtained value. For iteration index q, this results in

zq =ReLU
(
W 1,q

(
(I+δ2,qH

TH)ŝq−1−δ1,qH
Tx
)

+b1,q

)
in which {W 1,q, b1,q, δ1,q, δ2,q} are learnable parameters.
The second sublayer learns the projection operator by
approximating the sign operation with a soft sign activa-
tion preceded by an FC layer, leading to

ŝq = soft sign (W 2,qzq + b2,q) . (10)

Here, the learnable parameters are {W 2,q, b2,q}. The
resulting deep network is depicted in Fig. 4, in which
the output after Q iterations, denoted ŝQ, is used as
the estimated symbol vector by taking the sign of each
element.

Training: Let θ = {(W 1,q,W 2,q, b1,q, b2,q, δ1,q, δ2,q)}Qq=1
be the trainable parameters of DetNet.1 To tune θ, the
overall network is trained end-to-end to minimize the
empirical weighted ℓ2 norm loss over its intermediate

1The formulation of DetNet in [18] includes an additional sublayer in
each iteration intended to further lift its input into higher dimensions and
introduce additional trainable parameters, as well as reweighing of the
outputs of subsequent layers. As these operations do not follow directly
from the unfolding projected gradient descent, they are not included in
the description here.

layers, given by

L(θ) =
1

nt

nt∑
t=1

Q∑
q=1

log(q)∥st − ŝq(xt;θ)∥2 (11)

where ŝq(xt;θ) is the output of the qth layer of Det-
Net with parameters θ and input xt. This loss measure
accounts for the interpretable nature of the unfolded net-
work, in which the output of each layer is a further refined
estimate of s.

Quantitative Results: The experiments reported in [18]
indicate that, when provided sufficient training examples,
DetNet outperforms leading MIMO detection algorithms
based on approximate message passing and semidefinite
relaxation. It is also noted in [18] that the unfolded
network requires an order of magnitude fewer layers
compared to the number of iterations required by the
model-based optimizer to converge. This gain is shown
to be translated into reduced run time during inference,
particularly when processing batches of data in parallel.
In particular, it is reported in [18, Tbl. 1] that DetNet suc-
cessfully detects a batch of 1000 channel outputs in a 60 ×
30 static MIMO channel at run time, which is three times
faster than that required by approximate message passing
to converge, and over 80 times faster than semidefinite
relaxation.

3) Example 2: Deep Unfolded Dictionary Learning: DetNet
exemplifies how deep unfolding can be used to realize
rapid implementations of exhaustive optimization algo-
rithms that typically require a very large amount of iter-
ations to converge. However, DetNet requires full domain
knowledge, i.e., it assumes that the system model fol-
lows (8), and the channel parameters H are known.
An additional benefit of deep unfolding is its ability to learn
missing model parameters along with the overall optimiza-
tion procedure, as we illustrate in the following example
proposed in [51], which focuses on dictionary learning for
Poisson image denoising. Similar examples where channel
knowledge is not required in deep unfolding can be found
in, e.g., [19], [57], and [64].

a) System model: Consider the problem of recon-
structing an image µ ∈ RN from its noisy measure-
ments x ∈ RN . The image is corrupted by Poisson noise,
namely, px|µ is a multivariate Poisson distribution with
mutually independent entries and mean µ. Furthermore,
it is assumed that, for the clean image µ, it holds that
log(µ) (taken elementwise) can be written as

log(µ) = Hs. (12)

In (12), H, referred to as the dictionary, is an unknown
block-Toeplitz matrix (representing a convolutional dictio-
nary), while s is an unknown sparse vector.

b) Proximal gradient mapping: The recovery of the
clean image µ is tackled by alternating optimization [69].

474 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 4. DetNet illustration. Parameters in red fonts are learned in training, while those in blue fonts are externally provided.

In each iteration, one first recovers s for a fixed H, after
which s is set to be fixed and H is estimated. The resulting
iterative algorithm, whose detailed derivation is given in
Appendix VI-B, is summarized as Algorithm 2. Here, η > 0
is the step size; 1 is the all-ones vector; b is a threshold
parameter; and Tb is the soft-thresholding operator, also
referred to as the shrinkage operator, applied elementwise
and is given by Tb(x) = sign(x)max{|x| − b, 0}. Further-
more, the optimization variable H in Step 2 is constrained
to be block-Toeplitz.

Algorithm 2 Alternating Image Recovery and
Dictionary Learning for System Model (12)
Init: Fix step-size η > 0. Set initial guess s0

1 for l = 0, 1, . . . do
2 Update

Ĥ l = arg min
H

1T exp (Hsl) − xT Hsl.

3 Set ŝ0 = sl.
4 for q = 0, 1, . . . do
5 Update

ŝq+1 = Tb

(
ŝq+ηHT

(
x − exp (Hŝq)

))
.

6 end
7 Set sl+1 = ŝq .
8 end

Output: Estimate clean image via
µ̂ = exp

(
Ĥ lsl

)
.

c) Deep convolutional exponential-family autoencoder:
The hybrid model-based/data-driven architecture enti-
tled deep convolutional exponential-family autoencoder

(DCEA) architecture proposed in [51] unfolds the proximal
gradient iterations in Step 5 of Algorithm 2. By doing so,
it avoids the need to learn the dictionary H by alternating
optimization, as it is implicitly learned from data in the
training procedure of the unfolded network.

Architecture: DCEA treats the two-step convolutional
sparse coding problem as an autoencoder, where the
encoder computes the sparse vector s by unfolding Q

proximal gradient iterations as in Step 5 of Algorithm 2.
The decoder then converts ŝ produced by the encoder into
a recovered clean image µ̂.

In particular, Tolooshams et al. [51] proposed two
implementations of DCEA. The first, referred to as DCEA-C,
directly implements Q proximal gradient iterations fol-
lowed by the decoding step, which computes µ̂, where
both the encoder and the decoder use the same value of the
dictionary matrix H. This is replaced with a convolutional
layer and is learned via end-to-end training along with the
thresholding parameters, bypassing the need to explicitly
recover the dictionary for each image, as in Step 2 of Algo-
rithm 2. The second implementation, referred to as DCEA-
UC, decouples the convolution kernels of the encoder and
the decoder, and lets the encoder carry out Q iterations of
the form

ŝq+1 = Tb

(
ŝq + ηW T

2 (x− exp (W 1ŝq))
)

. (13)

Here, W 1 and W 2 are convolutional kernels that are
not constrained to be equal to H used by the decoder.2

2The architecture proposed in [51] is applicable for various
exponential-family noise signals. Particularly, for Poisson noise, an addi-
tional exponential linear unit was applied to x − exp (W 1ŝq), which
was empirically shown to improve the convergence properties of the
network.

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 475
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 5. DCEA illustration. Parameters in red fonts are learned in training, while those in blue fonts are externally provided.

An illustration of the resulting architecture is depicted in
Fig. 5.

Training: The parameters of DCEA are θ = {H, b}
for DCEA-C and θ = {W 1,W 2,H, b} for DCEA-UC. The
vector b ∈ RC is comprised of the thresholding parameters
used at each channel. When applied for Poisson image
denoising, DCEA is trained in a supervised manner using
the MSE loss, namely, a set of nt clean images {µt}

nt
t=1 are

used along with their Poisson noisy version {xt}nt
t=1. By let-

ting fθ(·) denote the resulting mapping of the unfolded
network, the loss function is formulated as

L(θ) =
1

nt

nt∑
t=1

∥µt − fθ(xt)∥2. (14)

Quantitative Results: The experimental results reported
in [51] evaluated the ability of the unfolded DCEA-C and
DCEA-UC in recovering images corrupted with different
levels of Poisson noise. An example of an image denoised
by the unfolded system is depicted in Fig. 6. It was
noted in [51] that the proposed approach allows achiev-
ing similar and even improved results to those of purely
data-driven techniques based on black-box CNNs [70].
However, the fact that the denoising system is obtained
by unfolding the model-based optimizer in Step 5 of Algo-
rithm 2 allows this performance to be achieved while utiliz-
ing 3%–10% of the overall number of trainable parameters
as those used by the conventional CNN.

4) Discussion: Deep unfolding incorporates
model-based domain knowledge to obtain a dedicated

DNN design, which resembles an iterative optimization
algorithm. Compared to conventional DNNs, unfolded
networks are typically interpretable, tend to have a smaller
number of parameters, and can, thus, be trained more
quickly [7], [61]. A key advantage of deep unfolding over
model-based optimization is inference speed. For instance,
unfolding projected gradient descent iterations into
DetNet allows inferring with much fewer layers compared
to the number of iterations required by the model-based
algorithm to converge. Similar observations have been
made in various unfolded algorithms [58], [66].

One of the key properties of unfolded networks is their
reliance on knowledge of the model describing the setup
(though not necessarily on its parameters). For example,
one must know that the image is corrupted by Poisson
noise to formulate the iterative procedure in Algorithm 2
unfolded into DCEA or that the observations obey a linear
Gaussian model to unfold the projected gradient descent
iterations into DetNet. However, the parameters of this
model, e.g., the matrix H in (8) and (12), can be either
provided based on domain knowledge, as done in DetNet,
or alternatively, learned in the training procedure, as car-
ried out by DCEA. The model awareness of deep unfolding
has its advantages and drawbacks. When the model is
accurately known, deep unfolding essentially incorporates
it into the DNN architecture, as opposed to conventional
black-box DNNs which must learn it from data. However,
this approach does not exploit the model-agnostic nature
of deep learning and, thus, may lead to degraded per-
formance when the true relationship between the mea-
surements and the desired quantities deviates from the

476 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 6. Illustration of an image corrupted by different levels of Poisson noise and the resulting denoised images produced by the unfolded

DCEA-C and DCEA-UC. Figure reproduced from [51] with authors’ permission.

model assumed in the design. Nonetheless, training an
unfolded network designed with a mismatched model
using data corresponding to the true underlying scenario
typically yields more accurate inference compared to the
model-based iterative algorithm with the same model mis-
match, as the unfolded network can learn to compensate
for this mismatch [64].

B. Neural Building Blocks

The neural building block is an alternative approach
to design model-aided networks, which can be treated
as a generalization of deep unfolding. It is based on
representing a model-based algorithm, or alternatively
prior knowledge of an underlying statistical model, as an
interconnection of distinct building blocks. Neural build-
ing blocks implement a DNN comprised of multiple sub-
networks. Each module learns to carry out the specific
computations of the different building blocks constituting
the model-based algorithm, as done in [16], [71], [72],
and [73], or to capture a known statistical relationship,
as in [74].

Neural building blocks are designed for scenarios that
are tackled using algorithms with flow diagram repre-
sentations, which can be captured as a sequential and
parallel interconnection of building blocks. In particular,
deep unfolding can be obtained as a special case of
neural building blocks, where the original algorithm is
an iterative optimizer, such that the building blocks are
interconnected in a sequential fashion and implemented
using a single layer. However, the generalization of neural
building blocks compared to deep unfolding is not encap-
sulated merely in its ability to implement nonsequential
interconnections between algorithmic building blocks in

a learned fashion but also in the identification of the
specific task of each block, as well as the ability to convert
known statistical relationships, such as causal graphs into
dedicated DNN architectures.

1) Design Outline: The application of neural building
blocks to design a model-aided deep network is based on
the following steps.

1) Identify an algorithm or a flowchart structure that is
useful for the problem at hand and can be decom-
posed into multiple building blocks.

2) Identify which of these building blocks should be
learned from data and what is their concrete task.

3) Design a dedicated neural network for each building
block capable of learning to carry out its specific task.

4) Train the overall resulting network, either in an end-
to-end fashion or by training each building block
network individually.

We next demonstrate how one can design a model-aided
network comprised of neural building blocks. Our example
focuses on symbol detection in flat MIMO channels, where
we consider the data-driven implementation of the itera-
tive soft interference cancellation (SIC) scheme of [75],
which is the DeepSIC algorithm proposed in [16].

2) Example 3: DeepSIC for MIMO Detection: Iterative
SIC [75] is an MIMO detection method suitable for lin-
ear Gaussian channels, i.e., the same channel models as
that described in the example of DetNet in Section IV-A.
DeepSIC is a hybrid model-based/data-driven implemen-
tation of the iterative SIC scheme [16]. However, unlike
its model-based counterpart and alternative deep MIMO
receivers [18], [19], [61], DeepSIC is not particularly
tailored for linear Gaussian channels and can be utilized
in various flat MIMO channels. We formulate DeepSIC by

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 477
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

first reviewing the model-based iterative SIC and present
DeepSIC as its data-driven implementation.

a) Iterative soft interference cancellation: The iterative
SIC algorithm proposed in [75] is an MIMO detection
method that combines multistage interference cancella-
tion with soft decisions. The detector operates iteratively,
where, in each iteration, an estimate of the conditional
probability mass function (PMF) of sk, which is the kth
entry of s, given the observed x, is generated for every
symbol k ∈ {1, 2, . . . , K} := K. Each PMF, which is an
|S| × 1 vector denoted p̂

(q)
k at the qth iteration, is com-

puted using the corresponding estimates of the interfer-
ing symbols {sl}l̸=k obtained in the previous iteration.
Iteratively repeating this procedure refines the PMF esti-
mates, allowing to accurately recover each symbol from
the output of the last iteration. This iterative procedure
is illustrated in Fig. 7(a) and summarized as Algorithm 3,
whose derivation is detailed in Appendix VI-C. Algorithm 3
is detailed for linear Gaussian models as in (8), assuming
that the noise w has variance σ2

w. We use hl to denote
the lth column of H, while N (µ,Σ) is the Gaussian
distribution with mean µ and covariance Σ.

Algorithm 3 Iterative SIC for System Model (8)

Init: Set initial PMFs guess {p̂(0)
k }K

k=1
1 for q = 0, 1, . . . do
2 For each k ∈ K, compute expected values e

(q)
k

and variance v
(q)
k from p̂

(q)
k .

3 Interference cancellation: For each k ∈ K
compute

z
(q+1)
k = x −

∑
l ̸=k

hle
(q)
l .

4 Soft decoding: For each k ∈ K, estimate
p̂

(q+1)
k as the PMF of sk given z

(q+1)
k ,

assuming that

z
(q+1)
k |sk ∼ N

(
hksk, σ2

wIK +
∑
l ̸=k

v
(q)
l hlh

T
l

)
.

5 end
Output: Estimate ŝ by setting each ŝk as the

symbol maximizing the estimated PMF
p̂

(q)
k .

b) DeepSIC: Iterative SIC is specifically designed for
linear channels of the form (8). In particular, the inter-
ference cancellation Step 3 of Algorithm 3 requires the
contribution of the interfering symbols to be additive. Fur-
thermore, it requires accurate complete knowledge of the
underlying statistical model, i.e., of (8). DeepSIC propsoed
in [16] learns to implement the iterative SIC from data as

a set of neural building blocks, thus circumventing these
limitations of its model-based counterpart.

Architecture: The iterative SIC algorithm can be viewed
as a set of interconnected basic building blocks, each
implementing the two stages of interference cancellation
and soft decoding, as illustrated in Fig. 7(a). While the
block diagram in Fig. 7(a) is ignorant of the underly-
ing channel model, the basic building blocks are model-
dependent. Although each of these basic building blocks
consists of two sequential procedures that are completely
channel-model-based, the purpose of these computations
is to carry out a classification task. In particular, the kth
building block of the qth iteration, k ∈ K, produces p̂

(q)
k ,

which is an estimate of the conditional PMF of sk given
x based on {p̂(q−1)

l }l̸=k. Such computations are naturally
implemented by classification DNNs, e.g., FC networks
with a softmax output layer. Embedding these conditional
PMF computations into the iterative SIC block diagram in
Fig. 7(a) yields the overall receiver architecture depicted
in Fig. 7(b).

A major advantage of using classification DNNs as the
basic building blocks in Fig. 7(b) stems from their ability
to accurately compute conditional distributions in complex
nonlinear setups without requiring a priori knowledge of
the channel model and its parameters. Consequently, when
these building blocks are trained to properly implement
their classification task, the receiver essentially realizes
iterative SIC for arbitrary channel models in a data-driven
fashion.

Training: In order for DeepSIC to reliably implement
symbol detection, its building block classification DNNs
must be properly trained. Two possible training approaches
are considered based on a labeled set of nt samples
{(st,xt)}nt

t=1.

1) End-to-end training: The first approach jointly trains
the entire network, i.e., all the building block DNNs.
Since the output of the deep network is the set of
PMFs {p̂(Q)

k }Kk=1, the sum cross-entropy loss is used.
Let θ be the network parameters and p̂

(Q)
k (x, α; θ) be

the entry of p̂(Q)
k corresponding to sk = α when the

input to the network parameterized by θ is x. The
sum cross-entropy loss is

L(θ) =
1

nt

nt∑
t=1

K∑
k=1

− log p̂
(Q)
k

(
xt, (st)k;θ

)
. (15)

Training the interconnection of DNNs in Fig. 7(b) end-
to-end based on (15) jointly updates the coefficients
of all the K · Q building block DNNs. For a large
number of symbols, i.e., large K, training so many
parameters simultaneously is expected to require a
large labeled set.

2) Sequential training: The fact that DeepSIC is imple-
mented as an interconnection of neural building
blocks implies that each block can be trained with
a reduced number of training samples. Specifically,

478 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 7. Iterative SIC illustration: (a) model-based method and (b) DeepSIC.

the goal of each building block DNN does not depend
on the iteration index: The kth building block of the
qth iteration outputs a soft estimate of sk for each
iteration q. Therefore, each building block DNN can
be trained individually by minimizing the conven-
tional cross-entropy loss. To formulate this objective,
let θ

(q)
k represent the parameters of the kth DNN at

iteration q and write p̂
(q)
k (x, {p̂(q−1)

l }l̸=k, α; θ
(q)
k) as

the entry of p̂
(q)
k corresponding to sk = α when the

DNN parameters are θ
(q)
k and its inputs are x and

{p̂(q−1)
l }l̸=k. The cross-entropy loss is

L
(
θ

(q)
k

)
=
−1

nt

nt∑
t=1

log p̂
(q)
k

(
x̃t, {p̂(q−1)

t,l }l̸=k, (s̃t)k;θ
(q)
k

)
(16)

where {p̂(q−1)
t,l } represent the estimated PMFs associ-

ated with xi computed at the previous iteration. The
problem with training each DNN individually is that
the soft estimates {p̂(q−1)

t,l } are not provided as part
of the training set. This challenge can be tackled by
training the DNNs corresponding to each layer in a
sequential manner, where, for each layer, the outputs
of the trained previous iterations are used as the soft
estimates fed as training samples.

Quantitative Results: Two experimental studies of Deep-
SIC taken from [16] are depicted in Fig. 8. These results
compare the symbol error rate (SER) achieved by DeepSIC,
which learns to carry out Q = 5 SIC iterations from nt =

5000 labeled samples. In particular, Fig. 8(a) considers a
Gaussian channel of the form (8) with K = N = 32, result-
ing in MAP detection being computationally infeasible, and

compares DeepSIC to the model-based iterative SIC and
the data-driven DetNet [18]. Fig. 8(b) considers a Poisson
channel, where x is related to s via a multivariate Poisson
distribution, for which schemes requiring a linear Gaussian
model, such as the iterative SIC algorithm, are not suitable.
The ability to use DNNs as neural building blocks to carry
out their model-based algorithmic counterparts in a robust
and model-agnostic fashion is demonstrated in Fig. 8.
In particular, it is demonstrated that DeepSIC approaches
the SER values of the iterative SIC algorithm in linear
Gaussian channels while notably outperforming it in the
presence of model mismatch, as well as when applied
in non-Gaussian setups. It is also observed in Fig. 8(a)
that the resulting architecture of DeepSIC can be trained
with smaller datasets compared to alternative data-driven
receivers, such as DetNet.

3) Discussion: The main rationale in designing DNNs
as interconnected neural building blocks is to facilitate
learned inference by preserving the structured operation
of a model-based algorithm applicable to the problem
at hand given full domain knowledge. As discussed ear-
lier, this approach can be treated as an extension of
deep unfolding, allowing to exploit additional structures
beyond a sequential iterative operation. The generalization
of deep unfolding into a set of learned building blocks
opens additional possibilities in designing model-aided
networks.

First, the treatment of the model-based algorithm as a
set of building blocks with concrete tasks allows a DNN
architecture designed to comply with this structure not
only to learn to carry out the original model-based method

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 479
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 8. Experimental results from [16] of DeepSIC compared to the model-based iterative SIC, the model-based MAP (when feasible), and

the data-driven DetNet of [18] (when applicable). Perfect CSI implies that the system is trained and tested using samples from the same

channel, while, under CSI uncertainty, they are trained using samples from a set of different channels. (a) 32 × 32 Gaussian channel.

(b) 4 × 4 Poisson channel.

from data but also to robustify it and enable its application
in diverse new scenarios. This follows since the block dia-
gram structure of the algorithm may be ignorant of the spe-
cific underlying statistical model and only relies upon a set
of generic assumptions, e.g., that the entries of the desired
vector s are mutually independent. Consequently, replac-
ing these building blocks with dedicated DNNs allows to
exploit their model-agnostic nature, and thus, the original
algorithm can now be learned to be carried out in complex
environments. For instance, DeepSIC can be applied to
nonlinear channels, owing to the implementation of the
building blocks of the iterative SIC algorithm using generic
DNNs, while the model-based algorithm is limited to setups
of the form (8).

In addition, the division into building blocks gives rise
to the possibility to train each block separately. The main
advantage in doing so is that a smaller training set is
expected to be required, though, in the horizon of a
sufficiently large amount of training, end-to-end training
is likely to yield a more accurate model as its parameters
are jointly optimized. For example, in DeepSIC, sequential
training uses the nt input–output pairs to train each DNN
individually. Compared to the end-to-end training that
utilizes the training samples to learn the complete set of
parameters, which can be quite large, sequential training
uses the same dataset to learn a significantly smaller num-
ber of parameters, reduced by a factor of K · Q, multiple
times. This indicates that the ability to train the blocks
individually is expected to require much fewer training
samples, at the cost of a longer learning procedure for
a given training set, due to its sequential operation, and
possible performance degradation as the building blocks
are not jointly trained. In addition, training each block sep-
arately facilitates adding and removing blocks when such
operations are required in order to adapt the inference
rule.

V. D N N - A I D E D I N F E R E N C E
DNN-aided inference is a family of model-based deep
learning algorithms in which DNNs are incorporated into
model-based methods. As opposed to model-aided net-
works discussed in Section IV, where the resultant system
is a deep network whose architecture imitates the oper-
ation of a model-based algorithm, here, the inference is
carried out using a traditional model-based method, while
some of the intermediate computations are augmented by
DNNs. The main motivation of DNN-aided inference is to
exploit the established benefits of model-based methods,
in terms of performance, complexity, and suitability for the
problem at hand. Deep learning is incorporated to mitigate
sensitivity to inaccurate model knowledge, facilitate oper-
ation in complex environments, and enable application in
new domains. An illustration of a DNN-aided inference
system is depicted in Fig. 9.

DNN-aided inference is particularly suitable for sce-
narios in which one only has access to partial domain
knowledge. In such cases, the available domain knowledge
dictates the algorithm utilized, while the part that is not
available or is too complex to model analytically is tackled
using deep learning. We divide our description of DNN-
aided inference schemes into three main families of meth-
ods: The first, referred to as structure-agnostic DNN-aided
inference detailed in Section V-A, utilizes deep learning
to capture structures in the underlying data distribution,
e.g., to represent the domain of natural images. This
DNN is then utilized by model-based methods, allow-
ing them to operate in a manner, which is invariant to
these structures. The family of structure-oriented DNN-
aided inference schemes, as detailed in Section V-B, utilizes
model-based algorithms to exploit a known tractable statis-
tical structure, such as an underlying Markovian behavior
of the considered signals. In such methods, deep learn-
ing is incorporated into the structure-aware algorithm,

480 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 9. DNN-aided inference illustration: (a) model-based algorithm comprised of multiple iterations with intermediate model-based

computations and (b) data-driven implementation of the algorithm, where the specific model-based computations are replaced with

dedicated learned deep models. Here, one can possibly use data to train the internal DNNs individually or to train the overall inference

mapping end-to-end as a discriminative learning model [54], [55], typically requiring the intermediate mathematical steps to be either

differentiable or well-approximated by a differentiable mapping.

thereby capturing the remaining portions of the underlying
model and mitigating sensitivity to uncertainty. Finally,
in Section V-C, we discuss neural augmentation methods
that are tailored to robustify model-based processing in the
presence of inaccurate knowledge of the parameters of the
underlying model. Here, the inference is carried out using
a model-based algorithm based on its available domain
knowledge, while a deep learning system operating in
parallel is utilized to compensate for errors induced by
model inaccuracy. Our description of these methodologies
in Sections V-A–V-C follows the same systematic form
used in Section IV, where each approach is detailed by a
high-level description, design outline, one or two concrete
examples, and a summarizing discussion.

A. Structure-Agnostic DNN-Aided Inference

The first family of DNN-aided inference utilizes deep
learning to implicitly learn structures and statistical prop-
erties of the signal of interest, in a manner that is amenable
to model-based optimization. These inference systems are
particularly relevant for various inverse problems in signal
processing, including denoising, sparse recovery, deconvo-
lution, and superresolution [76]. Tackling such problems
typically involves imposing some structure on the signal
domain. This prior knowledge is then incorporated into a
model-based optimization procedure, such as alternating
direction method of multipliers (ADMM) [77], fast iter-
ative shrinkage and thresholding algorithm [78], and
primal-dual splitting [79], which recover the desired signal
with provable performance guarantees.

Traditionally, the prior knowledge encapsulating the
structure and properties of the underlying signal is rep-
resented by a handcrafted regularization term or con-
straint incorporated into the optimization objective. For
example, a common model-based strategy used in various
inverse problems is to impose sparsity in some given
dictionary, which facilitates CS-based optimization. Deep
learning brings forth the possibility to avoid such explicit
constraints, thereby mitigating the detrimental effects of
crude, handcrafted approximation of the true underlying
structure of the signal while enabling optimization with
implicit data-driven regularization. This can be imple-
mented by incorporating deep denoisers as learned prox-
imal mappings in iterative optimization, as carried out by
plug-and-play networks3 [13], [14], [80], [81], [82], [83],
[84], [85]. DNN-based priors can also be used to enable,
e.g., CS beyond the domain of sparse signals [10], [11].

1) Design Outline: Designing structure-agnostic DNN-
aided systems can be carried out via the following steps.

1) Identify a suitable optimization procedure, given the
domain knowledge for the signal of interest.

2) The specific parts of the optimization procedure,
which rely on complicated and possibly analytically
intractable domain knowledge, are replaced with a
DNN.

3The term plug-and-play typically refers to the usage of an image
denoiser as proximal mapping in regularized optimization [80]. As this
approach can also utilize model-based denoisers, we use the term plug-
and-play networks for such methods with DNN-based denoisers.

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 481
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

3) The integrated data-driven module can either be
trained separately from the inference system, possibly
in an unsupervised manner as in [10], or alterna-
tively, the complete inference system is trained end-
to-end [12].

We next demonstrate how these steps are carried out
in two examples: CS over complicated domains, where
deep generative networks are used for capturing the signal
domain [10]; and plug-and-play networks, which augment
ADMM with a DNN to bypass the need to express a
proximal mapping.

2) Example 4: Compressed Sensing Using Generative Mod-
els: CS refers to the task of recovering some unknown
signal from (possibly noisy) lower dimensional observa-
tions. The mapping that transforms the input signal into
the observations is known as the forward operator. In our
example, we focus on the setting where the forward opera-
tor is a particular linear function that is known at the time
of signal recovery.

The main challenge in CS is that there could be (poten-
tially infinitely) many signals that agree with the given
observations. Since such a problem is underdetermined,
it is necessary to make some sort of structural assumptions
on the unknown signal to identify the most plausible one.
A classic assumption is that the signal is sparse on some
known basis.

a) System model: We consider the problem of noisy
CS, where we wish to reconstruct an unknown N -
dimensional signal s∗ from the following observations:

x = Hs∗ + w (17)

where H is an M × N matrix, modeled as random Gaus-
sian matrix with entries Hij ∼ N (0, 1/M), with M < N ,
and w is an M × 1 noise vector.

b) Sparsity-based CS: We next focus on a particular
technique as a representative example of model-based CS.
We rely here on the assumption that s∗ is sparse and seek
to recover s∗ from x by solving the ℓ1 relaxed LASSO
objective

LLASSO(s) ≜ ∥Hs− x∥22 + λ∥s∥1. (18)

While the derivation above assumes that s∗ is sparse, the
LASSO objective can also be used when s∗ is sparse in
some dictionary B, e.g., in the wavelet (WVT) domain,
and the detailed formulation is given in Appendix VI-D.

c) DNN-aided compressed sensing: In a data-driven
approach, we aim to replace the sparsity prior with a
learned DNN. The following description is based on [10],
which is proposed to use a deep generative prior. Specif-
ically, we replace the explicit sparsity assumption on true
signal s∗, with a requirement that it lies in the range of
a pretrained generator network G : Rl → RN (e.g., the
generator network of a GAN).

Pretraining: To implement deep generative priors, one
first has to train a generative network G to map a latent
vector z into a signal s, which lies in the domain of inter-
est. A major advantage of employing a DNN-based prior in
this setting is that generator networks are agnostic to how
they are used and can be pretrained and reused for multiple
downstream tasks. The pretraining, thus, follows the stan-
dard unsupervised training procedure, as discussed, e.g.,
in Section III-B for GANs.

In particular, the work [10] trained a deep convolutional
GAN [86] on the CelebA dataset [87] to represent 64 ×
64 color images of human faces, as well as a variational
autoencoder (VAE) [88] for representing handwritten dig-
its in 28 × 28 grayscale form based on the MNIST
dataset [89].

Architecture: Once a pretrained generator network G is
available, it can be incorporated as an alternative prior for
the inverse model in (17). The key intuition behind this
approach is that the range of G should only contain plausi-
ble signals. Thus, one can replace the handcrafted sparsity
prior with a data-driven DNN prior G by constraining our
signal recovery to the range of G.

One natural way to impose this constraint is to perform
the optimization in the latent space to find z whose image
G(z) matches the observations. This is carried out by
minimizing the following loss function in the latent space
of G:

L(z) = ∥HG(z)− x∥22. (19)

Because the above loss function involves a highly non-
convex function G, there is no closed-form solution or
guarantee for this optimization problem. However, the
loss function is differentiable with respect to z, so it can
be tackled using conventional gradient-based optimization
techniques. Once a suitable latent z is found, the signal is
recovered as G(z).

In practice, Bora et al. [10] report that incorporating
an ℓ2 regularizer on z helps. This is possibly due to the
Gaussian prior assumption for the latent variable, as the
density of z is proportional to exp(−∥z∥2

2). Therefore,
minimizing ∥z∥2

2 is equivalent to maximizing the density of
z under the Gaussian prior. This has the effect of avoiding
images that are extremely unlikely under the Gaussian
prior even if it matches the observation well. The final loss
includes this regularization term

LCS(z) = ∥HG(z)− x∥22 + λ∥z∥22 (20)

where λ is a regularization coefficient.
In summary, DNN-aided CS replaces the constrained

optimization over the complex input signal with tractable
optimization over the latent variable z, which follows a
known simple distribution. This is achieved using a pre-
trained DNN-based prior G to map it into the domain of
interest. Inference is performed by minimizing LCS in the

482 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 10. High-level overview of CS with a DNN-based prior. The

generator network G is pretrained to map Gaussian latent variables

to plausible signals in the target domain. Then, signal recovery is

done by finding a point in the range of G that minimizes

reconstruction error via gradient-based optimization over the latent

variable.

latent space of G. An illustration of the system operation is
depicted in Fig. 10.

Quantitative Results: To showcase the efficacy of the
data-driven prior at capturing complex high-dimensional
signal domains, we present the evaluation of its perfor-
mance, as reported in [10]. The baseline model used for
comparison is based on directly solving the LASSO loss
(18). For CelebA, we formulate the LASSO objective in the
discrete cosine transform (DCT) and the WVT basis, and
minimize it via coordinate descent.

The first task is the recovery of handwritten digit images
from low-dimensional projections corrupted by additive
Gaussian noise. The reconstruction error is evaluated
for various numbers of observations M . The results are
depicted in Fig. 11.

We clearly see the benefit of using a data-driven deep
prior in Fig. 11, where the VAE-based methods (labeled

Fig. 11. Experimental result for noisy CS on the MNIST dataset.

Reproduced from [10] with the authors’ permission.

Fig. 12. Visualization of the recovered signals from noisy CS on the

CelebA dataset. Reproduced from [10] with the authors’ permission.

VAE and VAE + REG) show notable performance gain
compared to the sparsity prior for a small number of
measurements. Implicitly imposing a sparsity prior via the
LASSO objective outperforms the deep generative priors
as the number of observations approaches the dimension
of the signal. One explanation for this behavior is that
the pretrained generator G does not perfectly model the
MNIST digit distribution and may not actually contain the
ground-truth signal in its range. As such, its reconstruction
error may never be exactly zero regardless of how many
observations are given. The LASSO objective, on the other
hand, does not suffer from this issue and is able to make
use of the extra observations available.

The ability of deep generative priors to facilitate recov-
ery from compressed measurements is also observed in
Fig. 12, which qualitatively evaluates GAN-based CS recov-
ery on the CelebA dataset. This experiment uses M =

500 noisy measurements (out of N = 12 288 total dimen-
sions). As shown in Fig. 12, in this low-measurement
regime, the data-driven prior again provides much more
reasonable samples.

3) Example 5: Plug-and-Play Networks for Image Restora-
tion: The above example of DNN-aided CS allows carrying
out regularized optimization over complex domains while
using deep learning to avoid regularizing explicitly. This
is achieved via deep priors, where the domain of inter-
est is captured by a generative network. An alternative
strategy, referred to as plug-and-play networks, applies
deep denoisers as learned proximal mappings. Namely,
instead of using DNNs to evaluate the regularized objective
as in [10], one uses DNNs to carry out an optimization
procedure, which relies on this objective without having

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 483
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

to express the desired signal domain. In the following,
we exemplify the application of plug-and-play networks for
image restoration using ADMM optimization [80].

a) System model: We again consider the linear inverse
problem formulated in (17) in which the additive noise
w is comprised of i.i.d. mutually independent Gaussian
entries with zero mean and variance σ2

w. However, unlike
the setup considered in the previous example, the sensing
matrix H is not assumed to be random and can be any
fixed matrix dictated by the underlying setup.

The recovery of the desired signal s can be obtained via
the MAP rule, which is given by

ŝ = arg min
s
− log p(s|x)

= arg min
s
− log p(x|s)− log p(s)

= arg min
s

1

2
∥x−Hs∥2 + ϕ(s) (21)

where ϕ(s) is a regularization term which equals
−σ2

w log p(s), with possibly some additive constant that
does not affect the minimization in (21).

b) Alternating direction method of multipliers: The reg-
ularized optimization problem that stems from the MAP
rule in (21) can be solved using ADMM [77]. ADMM
introduces two auxiliary variables, denoted v and u,
and is given by the iterative procedure in Algorithm 4,
whose derivation is detailed in Appendix VI-E. In Step 2,
we defined f(v) ≜ (1/2)∥x −Hv∥2, while the proximal
mapping of some function g(·) used in Steps 2 and 3 is
defined as

proxg(v) := arg min
z

(
g(z) +

1

2
∥z − v∥22

)
. (22)

The ADMM algorithm is illustrated in Fig. 13(a).

Algorithm 4 ADMM

Init: Fix α > 0. Initialize u(0), v(0) randomly
1 for q = 0, 1, . . . do
2 Update ŝq+1 = proxαf (vq + uq).
3 Update vq+1 = proxαϕ(sq+1 + uq).
4 Update uq+1 = uq + (ŝq+1 − vq+1).
5 end

Output: Estimate ŝ = ŝq .

c) Plug-and-play ADMM: The key challenge in imple-
menting the ADMM iterations stems from the computation
of the proximal mapping in Step 3. In particular, while
one can evaluate Step 2 in the closed form, as shown in
Appendix VI-E, computing Step 3 of Algorithm 4 requires
explicit knowledge of the prior ϕ(·), which is often not
available. Furthermore, even when one has a good approx-
imation of ϕ(·), computing the proximal mapping in Step 3
may still be extremely challenging to carry out analytically.

However, the proximal mapping in Step 3 of Algorithm 4
is invariant of the task and the data. In particular, it is
the solution to the problem of MAP denoising ŝq+1 + uq,
assuming that the noise-free signal has prior ϕ(·) and
the noise is Gaussian with variance α. Now, denoisers
are common DNN models and are known to operate
reliably on signal domains with intractable priors (e.g.,
natural images) [81]. One can, thus, implement ADMM
optimization without having to specify the prior ϕ(·) by
replacing Step 3 of Algorithm 4 with a DNN denoiser [80],
as illustrated in Fig. 13. Specifically, the proximal mapping
is replaced with a DNN-based denoiser fθ such that

vq+1 = fθ (ŝq+1 + uq; αq) (23)

where αq denotes the noise level to which the denoiser
is tuned. This noise level can either be fixed to represent
that used during training, or alternatively, one can use
flexible DNN-based denoiser in which, e.g., the noise level
is provided as an additional input [90].

Quantitative Results: As an illustrative example of the
quantitative gains on plug-and-play networks, we consider
the setup of cardiac magnetic resonance imaging image
reconstruction reported in [80]. The proximal mapping
here is replaced with a five-layer CNN with residual con-
nection operating on spatiotemporal volumetric patches.
The CNN is trained offline to denoise clean images manu-
ally corrupted by Gaussian noise. The experimental results
reported in Fig. 14 demonstrate that the introduction of
deep denoisers notably improves both the performance
and the convergence rate of the iterative optimizer com-
pared to utilizing model-based approaches for approximat-
ing the proximal mapping.

4) Discussion: Using deep learning to strengthen
regularized optimization builds upon the model-agnostic
nature of DNNs. Traditional optimization methods rely on
mathematical expressions to capture the structure of the
solution that one is looking for, inevitably inducing model
mismatch in domains that are extremely challenging
to describe analytically. The ability of deep learning to
learn complex mappings without relying on domain
knowledge is exploited here to bypass the need for explicit
regularization.

The need to learn to capture the domain of interest
facilitates using pretrained networks, thus reducing the
dependency on massive amounts of labeled data. For
instance, deep generative priors use DNN architectures
that are trained in an unsupervised manner and, thus,
rely only on unlabeled data, e.g., natural images. Such
unlabeled samples are typically more accessible and easy
to aggregate compared to labeled data, e.g., tagged natural
images. One can often utilize off-the-shelf pretrained DNNs
when such a network exists for domains related to the
ones over which optimization is carried out, with possible
adjustments to account for the subtleties of the problem by
transfer learning.

484 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 13. Illustration of (a) ADMM algorithm compared to (b) plug-and-play ADMM network.

Finally, while our description of DNN-aided regularized
optimization relies on model-based iterative optimizers,
which utilize a deep learning module, one can also incor-
porate deep learning into the optimization procedure. For
instance, the iterative optimization steps can be unfolded
into a DNN, as in, e.g., [12]. This approach allows bene-
fiting from both the ability of deep learning to implicitly
represent complex domains, as well as the inference speed
reduction of deep unfolding along with its robustness to
uncertainty and errors in the model parameters assumed to
be known. Nonetheless, the fact that the iterative optimiza-
tion must be learned from data in addition to the structure
of the domain of interest implies that larger amounts of
labeled data are required to train the system compared to
using the model-based optimizer.

B. Structure-Oriented DNN-Aided Inference

The family of structure-oriented DNN-aided inference
algorithms utilizes model-based methods designed to

Fig. 14. Normalized MSE versus iteration for the recovery of

cardiac MRI images. Here, plug-and-play networks using a CNN

denoiser (PnP-CNN) are compared to the model-based strategies of

computing the proximal mapping by imposing as prior sparsity in

the undecimated WVT domain (PnP-UWT), as well as CS with a

similar constraint (CS-UWT) and with total-variation prior (CS-TV).

Figure reproduced from [80] with authors’ permission.

exploit an underlying statistical structure while integrat-
ing DNNs to enable operation without additional explicit
characterization of this model. The types of structures
exploited in the literature can come in the form of an
a priori known factorizable distribution, such as causality
and finite memory in communication channels [15], [22],
[91]; it can follow from an established approximation of
the statistical behavior, such as modeling of images as
conditional random fields [92], [93], [94]; follow from
physical knowledge of the system operation [95], [96],
[97]; or arise due to the distributed nature of the problem,
as in [98].

The main advantage in accounting for such statistical
structures stems from the availability of various model-
based methods, tailored specifically to exploit these struc-
tures to facilitate accurate inference at reduced complexity.
Many of these algorithms, such as the Kalman filter and
its variants [99, Ch. 7], which build upon an underlying
state-space structure, or the Viterbi algorithm [100], which
exploits the presence of a hidden Markov model, can
be represented as special cases of the broad family of
factor graph methods. Consequently, our main example
used for describing structure-oriented DNN-aided infer-
ence focuses on the implementation of message passing
over data-driven factor graphs.

1) Design Outline: Structure-oriented DNN-aided
algorithms utilize deep learning not for the overall
inference task but for robustifying and relaxing the
model-dependence of established model-based inference
algorithms designed specifically for the structure induced
by the specific problem being solved. The design of
such DNN-aided hybrid inference systems consists of the
following steps.

1) A proper inference algorithm is chosen based on
the available knowledge of the underlying statistical
structure. The domain knowledge is encapsulated in
the selection of the algorithm, which is learned from
data.

2) Once a model-based algorithm is selected, we iden-
tify its model-specific computations and replace them
with dedicated compact DNNs.

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 485
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

3) The resulting DNNs are either trained individually,
or the overall system can be trained in an end-to-end
manner.

We next demonstrate how these steps are translated
in a hybrid model-based/data-driven algorithm, using the
example of learned factor graph inference for Markovian
sequences proposed in [91] and [101].

2) Example 6: Learned Factor Graphs: Factor graph meth-
ods, such as the sum-product (SP) algorithm, exploit the
factorization of a joint distribution to efficiently compute a
desired quantity [102]. The application of the SP algorithm
for distributions that can be represented as noncyclic factor
graphs, such as Markovian models, allows computing the
MAP rule, an operation whose burden typically grows
exponentially with the label space dimensionality, with
complexity that only grows linearly with it. While the
following description focuses on Markovian stationary time
sequences, it can be extended to various forms of factoriz-
able distributions.

a) System model: We consider the recovery of a time
series {si} taking values in a finite set S from an observed
sequence {xi} taking values in a set X . The subscript i

denotes the time index. The joint distribution of {si} and
{xi} obeys an lth-order Markovian stationary model, l ≥ 1.
Consequently, when the initial state {si}0

i=−l is given, the
joint distribution of x = [x1, . . . , xt]

T and s = [s1, . . . , st]
T

satisfies

p(x, s)=

t∏
i=1

p
(
xi|si

i−l

)
p
(
si|si−1

i−l

)
(24)

for any fixed sequence length t > 0, where we write sj
i ≜

[si, si+1, . . . , sj]
T for i < j.

b) Sum-product algorithm: When the joint distribu-
tion of s and x is a priori known and can be computed,
the inference rule that minimizes the error probability for
each time instance is the MAP detector

ŝi (x) = arg max
si∈S

p(si|x) (25)

for each i ∈ {1, . . . , t} ≜ T . This rule can be efficiently
approached when (24) holds using the SP algorithm [102].
The SP algorithm represents the joint distribution (24) and
computes the posterior distribution by message passing
over this graph, as illustrated in Fig. 15(a). The resulting
procedure, as detailed further in Appendix VI-F, is summa-
rized as Algorithm 5, where we define si ≜ si

i−l+1 ∈ Sl,
and the function

f (xi, si, si−1) ≜ p (xi|si, si−1) p (si|si−1) . (26)

Algorithm 5 approaches the MAP detector in (25) with
complexity that only grows linearly with t.

c) Learned factor graphs: Learned factor graphs
enable learning to implement MAP detection from labeled
data. It utilizes partial domain knowledge to determine the

Algorithm 5 SP Algorithm for System Model (24)
Init: Fix an initial forward message −→µ s0 (s) = 1 and a final backward

message ←−µ st (s) ≡ 1.
1 for i = t− 1, t− 2, . . . , 1 do
2 For each si ∈ Sl, compute backward message

←−µ si (si) =
∑
si+1

f(xi+1, si+1, si)
←−µ si+1 (si+1).

3 end
4 for i = 1, 2, . . . , t do
5 For each si ∈ Sl, compute forward message

−→µ si (si) =
∑
si−1

f(xi, si, si−1)−→µ si−1 (si−1).

6 Estimate

ŝi =arg max
si∈S

∑
si−1∈Sl

−→µ si−1 (si−1)f(xi, [si−l+1, . . . , si], si−1)

×←−µ si ([si−l+1, . . . , si]).7

8 end
Output: ŝt = [ŝ1, . . . , ŝt]

T

structure of the factor graph while using deep learning to
compute the function nodes without having to explicitly
specify their computations. Finally, it carries out the SP
method for inference over the resulting learned factor
graph.

Architecture: For Markovian relationships, the structure
of the factor graph is illustrated in Fig. 15(a) regardless
of the specific statistical model. Furthermore, the station-
arity assumption implies that the complete factor graph is
encapsulated in the single function f(·) (26) regardless of
the block size t. Building upon this insight, DNNs can be
utilized to learn the mapping carried out at the function
node separately from the inference task. The resulting
learned stationary factor graph is then used to recover {si}
by message passing, as illustrated in Fig. 15(b). As learning
a single function node is expected to be a simpler task
compared to learning the overall inference method for
recovering s from x, this approach allows using relatively
compact DNNs, which can be learned from a relatively
small dataset.

Training: In order to learn a stationary factor graph from
samples, one must only learn its function node, which here
boils down to learning p(xi|si

i−l) and p(si|si−1
i−l) by (26).

Since S is finite, the transition probability p(si|si−1
i−l) can

be learned via a histogram.
For learning the distribution p(xi|si

i−l), it is noted that

p(xi|si) = p (si|xi) p (xi)
(
p(si)

)−1
. (27)

A parametric estimate of p (si|xi), denoted P̂θ(si|xi),
is obtained for each si ∈ Sl+1 by training classification
networks with softmax output layers to minimize the cross-

486 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 15. Illustration of the SP method for Markovian sequences using (a) true factor graph and (b) learned factor graph.

entropy loss. As the SP mapping is invariant to scaling
f(xi, si, si−1) with some factor, which does not depend on
the si, si−1, one can set p (xi) ≡ 1 in (27) and use the
result to obtain a scaled value of the function node, which,
as discussed above, does not affect the inference mapping.

Quantitative Results: As a numerical example of learned
factor graphs for Markovian models, we consider a sce-
nario of symbol detection over causal stationary communi-
cation channels with finite memory, reproduced from [91].
Fig. 16 depicts the numerically evaluated SER achieved
by applying the SP algorithm over a factor graph learned
from nt = 5000 labeled samples for channels with mem-
ory l = 4. The results are compared to the performance
of model-based SP, which requires complete knowledge
of the underlying statistical model, as well as the slid-
ing bidirectional RNN detector proposed in [103] for
such setups, which utilizes a conventional DNN archi-
tecture that does not explicitly account for the Marko-
vian structure. Fig. 16(a) considers a Gaussian chan-
nel, while, in Fig. 16(b), the conditional distribution
p(xi|si

i−l) represents a Poisson distribution. Fig. 16 demon-
strates the ability of learned factor graphs to enable
accurate message-passing inference in a data-driven man-
ner, as the performance achieved using learned factor
graphs approaches that of the SP algorithm, which oper-
ates with full knowledge of the underlying statistical
model. The numerical results also demonstrate that com-
bining model-agnostic DNNs with model-aware inference
notably improves robustness to model uncertainty com-
pared to applying SP with the inaccurate model. Further-
more, it also observed that explicitly accounting for the

Markovian structure allows achieving improved perfor-
mance compared to utilizing black-box DNN architectures,
such as the sliding bidirectional RNN detector, with limited
datasets for training.

3) Discussion: The integration of deep learning into
structure-oriented model-based algorithms allows to
exploit the model-agnostic nature of DNNs while explic-
itly accounting for available structural domain knowl-
edge. Consequently, structure-oriented DNN-aided infer-
ence is most suitable for setups in which structured
domain knowledge naturally follows from established
models, while the subtleties of the complete statistical
knowledge may be challenging to accurately capture ana-
lytically. Such structural knowledge is often present in
various problems in signal processing and communica-
tions. For instance, modeling communication channels
as causal finite-memory systems, as assumed in the
above quantitative example, is a well-established repre-
sentation of many physical channels. The availability of
established structures in signal processing-related setups
makes structure-oriented DNN-aided inference a candidate
approach to facilitate inference in such scenarios in a man-
ner, which is ignorant of the possibly intractable subtleties
of the problem, by learning to account for them implicitly
from data.

The fact that DNNs are used to learn an intermediate
computation rather than the complete predication rule
facilitates the usage of relatively compact DNNs. This
property can be exploited to implement learned inference
on computationally limited devices, as was done in [97] for

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 487
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 16. Experimental results from [91] of learned factor graphs (learned FG) compared to the model-based SP algorithm and the

data-driven sliding bidirectional RNN (SBRNN) of [103]. Perfect CSI implies that the system is trained and tested using samples from the

same channel, while, under CSI uncertainty, they are trained using samples from a set of different channels. (a) Gaussian channel.

(b) Poisson channel.

DNN-aided velocity tracking in autonomous racing cars.
An additional consequence is that the resulting system can
be trained using scarce datasets. One can exploit the fact
that the system can be trained using small training sets
to, e.g., enable online adaptation to temporal variations in
the statistical model based on some feedback on the cor-
rectness of the inference rule. This property was exploited
in [104] to facilitate online training of DNN-aided receivers
in coded communications.

A DNN integrated into a structure-oriented model-based
inference method can be either trained individually, i.e.,
independently of the inference task, or in an end-to-end
fashion. The first approach typically requires less training
data, and the resulting trained DNN can be combined with
various inference algorithms. For instance, the learned
function node used to carry out SP inference in the above
example can also be integrated into the Viterbi algorithm,
as done in [15]. Alternatively, the learned modules can
be tuned end-to-end by formulating their objective as that
of the overall inference algorithm and backpropagating
through the model-based computations (see [94]). Learn-
ing in an end-to-end fashion facilitates overcoming inaccu-
racies in the assumed structures, possibly by incorporating
learned methods to replace the generic computations of
the model-based algorithm, at the cost of requiring larger
volumes of data for training purposes.

C. Neural Augmentation

The DNN-aided inference strategies detailed in Sec-
tions V-A and V-B utilize model-based algorithms to carry
out inference while replacing explicit domain-specific com-
putations with dedicated DNNs. An alternative approach,
referred to as neural augmentation, utilizes the complete
model-based algorithm for inference, i.e., without embed-
ding deep learning into its components, while using an
external DNN for correcting some of its intermediate

computations [21], [23], [105], [106]. An illustration of
this approach is depicted in Fig. 17.

The main advantage of utilizing an external DNN for
correcting internal computations stems from its ability to
notably improve the robustness of model-based methods to
inaccurate knowledge of the underlying model parameters.
Since the model-based algorithm is individually imple-
mented, one must posses the complete domain knowledge
it requires, and thus, the external correction DNN allows
the resulting system to overcome inaccuracies in this
domain knowledge by learning to correct them from data.
Furthermore, the learned correction term incorporated
by neural augmentation can improve the performance
of model-based algorithms in scenarios where they are
suboptimal, as detailed in the example in the sequel.

1) Design Outline: The design of neural-augmented
inference systems is comprised of the following steps.

1) Choose a suitable iterative optimization algorithm for
the problem of interest, and identify the informa-
tion exchanged between the iterations, along with
the intermediate computations used to produce this
information.

2) The information exchanged between the iterations is
updated with a correction term learned by a DNN.
The DNN is designed to combine the same quantities
used by the model-based algorithm, only in a learned
fashion.

3) The overall hybrid model-based/data-driven system
is trained in an end-to-end fashion, where one can
consider not only the algorithm outputs in the loss
function but also the intermediate outputs of the
internal iterations.

We next demonstrate how these steps are carried out
in order to augment Kalman smoothing, as proposed
in [105].

488 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 17. Neural augmentation illustration.

2) Example 7: Neural-Augmented Kalman Smooth-
ing: The DNN-aided Kalman smoother proposed in [105]
implements state estimation in environments character-
ized by state-space models. Here, neural augmentation not
only robustifies the smoother in the presence of inaccurate
model knowledge but also improves its performance in
nonlinear setups, where variants of the Kalman algorithm,
such as the extended Kalman (E-Kalman) method, may be
suboptimal [99, Ch. 7].

a) System model: Consider a linear Gaussian state-
space model. Here, one is interested in recovering a
sequence of t state RVs {si}ti=1 taking values in a continu-
ous set from an observed sequence {xi}ti=1. The observa-
tions are related to the desired state sequence via

xi = Hsi + ri (28a)

while the state transition takes the form

si = Fsi−1 + wi. (28b)

In (28), ri and wi obey an i.i.d. zero-mean Gaussian
distributions with covariance R and W , respectively, while
H and F are known linear mappings.

We focus on scenarios where the state-space model
in (28) that is available to the inference system is an inac-
curate approximation of the true underlying dynamics. For
such scenarios, one can apply Kalman smoothing, which
is known to achieve minimal MSE recovery when (28)
holds, while introducing a neural augmentation correction
term [105].

b) Kalman smoothing: The Kalman smoother com-
putes the minimal MSE estimate of each si given a real-
ization of x = [x1, . . . ,xt]

T . Its procedure is comprised
of forward and backward message passing, exploiting the
Markovian structure of the state-space model to operate at
complexity, which only grows linearly with t. In particular,
by writing s = [s1, . . . , st]

T , one way to implement such

smoothing to approach the minimal MSE estimate involves
applying gradient descent optimization on the joint log-
likelihood function, i.e., by iterating over

s(q+1) = s(q) + η∇s(q) log p
(
x, s(q)

)
(29)

where η > 0 is a step size. Leveraging the state-space
model (28), one can implement gradient descent itera-
tions as message passing, via the procedure summarized
in Algorithm 6, whose detailed formulation is given in
Appendix VI-G.

Algorithm 6 Smoothing via Iterative Gradient
Descent
Init: Fix step-size η > 0. Set initial guess ŝ(0)

1 for q = 0, 1, . . . do
2 for i = 1, . . . , t do
3 Compute messages

µ
(q)
Si−1→Si

= −W−1
(
s
(q)
i − Fs

(q)
i−1

)
,

µ
(q)
Si+1→Si

= F T W−1
(
s
(q)
i+1 − Fs

(q)
i

)
,

µ
(q)
Xi→Si

= HT R−1
(
xi − Hs

(q)
i

)
.

4 Update gradient step via

ŝ
(q+1)
i = ŝ

(q)
i +η

(
µ

(q)
Si−1→Si

+ µ
(q)
Si+1→Si

+µ
(q)
Xi→Si

)
.5

6 end
7 end

Output: Estimate ŝ = ŝ(q).

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 489
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 18. Neural augmented Kalman smoother illustration. Blocks marked with Z−1 represent a single iteration delay.

c) Neural-augmented Kalman smoothing: The gradient
descent formulation in (29) is evaluated by the messages
in Step 3 of Algorihtm 6, which, in turn, rely on accurate
knowledge of the state-space model (28). To facilitate
operation with inaccurate model knowledge due to, e.g.,
(28) being a linear approximation of a nonlinear setup,
one can introduce neural augmentation to learn to correct
inaccurate computations of the log-likelihood gradients.
This is achieved by using an external DNN to map the
messages in Step 3 into a correction term, denoted ϵ(q+1).

Architecture: The learned mapping of the messages (28)
into a correction term operates in the form of a graph
neural network (GNN) [107]. This is implemented by
maintaining an internal node variable for each variable in
Step 3 of Algorithm 6, denoted h

(q)
si for each s

(q)
i and hxi

for each xi, as well as internal message variables m
(q)
V n→Si

for each message computed by the model-based Algo-
rithm 6. The node variables h

(q)
si are updated along with the

model-based smoothing algorithm iterations as estimates
of their corresponding variables, while the variables hxi

are obtained once from x via a neural network. The GNN
then maps the messages produced by the model-based
Kalman smoother into its internal messages via a neural
network fe(·), which operates on the corresponding node
variables, i.e.,

m
(q)
V n→Si

= fe

(
h(q)
vn

, h(q)
si

, µ
(q)
V n→Si

)
(30)

where h
(q)
xn ≡ hxn for each q. These messages are then com-

bined and forwarded into a gated recurrent unit (GRU),
which produces the refined estimate of the node variables
{h(q+1)

si } based on their corresponding messages (30).
Finally, each updated node variable h

(q+1)
si is mapped into

its corresponding error term ϵ
(q+1)
i via a fourth neural

network, denoted fd(·).
The correction terms {ϵ(q+1)

i } aggregated into the vector
ϵ(q+1) are used to update the log-likelihood gradients,

resulting in the update equation (29) replaced with

s(q+1) = s(q) + η
(
∇s(q) log p

(
x, s(q)

)
+ ϵ(q+1)

)
. (31)

The overall architecture is illustrated in Fig. 18.
Training: Let θ be the parameters of the GNN in Fig. 18.

The hybrid system is trained end-to-end to minimize the
empirical weighted ℓ2 norm loss over its intermediate
layers, where the contribution of each iteration to the
overall loss increases as the iterative procedure progresses.
In particular, letting {(st,xt)}nt

t=1 be the training set, the
loss function used to train the neural-augmented Kalman
smoother is given by

L(θ) =
1

nt

nt∑
t=1

Q∑
q=1

q

Q
∥st − ŝq(xt;θ)∥2 (32)

where ŝq(xt;θ) is the estimate produced by the qth itera-
tion, i.e., via (31), with parameters θ and input xt.

Quantitative Results: The experiment whose results are
depicted in Fig. 19 considers a nonlinear state-space
model described by the Lorenz attractor equations, which
describe atmospheric convection via continuous-time dif-
ferential equations. The state-space model is approximated
as a discrete-time linear one by replacing the dynamics
with their jth order Taylor series.

Fig. 19 demonstrates the ability of neural augmentation
to improve model-based inference. It is observed that intro-
ducing the DNN-based correction term allows the system
to learn to overcome the model inaccuracy and achieve
an error, which decreases with the amount of available
training data. It is also observed that the hybrid approach
of combining model-based inference and deep learning
enables accurate inference with notably reduced volumes
of training data, as the individual application of the GNN
for state estimation, which does not explicitly account

490 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Fig. 19. MSE versus dataset size for the neural-augmented Kalman

smoother (Hybrid) compared to the model-based E-Kalman smoother

and a solely data-driven GNN for various linearizations of

state-space models (represented by the index j). Figure reproduced

from [105] with authors’ permission.

for the available domain knowledge, requires much more
training data to achieve similar accuracy as that of the
neural-augmented Kalman smoother.

3) Discussion: Neural augmentation implements hybrid
model-based/data-driven inference by utilizing two indi-
vidual modules—a model-based algorithm and a DNN—
with each capable of inferring on its own. The rationale
here is to benefit from both approaches by interleaving
the iterative operation of the modules, and specifically
by utilizing the data-driven component to learn to cor-
rect the model-based algorithm, but rather than produce
individual estimates. This approach, thus, conceptually
differs from the DNN-aided inference strategies discussed
in Sections V-A and V-B, where a DNN is integrated into a
model-based algorithm.

The fact that neural augmentation utilizes individual
model-based and data-driven modules reflects its require-
ments and use cases. First, one must possess full domain
knowledge, or at least an approximation of the true
model, in order to implement model-based inference. For
instance, the neural-augmented Kalman smoother requires
full knowledge of the state-space model (28), or at least
an approximation of this analytical closed-form model as
used in the quantitative example, in order to compute
the exchanged messages in Algorithm 6. In addition, the
presence of an individual DNN module implies that rela-
tively large amounts of data are required in order to train
it. Nonetheless, the fact that this DNN only produces a
correction term, which is interleaved with the model-based
algorithm operation, implies that the amount of train-
ing data required to achieve a given accuracy is notably
smaller compared to that required when using solely the
DNN for inference. For instance, the quantitative example
of the neural augmented Kalman smoother demonstrates

that it requires 10–20 times fewer samples compared to
that required by the individual GNN to achieve similar MSE
results.

VI. C O N C L U S I O N A N D F U T U R E C H A L -
L E N G E S

In this article, we presented a mapping of methods
for combining domain knowledge and data-driven infer-
ence via model-based deep learning in a tutorial manner.
We noted that hybrid model-based/data-driven systems
can be categorized into model-aided networks, which uti-
lize model-based algorithms to design DNN architectures
and DNN-aided inference, where deep learning is inte-
grated into traditional model-based methods. We detailed
representative design approaches for each strategy in a
systematic manner, along with design guidelines and con-
crete examples. To conclude this overview, we first sum-
marize the key advantages of model-based deep learning
in Section VI-A. Then, we present guidelines for selecting
a design approach for a given application in Section VI-B,
intended to facilitate the derivation of future hybrid
data-driven/model-based systems. Finally, we review some
future research challenges in Section VI-C.

A. Advantages of Model-Based Deep Learning

The combination of traditional handcrafted algorithms
with emerging data-driven tools via model-based deep
learning brings forth several key advantages. Compared
to purely model-based schemes, the integration of deep
learning facilitates inference in complex environments,
where accurately capturing the underlying model in a
closed-form mathematical expression may be infeasible.
For instance, incorporating DNN-based implicit regular-
ization was shown to enable CS beyond its traditional
domain of sparse signals, as discussed in Section V-A, while
the implementation of the SIC method as an intercon-
nection of neural building blocks enables its operation in
nonlinear setups, as demonstrated in Section IV-B. The
model-agnostic nature of deep learning also allows hybrid
model-based/data-driven inference to achieve improved
resiliency to model uncertainty compared to inferring
solely based on domain knowledge. For example, aug-
menting model-based Kalman smoothing with a GNN was
shown in Section V-C to notably improve its performance
when the state-space model does not fully reflect the
true dynamics, while the usage of learned factor graphs
for SP inference was demonstrated to result in improved
robustness to model uncertainty in Section V-B. Finally,
the fact that hybrid systems learn to carry out part of
their inference based on data allows inferring with a
reduced delay compared to the corresponding fully model-
based methods, as demonstrated by deep unfolding in
Section IV-A.

Compared to utilizing conventional DNN architectures
for inference, the incorporation of domain knowledge via a
hybrid model-based/data-driven design results in systems

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 491
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

that are tailored to the problem at hand. As a result, model-
based deep learning systems require notably fewer data in
order to learn an accurate mapping, as demonstrated in
the comparison of learned factor graphs and the sliding
bidirectional RNN system in the quantitative example in
Section V-B, as well as the comparison between the neural
augmented Kalman smoother and the GNN state estimator
in the corresponding example in Section V-C. This prop-
erty of model-based deep learning systems enables quick
adaptation to variations in the underlying statistical model,
as shown in [104]. Finally, a system combining DNNs
with model-based inference often provides the ability to
analyze its resulting predictions, yielding interpretability
and confidence which are commonly challenging to obtain
with conventional black-box deep learning.

B. Choosing a Model-Based Deep Learning
Strategy

The aforementioned gains of model-based deep learning
are shared at some level by all the different approaches
presented in Sections IV and V. However, each strat-
egy is focused on exploiting a different advantage of
hybrid model-based/data-driven inference, particularly in
the context of signal processing-oriented applications. Con-
sequently, to complement the mapping of model-based
deep learning strategies and facilitate the implementation
of future application-specific hybrid systems, we next enlist
the main considerations that one should take into account
when seeking to combine model-based methods with data-
driven tools for a given problem.

Step 1 (Domain Knowledge and Data Characterization):
First, one must ensure the availability of the two key
ingredients in model-based deep learning, i.e., domain
knowledge and data. The former corresponds to what is
known a priori about the problem at hand, in terms of
statistical models and established assumptions, as well as
what is unknown, or is based on some approximation that
is likely to be inaccurate. The latter addresses the amount
of labeled and unlabeled samples that one possesses in
advance for the considered problem, as well as whether
or not they reflect the scenario in which the system is
requested to infer in practice.

Step 2 (Identifying a Model-Based Method): Based on the
available domain knowledge, the next step is to identify
a suitable model-based algorithm for the problem. This
choice should rely on the portion of the domain knowl-
edge, which is available, and not on what is unknown,
as the latter can be compensated for by the integration
of deep learning tools. This stage must also consider the
requirements of the inference system in terms of perfor-
mance, complexity, and real-time operation, as these are
encapsulated in the selection of the algorithm.

The identification of a model-based algorithm, com-
bined with the availability of domain knowledge and data,
should also indicate whether model-based deep learning
mechanisms are required for the application of interest.

Step 3 (Implementation Challenges): Having identified
a suitable model-based algorithm, the selection of the
approach to combine it with deep learning should be
based on the understanding of its main implementation
challenges. Some representative issues and their relation-
ship with the recommended model-based deep learning
approaches include the following.

1) Missing domain knowledge—model-based deep
learning—can implement the model-based inference
algorithm when parts of the underlying model are
unknown, or alternatively, too complex to be captured
analytically, by harnessing the model-agnostic nature
of deep learning. In this case, the selection of
the implementation approach depends on the
format of the identified model-based algorithm.
When it builds upon some known structures via,
e.g., message-passing-based inference, structure-
oriented DNN-aided inference detailed in Section V-B
can be most suitable as means of integrating
DNNs to enable operation with missing domain
knowledge. Similarly, when the missing domain
knowledge can be represented as some complex
search domain, or alternatively, an unknown and
possibly intractable regularization term, structure-
agnostic DNN-aided inference detailed in Section V-A
can typically facilitate optimization with implicitly
learned regularizers. Finally, when the algorithm
can be represented as an interconnection of
model-dependent building blocks, one can maintain
the overall flow of the algorithm while operating in
a model-agnostic manner via neural building blocks,
as discussed in Section IV-B.

2) Inaccurate domain knowledge—model-based
algorithms—is typically sensitive to inaccurate
knowledge of the underlying model and its
parameters. In such cases, where one has access
to a complete description of the underlying model
up to some uncertainty, model-based deep learning
can robustify the model-based algorithm and learn
to achieve improved accuracy. A candidate approach
to robustify model-based processing is by adding a
learned correction term via neural augmentation,
as detailed in Section V-C. Alternatively, when the
model-based algorithm takes an iterative form,
improved resiliency can be obtained by unfolding the
algorithm into a DNN, as discussed in Section IV-A,
as well as use robust optimization in unfolding [108].

3) Inference speed—model-based deep learning—can
learn to implement iterative inference algorithms,
which typically require a large number of itera-
tions to converge, with reduced inference speed.
This is achieved by designing model-aided networks,
typically via deep unfolding (see Section IV-A) or
neural building blocks (see Section IV-B). The fact
that model-aided networks learn their iterative com-
putations from data allows the resulting system

492 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

to infer reliably with a much smaller number of
iteration-equivalent layers compared to the iterations
required by the model-based algorithm. Alternatively,
when the delaying aspect is an internal lengthy com-
putation, one can improve run time by replacing it
with a fixed run-time DNNs via DNN-aided inference,
as shown in, e.g., [109].

The aforementioned implementation challenges consti-
tute only a partial list of the considerations that one should
account for when selecting a model-based deep learning
design approach. Additional considerations include com-
putational capabilities during both training and inference;
the need to handle variations in the statistical model,
which, in turn, translate to a possible requirement to peri-
odically re-train the system; and the quantity and the type
of available data. Nonetheless, the above division provides
systematic guidelines that one can utilize and possibly
extend when seeking to implement an inference system
relying on both data and domain knowledge. Finally,
we note that some of the detailed model-based deep
learning strategies can be combined, and thus, one can
select more than a single design approach. For instance,
one can interleave DNN-aided inference via implicitly
learned regularization and/or priors, with deep unfolding
of the iterative optimization algorithm, as discussed in
Section V-A.

C. Future Research Directions

We end by discussing a few representative unexplored
research aspects of model-based deep learning.

1) Performance Guarantees: One of the key strengths
of model-based algorithms is their established theoret-
ical performance guarantees. In particular, the analyt-
ical tractability of model-based methods implies that
one can quantify their expected performance as a func-
tion of the parameters of underlying statistical or deter-
ministic models. For conventional deep learning, such
performance guarantees are very challenging to charac-
terize, and deeper theoretical understanding is a crucial
missing component. The combination of deep learning
with model-based structure increases interpretability, thus
possibly leading to theoretical guarantees. Theoretical
guarantees improve the reliability of hybrid model-based/
data-driven systems, as well as improve performance. For
example, some preliminary theoretical results were identi-
fied for specific model-based deep learning methods, such
as the convergence analysis of the unfolded LISTA in [110]
and plug-and-play networks in [82].

2) Deep Learning Algorithms: Improving model inter-
pretability and incorporating human knowledge are crucial
for artificial intelligence development. Model-based deep
learning can constitute a systematic framework to incorpo-
rate domain knowledge into data-driven systems and can,
thus, give rise to new forms of deep learning algorithms.
For instance, while our description of the methodologies

in Sections IV and V systematically commences with a
model-based algorithm, which is then augmented into a
data-aided design via deep learning techniques, one can
also envision algorithms in which model-based algorithms
are utilized to improve upon an existing DNN architecture.
Alternatively, one can leverage model-based techniques
to propose interpretable DNN architectures that follow
traditional model-based methods to account for domain
knowledge.

3) Collaborative Model-Based Deep Learning: The increas-
ing demands for accessible and personalized artificial intel-
ligence give rise to the need to operate DNNs on edge
devices such as smartphones, sensors, and autonomous
cars [6]. The limited computational and data resources
of edge devices make model-based deep learning strate-
gies particularly attractive for edge intelligence. Latency
considerations and privacy constraints for mobile and
sensitive data are further driving research in distributed
training (e.g., through the framework of federated learn-
ing [111], [112]) and collaborative inference [113]. Com-
bining model-based structures with federated learning and
distributed inference remains as interesting research direc-
tions.

4) Unexplored Applications: The increasing interest in
hybrid model-based/data-driven deep learning methods is
motivated by the need for robustness and structural under-
standing. Applications falling under the broad family of
signal processing, communications, and control problems
are natural candidates to benefit due to the proliferation
of established model-based algorithms. We believe that
model-based deep learning can contribute to the develop-
ment of technologies such as IOT networks, autonomous
systems, and wireless communications.

A P P E N D I X
A. Detailed Formulation of Project Gradient
Descent (Example 1, Section IV)

Projected gradient descent iteratively refines its estimate
by taking a gradient step with respect to the unconstrained
objective, followed by projection into the constrained set of
the optimization variable. For the system model in (8), this
operation at iteration index q +1 is obtained recursively as

ŝq+1 = PS

(
ŝq − η

∂∥x−Hs∥2

∂s

∣∣∣∣
s=ŝq

)
= PS

(
ŝq − ηHTx + ηHTHŝq

)
(A.1)

where η is the step size and ŝ0 is an initial guess.

B. Detailed Formulation of Proximal Gradient
Method (Example 2, Section IV)

The recovery of the clean image µ, which can be rep-
resented using a convolutional dictionary from the noisy
observations x, can be formulated as a convolutional

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 493
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

sparse coding problem

(
ŝ, Ĥ

)
= arg min

s,H
− log px|µ(x|µ = Hs)+λ∥s∥1

= arg min
s,Ĥ

1T exp (Hs)−xTHs+λ∥s∥1 (B.1)

where the dictionary optimization variable is constrained
to be block-Toeplitz. The clean image is then obtained as

µ̂ = exp
(
Ĥŝ
)

(B.2)

where 1 is the all ones vector and λ is a regularizing term
that controls the degree of sparsity, boosted by the usage
of the ℓ1 norm.

Algorithm 2 tackles (B.1) via alternating optimization,
where the update equations at the iteration of index l are
given by

ŝl+1 = arg min
s

1T exp (Hs)− xTHs + λ∥s∥1

s.t. H = Ĥ l (B.3)

and

Ĥ l+1 = arg min
H

1T exp (Hs)− xTHs

s.t. s = ŝl+1. (B.4)

The ℓ1 regularized optimization problem (B.3) can be
tackled for a given H and index l via proximal gradient
descent iterations. This optimizer involves multiple itera-
tions, indexed q = 0, 1, 2, . . . , of the form

ŝq+1 = Tb

(
ŝq + ηHT (x− exp (Hŝq))

)
. (B.5)

The threshold parameter b is dictated by the regularization
parameter λ.

C. Detailed Formulation of Iterative Soft
Interference Cancellation (Example 3, Section IV)

To formulate the iterative SIC algorithm, we consider
the Gaussian MIMO channel in (8). Each iteration of the
iterative SIC algorithm indexed q generates K distribution
vectors over the set of possible symbols S. The PMFs
are denoted by the vectors p̂

(q)
k of size |S| × 1, where

k ∈ K. These vectors are computed from the observed
x and the distribution vectors obtained at the previous
iteration, {p̂(q−1)

k }Kk=1. The entries of p̂(q)
k are estimates of

the distribution of sk for each possible symbol in S, given
the observed x and assuming that the interfering symbols
{sl}l̸=k are distributed via {p̂(q−1)

l }l̸=k. Every iteration
consists of two steps, carried out in parallel for each user:
interference cancellation and soft decoding. Focusing on the

kth user and the qth iteration, the interference cancellation
stage first computes the expected values and variances
of {sl}l̸=k based on the estimated PMF {p̂(q−1)

l }l̸=k. The
contribution of the interfering symbols from x is then
canceled by replacing them with {e(q−1)

l } and subtracting
their resulting term. Letting hl be the lth column of H, the
interference canceled channel output is given by

z
(q)
k = x−

∑
l̸=k

hle
(q−1)
l . (C.1)

Substituting the channel output x into (C.1), the realiza-
tion of the interference canceled z

(q)
k is obtained.

To implement soft decoding, it is assumed that z
(q)
k =

hksk + w̃
(q)
k , where the interference plus noise term w̃

(q)
k

obeys a zero-mean Gaussian distribution, independent of
sk, with covariance Σ

(q)
k = σ2

wIK +
∑

l̸=k v
(q−1)
l hlh

T
l ,

where σ2
w is the noise variance. Combining this assumption

with (C.1), while writing the set of possible symbols as S =

{αj}|S|
j=1, the conditional distribution of z(q)

k given sk = αj

is multivariate Gaussian with mean hkαj and covariance
Σ

(q)
k . The conditional PMF of sk given x is approximated

from the conditional distribution of z(q)
k given sk via Bayes

theorem, assuming that the marginal PMF of each sk is
uniform over S; this estimated conditional distribution is
computed as

(
p̂

(q)
k

)
j

=

exp

{
− 1

2

(
z

(q)
k −hkαj

)T(
Σ

(q)
k

)−1(
z

(q)
k −hkαj

)}
∑

αj′∈S
exp

{
− 1

2

(
z

(q)
k −hkαj′

)T(
Σ

(q)
k

)−1(
z

(q)
k −hkαj′

)} .

After the final iteration, the symbols are decoded by maxi-
mizing the estimated PMFs for each k ∈ K, i.e., via

ŝk = αĵ , ĵ = arg max
j

(
p̂

(Q)
k

)
j

(C.2)

and the overall estimate is set to ŝ = [ŝ1, . . . , ŝK].

D. Detailed Formulation of Sparsity-Based CS
(Example 4, Section V)

Consider the case where s∗ is sparse in some dictionary
B, e.g., in the WVT domain, such that s∗ = Bc∗, where
∥c∗∥0 = l with l ≪ N . In this case, the goal is to find
the sparsest c such that s = Bc agrees with the noisy
observations

minimize ∥c∥0

s.t. ∥HBc− x∥2 ≤ ϵ

494 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

where ϵ is a noise threshold. Since one can define H̃ :=

HB, we, henceforth, focus on the setting where B is the
identity matrix, and the optimization variable of the above
ℓ0 norm optimization problem is s.

Although the above problem is NP-hard, Candès et al.
[114] and Donoho [115] showed that it suffices to mini-
mize the ℓ1 relaxed LASSO objective in (18). The formu-
lation (18) is convex, and for Gaussian A with l = ∥s∗∥0

and M = Θ(l log(N/l)), the unique minimizer of LLASSO is
equal to s∗ with high probability.

E. Detailed Formulation of ADMM (Example 5,
Section V)

ADMM tackles the optimization problem in (21) by uti-
lizing variable splitting. Namely, it introduces an additional
auxiliary variable v in order to decouple the regularizer
ϕ(s) from the likelihood term ∥x − Hs∥2. The resulting
formulation of (21) is expressed as

ŝ = arg min
s

min
v

1

2
∥x−Hs∥2 + ϕ(v) (E.1)

s.t. v = s. (E.2)

Problem (E.1) is then solved by formulating the aug-
mented Lagrangian (which introduces an additional opti-
mization variable u) and solving it in an alternating fash-
ion. This results in the following update equations for the
qth iteration [82]:

ŝq+1 = arg min
s

α

2
∥x−Hs∥2+

1

2
∥s−(vq−uq)∥2 (E.3a)

vq+1 = arg min
v

αϕ(v) +
1

2
∥v − (ŝq+1 + uq)∥2 (E.3b)

uq+1 = uq + (ŝq+1 − vq+1). (E.3c)

Here, α > 0 is an optimization hyperparameter. Steps
(E.3a) and (E.3b) are the proximal mappings with respect
to the functions αϕ(·) and αf(·), respectively, with f(v) ≜
(1/2)∥x−Hv∥2. Step (E.3c) represents a gradient ascent
iteration.

For brevity, in Algorithm 4, we write (E.3a) as ŝq+1 =

Proxαf (vq − uq) and (E.3b) as vq+1 = Proxαϕ(ŝq+1 + uq)

in Algorithm 4. In particular, it is noted that (E.3a) equals
sq+1 = (αHTH + I)−1(αHTx + (vq − uq)).

F. Detailed Formulation of Sum-Product Method
(Example 6, Section V)

To formulate the SP method, the factorizable distribu-
tion (24) is first represented as a factor graph. To that
aim, we recall the definitions of the vector variable si =

si
i−l+1 ∈ Sl and the function f (xi, si, si−1) in (26).

When si is a shifted version of si−1, (26) coincides
with p

(
xi|si

i−l

)
p
(
si|si−1

i−l

)
and equals zero otherwise.

Using (26), the joint distribution p(x, s) in (24) can be
written as

p (x, s) =

t∏
i=1

f (xi, si, si−1) . (F.1)

The factorizable expression of the joint distribution
(F.1) implies that it can be represented as a factor graph
with t function nodes {f (xi, si, si−1)}, in which {si}t−1

i=2
are edges, while the remaining variables are half-edges.

Using its factor graph representation, one can compute
the joint distribution of s and x by recursive message
passing along its factor graph, as illustrated in Fig. 15(a).
In particular,

p(sk, sk+1,x)=−→µ sk (sk)f(xk+1, sk+1, sk)←−µ sk+1(sk+1)

(F.2)

where the forward path messages satisfy

−→µ si(si) =
∑
si−1

f(xi, si, si−1)
−→µ si−1(si−1) (F.3)

for i = 1, 2, . . . , k. Similarly, the backward messages are

←−µ si(si) =
∑
si+1

f(xi+1, si+1, si)
←−µ si+1(si+1) (F.4)

for i = t− 1, t− 2, . . . , k + 1.
The ability to compute the joint distribution in (F.2) via

message passing allows to obtain the MAP detector in (25)
with complexity that only grows linearly with t. This is
achieved by noting that the MAP estimate satisfies

ŝi (x)=arg max
si∈S

∑
si−1∈Sl

−→µ si−1(si−1)f(xi, [si−l+1, . . . , si], si−1)

×←−µ si([si−l+1, . . . , si]) (F.5)

for each i ∈ T , where the summands can be computed
recursively, resulting in Algorithm 5. It is noted that,
when the block size t is large, the messages may tend to
zero and are, thus, commonly scaled [116], e.g., ←−µ si(s)

is replaced with γi
←−µ si(s) for some scale factor, which

does not depend on s and, thus, does not affect the
MAP rule.

G. Detailed Formulation of Iterative Kalman
Smoother (Example 7, Section V)

The state-space model (28) implies that the joint distri-
bution of the state and observations satisfies

p (x, s) = p (x|s) p (s) =
∏

t

p(xt|st)p(st|st−1). (G.1)

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 495
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

Consequently, it holds that

∂

∂st
log p (x, s)

=
∂

∂st

∑
τ

log p(xτ |sτ) +
∑

τ

log p(sτ |sτ−1)

=
∂

∂st
log p(xt|st) +

∂

∂st
log p(st|st−1)

+
∂

∂st
log p(st+1|st)

=
∂

∂st
(xt −Hst)

TR−1(xt −Hst)

+
∂

∂st
(st − Fst−1)

TW−1(st − Fst−1)

+
∂

∂st
(st+1 − Fst)

TW−1(st+1 − Fst)

= HTR−1 (xt −Hst) +−W−1 (st − Fst−1)

+ F TW−1 (st+1 − Fst) . (G.2)

Therefore, the tth entry of the log-likelihood gradi-
ent in (29), abbreviated henceforth as ∇(q)

t , can be
obtained as ∇(q)

t = µ
(q)
St−1→St

+ µ
(q)
St+1→St

+ µ
(q)
Xt→St

,
where the summands, referred to as messages, are
given by

µ
(q)
St−1→St

= −W−1
(
s
(q)
t − Fs

(q)
t−1

)
(G.3a)

µ
(q)
St+1→St

= F TW−1
(
s
(q)
t+1 − Fs

(q)
t

)
(G.3b)

µ
(q)
Xt→St

= HTR−1
(
xt −Hs

(q)
t

)
. (G.3c)

The iterative procedure in (29) is repeated until conver-
gence, as stated in Algorithm 6, and the resulting s(q) is
used as the estimate. ■

R E F E R E N C E S
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep

learning,” Nature, vol. 521, no. 7553, p. 436,
Feb. 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level
performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[3] D. Silver et al., “Mastering the game of go without
human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[4] O. Vinyals et al., “Grandmaster level in StarCraft II
using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[5] Y. Bengio, “Learning deep architectures for AI,”
Found. Trends Mach. Learn., vol. 2, no. 1,
pp. 1–127, 2009.

[6] J. Chen and X. Ran, “Deep learning with edge
computing: A review,” Proc. IEEE, vol. 107, no. 8,
pp. 1655–1674, Aug. 2019.

[7] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm
unrolling: Interpretable, efficient deep learning for
signal and image processing,” IEEE Signal Process.
Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.

[8] K. Gregor and Y. LeCun, “Learning fast
approximations of sparse coding,” in Proc. 27th
Int. Conf. Mach. Learn., 2010, pp. 399–406.

[9] S. Wu et al., “Learning a compressed sensing
measurement matrix via gradient unrolling,” in
Proc. Int. Conf. Mach. Learn., 2019,
pp. 6828–6839.

[10] A. Bora, A. Jalal, E. Price, and A. G. Dimakis,
“Compressed sensing using generative models,” in
Proc. 34th Int. Conf. Mach. Learn. (JMLR), vol. 70,
2017, pp. 537–546.

[11] J. Whang, Q. Lei, and A. G. Dimakis, “Compressed
sensing with invertible generative models and
dependent noise,” in Proc. Deep Learn. Inverse
Problems NeurIPS Workshop, 2021.

[12] D. Gilton, G. Ongie, and R. Willett, “Neumann
networks for linear inverse problems in imaging,”
IEEE Trans. Comput. Imag., vol. 6, pp. 328–343,
2020.

[13] S. V. Venkatakrishnan, C. A. Bouman, and
B. Wohlberg, “Plug-and-play priors for model
based reconstruction,” in Proc. IEEE Global Conf.
Signal Inf. Process., Dec. 2013, pp. 945–948.

[14] H. K. Aggarwal, M. P. Mani, and M. Jacob, “Modl:
Model-based deep learning architecture for
inverse problems,” IEEE Trans. Med. Imag., vol. 38,
no. 2, pp. 394–405, Feb. 2019.

[15] N. Shlezinger, N. Farsad, Y. C. Eldar, and
A. J. Goldsmith, “ViterbiNet: A deep learning
based Viterbi algorithm for symbol detection,”

IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3319–3331, May 2020.

[16] N. Shlezinger, R. Fu, and Y. C. Eldar, “DeepSIC:
Deep soft interference cancellation for multiuser
MIMO detection,” IEEE Trans. Wireless Commun.,
vol. 20, no. 2, pp. 1349–1362, Feb. 2021.

[17] E. Nachmani, E. Marciano, L. Lugosch,
W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep
learning methods for improved decoding of linear
codes,” IEEE J. Sel. Topics Signal Process., vol. 12,
no. 1, pp. 119–131, Feb. 2018.

[18] N. Samuel, T. Diskin, and A. Wiesel, “Learning to
detect,” IEEE Trans. Signal Process., vol. 67,
no. 10, pp. 2554–2564, May 2019.

[19] H. He, C.-K. Wen, S. Jin, and G. Y. Li,
“Model-driven deep learning for MIMO
detection,” IEEE Trans. Signal Process., vol. 68,
pp. 1702–1715, 2020.

[20] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming,
“Adaptive neural signal detection for massive
MIMO,” IEEE Trans. Wireless Commun., vol. 19,
no. 8, pp. 5635–5648, Aug. 2020.

[21] K. Pratik, B. D. Rao, and M. Welling, “RE-MIMO:
Recurrent and permutation equivariant neural
MIMO detection,” IEEE Trans. Signal Process.,
vol. 69, pp. 459–473, 2021.

[22] N. Farsad, N. Shlezinger, A. J. Goldsmith, and
Y. C. Eldar, “Data-driven symbol detection via
model-based machine learning,” Commun. Inf.
Syst., vol. 20, no. 3, pp. 283–317, 2020.

[23] V. G. Satorras and M. Welling, “Neural enhanced
belief propagation on factor graphs,” in Proc. Int.
Conf. Artif. Intell. Statist., 2021, pp. 685–693.

[24] A. Zappone, M. D. Renzo, M. Debbah, T. T. Lam,
and X. Qian, “Model-aided wireless artificial
intelligence: Embedding expert knowledge in
deep neural networks for wireless system
optimization,” IEEE Veh. Technol. Mag., vol. 14,
no. 3, pp. 60–69, Sep. 2019.

[25] A. Zappone, M. D. Renzo, and M. Debbah,
“Wireless networks design in the era of deep
learning: Model-based, AI-based, or both?” IEEE
Trans. Commun., vol. 67, no. 10, pp. 7331–7376,
Oct. 2019.

[26] L. Liang, H. Ye, G. Yu, and G. Y. Li,
“Deep-learning-based wireless resource allocation
with application to vehicular networks,” Proc.
IEEE, vol. 108, no. 2, pp. 341–356, Feb. 2020.

[27] T. O’Shea and J. Hoydis, “An introduction to deep
learning for the physical layer,” IEEE Trans. Cogn.
Commun. Netw., vol. 3, no. 4, pp. 563–575,
Dec. 2017.

[28] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and
P. Viswanath, “Communication algorithms via

deep learning,” in Proc. Int. Conf. Learn.
Represent., 2018.

[29] M. B. Mashhadi, Q. Yang, and D. Gunduz,
“Distributed deep convolutional compression for
massive MIMO CSI feedback,” IEEE Trans. Wireless
Commun., vol. 20, no. 4, pp. 2621–2633,
Apr. 2021.

[30] S. Shalev-Shwartz and S. Ben-David,
Understanding Machine Learning: From Theory to
Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2014.

[31] C. Metzler, A. Mousavi, and R. Baraniuk, “Learned
D-AMP: Principled neural network based
compressive image recovery,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 1772–1783.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. Cambridge, MA, USA: MIT Press, 2016.

[33] S. Hochreiter and J. Schmidhuber, “Long
short-term memory,” Neural Comput., vol. 9, no. 8,
pp. 1735–1780, 1997.

[34] A. Vaswani et al., “Attention is all you need,” in
Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 5998–6008.

[35] Y. LeCun and Y. Bengio, “Convolutional networks
for images, speech, and time series,” in The
Handbook of Brain Theory and Neural Networks,
vol. 3361, no. 10. MIT Press, 1995, p. 1995.

[36] T. Tieleman and G. Hinton, “Lecture
6.5-RMSPROP: Divide the gradient by a running
average of its recent magnitude,” COURSERA,
Neural Netw. Mach. Learn., vol. 4, no. 2,
pp. 26–31, 2012.

[37] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Proc. Int. Conf. Learn.
Represent., 2015.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” Commun. ACM, vol. 60, no. 2,
pp. 84–90, Jun. 2012.

[39] I. Goodfellow et al., “Generative adversarial nets,”
in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2672–2680.

[40] M. Arjovsky, S. Chintala, and L. Bottou,
“Wasserstein generative adversarial networks,” in
Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[41] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville, “Improved training of
Wasserstein GANs,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 5767–5777.

[42] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and
S. P. Smolley, “Least squares generative
adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017,
pp. 2794–2802.

496 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

[43] J. H. Lim and J. C. Ye, “Geometric GAN,” 2017,
arXiv:1705.02894.

[44] A. Jolicoeur-Martineau, “The relativistic
discriminator: A key element missing from
standard GAN,” in Proc. Int. Conf. Learn.
Represent., 2019.

[45] T. Karras, S. Laine, M. Aittala, J. Hellsten,
J. Lehtinen, and T. Aila, “Analyzing and improving
the image quality of StyleGAN,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 8110–8119.

[46] J. E. Van Engelen and H. H. Hoos, “A survey on
semi-supervised learning,” Mach. Learn., vol. 109,
no. 2, pp. 373–440, 2020.

[47] D.-H. Lee, “Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural
networks,” in Proc. Workshop Challenges Represent.
Learn., ICML, 2013, vol. 3, no. 2, p. 896.

[48] S. Laine and T. Aila, “Temporal ensembling for
semi-supervised learning,” in Proc. Int. Conf.
Learn. Represent., 2016.

[49] D. Berthelot, N. Carlini, I. Goodfellow,
N. Papernot, A. Oliver, and C. A. Raffel,
“MixMatch: A holistic approach to
semi-supervised learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 5050–5060.

[50] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le,
“Self-training with noisy student improves
ImageNet classification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10687–10698.

[51] B. Tolooshams, A. H. Song, S. Temereanca, and
D. Ba, “Convolutional dictionary learning based
auto-encoders for natural exponential-family
distributions,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 9493–9503.

[52] L. Xu and R. Niu, “EKFNet: Learning system noise
statistics from measurement data,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Jun. 2021, pp. 4560–4564.

[53] N. Shlezinger, Y. C. Eldar, and S. P. Boyd,
“Model-based deep learning: On the intersection
of deep learning and optimization,” IEEE Access,
vol. 10, pp. 115384–115398, 2022.

[54] A. Ng and M. Jordan, “On discriminative vs.
generative classifiers: A comparison of logistic
regression and naive Bayes,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 14, 2001, pp. 841–848.

[55] N. Shlezinger and T. Routtenberg, “Discriminative
and generative learning for linear estimation of
random signals [lecture notes],” 2022,
arXiv:2206.04432.

[56] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep
unfolding: Model-based inspiration of novel deep
architectures,” 2014, arXiv:1409.2574.

[57] Y. Li, M. Tofighi, J. Geng, V. Monga, and
Y. C. Eldar, “Efficient and interpretable deep blind
image deblurring via algorithm unrolling,” IEEE
Trans. Comput. Imag., vol. 6, pp. 666–681,
2020.

[58] O. Solomon et al., “Deep unfolded robust PCA
with application to clutter suppression in
ultrasound,” IEEE Trans. Med. Imag., vol. 39,
no. 4, pp. 1051–1063, Apr. 2020.

[59] Y. Cui, S. Li, and W. Zhang, “Jointly sparse signal
recovery and support recovery via deep learning
with applications in MIMO-based grant-free
random access,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 3, pp. 788–803, Mar. 2021.

[60] T. Chang, B. Tolooshams, and D. Ba, “RandNet:
Deep learning with compressed measurements of
images,” in Proc. IEEE 29th Int. Workshop Mach.
Learn. Signal Process. (MLSP), Oct. 2019, pp. 1–6.

[61] A. Balatsoukas-Stimming and C. Studer, “Deep
unfolding for communications systems: A survey
and some new directions,” in Proc. IEEE Int.
Workshop Signal Process. Syst. (SiPS), Oct. 2019,
pp. 266–271.

[62] S. Takabe, M. Imanishi, T. Wadayama,
R. Hayakawa, and K. Hayashi, “Trainable
projected gradient detector for massive
overloaded MIMO channels: Data-driven tuning

approach,” IEEE Access, vol. 7, pp. 93326–93338,
2019.

[63] Q. Hu, Y. Cai, Q. Shi, K. Xu, G. Yu, and Z. Ding,
“Iterative algorithm induced deep-unfolding
neural networks: Precoding design for multiuser
MIMO systems,” IEEE Trans. Wireless Commun.,
vol. 20, no. 2, pp. 1394–1410, Feb. 2021.

[64] S. Khobahi, N. Shlezinger, M. Soltanalian, and
Y. C. Eldar, “LoRD-Net: Unfolded deep detection
network with low-resolution receivers,” IEEE
Trans. Signal Process., vol. 69, pp. 5651–5664,
2021.

[65] M. Mischi, M. A. L. Bell, R. J. van Sloun, and
Y. C. Eldar, “Deep learning in medical
ultrasound—From image formation to image
analysis,” IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 67, no. 12, pp. 2477–2480,
Dec. 2020.

[66] G. Dardikman-Yoffe and Y. C. Eldar, “Learned
SPARCOM: Unfolded deep super-resolution
microscopy,” Opt. Exp., vol. 28, no. 19,
pp. 4797–4812, 2020.

[67] K. Zhang, L. Van Gool, and R. Timofte, “Deep
unfolding network for image super-resolution,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 3217–3226.

[68] Y. Huang, S. Li, L. Wang, and T. Tan, “Unfolding
the alternating optimization for blind super
resolution,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 5632–5643.

[69] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli,
and R. Tandon, “Learning sparsely used
overcomplete dictionaries via alternating
minimization,” SIAM J. Optim., vol. 26, no. 4,
pp. 2775–2799, 2016.

[70] T. Remez, O. Litany, R. Giryes, and A. M.
Bronstein, “Class-aware fully convolutional
Gaussian and Poisson denoising,” IEEE Trans.
Image Process., vol. 27, no. 11, pp. 5707–5722,
Nov. 2018.

[71] J. Duan et al., “VS-Net: Variable splitting network
for accelerated parallel MRI reconstruction,” in
Proc. Int. Conf. Med. Image Comput.
Comput.-Assist. Intervent. Cham, Switzerland:
Springer, 2019, pp. 713–722.

[72] J. P. Merkofer, G. Revach, N. Shlezinger, and
R. J. G. van Sloun, “Deep augmented music
algorithm for data-driven doa estimation,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2022, pp. 3598–3602.

[73] T. Van Luong, N. Shlezinger, C. Xu, T. M. Hoang,
Y. C. Eldar, and L. Hanzo, “Deep learning based
successive interference cancellation for the
non-orthogonal downlink,” IEEE Trans. Veh.
Technol., vol. 71, no. 11, pp. 11876–11888,
Nov. 2022.

[74] M. Kocaoglu, C. Snyder, A. G. Dimakis, and
S. Vishwanath, “CausalGAN: Learning causal
implicit generative models with adversarial
training,” in Proc. Int. Conf. Learn. Represent.,
2018.

[75] W.-J. Choi, K.-W. Cheong, and J. M. Cioffi,
“Iterative soft interference cancellation for
multiple antenna systems,” in Proc. IEEE Wireless
Commun. Netw. Conf. Conf. Rec., Sep. 2000,
pp. 304–309.

[76] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk,
A. G. Dimakis, and R. Willett, “Deep learning
techniques for inverse problems in imaging,” IEEE
J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 39–56,
May 2020.

[77] S. Boyd, N. Parikh, and E. Chu, Distributed
Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers.
Norwell, MA, USA: Now Publishers, 2011.

[78] A. Beck and M. Teboulle, “A fast iterative
shrinkage-thresholding algorithm for linear
inverse problems,” SIAM J. Imag. Sci., vol. 2,
no. 1, pp. 183–202, Jan. 2009.

[79] A. Chambolle and T. Pock, “A first-order
primal-dual algorithm for convex problems with
applications to imaging,” J. Math. Imag. Vis.,

vol. 40, no. 1, pp. 120–145, 2011.

[80] R. Ahmad et al., “Plug-and-play methods for
magnetic resonance imaging: Using denoisers for
image recovery,” IEEE Signal Process. Mag.,
vol. 37, no. 1, pp. 105–116, Jan. 2020.

[81] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning
deep CNN denoiser prior for image restoration,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 3929–3938.

[82] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and
W. Yin, “Plug-and-play methods provably converge
with properly trained denoisers,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 5546–5557.

[83] S. Ono, “Primal-dual plug-and-play image
restoration,” IEEE Signal Process. Lett., vol. 24,
no. 8, pp. 1108–1112, Aug. 2017.

[84] U. S. Kamilov, H. Mansour, and B. Wohlberg,
“A plug-and-play priors approach for solving
nonlinear imaging inverse problems,” IEEE Signal
Process. Lett., vol. 24, no. 12, pp. 1872–1876,
Dec. 2017.

[85] T. Meinhardt, M. Moeller, C. Hazirbas, and
D. Cremers, “Learning proximal operators: Using
denoising networks for regularizing inverse
imaging problems,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 1781–1790.

[86] A. Radford, L. Metz, and S. Chintala,
“Unsupervised representation learning with deep
convolutional generative adversarial networks,”
2015, arXiv:1511.06434.

[87] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep
learning face attributes in the wild,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730–3738.

[88] D. P. Kingma and M. Welling, “Auto-encoding
variational Bayes,” 2013, arXiv:1312.6114.

[89] Y. LeCun and C. Cortes. (2010). MNIST
Handwritten Digit Database. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[90] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward
a fast and flexible solution for CNN-based image
denoising,” IEEE Trans. Image Process., vol. 27,
no. 9, pp. 4608–4622, Sep. 2018.

[91] N. Shlezinger, N. Farsad, Y. C. Eldar, and
A. J. Goldsmith, “Data-driven factor graphs for
deep symbol detection,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2020, pp. 2682–2687.

[92] A. Arnab et al., “Conditional random fields meet
deep neural networks for semantic segmentation:
Combining probabilistic graphical models with
deep learning for structured prediction,” IEEE
Signal Process. Mag., vol. 35, no. 1, pp. 37–52,
Jan. 2018.

[93] S. Chandra and I. Kokkinos, “Fast, exact and
multi-scale inference for semantic image
segmentation with deep Gaussian CRFs,” in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 402–418.

[94] P. Knobelreiter, C. Sormann, A. Shekhovtsov,
F. Fraundorfer, and T. Pock, “Belief propagation
reloaded: Learning BP-layers for labeling
problems,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020,
pp. 7900–7909.

[95] B. Luijten et al., “Adaptive ultrasound
beamforming using deep learning,” IEEE Trans.
Med. Imag., vol. 39, no. 12, pp. 3967–3978,
Dec. 2020.

[96] G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza,
R. J. G. van Sloun, and Y. C. Eldar, “KalmanNet:
Neural network aided Kalman filtering for
partially known dynamics,” IEEE Trans. Signal
Process., vol. 70, pp. 1532–1547, 2022.

[97] A. L. Escoriza, G. Revach, N. Shlezinger, and
R. J. G. van Sloun, “Data-driven Kalman-based
velocity estimation for autonomous racing,” in
Proc. IEEE Int. Conf. Auto. Syst. (ICAS), Aug. 2021,
pp. 1–5.

[98] H. Palangi, R. Ward, and L. Deng, “Distributed
compressive sensing: A deep learning approach,”
IEEE Trans. Signal Process., vol. 64, no. 17,
pp. 4504–4518, Sep. 2016.

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 497
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

Shlezinger et al.: Model-Based Deep Learning

[99] S. S. Haykin, Adaptive Filter Theory. London, U.K.:
Pearson, 2005.

[100] A. J. Viterbi, “Error bounds for convolutional
codes and an asymptotically optimum decoding
algorithm,” IEEE Trans. Inf. Theory, vol. IT-13,
no. 2, pp. 260–269, Apr. 1967.

[101] N. Shlezinger, N. Farsad, Y. C. Eldar, and
A. J. Goldsmith, “Learned factor graphs for
inference from stationary time sequences,” IEEE
Trans. Signal Process., vol. 70, pp. 366–380, 2022.

[102] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger,
“Factor graphs and the sum-product algorithm,”
IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[103] N. Farsad and A. Goldsmith, “Neural network
detection of data sequences in communication
systems,” IEEE Trans. Signal Process., vol. 66,
no. 21, pp. 5663–5678, Nov. 2018.

[104] T. Raviv, S. Park, O. Simeone, Y. C. Eldar, and
N. Shlezinger, “Online meta-learning for hybrid
model-based deep receivers,” IEEE Trans. Wireless
Commun., early access, Feb. 8, 2023, doi:
10.1109/TWC.2023.3241841.

[105] V. G. Satorras, Z. Akata, and M. Welling,

“Combining generative and discriminative models
for hybrid inference,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 13802–13812.

[106] F. Gao, J. Zhang, and Y. Zhang, “Neural enhanced
dynamic message passing,” in Proc. Int. Conf. Artif.
Intell. Statist., 2022, pp. 10471–10482.

[107] K. Yoon et al., “Inference in probabilistic graphical
models by graph neural networks,” in Proc. 53rd
Asilomar Conf. Signals, Syst., Comput., Nov. 2019,
pp. 868–875.

[108] W. Pu, C. Zhou, Y. C. Eldar, and
M. R. D. Rodrigues, “REST: Robust lEarned
shrinkage-thresholding network taming inverse
problems with model mismatch,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP),
Jun. 2021, pp. 2885–2889.

[109] X. Ni, G. Revach, N. Shlezinger, R. J. G. van Sloun,
and Y. C. Eldar, “RTSNet: Deep learning aided
Kalman smoothing,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP),
May 2022, pp. 5902–5906.

[110] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical
linear convergence of unfolded ISTA and its
practical weights and thresholds,” in Proc. Adv.

Neural Inf. Process. Syst., 2018, pp. 9079–9089.

[111] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith,
“Federated learning: Challenges, methods, and
future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[112] T. Gafni, N. Shlezinger, K. Cohen, Y. C. Eldar, and
H. V. Poor, “Federated learning: A signal
processing perspective,” IEEE Signal Process. Mag.,
vol. 39, no. 3, pp. 14–41, May 2022.

[113] N. Shlezinger and I. V. Bajic, “Collaborative
inference for AI-empowered IoT devices,” IEEE
Internet Things Mag., vol. 5, no. 4, pp. 92–98,
Dec. 2022.

[114] E. J. Candès, J. Romberg, and T. Tao, “Robust
uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2,
pp. 489–509, Feb. 2006.

[115] D. L. Donoho, “Compressed sensing,” IEEE Trans.
Inf. Theory, vol. 52, no. 4, pp. 1289–1306,
Apr. 2006.

[116] H.-A. Loeliger, “An introduction to factor graphs,”
IEEE Signal Process. Mag., vol. 21, no. 1,
pp. 28–41, Jan. 2004.

A B O U T T H E A U T H O R S

Nir Shlezinger (Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in elec-
trical and computer engineering from the
Ben-Gurion University of the Negev, Be’er
Sheva, Israel, in 2011, 2013, and 2017,
respectively.
From 2017 to 2019, he was a Post-

doctoral Researcher with the Technion—
Israel Institute of Technology, Haifa, Israel.
From 2019 to 2020, he was a Postdoctoral Researcher with the
Weizmann Institute of Science, Rehovot, Israel. He is currently an
Assistant Professor with the School of Electrical and Computer Engi-
neering, Ben-Gurion University of the Negev. His research interests
include communications, information theory, signal processing,
and machine learning.
Dr. Shlezinger was awarded the FGS Prize for outstanding

research achievements at the Weizmann Institute of Science.

Jay Whang is currently working toward
the Ph.D. degree in computer science (CS)
at The University of Texas at Austin (UT
Austin), Austin, TX, USA, advised by Prof.
Alex Dimakis.
His research interests lie primarily in deep

generative models and their applications.

Yonina C. Eldar (Fellow, IEEE) received the
B.Sc. degree in physics and the B.Sc. degree
in electrical engineering from Tel Aviv Uni-
versity (TAU), Tel Aviv, Israel, in 1995 and
1996, respectively, and the Ph.D. degree in
electrical engineering and computer science
from the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, in 2002.
She was a Professor with the Department

of Electrical Engineering, Technion—Israel Institute of Technology,
Haifa, Israel, where she held the Edwards Chair in Engineering. She
was a Visiting Professor with Stanford University, Stanford, CA, USA.
She is currently a Professor with the Department of Mathematics
and Computer Science, Weizmann Institute of Science, Rehovot,
Israel. She is also a Visiting Professor with MIT, a Visiting Scientist
with the Broad Institute, Cambridge, and an Adjunct Professor with
Duke University, Durham, NC, USA. She is the author of the book
Sampling Theory: Beyond Bandlimited Systems and a coauthor
of five other books published by Cambridge University Press. Her
research interests are in the broad areas of statistical signal pro-
cessing, sampling theory and compressed sensing, learning and
optimization methods, and their applications to biology, medical
imaging, and optics.
Dr. Eldar was a member of the IEEE Signal Processing Theory and

Methods and Bio Imaging Signal Processing Technical Committees.
She was a member of the Young Israel Academy of Science and
Humanities and the Israel Committee for Higher Education. She was
a Horev Fellow of the Leaders in Science and Technology Program at
the Technion and an Alon Fellow. She is a member of the IEEE Sen-
sor Array and Multichannel Technical Committee. She is a member
of the Israel Academy of Sciences and Humanities (elected in 2017)
and an EURASIP Fellow. She received many awards for excellence
in research and teaching, including the IEEE Signal Processing
Society Technical Achievement Award in 2013, the IEEE/AESS Fred
Nathanson Memorial Radar Award in 2014, and the IEEE Kiyo
Tomiyasu Award in 2016. She received the Michael Bruno Memorial
Award from the Rothschild Foundation, the Weizmann Prize for
Exact Sciences, the Wolf Foundation Krill Prize for Excellence in
Scientific Research, the Henry Taub Prize for Excellence in Research
(twice), the Hershel Rich Innovation Award (three times), the Award
for Women with Distinguished Contributions, the Andre and Bella
Meyer Lectureship, the Career Development Chair at the Technion,

498 PROCEEDINGS OF THE IEEE | Vol. 111, No. 5, May 2023
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TWC.2023.3241841

Shlezinger et al.: Model-Based Deep Learning

the Muriel & David Jacknow Award for Excellence in Teaching,
and the Technionb’s Award for Excellence in Teaching (two times).
She received several best paper awards and best demo awards
together with her research students and colleagues, including the
SIAM Outstanding Paper Prize, the UFFC Outstanding Paper Award,
the Signal Processing Society Best Paper Award, and the IET Cir-
cuits, Devices and Systems Premium Award. She was selected as
one of the 50 most influential women in Israel and Asia. She is
a highly cited researcher. She was the co-chair and the technical
co-chair of several international conferences and workshops. She
serves on several other IEEE committees. In the past, she was a
Signal Processing Society Distinguished Lecturer. She has served as
an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING,
the EURASIP Journal on Advances in Signal Processing, the SIAM
Journal on Matrix Analysis and Applications, and the SIAM Journal
on Imaging Sciences. She is the Editor-in-Chief of Foundations and
Trends in Signal Processing.

Alexandros G. Dimakis (Fellow, IEEE)
received the Diploma degree from the
National Technical University of Athens
(NTU), Athens, Greece, and the Ph.D. degree
from the University of California at Berkeley
(UC Berkeley), Berkeley, CA, USA, in 2008.
He is currently a Professor and the

Co-Director of the National AI Institute on
the Foundations of Machine Learning, The
University of Texas at Austin (UT Austin), Austin, TX, USA.
His research interests include information theory and machine
learning.
Dr. Dimakis is an IEEE Fellow for contributions to distributed

coding and learning. He received several awards, including the
James Massey Award, the NSF Career Award, the Google Research
Award, the UC Berkeley Eli Jury Dissertation Award, and several
best paper awards. He has served as an Associate Editor for
several journals, including IEEE TRANSACTIONS ON INFORMATION THEORY,
and as the Area Chair of machine learning conferences (Advances
in Neural Information Processing Systems (NeurIPS), International
Conference on Machine Learning (ICML), and Association for the
Advancement of Artificial Intelligence (AAAI)).

Vol. 111, No. 5, May 2023 | PROCEEDINGS OF THE IEEE 499
Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 25,2023 at 23:10:39 UTC from IEEE Xplore. Restrictions apply.

