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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY
IN A FREE BOUNDARY MODEL OF CELL MOTILITY

VOLODYMYR RYBALKO AND LEONID BERLYAND

ABSTRACT. We consider a 2D free boundary model of cell motility, inspired
by the 1D contraction-driven cell motility model due to P. Recho, T. Putelat,
and L. Truskinovsky [Phys. Rev. Lett. 111 (2013), p. 108102]. The key
ingredients of the model are the Darcy law for overdamped motion of the
acto-myosin network, coupled with the advection-diffusion equation for myosin
density. These equations are supplemented with the Young-Laplace equation
for the pressure and no-flux condition for the myosin density on the boundary,
while evolution of the boundary is subject to the acto-myosin flow at the edge.
The focus of the work is on stability analysis of stationary solutions and
translationally moving traveling wave solutions. We study stability of radi-
ally symmetric stationary solutions and show that at some critical radius a
pitchfork bifurcation occurs, resulting in emergence of a family of traveling
wave solutions. We perform linear stability analysis of these latter solutions
with small velocities and reveal the type of bifurcation (sub- or supercritical).
The main result of this work is an explicit asymptotic formula for the stability
determining eigenvalue in the limit of small traveling wave velocities.

1. INTRODUCTION

Cell motility, i.e. self-sustained motion of living cells using metabolic energy, is a
fundamental process involved in a variety of biological phenomena, e.g. wound heal-
ing, tissue remodeling (physiological or pathological), immune response, metastatic
tumor cell migration etc. In the general context of soft matter physics the interest
to the phenomenon led to a recent development of the so-called “Active gel physics”,
see [24]. Experimental studies of cell motility are often performed on keratocyte
cells that are widely considered as a case study example thanks to their fast and
persistent migration and stable shape. These cells, found in fish skin and human
corneas, are of particular interest due to their medical relevance as key players in
wound healing (e.g., in retina). From the modeling perspective keratocytes are also
advantageous because of their flat shape that allows one to use 2D mathematical
models.

The two leading mechanisms of cell motility are protrusion generated by poly-
merization of actin filaments (more precisely, filamentous actin or F-actin) and
contraction due to myosin motors [18], [20]. The goal of this work is to study the
contraction-driven cell motility, since contractile stresses caused by myosin motors
prevail in cell polarization and initiation of motion [27]. To this end we introduce
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and investigate a 2D model with free boundary that generalizes the 1D free bound-
ary model proposed in [26], [27]. Despite of its simplicity this 1D model captures
the bifurcation of stationary solutions to traveling waves, which is the signature
property of cell motility. While mathematical analysis in the 2D case is obviously
much more involved than in the 1D case, especially in a free boundary setting,
the results of the bifurcation analysis of the 2D model agrees with findings of [26],
[27] for the 1D case. In particular, both models exhibit a supercritical bifurcation.
However, modeling of the important phenomenon of cell shape evolution requires
consideration beyond the 1D setting, and results of this work capture breaking
of the shape symmetry, as depicted in Fig. 2, which is an important biological
phenomenon, see, e.g., [2] and [31]. Moreover, the main results of the work, in
particular the explicit asymptotic formula (7.10) for the eigenvalue that decides on
stability, and the asymptotic expansion of the corresponding eigenvector provide a
new insight for both 1D and 2D models.

Various 2D free boundary models for cell motility were introduced in, e.g., [2],
[7], [6], while [12] proposes a model of motion with fixed shape. The problems in
[7] and [6] model the polymerization driven cell motion when myosin contraction is
dominated by polymerization, which naturally complements present work. These
models extend the classical Hele-Shaw model by adding fundamental active matter
features such as the presence of persistent motion modeled by traveling wave so-
lutions. The Keller-Segel system with free boundaries as a model for contraction
driven motility was first introduced in [26], in the 1D setting. Its 2D counterpart
introduced and analyzed numerically in [2] accounts for both polymerization and
myosin contraction. A simplified version of this model was studied analytically in
[5], where the traveling wave solutions were established. Notice that the Keller-
Segel system in fixed domains appears in various chemotaxis models and it has
been extensively studied in mathematical literature (see, e.g., the review paper [4],
also see [8] for traveling waves in the 1D flux-limited Keller-Segel model).

Traveling wave solutions were also addressed in other 1D and 2D free boundary
problems of cell motility, e.g. [10], [21]. Besides, we mention closely related free
boundary problems in tumor growth models. However, in these models the area
of domain undergoes significant changes and no persistent motion was established
(see, e.g., [14], [23], and [19]).

While in the model [2] the kinematic condition on the free boundary contains
its curvature, in the present work we assume continuity of the flow at the cell edge
following the 1D model introduced in [26]. Still a term proportional to the curvature
appears in the force balance on the boundary since we adapt the Young-Laplace
equation for the pressure. This provides the same regularizing effect as in the 2D
Hele-Shaw model.

The main purpose of this work is to study stability questions in the onset of
motion. Specifically, we consider stationary solutions and traveling wave solutions
with small velocities. To show emergence of traveling waves we employ bifurcation
analysis of the family of radially symmetric stationary solutions, following the idea
originally proposed in [16] in the framework of a tumor growth model and followed
in many subsequent works on such models, e.g., [15], [17]. While the aforemen-
tioned works deal with bifurcation from radial to non-radial stationary solutions
via eigenvectors, in the present work we establish existence of traveling wave solu-
tions bifurcating via generalized eigenvectors rather than eigenvectors. Similarly to
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[15] we use the Crandall-Rabinowitz bifurcation theorem to justify bifurcation to a
family of traveling wave solutions parametrized by their velocity V. However, the
functional framework for application of this theorem significantly differs from that
used for tumor growth models.

The main mathematical novelty of this work is in the study of spectral properties
of the generator A(V) of the evolution semigroup linearized around traveling wave
solutions. The spectrum of the operator A(V) near zero has rather interesting
asymptotic behavior in the limit of small traveling wave velocities due to presence
of generalized eigenvectors for multiple zero eigenvalue. Specifically, A(V) has
zero eigenvalue with multiplicity five for V' = 0 that splits into zero eigenvalue
with multiplicity four and a (small) simple non zero eigenvalue A(V') # 0 for V # 0
whose sign determines stability of traveling waves. The main result of this work is an
explicit asymptotic formula (7.9) for A(V'), which determines stability of traveling
waves in terms of the total myosin mass and a special eigenvalue E describing
movability (see Remark 3.1) of stationary solutions.

The outline of the paper is as follows. Section 2 is devoted to the description
of the model. In Section 3 we consider the family of stationary radially symmetric
solutions with constant myosin densities and study their linear stability via the
Fourier analysis. The main finding of this section is in the identification of the
eigenvalue F(R) which determines stability of the solution with radius R. In Sec-
tion 4 we show that at the critical radius R = Ry such that F(Ry) = 0 a pitchfork
bifurcation occurs. A family of traveling wave solution emerges, these solutions
are parametrized by their velocities V. Then, throughout Sections 5-7 we study
the asymptotic behavior of the spectrum of the operator A(V) (obtained by the
linearization around the traveling wave solution) in the limit of small velocities V.
We restrict the analysis to perturbations possessing axial symmetry of the traveling
wave, since the eigenvector corresponding to the eigenvalue A(V') (which determines
stability) has this symmetry. Notice that in the space of perturbations with this
axial symmetry the multiplicity of the zero eigenvalue equals two. In Section 5 we
construct asymptotic expansions that lead to the formula (7.9) for A(V') for small
V' # 0. This construction requires a four term ansatz for the eigenvector which has
an interesting structure: the first two terms are proportional to the eigenvector and
the generalized eigenvector of A(V') for the zero eigenvalue (see pairs m;, p;, i = 1,2
in (5.9)—(5.10)). Moreover, a solvability condition for the fifth term yields the for-
mula (7.9) for A(V). This formula, despite the technical derivation, is remarkably
simple. The principal term in the asymptotic expansion of A(V) is given in terms of
two key quantities: the derivative of the eigenvalue E(R) (at the bifurcation point)
with respect to the total myosin mass and the derivative M’ (V') of the total myosin
mass M (V') of the traveling wave solution with respect to the velocity V' (see ex-
planation after the main Theorem 8.3). However, its justification is rather involved
and requires passing to the invariant subspace complementary to the generalized
eigenspace for the zero eigenvalue. To this end in Section 6 we study the generalized
eigenvector (corresponding to the zero eigenvalue) of the adjoint operator A*(V).
It exhibits a singular behavior (it blows up) as V' — 0 (actually, after a proper nor-
malization, it converges to an eigenvector of A*(0)). Section 7 contains the proofs
of results obtained in Sections 5 and 6. The main ingredient of these proofs is the
demonstration of resolvent convergence and convergence of spectral projectors. An
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important technical step there is Lemma 7.5 that deals with the resolvent oper-
ators and establishes regularity of solutions of the corresponding boundary value
problems. Finally, in Section 8 we extend the results for symmetric perturbations
to general perturbations of the traveling wave solutions. The key observation there
is that infinitesimal shifts of traveling wave solutions in the direction orthogonal to
motion and their infinitesimal rotations yield a complementary pair of eigenvector
and generalized eigenvector corresponding to the zero eigenvalue.

2. THE MODEL

We consider a 2D model of motion of a cell on a flat substrate. The cell occupies
a domain Q(t) with free boundary. The flow of the acto-myosin network inside the
domain (t) is described by the velocity field u. In the adhesion-dominated regime
(overdamped flow, cf. [7], [6]) u obeys Darcy’s law

(2.1) —Vp=_u in Q(¢),

where —p stands for the scalar stress (p is the pressure) and ¢ is the constant effec-
tive adhesion drag coefficient. We describe the acto-myosin network by a compress-
ible fluid continuum equation, for incompressible cytoplasm fluid can be squeezed
into the dorsal direction in the cell [22]. The main modeling assumption is the
following constitutive law for the scalar stress —p

(2.2) —p = pdive + km —pp  in Q(2),

where pdivu is the hydrodynamic stress (u being the effective bulk viscosity of
the gel), the term km is the active component of the stress which is proportional
to the density m = m(x,y,t) > 0 of myosin motors with a constant contractility
coefficient k£ > 0, py, is the constant hydrostatic pressure. Throughout this work we
assume that the effective bulk viscosity p and the contractility coefficient & in (2.2)
are scaled to u =1, k = 1. We prescribe the following condition on the boundary

(2.3) D+ pe =7k on IN(t),

known as the Young-Laplace equation, where x denotes the curvature (positive if
Q(t) is convex), v > 0 is a constant coefficient and p, is the effective elastic restoring
force which describes the mechanism of approximate conservation of the area due
to the membrane-cortex tension. The elastic restoring force p, generalizes the one-
dimensional nonlocal spring condition introduced in [26], [27], see more recent work
[25] which also introduces the cell volume regulating pressure,! and we similarly
assume the simple linear dependence of p. = p.(|Q2|) on the area®:

(2.4) Pe = ke (|] — [2[)/1€],

1The authors are grateful to L. Truskinovsky for bringing [25] to their attention and helpful
discussions on bifurcations during the preparation of the manuscript.

2An alternative way to this mean field elasticity approach (used to regularize the minimal
model) could be incorporating the Kelvin-Voigt model which accounts for the elastic response at
long time scales. To this end one can introduce the intracellular density g, whose transport is
governed, e.g., by 9o + div(pu) = 0 and modify the constitutive law (2.2) by a term P(g) with
appropriate linear or nonlinear function P. For a discussion of different approaches of elastic reg-
ularization of the minimal model in 1D case, including also Maxwell model, we address interested
reader to [28].
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1803

where k. is the inverse compressibility coefficient (characterizing membrane-cortex
elastic tension), |Q2y,| is the area of the reference configuration €, in which p, = 0
(cf. vertex models [13], [1]).

The evolution of the myosin motors density is described by the advection-diffu-
sion equation

(2.5) Om = Am — div(um) in Q(t)
and no flux boundary condition in the moving domain
(2.6) Om=(u-v—V,)m on 90Q(t),

where v stands for the outward pointing normal vector and V,, is the normal velocity
of the domain Q(¢). Finally, we assume continuity of velocities on the boundary

(2.7) Vi=u-v,

so that (2.6) becomes the homogeneous Neumann condition. Combining (2.1)—(2.7)
yields a free boundary model of the cell motility investigated in this work. While
there are several models of cell motility in literature (both free boundary and phase
field models), in this work we perform analytical study of stability of stationary
and persistently moving states in the model (2.1)—(2.7).

It is convenient to introduce the potential for the velocity field u using (2.1):

(2.8) u=Ve¢= *V%p, ¢ = *%(p — Pn),
and rewrite problem (2.1)—(2.7) in the form

(2.9) Ap+m=_(od inQ(),

(2.10) Co =p.(I12)]) —yr  on IQ2),
(2.11) V,=0,¢ on Q1)

(2.12) om = Am — div(mVe¢) in Q(t),
(2.13) d,m =0 on 90(t),

where we introduced the notation

(2.14) P« (1) == pu + pe(|Q]) = pn — ke (|2 — [2u]) /]|

for the sum of the hydrostatic pressure p, and the effective elastic restoring force
Ppe. We consider the coefficient k. to be sufficiently large so that it penalizes changes
of the area. For instance, it prevents from shrinking of {2 to a point or from infinite
expanding. The precise lower bound on k. /|| is given below in (3.17).

Remark 2.1. Evolution problem (2.9)—(2.13) is naturally considered in the phase
space of two unknowns m(z,y, t) and Q(t), while the potential ¢(x,y,t) is regarded
as auxiliary unknown function determining evolution of the free boundary. Instan-
taneously ¢ is defined as the unique solution of the elliptic problem (2.9)—(2.10),
while its normal derivative 9, ¢ determines normal velocity of the boundary 9€(¢).

Following [9] one can establish local (in time) existence of a solution of (2.9)-
(2.13) and its uniqueness in appropriate Holder spaces. Indeed, introducing oy :=
¢ — p«(|€2])/¢ one rewrites (2.9)—(2.13) as a Hele-Shaw type problem

(2.15) Aoy =H(p,m) inQ(t), o1= —%Ka and V,, = 0,01 on 99
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with the source term H(p, m) = (¢ —m, where ¢ = o1 + p.(|€2])/¢ and m solves
(2.12)—(2.13). Then similarly to [9] the above problem can be treated with the
help of the Banach fixed-point theorem. Notice also that every solution of (2.9)-
(2.13) enjoys an important feature of conservation of the total mass of myosin
M = fﬂ(t) m(x,y,t)dzdy, as follows from (2.11)-(2.13).

Remark 2.2. Observe that if the initial data have reflection symmetry with respect
to the z-axis then solutions of problem (2.9)-(2.13) also have this symmetry. We
adopt this symmetry assumption throughout Sections 3-7 in the spectral analysis
of linearized problems and in the bifurcation analysis. Subsequently we relax this
assumption in Theorem 8.3 (see Section 8) to obtain a complete characterization
of linear stability of traveling wave solutions.

3. LINEAR STABILITY ANALYSIS OF RADIALLY SYMMETRIC
STATIONARY SOLUTIONS

In the class of radially symmetric stationary solutions of problem (2.9)—(2.13) for
a given radius R > 0 there exists the unique radial solution with constant myosin
density and it is given by
(3.1) Q=Bgr, mo=p.(7R*) =7/R, (do=p.(nR*) /R,

and we assume that R is such that p.(7R?) — /R > 0 to have the density mg > 0.
To describe evolution of perturbations of (3.1), it is convenient to use the polar

coordinate system (r, ),

(3.2) Q={(x=rcosp,y=rsing);0 <r < R+ p(p,t)}.

Then linearizing problem (2.9)—(2.13) around a radially symmetric reference sta-
tionary solution (3.1), we get the following problem

(3.3) Ap+m=_¢ in Bg,

'(mR?*)R [T
(3.4 o= DR [ ot 2 (@2p4 ) on 0B
(3.5) Op = Or¢p on OBpg,
(3.6) om = Am —mgA¢ in Bg, 9,m =0 on 0Bg,

which can be rewritten in the operator form

d
(3.7) U = As(R)U,

where U = (m, p), and Ags(R) is the following operator
(3.8) (Ass(R)U)y, = Am —moA¢ in Br, (Ass(R)U), =0,¢ on 0Bg.

Here ¢ solves the time independent problem (3.3)—(3.4) for given m and p, and (3.8)
defines an unbounded operator in L?(Bg) x L?(0Br) whose domain is H2(Bg) N
{m;8,m =0 on OBR} x H*(OBR).

Operator Ags(R) has a compact resolvent (as one can prove following the lines
of the proof of Lemma 7.5), therefore its spectrum is discrete. Thanks to the radial
symmetry of the problem, the study of spectral properties of Ag,(R) amounts to
the Fourier analysis. Moreover we will consider only perturbations possessing the
reflection symmetry with respect to the x-axis. That is we consider Fourier modes
m = m(r)cosny and p = pcosnyp for integer n > 0. Notice that the operator

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1805

Ass(R) always has zero eigenvalue with multiplicity at least two and eigenvectors
(m = 0,p = cosp) and (m = 27Rp.(7R?) +v/R?* p = 1). Indeed, Ass(R) is
obtained by linearizing problem (2.9)—(2.13) around the radially symmetric sta-
tionary reference solution with radius R, while stationary solutions (3.1) and their
shifts along z-axis form a smooth two parameter family of stationary solutions of
the nonlinear problem (2.9)—(2.13), thus taking derivatives of these solutions with
respect to the parameters yields two linearly independent eigenvectors of the lin-
earized operator. The first of these eigenvectors represents infinitesimal shifts in
the z-direction of a solution (3.1) when R is fixed, and the second one is obtained
by taking derivative in R when the position (center of the disk) is fixed at the
origin. Next we introduce the eigenvalue E(R) describing movability of stationary
solutions. It will be shown that at the critical radius when E(R) crosses zero a
family of traveling wave solutions emerges.

Notice that within the mode (m, p) = ((r) cos g, pcos ) the eigenvalue prob-
lem for 7 (r) decouples from p since (3.4) becomes the homogeneous Dirichlet con-
dition. Thus the auxiliary function ¢ in this case does not depend on p and is the
unique solution of

(3.9) Ap+m=_¢p in Bg, ¢=0 on JBg.

The eigenvalue problem then reduces to Am = Am +mgom —mg(¢ in Bg, 0,m =0
on 0Bpg, and if A # 0 then one retrieves the p-component of the eigenvector by
setting p = 0,¢/A. The reduced eigenvalue problem is self-adjoint and therefore
admits variational formulation. The first (maximal) eigenvalue is the solution of
the minimization problem?

(3.10) E(R) = —inf {Ec(m)/ ; m?dxdy;m € H'(Bgr), m = m(r) cosgo} )

where E¢(m) = / (IVm[> = mom® + mo¢|Vo|> + mo(?¢?) dady
Br

and ¢ is the unique solution of (3.9). Minimizing the Rayleigh quotient in (3.10)
yields a minimizer m that satisfies Am+mom—mo(¢ = E(R)m in Bg and 9,m = 0
on 0BR. As already mentioned, in the case when E(R) # 0 one obtains the p-
component of the eigenvector by setting p = 0,¢|,—r/E(R). If E(R) = 0, then the
pair (m, 0) is a generalized eigenvector of Ags(R) while Ags(R)(m,0) = (0,0, ¢|r=r)
is an eigenvector (corresponding to infinitesimal shifts).

Problem (3.10) admits separation of variables in polar coordinates and thus
can be reduced to an eigenvalue problem for a 1D system, leading to an integro-
differential equation. However, the sign of the eigenvalue F(R) can be determined
via the solution of simple problem (3.11) below, explicitly given in terms of a Bessel’s
function (see Theorem 4.1).

Remark 3.1. The Fourier mode with (m, p) = ((r) cos ¢, pcos p) is the only mode
that corresponds to motion (when the geometrical center of mass of {2 changes).
There are infinitely many eigenvectors within this Fourier mode. In particular, it
contains the eigenvector (0, cos¢) (infinitesimal shifts) corresponding to the zero

3Technically E(R), given by formula (3.23), depends also on the physical parameter ¢ > 0
which is considered fixed throughout the work, with the only exception occurring in the proof of
Lemma 3.3 (where it is explicitly stated), and therefore omitted to shorten the notation.
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eigenvalue. Then E(R) is the largest of the remaining eigenvalues. That is why
E(R) describes movability of the stationary solutions.

Lemma 3.2. Assume that mg < ¢ and E(R) = 0, then E(R) is a simple eigenvalue
of the variational problem (3.10), and the solution U(r) of

1 1
(3.11) ;(r\Il’(r))'—T—Q\Il(r)—l—(mo—C)\I/(r) =moer 0<r<R, ¥(0)=Y(R)=0
satisfies the additional boundary condition
(3.12) U'(R) = 1.

Proof. Let m be a minimizer of (3.10). Then the function m and the solution ¢ of
(3.9) are of the form m = 1(r) cos @, ¢ = ¢(r) cos ¢, and since A(m—mg¢) = 0, we
have m = mqg(¢ — Crcosp). Clearly C # 0, therefore we can assume that C' = 1,
multiplying m and ¢ by a (same) constant if necessary. Then separating variables
in (3.9) leads to (3.11), i.e. ¢ = ¥(r), and since d,m = 0 on dBg we obtain (3.12).
Simplicity of the eigenvalue F(R) = 0 follows from the uniqueness of the solution
of (3.11). O

Lemma 3.3. Assume that mg < ¢, then E(R) >0, E(R) =0 or E(R) <0 if and
only if O'(R) > 1, W (R) = 1 or ¥'(R) < 1, correspondingly, where U(r) is the
solution of (3.11).

Proof. Assume that U'/(R) > 1 and consider the test function m := mg(¥(r) —
r)cosp. Observe that A(U(r)cosp) +m = (¥ (r) cosp, therefore we have, inte-
grating by parts,

E(R) m?drdy > —E¢(m) = —/ mo,mds
Bgr 8BR

+ / (Am + mom — ¢mo¥(r) cos )mdady = TR*mZ(¥'(R) — 1) > 0.
Br

Next we prove that F(R) < 0 if ¥/(R) < 1. We argue by contradiction. Assume
that E(R) > 0 and notice that allowing the parameter ¢ in (3.23) increase we have
a continuous function F(R, () which becomes negative for sufficiently large ¢. To
prove the latter claim observe that otherwise there exists a sequence (; — oo and
my; = 1;(r) cosp such that |m;l|z2(p,) = 1 and E¢;(m;) < 0. This gives the a
priori bound

(3.13) / |vmj|2dxdy+mogj/ (IVo;1* + ¢;¢7) dudy < mo,
Br

Br

where A¢; +m; = (;¢; in Br, ¢; = 0 on 0Bg. Let us show that (j¢; —m; — 0
weakly in L?(Bg). Indeed, multiply the equation A¢; + m; = (j¢; by a test
function v € C§°(Br) and integrate over Bp,

(3.14) / V¢, - Vudxdy + / (Cj(ybj — mj)vdxdy = 0.
BR BR
Then pass to the limit in this identity as j — oco. By (3.13) we have [|V¢;|[12(p,) <

1/4/¢j, therefore the first term in (3.14) tends to zero and thus the weak convergence
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¢j¢; —m; — 0 is established. It follows from (3.13) that there exists m* € H'(Bg)
such that, up to a subsequence, m; — m* strongly in L?(BRr), consequently

Hm inf G517z — 1 =Umint(I¢;05l1Z2 () = I3 Z2(50)
— ] ] . Ppp— . 2
= 15niggf(\lcg¢g m;ll12(y)) = 0-

Then (3.13) implies that limsup;_, fBR |Vm;|?dzdy = 0, i.e. m* = const. On
the other hand m* admits the representation m* = 1m*(r) cos . Therefore m* =0
that contradicts the normalization ||m*(|z2(p,) = 1.

Thus, min Ez(m)/ [ m2dxzdy = 0 for some ¢ > ¢. Then by Lemma 3.2 the
solution of
(3.15) %(r\il/(r))'—T%@(T)—i—(mo—é)\i/(?") =mor 0<r<R, U(0)=¥(R)=0

satisfies

(3.16) U (R)=1.

But — 1 (r(W/(r) =¥/ (1)) + 75 (¥ (1) = (1)) + (¢ —mo) (¥ (r) = ¥(r)) = (=¥ > 0
for 0 <r < R, and ¥(0) — ¥(0) = ¥(R) — ¥(R) = 0. By the maximum principle
U(r) —¥(r) >0 for 0 < r < R, therefore ¥'(R) < ¥ (R) (due to the Hopf lemma
the inequality is strict), i.e. ¥/(R) > 1, contradiction. Lemma 3.3 is proved. O

Remark 3.4. The condition my < ¢ in Lemma 3.2 and Lemma 3.3 is not optimal. It
suffices to assume that mg — ¢ is less than the first eigenvalue of —A in Br with the
homogeneous Dirichlet boundary condition on Br. Then a unique solution of the
problem (3.11) exists and the maximum principle still holds, along with the Hopf
lemma. We nevertheless keep condition my < ¢ to avoid unnecessary technicalities
hereafter.

The following result addresses linear stability of radial stationary solutions (3.1).

Theorem 3.5. Assume that the myosin density mg is bounded above by the fourth
eigenvalue of the operator —A in Br with the homogeneous Neumann boundary
condition on OBpR, also assume that p’.(7R?) satisfies

(3.17) pL(TR?) < — (v/R+ 2myg) /(27 R?).

Then Ass(R) has zero eigenvalue with multiplicity two if E(R) # 0 or three if
E(R) = 0 (in this case geometric multiplicity is still two), and all its eigenvalues
other than zero or E(R) have negative real parts.

Remark 3.6. In terms of the total myosin mass Mgs(R) = 7R%*mg = nR?*p. (7 R?) —
7Ry of the solution (3.1) condition (3.17) rewrites as

(3.18) M!(R) < 0.

This shows that (locally) stationary solutions can be reparametrized by their total
myosin mass.

Theorem 3.5 underscores the role of E(R) as a principal eigenvalue of Ags(R) and
provides a basis for applying the center manifold theory to problem (2.9)—(2.13).
In particular, if F(R) < 0 then (locally) the center manifold is formed by two
parameter family of radial stationary solutions (with different radii and positions),
the center space (slow space) is two-dimensional, while the unstable space is null.
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1808 VOLODYMYR RYBALKO AND LEONID BERLYAND

Using Theorem 3.5 one can establish stability of the linearized problem (3.3)—(3.6)
and then transfer this result to original evolution problem (2.9)—(2.13), taking into
account invariance of the problem with respect to shifts and the conservation of total
myosin mass property. We do not dwell into this nonlinear stability issue in this
work and refer an interested reader to, e.g., paper [3] which addresses nonlinear
stability of stationary solutions in (a close) framework of the tumor growth free
boundary problem.

For E(R) > 0 problem (3.3)—(3.6) is unstable, the same is true for F(R) = 0
because of linearly growing solutions.

Proof. Let )\, be an eigenvalue corresponding to an eigenvector m = m., () cos nep,
p = pncosne with n > 2. Multiply the equation \,m = Am + mgm — mo(¢p by
the complex conjugate m of m and integrate over Bg,

(3.19)

)\n/ |m|?dxdy = —/ |Vm\2dxdy+mo/ |m|2dxdy—mog/ omdxdy.
BR BR BR BR

Now multiply the equation m = (¢ — A¢ by mo(¢ and integrate over Bg, then we
obtain the following representation for the last term in (3.19):

(3.20) moC | pmdrdy = mog/ (IVo]* + (|¢|*) dady — mog/ $0,¢ds.
Br Br OBRr

Since 0,6 = \,p and (by virtue of (3.4)) p = ,y(%%a on 0Bg, equality (3.19)

rewrites as

(3.21)
22
)\n/ |m|2dxdy+xnm02$/ |¢|2ds:/ (—IVm|? + mo|m|?) dzdy
Br ¥(n* = 1) Jop, Br
— ol [ (V9 +CloP) dady.

Notice that, thanks to the assumption that mg is bounded by the fourth eigenvalue
of —A in Bg with homogeneous Neumann boundary condition, we have

(3.22) / (IVm|*dzdy — mo|m|?) dzdy > 0.
Br

Therefore the right hand side of (3.21) is negative, so the real part of A, is also
negative.

Next we consider eigenvalues whose corresponding eigenvectors have the form
m = m(r)cosgp, p = pcosp. As already mentioned, the operator Aq(R) always
has the eigenvector (0, cos ¢) corresponding to the zero eigenvalue, while eigenvalue
problem for other eigenvalues is reduced to a self-adjoint one. These eigenvalues
can be arranged in nonincreasing order, E(R) = A1 > A2 > ... and described
by the Courant minimax principle,

~ E¢(m)
3.23 Aij=—  sup inf ,
( ) ! codim(S)=j—1MES fBR m2dxdy
where S is a subspace of {m € HY(Bgr), m = m(r) cos 80}- Then we have
|Vm|?dzdy

3.24 “A1a> sup inf erey
( ) i codim(S)=1 mes fBR mzdxdy
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1809

(since

inf {/ (IVo[* +¢¢?) dzdy; ¢ solves (3.9), [mllL2(pr) = 1, [Imlla1(Ba) < C} >0
Br

VC' > 0, the inequality in (3.24) is strict). Notice that by Proposition 3.7 the first
term in the right hand side of (3.24) is greater than or equal to the fourth eigenvalue
of —A in By with the homogeneous Neumann condition on dBg. Thus all eigen-
values, but possibly F(R), are negative and minimizers of (3.23) for j > 1 yield
m~components of eigenvectors. The same holds for j = 1 if F(R) # 0, otherwise
we obtain a generalized eigenvector (m,0), Ass(R)(m,0) = ¢'(R)(0, cos ), where
d(r) = ¢/ cos g and ¢ is the solution of (3.9).

Consider finally an eigenvalue Ag corresponding to a radially symmetric eigen-
vector. We have, on 0Bg

(3.25) ¢ = (7/R® + 21 Rp, (T R?))p/¢, dop = 8r0.

Multiply the equation Agm = Am + mgm — mo(¢ by m — (m) and add to the
equation —A¢ + (¢ = m multiplied by mo((¢ — (¢)), where (), (#) denote mean
values of T, ¢ (over Br). Integrating the result over Br we obtain,

)\0/ |m — (m)|?dzdy = —/ |Vm|?dxdy + mo/ |m — (m)|*dzdy
(3.26) Br Br Br -
~ mot /B (IV[2 + Clo — (8)[2) dudy +mo¢ [ (6 (6))0,ds.

OBRr

Assume that A\g # 0. Then we can evaluate (¢) in terms of p, integrating
equations A\gm = Am +mgm —mo(¢ and —A¢+ (p = m over Br and eliminating
(m):

(321 ()= (L= mo/ho) [ Bgds = 2=( —mo)

. =——(1-m -pds = — (g — mg)p.

WRQC 0/ Ao o RC 0 0)P

Now we use (3.25) and (3.27) to rewrite the last term in (3.26) as

mo¢ [ (¢ —(9))0rdds = — dmmo|Xo[*|p|?
(3.28) 9B

+ 2mmoXolp|? (v/R + 2mg + 27 R?pl (1 R?)) .
Substitute (3.28) into (3.26), as the result we get

)\0/ im — (m)|*dazdy+2mwmoXo|p|* (220 — v/R — 2mg — 2 R*p/(TR?))
Br

(3.29) = —/ |Vm|2dmdy+m0/ |m — (m)|?dzdy
Br Br

—moC | (IVo|* +¢lo — (8)]?) dzdy.

Br
Thanks to the radial symmetry of m the function m — (m) is orthogonal (with
respect to the standard inner product in L?(Bg)) to the first three eigenfunctions
of the operator —A in Br with the homogeneous Neumann boundary condition
on dBg. Therefore [, [Vm|*dzdy —mq [z |m — (m)|*dzdy > 0. Thus (3.29)
implies that the real part of \g is negative. To complete the proof it remains
only to consider the case A\g = 0. By virtue of (3.26) the m-component of any
eigenvector is constant in this case, i.e. the unique (up to multiplication by nonzero
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1810 VOLODYMYR RYBALKO AND LEONID BERLYAND

constant) eigenvector is (m = 2w Rp/,(tR?) + v/R?, p = 1). This eigenvector does
not have any associated generalized eigenvector, otherwise integrating the equation
27 Rp’ (7 R?) +~/R? = Am —mA¢ over Bg and taking into account the boundary
condition 1 = 0,¢ on dBg we find that

0= / (27 Rp!, (7 R*)+~/R?)dxdy + mo Orpds
BR GBR

= ntR(27R*p.,(7R*) 4+ v/R + 2my)
contradictory to (3.17). Theorem 3.5 is proved. O
In the proof of Theorem 3.5 we have used the following simple result.

Proposition 3.7. The eigenfunctions corresponding to the second and the third (if
counted with multiplicity) eigenvalues of —A in Br with the homogeneous Neumann
condition on OBg have the form

(3.30) va(r, ) = Da(r) cos(p + ¢o).

Proof. Tt suffices to show that va(r, ) is not radially symmetric. Let Ao denote the
corresponding eigenvalue. Assume by contradiction that ve(r, ) = 02(r), then by
straightforward differentiation of the eigenvalue equation one checks that 94 (r) cos ¢
is an eigenfunction of the equation —A(94(r) cos ) = Aa®4(r) cos ¢ in Br with the
homogeneous Dirichlet condition on dBg. Since each eigenvalue of —A in Bp
with the homogeneous Dirichlet condition on 0Bp is strictly greater than that of
—A in Bg with the homogeneous Neumann condition on dBg, A2 must be the first
eigenvalue of the former operator. However the first eigenfunction is sign preserving,
a contradiction. ]

4. BIFURCATION OF TRAVELING WAVES FROM THE FAMILY OF STATIONARY
SOLUTIONS

In this section we prove that at the critical radius R = Ry such that E(Ry) =0
radially symmetric stationary solutions (3.1) bifurcate to a family of traveling wave
solutions. Notice that for R in a neighborhood of Ry and at R = Ry the geometric
multiplicity of the zero eigenvalue of Ags(R) is two, and the bifurcation takes place
via the generalized eigenvector appearing at Ry.

Consider the ansatz of a traveling wave solution moving with velocity V' > 0 in
z-direction

(4.1) m=m(zx—Vt,y), ¢ =o(x—Vt,y), Q) =Q+ (Vt,0)

and substitute it to (2.9)—(2.13) to derive stationary free boundary problem for the
unknowns ¢, Q and M > 0,

(4.2) Ag + e?VT=(p inQ, 9,(6—Vx)=0 ondQ,

Jq et Vodady
(43) (6 =p(9)) — % on 09,

Indeed, (2.12) yields —V9,m = Am — div(mV¢) in Q while d,¢ = Vv, on 09,
then, taking into account the boundary condition 9, m = 0, we see that
p—Va M

4.4 =A here A '= ———————.
(4.4) m e ,  where T Vedady

Here unknown constant M > 0 represents the total mass of myosin, M = fQ mdxdy.
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1811

For radially symmetric stationary solutions (3.1) the total myosin mass Mys(R)
is given by

(4.5) Mgs(R) = TR*p.(7R?) — 7R,

in terms of the radius R. It is convenient to keep the parameter R in the bifur-
cation analysis presented below, although the domain 2 is no longer a disk. Then
dependence on R will appear implicitly in the parametrization of the boundary 952,
as the radius of the reference disk, and explicitly in M := M,(R) given by (4.5).
We also use the notation mgs(R) for the densities of stationary solutions (3.1),

mss(R) := Myss(R)/(7R?) = p.(7R*) — v/R,

reserving my for the density at R = Ry.
We rely on Theorem 1.7 from [11] to get the following result on bifurcation of
traveling wave solutions.

Theorem 4.1. Let Ry be the critical radius, i.e. E(Rg) = 0. Assume also that
mo < <7

(4.6) PL(7R3) < —(v/Ro + 2my) /(27 R3),
and
(4.7) F'(Ro) # 0,

where
(4.8)
3 CIl @(R)
F(R) = u ( ) —mss(R) |, O(R) = R2(C —mgs(R)),

o1 \ Jormr; (orm)

1, is the 1st modified Bessel function of the first kind.

Then stationary solutions (3.1) at R = Ry bifurcate to a family of traveling wave
solutions, i.e. solutions of (4.2)—(4.3) parametrized by the velocity V. Moreover
for small V, V| <V (for some V> 0), these solutions (both the function ¢ and
the domain Q1) are smooth and depend smoothly on the parameter V.

Proof. As above we consider §) in polar coordinates, & = {0 < r < R+ p(p)}.
Since ¢ > mgs(Rp), for sufficiently small p, V and R sufficiently close to Ry there is
a unique solution ® = &(z,y; V, R, p) of (4.2). It depends on three parameters: the
scalar parameter V' (the prescribed velocity), the radius R via the parametrization
of the domain and

M := Mg,(R), where My (R) is given by (4.5),

and the functional parameter p that describes the shape of the domain 2 or, more
precisely, its deviation from the disk Br. As above we assume the symmetry of the
domain with respect to the z-axis and therefore its shape is described by an even
function p.

The condition (4.3) on the unknown boundary, described by p(¢p), rewrites as
(4.9)

" /\2

po(19]) — 7(Rer)(R+p p") +2(p")

(R+ ol + (PP

=(P((R+p)cosp, (R+p)sing; V. R, p).
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1812 VOLODYMYR RYBALKO AND LEONID BERLYAND

To get rid of infinitesimal shifts we will require that
(4.10) / p(p) cos pdyp = 0.

Then introducing the function F which maps from X = C;&(—ﬂ',’ﬂ') x R x R to

Y = Cyu(—m,m) x R (where the subscript # means even periodic functions):
(4.11)

F((p.V).R) = (7

2 nNe i g
(R+p)*+2(p")° —p (R+p)+(I)_M’/ pCOSSDdSD)y

C((R+p)* + (p)?)%/? ¢ s
we rewrite problem (4.2)—(4.3) in the form
(4.12) F((p, V), B) = 0.

Next we apply the Crandall-Rabinowitz bifurcation theorem [11] (Theorem 1.7),
which guarantees bifurcation of new smooth branch of solutions provided that

(i) F(0,R) =0 for all R in a neighborhood of Ry;
(ii) there exist continuous 9, v)F, OrF, and 8(2p7v)7Rf in a neighborhood of
(p7 V) = 07 R = R07
(iii) the null space Null(9(,vF) at (p,V) =0, R = Ry has dimension one and
Range(d(,,v)F) at (p,V) =0, R = Ry has co-dimension one;
(iv) (8(2p7v)7Rf)(p, V) & Range(9(,,1)F) at (p,V) =0, R = Ry for all (p,V) €
NUIl(a(p7V)‘F)-
It is easy to see that condition (i) is satisfied, and condition (ii) can be verified
as in [5]. To verify (iii) we begin with calculating £ := 0, )F at (p,V) = 0.
Linearizing (4.11) around (p, V) = 0 we get

(4.13)
L:(p, V) (—Ri%(p” ¥ p) + VAy®(Rcos g, Rsin ¢; 0, R, 0)
PR [7 .
+(0,2,0)| () vy=0 — %/ de%/ pcoswdsﬁ),
where (8pq>,p>‘(pyv):0 denotes the Gateaux derivative of ® at (p,V) = 0, and

Oy ®(z,y;0, R,0) =: Y (z,y) is the unique solution of the problem
(4.14) ADY + mg(R)(DY — ) = (B, in Br, 0,9 =v, ondBg,

the latter problem being obtained by taking derivative with respect to V in (4.2)
(when Q = Bgr) at V = 0. To calculate (0,9, p)|(p V)=0 observe that for V' = 0 the

solution of (4.2) is given by ¢ = Mys(R)/(¢|9?|), therefore

1 us
<apq)7p>’(p,v)=0 = _CTF—]%mSS(R)/ pd‘P

—T

Notice that the solution @Y, of (4.14) can be found in polar coordinates via sep-
z}ration of variables ®), = Y (r, R) cos¢, this yields the following problem for
oY (r, R):

s, (T&n(i)?,) = L&Y 4 (man(B) — OBY = mu(R)r 0<r <R,
T T
®Y(0,R) =0, 0,9%(R,R)=1.

(4.15)
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1813

The operator £ has a bounded inverse when @Q, (R, R) # 0 and R is sufficiently close
to Ry, as can be verified by Fourier analysis Indeed, this operator? has the eigen-
value —== (’y/R + 2mgs(R) 4 2mR?p (mR?)) which is strictly positive by virtue of
the assumptlon (4.6), the corresponding eigenvector is (p = 1,V = 0); £ has a

pair of (either real or imaginary) eigenvalues :t\/wfi)(‘),(R, R) whose correspond-

ing eigenvectors form the subspace span{(cosp,0),(0,1)}; also £ has eigenvalues
RL%‘(”Q —1), 2 < n € Z,; whose corresponding eigenvectors are (cosng,0). In the
case Y (R, R) = 0, in particular for R = Ry (by Lemma 3.2 ®% (R, R) = 0 when
R = Ry) the null space of L is one-dimensional (it is span{(p = 0,V = 1)}) and its
range consists of all the pairs (f,C) € Cu(—m, ) X R such that ffﬂ f(p) cospdp =
0. Thus, condition (iii) is satisfied.

It remains to verify the transversality condition (iv). We check if 9r£(0,1) ’ R=R,
does not belong to the range of the operator £, where
(4.16)

2 /!
Ol nn (0:V) > (a6 +0) + V(R

Z d
R3¢ IR cosp + /pso,O)

-7

with some constant Z = Z(R). Since the range of £ (described above) is all (f, C)
such that f:r f(p)cospdp = 0, we must have a nonzero coefficient in front of
cos ¢ in (4.16) to satisfy condition (iv). Thus this (transversality) condition can be
equivalently restated as

d
(4.17) ﬁqﬂ (R, R) . # 0.

In order to check (4.17) introduce 9(r, R) := ®%(Rr, R), this change of variable
reduces (4.15) to the following problem:

SO (r0rp) = }gw + R (mgs(R) — Qv = RPmys(R)r 0 <r <1,
w(oa R) == 07 avﬂb("”, R) = R.

The solution of this problem is given by

o= o (CBVOI) ) e m
o em\yemr (vem) ) o
so that condition (4.17) writes as (4.7). O

Remark 4.2. By virtue of Lemma 3.3, the necessary bifurcation condition E(Ry) =
0 is equivalent to the condition (3.12) (with R = Ry), which, in turn, is equivalent
to the condition ®Y, (Rg, Ro) = 0 for the solution ®9, (r, Ry) of (4.15). Thus we have
E(Ry) =0 < F(Rp) = 0, i.e. both the necessary bifurcation condition and the

4More precisely, a realization of £ as an operator acting in the same space, e.g. Hf# (—m,m)xR.
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1814 VOLODYMYR RYBALKO AND LEONID BERLYAND

transversality condition write in terms of the function F' (given by (4.8)) as follows
(4.18) F(Ro) =0, F'(Ry) # 0.
Moreover, we show below, see (4.22), that F'(Ry) # 0 iff E'(Ry) # 0.

Remark 4.3. Let ® = &(z,y, V), Q(V) = {(rcosp,sing);0 < r < Ry + prw(e, V) }
and M (V) be solutions of (4.2)—(4.3), given via the construction in the proof of
Theorem 4.1. Then, by Theorem 1.18 in [11], the solutions depend smoothly on the
parameter V and the first term in the asymptotic expansion of pi,, is of order V2,
Le. ||prwllcz((ma)) < CV?Z, also M'(0) = A’(0) = 0, so that A(V) = A(0) + O(V?),
where

M(V)

A(V) : e@(x,y,V)—Vﬂcdwdy’

A(0) = moe™ /¢,

Jaw

Combining this with elliptic estimates one can improve bounds for p,, to
(4.19) Pt i (=) < CVZ V€ Zy

with C' depending only on j, and derive the following expansion for @,
(4.20) O(x,y, V) = mo/C + VO (x,y) + V>B(x,y, V),

where ®Y, is the unique solution of (4.14), ®), = ®%,(r, Ry) cos ¢, while functions ®
and their derivatives with respect to the parameter V' are uniformly (in V') bounded
in C7(Q(V)) Vj € Zy. Note that @), extends as the solution of A®Y, +mg(®Y, —z) =
¢®Y, to the entire space R?, being the product of the solution <i>“)/ (r, Ro) of (4.15)

and cos .

The following technical lemma provides new formulas for F'(Ry) and E’'(Ry)
important in the subsequent analysis. These formulas show, in particular, that
F'(Ry) =0iff E'(Rg) = 0.

Lemma 4.4. Assume that mg < ¢ and E(Ry) = 0, then

(4.21)
3 ’ 2
F'(Ry) = E(C +mg — (moRo)?) — 1/ R+ 2mpe () / V(0 — z)*dzdy.
¢ ¢ Br,
Moreover,
(422) E/(RO) _ ROWCF,(RO)

mo fBRO (DY, — 2)2dady’

where DY, is the solution of (4.14) with R = Ry.
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1815

Proof. In polar coordinates function <I>“)/ can be represented as ®Y, = @Q, (r, R) cos
with @9 (r, R) solving (4.15). Taking derivative in (4.15) with respect to the pa-
rameter R we obtain that 8R<I>V r, R) ‘R Ry = <I>‘€,1R(r) satisfies the equation

1 - 1. N -
(4:23) ~0, (r0,49.) — 580 gt (mo—Q) Y, = —ml (Ro)(@)—1) 0 <7< Ry,
with boundary conditions
(4.24) D) 1(0) =0, 0,9 (Ro) = —02.8Y (Ro, Ro) = 1/Ro — moRo.

Multiply (4.23) by the function —r(¢ —mo)®% (1, Ry) — mor? and integrate to get,
using (4.15),

R
Ro (mo(moR — 1) + (8 (Ro) ) =Cml(Ro) / (@9 —r) dhrar
(4.25) 0

Ro . 2
— momi,(Ro) / (fI)?/ - r) rdr.
0

Then observe that ®Y,(r, R) — r satisfies

20, (10, (80 — 7)) = 5(B) =) = —mo(®} — 1) + ¢

r2

multiply this latter equation by —m/ (Ro)(®} — r)r, integrate and add to (4.25).
As a result we obtain

RoC(®Y, z(Ro) + 1) = Ro¢ — moRo(moRE — 1)

m{,(Ro) /ORO ((@fi)?/ 1)+ Tiz (89 - T)Q) rdr
(xR

RZ + 27 Rop!, (n R
7/ R3 + 27 Ropl (m o)/B V(99 — z)[2dady.
Ro

= Ry (C +mo — (moRo)Q) - -
Since dR<I>0 (R, R) |R=R0 = @%7R(Ro)+8r<i>‘€,(Ro,Ro) = ‘i)?/,R(RO)‘f‘l, the left hand
side of the above relation is equal to R(CF'(R). Thus (4.21) is proved.

To calculate the derivative of E(R) at R = Ry, notice that since F(Rg) = 0
is a simple (see Lemma 3.2) eigenvalue of the problem (3.10), one can choose a

smooth family of eigenfunctions m(z,y, R) = 7(r, R) cosp such that for R in a
neighborhood of Ry it holds

(4.26) E(R)m = Am+ mgs(R)m — (mss(R)$ in Bg, 9,m =0 on OBg,

where ¢ = ¢(x,y, R) is the unique solution of problem (3.9), and m(x,y, Ry) =
mo(®Y, —z). Differentiating (4.26) in R at R = Ry we find that dgm(z,y, R
=: g (r) cos ¢ satisfies

(4.27)

E'(Ro)m = mg,(Ro)m — (mg,(Ro)d + (A + mo) (rp(r) cos ) — (modr  in Bry,

where m = mO(é(\)/ - I), QZS = ¢(=’177y7R0) = (I)(‘)/7 ¢R = 8R¢(xay7R)’R:RO7 and
(4.28)

Opinn(Fo) = ~0%,in(Ro, o) = ~mod?, 8% = 700,89, — m3 Ry = 20— mi R,
0 0

) | R=Ry
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1816 VOLODYMYR RYBALKO AND LEONID BERLYAND

Now multiply (4.27) by ®), — z and integrate over Bp,:
(4.29)

E'(Ro)mo / (B — x)2dady = —¢mo / (@) — 2)¢rdrdy
BRO BRD

2
- / armR(Ro)x—ds + / (A®Y, + mo(DY, — 2)) ThR(r)Edacdy
9B, Ry Br, r

by (Ra) [ (mo(®) —2) - (8Y) (8~ )dudy,
BRO
Since A®Y, +mo(®Y —z) = (DY, in Bg, and 9, (PY —z) = 0 on OBpg,, the last line
in (4.29) rewrites as m{ (Ro) [, [V(®Y, — z)[*dzdy, while the second term in the
0

second line can be written as CfBR P (—Ag¢pr + (Ppr)dzdy, where we have used
0
the equation A¢pr + Mmpg(r)cosy = (pr in Bg,. Then integrating by parts,

x
/ DY (~A¢r + (or)drdy = / ¢RR—dS - Pr(—ADY, + (PY)drdy,
BRO BBRO 0 BRO

we simplify (4.29) to

E'(Ro)mo /

() — o)Pdady = (Ro) [ V(@ o) Pdady

B
(4.30) o

+ / (Conz — Ouivn(Ro)a?) Rods.
0B,

Similarly to (4.28) one can calculate that ¢ = —9,®%, = —x/Ry on 0Bpg,. Thus
the second term in the right hand side of (4.30) is equal to —7 Ry ((+mo — (moRo)Q),

and calculating m’ (Ro) = v/R%+2m Rop’. (7w R%) completes the proof of Lemma 4.4.
]

5. ASYMPTOTIC EXPANSIONS OF EIGENVECTORS OF THE PROBLEM LINEARIZED
AROUND TRAVELING WAVE SOLUTIONS WITH SMALL VELOCITIES

Let R = Ry be the critical radius, i.e. E(R) = 0. By Theorem 4.1 there exist a
family of traveling wave solutions emanating from the radially symmetric stationary
solution (3.1) with the radius R. They are parametrized by their velocities V', and
hereafter we consider for small V' # 0 the linear evolution problem obtained via
linearization of (2.9)—(2.13) around the traveling wave solution with velocity V.
More precisely, we are interested in stability of this problem and therefore study
spectral properties of the generator A(V') (given by (5.1)—(5.5)) of the corresponding
semigroup. In this section we construct asymptotic expansions of an eigenvector
corresponding to a small eigenvalue A(V) whose sign determines stability of the
traveling wave solution. These expansions will be justified in Section 7. Throughout
this section, and Sections 6 and 7, we assume that conditions of Theorem 4.1 are
satisfied.

It is convenient to pass from the polar coordinates to the parametrization of
domains via the signed distance p from the reference domain Q(V'). More precisely,
given a solution ¢ = ®(z,y,V), @ = Q(V) of problem (4.2)-(4.3), we consider
problem (2.9)—(2.13) in the frame moving with constant velocity V' in z-direction
so that the pair (Ae®@¥:V)=V= (1)) represents a stationary solution. We describe
perturbations of Q(V) by the function p such that the boundary of the perturbed
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1817

domain Q is given by 9Q = {(z(s), y(s)) +p(s,t)v(s); (z(s),y(s)) € IQ(V)}, where
s is the arc length parametrization of 9Q(V') and v(s) denotes the outward pointing
unit normal to (V). Perturbations of the myosin density m = Ae®@¥V)=Ve and
auxiliary function ¢ = ®(z,y, V) are described, with a slight abuse of notation,
by functions m(z,y,t) and ¢(x,y,t). Then the linearized problem writes as, see

Appendix A,
(5.1) Ap+m=Co inQV),
5:2) G0+ Voep) =p (V) [ pls)ds (e + i) on V)
aQ(Vv)
5] 92d 0P
63 dp= AV = 5o+ G0 (5o + Vi) o on o0y,
(5.4)
Om = (A(V)(m, p)))m = Am + VO,m — div (Ae® V¢ + mV®) in Q(V),
9% oP
(5.5) dym + Ae®~ V" (Wp - (E + Vz/y)p’> =0 on (V).

Here and in what follows p’, p” denote derivatives of p with respect to the arc
length s, & is the curvature of 9Q(V'), and 9/97 denotes the tangential derivative
on OQ(V). The linearized operator A(V') appearing in (5.1)—(5.5) is well defined on
smooth m € L?(Q(V)), p € L*(9Q(V)) such that (5.5) holds. It can be extended
to the closed operator in L2(2(V)) x L?(99(V)) whose domain is the set of pairs
(m, p) from H2(Q(V)) x H3(0Q(V)) satisfying (5.5).

Since traveling wave solutions bifurcate from radial stationary solutions the spec-
trum of the operator A(V') for small V is close to the spectrum of the operator
A(0) = Ass(R) (this fact will be proved in Theorem 7.6). The latter operator has
zero eigenvalue with multiplicity at least three, in fact the multiplicity is exactly
equal to three as will be shown in Section 6, Lemma 6.1. Therefore in order to
study stability of traveling wave solutions it is crucial to investigate what happens
with zero eigenvalue for small V' # 0. Observe that for all V' the operator A(V)
has zero eigenvalue with multiplicity at least two, this multiple zero eigenvalue ap-
pears because of translational invariance of problem (2.9)—(2.13) and existence of a
continuum of traveling waves with close velocities, see Appendix A. The operator
A(V) has the eigenvector

(56) Wl - (mbpl)u my = _A(V)azeé(;my,‘/)—Vw’ pP1 = Vg
corresponding to the infinitesimal shifts along the z-axis, and the generalized eigen-
vector

(57) W2 = (m27p2), ma = aV (A(V)e<1>(:r:,y,V)7Vz> y P2 = a\N/'ﬁ|\~/':V

that satisfies A(V)Wo = W;, where p describes the boundary of the traveling
wave with velocity V via the signed distance to dQ(V). And these two vectors for
small V' # 0 exhaust the generalized eigenspace corresponding to zero eigenvalue.
Moreover, it will be shown that zero eigenvalue of multiplicity three at V' = 0 splits
into zero eigenvalue of multiplicity two and a small nonzero eigenvalue A = A(V)
for V' # 0. The asymptotic behavior of A(V') as V' — 0 is studied below. The main
difficulty in this analysis comes from the fact that the eigenvector corresponding to
A(V) merges as V' — 0 with the eigenvector W;. Moreover, the next term in the
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1818 VOLODYMYR RYBALKO AND LEONID BERLYAND

expansion of this eigenvector is proportional to W5. That is why the asymptotic
problem for A(V) is a kind of singularly perturbed problem.
We seek the eigenvalue A and the eigenvector (m, p) in the form

(5.8) AMV)=AV24 ..,
(5.9) m=mq + \V2my + Vi3ms + Vima +Voms + ...,
(5.10) p=p1+AV200 + V305 + Vips + Vops + ...

with unknown X, my,, pr (k= 3,4,5) which do not depend on V', and will be found
via perturbation expansion in V. In contrast, my, msa, p1, and ps are expressed in
terms of the traveling wave solution via (5.6) and (5.7), and do depend on V. These
two terms belong to the domain of the operator A(V) (which depends on V) and
even with ansatz Wi + 5\V2W2, truncated to two terms, we have

AWV)Y(Wy + AVEIW,) = AVE(W, 4 AVZEIW,) — N2VATI,.
This suggests that in order to identify A we have to satisfy the eigenvalue equation
up to the order O(V?). Regarding the auxiliary function ¢ (which appears in the

definition of LA(V)) it is convenient now to consider ¢ as an independent unknown,
seeking it in the form

(5.11) d=—0,0+\V20®+ V3hs+ Vigs+ Vohs+....

Substitute expansions (5.8)—(5.11) into the equations

o6 0*® 0P
(5.12) Ap = a—q: + 2P~ <E + Vuy) o on dQ(V),
(5.13) Am = Am + Voym — div(Ae®* VoV ) — div(mV®) in Q(V),

along with (5.1) and boundary conditions (5.2), (5.5), and collect term of the order
V3 and V* (as already mentioned above the lower order terms vanish).

First we collect terms of the order V3, replacing Q(V) by the disk Bg (it ap-
proximates (V) to the order V2, see Remark 4.3). This leads to the following
problem for mg, ¢3 and ps3,

(514) A¢3 +mg = C¢3 in BR,
(5.15) Orp3 =0, (P53 = p;(wR2)R/ p3dy + %(szpg + p3) on 0Bg,
(5.16) Amsz —mogA¢3 =0 in Bgr, 9,m3=0 on 0Bg.

Thus, up to the eigenvector corresponding to the infinitesimal shifts of the disk By,
(5.17) ps = @, Cp3 = a(y/R* + 21 Rp (7 R?)), m3 = (3.

The unknown parameter o will be determined by considering higher order terms in
(5.1)—(5.2), (5.5), (5.12)—(5.13).
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1819

Next we collect terms of the order V*# arriving at the following problem for my,

¢4 and py,

(5.18) A¢s+myg =(¢s in Bp,

(5.19) Amg —moAdy = X2mo(DY — ) + a(y/R? + 2xRp. (v R?))A®Y, in Bg,
(5.20) ¢ (¢4 + a0, ®Y) = p’*(sz)R/ pa(p)dp + %(8@,;}4 + ps4) on OBg,
(5.21) Ormy + amod?,®), =0 on dBg,

(5.22) Orps +d?,.®), =0 on dBp.

To determine solvability of (5.18)—(5.22) observe that after adding amgd,®Y, to ma
and aa,@?/ to ¢4, the problem is transformed to the form Ay, (R) (m4—|-am0<9r<1>"3,, p4)
= (f(r) cosp, pcos ) with some function f(r) and a constant . Then (f, o) has
to be orthogonal to solutions of the adjoint homogeneous problem (see Section 6,
the adjoint operator A%, (R) is given by (6.3), (6.4)—(6.6) with V' = 0)

(5.23) Am+¢=0 inBp, Om=0 ondBxg,

(5.24) Aj—Chp—moAm =0 in Bg,

with boundary conditions

(5.25) p—moi + ¢ =0 on OBg,

(5.26) (02,000 + 0v0) — %o;(wR?) / i drddp =0 on dBg.

_x

R
This problem has a nontrivial solution given by m = <I>(‘)/ —xin Br and p = morh—q;
on dBg, with ¢ = —({ — mo)®), — moz (note that actually p = 0). Then in order
to identify the unknown « multiply (5.19) by m and integrate over Bg,

(5.27)

/ (Amy — moAdy)mdrdy = 5\2m0/ (®Y, — z)?dxdy
BR BR

+a(y/R* + 27TR]9;(7TR2))/ (®Y — 2)A(DY, — x)dxdy.
Br

The left hand side of (5.27) rewrites as follows, using integration by parts and
(5.18), (5.21)—(5.22), (5.23)—(5.24),

/B (A — moAgy)mdady — / (Abs — (C = mo)pa)ddady

Br

_ / (8,646 — B, 364)ds.
OBRr

The traces of functions 0,¢4, ¢4, ¢ and 8,¢ on OBp,_are given by 0,¢4 = a(l/R—
moR) cosp, ¢pg = —acos p, = —mgRcos and 9,.¢ = —( cos p, therefore

(5.28) / (Amy — moAdy)mdrdy = — merR*a(1/R — moR) — alnR
. Bgr

= arR((moR)? — mg — ().
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1820 VOLODYMYR RYBALKO AND LEONID BERLYAND

Thus combining (5.28) with (5.27) we get the following relation between A and a,

aft (7 ¢+ mo ~ (moR?) ~ (3/R° + 2wk () [

V(@ ) dody
- _x2m0/ (®Y, — z)%dxdy,
Br
or, by Lemma 4.4,
(5.29) aE'(R) = \2.

Besides the solution (i = ®Y, — z,p = 0) the problem (5.23)-(5.26) has exactly
one linearly independent solution (m = 1,p = mg). Since (f(r)cose, ocosp)
is orthogonal to (1,mg) (with respect to the pairing (6.1)) there is a solution of
(5.18)—(5.22). Moreover, if we require additionally that m4 has zero mean value
and f:r p4 cos pdp = 0 then py = 0 and both m4 and ¢4 are represented in the form
of products of radially symmetric functions and cos . Then separating variables
in (5.18)—(5.19) we see that my and ¢4 extend as solutions of (5.18)—(5.19) to the
entire plane R2.

Thus we have constructed a four term ansatz of the eigenvector, and functions
mg, ¢, k = 3,4 are defined on Q(V). However this ansatz is not in the domain
of the operator A(V) as the boundary condition (5.5) is not exactly satisfied, but
with accuracy of the order V. This is why we introduce a correcting term m$ such
that

A(V)

2 e?7Vr92 dps on 0Q(V).

1
(5.30) O,mg = —V&,m4 —

In view of (5.21), bounds (4.19) and the expansion (4.20) (see Remark 4.3) one
can show that the right hand side of (5.30) defines functions uniformly bounded
in C7(0Q(V)) Vj € Z. Therefore we can define m¢ in Q(V), e.g., by solving the
equation Am§ = m¢ with the boundary condition (5.30), then we set

(531) Wans = (m17 Pl) + XVQ(m% P2) + Vg(m3a Oé) + V4(m4 + Vm§,7 0);

where my =—A(V)3,e* V7, p1=vy, ma =y (A(V)e® V7). py=0ppuu(s, V)|;
and i, stands for the parametrization of Q(V) via the signed distance to 9
The (corrected) four term ansatz given by (5.31) is in domain of the operator A(
and introducing the unique solution ¢§ of

=V
V).
V),

AGE +m§ = (o5 in (V)

with the boundary condition

(o5 = % (p/*(|Q(V)|)/ p3ds + 7 ps — ((¢3 + VVxP3)) - é% on 9Q(V),

aQ(V)
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1821

we can calculate the components of A(V)W,,s — AV2W, e
(5.32)

1
—F (A(WV)Wans = AV2W, n) — AmS + VaymE — div(Ae®~VoVgE) — div(mEve)

1
+ 5 (Amy + Vpmy — div(Ae® V¥ Vy) — div(msVO))

1 . Va .
+ ] (Amg + Voyms — div(Ae® VoV ah3) — dlv(mg,V(I)))
5‘ 3 -V 2 3,.¢C
% (A(‘)V(A(V)e )+ Vms+Vimy +V m5> :

175 (A(V)Wans - 5\VQI/Vams)p = au¢c + au¢4 + V¢3

+ Wﬁfu@pg — V (Xavﬁtw“?:v + Vpg) .

Thanks to (5.15), (5.20) we have [|¢S]/ci@av)) < Cj Vj € Zy, and since Ap§ +

mg = (¢% in Q(V) one can show that HqﬁgHC?(Q(V < C; Vj € Z4 by elliptic esti-
mates. Furthermore, since ms, ¢3 are constants the third line of (5.32) simplifies to
—m3A®/V? and substituting Am, from (5.19) we obtain after rearranging terms,

(5.34)
% (A(V)Wans - XV2WW) =Am{+Vo,m§ — div(Ae® VIV HE) — div(mEV )
v (v (A(V)e <IFVI) —mo(®Y, — )
+ % (VOzmy — div ((Aeq’*w —mg)Ves) — div(msV®))

- 5\(m3 + Vm4 + V2m§)
(5.35)

T AV WAV W), =065 4 0,00+ 1

V2 2 (VAD), — AD),

\ /e
V2 02, ®p3— v ()\8‘7 Prw \‘7:\/4-‘/03) .

Assuming that there exist next terms V°m; an(Ai V3 ps5 of thq asymptotic expan-
sions we have A(V)(ms, ps) = — g5 (A(V)Wans = AV2Wans) + AVE(ms, ps) + - =
—VL(.A(V)WMS +.... Since the null space of the adjoint operator A*(V) contains
(1, A(V)e®~V®) (see Section 6) we will require that
I V) = / (AV)Wans = AV2Wo)  dady

) m

N N e e
a0(V) p
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1822 VOLODYMYR RYBALKO AND LEONID BERLYAND

Then resolving the equation 1(5\, V) = 0 we will identify X. To this end write
I(A, V) in the following form, integrating by parts and using (5.30), (5.35):
(5.36)

1

IAV)== / (A(V)e?= V20, ¢4 — 8,my) ds — / ApsA(V)e® Y ds
V' Jaaw) 2Q(V)

1
+/ (VOrmg —div(miVP)) dmdy—l——/
(V) Vv

(S\Qmo(q)?, —x) +m3A<I>?,) dxdy
V)

1
V- Jaw)

— 5\/ (mg +Vma + V2mg) dxdy
Q(V)

+ (V@xmz; —div((Ae® V" —mg)Vey) — div(m4V<I>)) dxdy

A2
- = / Ov (A(V)e® V™) dxdy —|—/ A(V)e‘bfvxf)‘(/[)twb_vds .
|4 QV) (V) B
This formula is further simplified by noticing that the first term in the second line
of (5.36) is zero thanks to the fact that 9,® = Vu, on 9Q(V). Also, observing
that, by virtue of (5.19) (see also (5.17)) the integrand in the second term equals
1

Amy — moAgy, then collecting all the terms with the prefactor y; except the last

line, we see that these terms cancel each other. Finally, notice that the last line of
(5.36) is equal to —’\V2M’(V). Thus

(5.37) I\ V) = —=XaxR(2mg +~/R + 2rR?p.(xR?) + O(V)) — §M'(V),

and substituting a from (5.29) we obtain that the equation I(), V) = 0 has nonzero
solution

1
7R (2mo + v/R + 2rR?p (wR?) + O(V))

(5.38)  A(V) = —%M’(V)E’(R)

for sufficiently small V', provided that M'(V) # 0 when V # 0. Moreover, in the
nondegenerate case, when M (0) # 0, the solution A(V') has nonzero finite limit

(5.39) A= —M"(0)E'(R)/M.,(R).

If M"(0) =0 but M'(V) # 0 for small V' # 0 there still exists a nonzero solution
MV of the equation I(A, V) = 0 and we can repeat the above construction ob-
serving that in this case my, pg, ¢r, k = 3,4 and mg, ¢¢ contain the small factor
a =0 ((M'(V)/V)2).

We summarize the results of the above construction of asymptotic expansions in
the following

Lemma 5.1. Assume that M'(V) # 0 for small V # 0, and let \(V) be a nonzero
solution of the equation I(\,V) = 0. Then the vector Way,s given by (5.31) is in

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1823

the domain of A(V) and

(5'40) Wans = (_A(V)axeéivxa Vﬁc) + Weors HVch"”L2 = O(V2)7
(5.41) JA(V)Wans = AV)VZWans |12 < CIM'(V) PV,
(5.42) (AVYWans = AVI)V2Waps, Wi 2 =0,

where (-,-)2 denotes the pairing defined by (6.1) and || - |12 is the corresponding
norm, Wi = (1, A(V)e®~V®). Moreover, there is a unique solution A(V) # 0 of
I(A\, V) =0 for sufficiently small V # 0 and it is given by the asymptotic formula

N MV
(5.43) A(V) = —E’(R)%u +O(V)) asV — 0.
Proof. For simplicity consider the nondegenerate case, when M"(0) # 0, otherwise
one just has to take into account that all the terms in (5.34)—(5.35) contain the
small factor @ = A\2(V)/E'(R) = O (M'(V)/V)?).

First notice that (5.40) follows immediately from the definition (5.31) of Wa,s.
To prove (5.41) it suffices to show that right hand sides of (5.34)—(5.35) are uni-
formly bounded. To this end one can use the representation (4.20) for ® and the
representation A(V) = mge="™0/¢ + V2A(V) for A(V) (where A(V) and its deriva-
tives are bounded), see Remark 4.3, and derive that A(V)e®~V% = my + VO(1),
ov (A(V)e?™VT) =mo(®Y — )+ VO(1), [VE| = VO(1), A® = VADY, + V2O(1),
where O(1) stands for various uniformly bounded functions. This readily implies
that p-component of %(.A(V)WemS — S\(V)VQWMS) is bounded Next, regarding
(5.35) consider first the sum of two middle terms, 7> (8, ¢4+ 92, ®p3), and write it,
by using (4.20), as (0, ¢4 +92,89 p3)+92,®p3. Recall that p3 = o and ¢y satisfies
(5.22) on BR. Then, passing to polar coordinates we see that |9, ¢4 + 92,8 p3| <
|0rpa + 02.9Y, ps| + C’V2 < C1VZ on 9Q(V). Also, if piw(p, V) + R is the radial
coordinate of a point on V') then Oy prw|;_,, = Ov prw (0, V) (Ve cos @ +vy sin @)
and since |9y prw (@, V)| < C|V] the last term in (5.35) is also bounded. This com-
pletes the proof of (5.41). Finally, (5.42) is nothing but the equation I(\, V) = 0,
while the asymptotic formula (5.43) was derived above (see (5.38)). Lemma 5.1 is
proved. O

6. ADJOINT OPERATOR AND ITS GENERALIZED EIGENVECTOR

As usual in the spectral analysis of non-self-adjoint boundary value problems,
the adjoint operator plays an important role. To define the adjoint operator A*(V)
with respect to the pairing

(6.1) ((mep). i p)s = [ mindedy+ [ ps,
Q(V) oQ(V)

assume that (m, ) belongs to the domain of A*(V) and p € C*(00Q(V)), m €
C>(Q(V)), then ¥V m € C>(Q(V)) and p € C=(dQ(V)) such that (m, p) belon
to the domain of A(V) we have ((m, p), A*(V)(m, p)) 2 = (A(V)(m, p), (M, )>
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1824 VOLODYMYR RYBALKO AND LEONID BERLYAND

Next, using integration by parts we write

AWV p) (e = [ (00 B, 00)pds— [ (0,04 Vi) pds
aQ(V) (V)

+
\

Am + VIym — div(mV®)) mdedy — / div (Aeq)*VIVgZ)) mdxdy

QV QV)

m\

(00 -+02,20) pds+ [ p((@:8+ Vi) ) ds

Q(V (V)
+ / eV ((0-® + V) p' — 02, ®p) . — mO,m — Aeq’_vx&,qbrh) ds
aQ(V)
/ m (Am + V® - Vin — Vo,m) dedy — pdiv (Ae®~V*Vim) dzdy,
V) V)

where we have used the boundary condition (5.5) for d,m and 9, = Vv, on
9Q(V). To eliminate ¢ and its derivatives, multiply (5.1) by an auxiliary function
¢, to be defined later, and integrate over (V') to obtain that

/an(v) (81/(2545 - ¢5u<5) ds + /Q(V) <¢Aq5 +me — {gbd;) dzdy = 0;

then we can rewrite (A(V)(m, p), (M, p)) = as
(6.2)

AWV mp). G ) = [ o 200 (647 =0t m) s
/ A¢ o — div (A @—vam)) dady
+/( )m(Am—kV(b'Vm—V&mm—i—J)) dmdy—/ ( )m&,fnds
Qv o0

+ / p (83V<I>([) —mAe® V) + ((0:@ + V) (5 — mAe@W))’) ds
V)

- / $0, ds.
a0(V)

Define now the auxiliary function ¢ as the unique solution of the problem
(6.3) Ag—Cop—div(Ae®VEVMm) =0 inQ(V), é=Ae?Von—p ondQV),

this choice of ¢ nullifies the first two terms in the right hand side of (6.2). Notice
also that using boundary condition (5.2) and integrating by parts the last term in
the right hand side of (6.2) can be written in the form

2
_ 8, dds = Vi, — 28,6 — Lo? a,j>d
/m(v)as dds /m(v)p<< o= 200,06 - 02,0, ds

(M) -
- 0,0d ds.
¢ /aQ(V) ¢ S/aQ(V)p ?

Thus, we conclude by density of smooth functions from the domain of A(V) in
L2(Q(V)) x L?(992(V)) that

(6.4) O,m =0 on V),
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1825

and components of A4*(V) are given by

(6.5) (A* (V) (11, ), = A + V@ - Vi — Vapin + ¢ in Q(V),

(6.6) (A" (V)(m,p)),; = 8EV<I>(;3 — mAe®VE) 4 (8@ + Vi) (5 — mAe® V)

C) 0 C L0, — —C /BQ(V) Lo ds  on OQ(V).

Observe that the definition of A* (V') admits an important simplification. Namely,
one can express the action of the operator A*(V) in terms of the only function ¢
as follows. In view of (6.3) we have

+ (Vux —

1 -
(6.7) (A*(V)(m, p)) = W(A¢ — (o) + ¢,
and, due to the boundary condition ¢ = Ae®~Vm — § on dQ(V), (6.6) rewrites as
(6.8)
(A*(V) (i, ), = — 02,86 — O, (&afcb) - vV;J) —Vu,0:4
- . :_ p(2MD :
Vv, 0, - = o — —————= Oy ds.
T Vrauf C v C Ot ¢ /89(V) pds

Moreover, since
(6.9  div(Ae®VEVM) = Ad— (o in Q(V), dm=0 ondQV),

the following additional condition
(6.10) / dypds = ¢ ¢ dady
aQ(V) Q(V)

must be satisfied by (5 Then one can reconstruct m, up to an additive constant,
by solving (6.9).

The following equivalent form of (6.8) is obtained by using the equation and the
boundary conditions from (4.2)—(4.3),

(6.11) (A" (V)(m,p)),; = <A<V)e‘1>*” —(@)p + (&' /¢ = Vi) 0,0

_ By (0 _
+ V10,6 — 0,6 — L02,0,6 - M/ 0, ds.
C ¢ ¢ (V)
When V = 0 the operator A*(0) coincides with the adjoint operator Az (R) of
Ass(R) at the critical radius R = Ry.

Lemma 6.1. The algebraic multiplicity of the zero eigenvalue of A% (R) (and
Ass(R)) is equal to three, while its geometric multiplicity is equal to two.

Proof. Consider an element (m,p) of the null space of A (R), then, passing to
the parametrization of 0Bp via the angle ¢, we have problem (5.23)—(5.26). This
problem has the following solution: m = 1, p = mg with (5 = 0, while any other
linearly independent solution corresponds to a nonzero function (ﬁ It follows from
(5.23)-(5.24) that ¢ satisfies Ad + (mg — ¢)¢ = 0 in Bg therefore it is completely
determined by its normal derivative d,¢ on dBr. Moreover, 8,¢ satisfies (5.26),
while all linearly independent (even and periodic) solutions of this equation are
0rd = cos ¢ and, possibly, dr¢ = 1. Even though d,¢ = 1 might satisfy (5.26)
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1826 VOLODYMYR RYBALKO AND LEONID BERLYAND

(for some particular values of parameters), this choice of dr¢ is inconsistent with
the boundary condition in (5.23) as can be seen by integrating equations in (5.23)—
(5.24) over Bgr. On the other hand assuming o =—C cos p on 0BpR does lead to
the triple ¢ = — (¢ —mg)®Y —moz, m = Y, —z and j = 0 satistying (5.23)(5.26).
Thus the null space of A, (R) is of dimension two, therefore the operator Ag(R)
also has a two-dimensional null space. Recall that Ags(R) has two eigenvectors
(2rRpl,(TR?) + v/R?,1) and (0,cos ) corresponding to zero eigenvalue, and the
generalized eigenvector (9, — z,0). We claim that the algebraic multiplicity of
zero eigenvalue is three. Otherwise there is a generalized eigenvector W such that
Ass(R)W = (2nRp,(mR?) +v/R?,1) or Ass(R)W = (9, — 2,0). Both cases are
impossible, in the first one

0= (W, A% (R)(1,m0)) 12 = (Ass(R)W, (1,mq)) 12 = 21° R*p, (1 R?) 4+ 7y + 2r Rmyg

contradictory to (4.6); in the second case

0= (WAL (BY@Y ~ 2,0))12 = (Au(RIW, (@} — 2,012 = [ (@} —)? dod.
Br

Thus, the algebraic multiplicity of zero eigenvalue of Agss(R) is equal to three, and

the same holds for A (R). Lemma 6.1 is proved. O

While the generalized eigenspace of A(V) corresponding to the zero eigenvalue
is explicitly given in terms of the solutions ¢ = ®(z,y,V), Q = Q(V) of the free
boundary problem (4.2)—(4.3), for the operator A*(V') we know explicitly only the
eigenvector

(6.12) Wi = (1,A(V)e? V™)

that is related to the conservation of the total myosin mass in the linearized problem.
While this eigenvector does not have any associated generalized eigenvector for
V =0 (see proof of Lemma 6.1), such a generalized eigenvector appears for V' # 0
and it exhibits singular behavior for small velocities. Namely, we will show that if
A*(V) (1, p) = (1, A(V)e?~V®) then (1, ) blows up as 1/V, when V — 0. This is
why it is natural to renormalize this generalized eigenvector and write the problem
in the form A*(V)(m, p) = VE(1,A(V)e?~V®), assuming that (1, p) is bounded.
Consider the ansatz

(6.13) m=0) —x+ Vi +..., p=Vi+...,

assuming the expansion ¢ = —(¢ —mg)®Y — moz + V1 + ... for the solution of
(6.3), and substitute (6.13) in the equation A* (V) (1, p) = VE(1, A(V)e®~V®) with
unknown for the moment constant k. Collecting the leading order terms, they are
of the order V, in the corresponding problems we obtain (as above we replace Q(V)
by the disk Br which approximates Q(V) to the order V2),

(6.14) Ay + ¢y =k — V(D) —z)> in Bg, 8, =0 on dBg,
(6.15) A¢y — Ch1 = moAing + modiv (B — z)V(®Y, —x))  in Bg,
(6.16) b1 = moi + moR? cos® ©—p1 on OBg,

_ ~ / R2 s B
017) @b+ 32,000 - B [ 06 rdp — ooy

+mo(k — 9%,.®Y Rcos p — cos 2¢) on OBg.
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1827

Introduce a solution f of Af = div ((®), — 2)V(®Y, — z)) in Bg, 0,f =0 on dBg,
then we can rewrite problem (6.14)-(6.17) in the operator form:

A2 (R) (M + f, p1 — mof — moR? cos® )
= (k+ (®Y — 2)A(®Y, — x), mo(k — 92,.®Y Rcos p — cos 2p) + ( cos® p),
and since the null space of A% (R) is nonzero, we can use solvability conditions to

identify k. Indeed, the operator Ass(R) has the eigenvector (y/R?+2m Rp/,(mR?),1)
in its null space, and we necessarily have

(v/R? + 2w Rp., (T R?)) (mzk - /B V(29 — z)|? dxdy)

R

+ / (kmo + (mo — m2R?) cos? ¢ + ¢ cos? ©) Rdp = 0.

This yields, after rearranging terms and using (4.5), (4.21)—(4.22),
_ mR(F'(R) - E'(R)

ML(R) - Y ML(R)
Then solving (6.17) we find

(6.18) k= / (B, — z)?dxdy =: k.
Br

(6.19) Orpy = Acos2¢ + B =2Acos> p+ (B—A) on dBg,
where

2komo + mo — ngQ + ¢
2(v/R2 + 27 Rpl (7 R2))

R*¢ 2 p2
(6.20) AZW(C—mo—moR% B=—(C
Also, eliminating 7, from (6.14)-(6.15) we have that ¢, satisfies
1 7 7 7 0 0 :
(6.21) . (861 = o) +d1 = ko + (@) — 2)A@Y —z) i B

The unique solution of this equation with boundary condition (6.19) is represented
as the sum of a radially symmetric function and the product of another radially
symmetric function with cos 2y, therefore it extends as a solution of (6.21) to the
entire R%. Thus the function

(6.22) ¢ =—(C—mp)®Y —moz + Vi

is well defined on (V). One can define m by solving (6.14) and then p; by (6.16),
completing the construction of the ansatz (6.13). The properties of ¢ needed for
the justification of the ansatz (6.13) are collected in

Lemma 6.2. The function ¢ given by (6.22) satisfies for small V

(6.23) HAQB ARG — kg VA(V)e®VE —0(V?) VjeZ,,

oI @)
T (_ 2 o _ 2 .
(6.24) \ 0,6 — (—Cvs + 24V + V(B A))‘ ooy = OV Vi€,
and
(6.25) / dypds — ¢ b dxdy = O(V?).
a0(V) (V)
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1828 VOLODYMYR RYBALKO AND LEONID BERLYAND

Proof. Bound (6.23) follows from the construction of ¢ and representation (4.20)
for ® — Vx in conjunction with the formula A(V) = A(0) + O(V?) (see Remark
4.3). To verify (6.24) one passes to polar coordinates and uses (6.19) together with
the bound (4.19). Finally, (6.25) follows from the construction of ¢ (recall that

Jop,, Ordds = C [, ddady = 0) and (4.19). O
Remark 6.3. Using (4.21) and (6.18) one can derive the following formula for B,
of. (6.20),
¢ 2 2 2 / 0 2
B=——""7"(7R —mgR 2 oy, — dxd
a7 gy (12 (¢ mo — i) +-2mo [ [V(8Y — o) dudy).

which shows that B is well defined even if the denominator in (6.20) is zero.

7. ASYMPTOTIC FORMULA FOR EIGENVALUES OF THE OPERATOR LINEARIZED
AROUND TRAVELING WAVE SOLUTIONS WITH SMALL VELOCITIES

In this section we justify asymptotic expansions constructed in Section 5. We
begin with the generalized eigenvector of the adjoint operator A*(V'). Recall that
A*(V) has the eigenvector W; = (1, A(V)e®~V®) that is related to the total myosin
mass conservation property in problem (2.9)—(2.13) and its linearized counterpart
(5.1)—(5.5).

Lemma 7.1. The operator A*(V) has a generalized eigenvector Wi = (m}, p3),
A*(VYW5 = W7, whose first component expands when V — 0 as follows,
- 1
~ koV 4+ V2ky (V)
with bounded k1 (V') and uniformly in V bounded x(-,V) (in CI(Q(V)) Vj € Z4),
while ”pSHCJ(m) = O(1) ¥Yj € Z4. The constant ko in (7.1) is given by (6.18),

@Y, is the solution of problem (4.14), and /1 is a smooth function independent of
V' (and defined on the entire plane R?).

(7.1) mj (B — 4+ Vi) +Vx

Proof. Consider the problem of finding generalized eigenvector in the form

A* (V) (1, p) = k(1,A(V)e®~V®)  (with constant k # 0),

then
(7.2) Ap—Co+Ae® Vo) = kAe® V" in Q(V).
If we waive the condition k # 0 then solving (7.2) with
(7.3)
~ 2 B ' (10 -
7782781,@17 L b — M/ 8, ds
¢ ¢ ¢ aQ(V)

— (83,}1) + VZ/;/) é—0- (q387<1>) — Vuyﬁqu + Viadyd = kAe®™V®  on 9Q(V)

and condition (6.10) yields an element of the generalized space of the operator
A*(V') corresponding to zero eigenvalue. Moreover, if such an element is nontrivial
then it never belongs to the linear span of the eigenvector (1, Ae?~"®).

The number k can be found in terms of the normal derivative d,¢ on dQ(V).
To this end multiply (7.2) by the solution 1 of the problem

(7.4) Ay — Py + Ae® VP = ¢ in Q(V), 8,9 =0 on dQV),
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1829

and integrate over Q(V'). Using integration by parts and condition (6.10) we derive
b — fBQ(V) au¢(1 +~1/11) ds .
A fsz(v) e®=Vzah dedy
Also, we have ¢ = ) + k(1+ 1[11), where 1 is the solution of the problem
(7.6) AY —Cp+Ae®Voh =0 in QV), 8,0 =08,6 ondQV).

Then problem (7.2)-(7.3) with condition (6.10) is reduced to the following integro-
differential equation on 9Q(V) for the only unknown v := 9, ¢,

(7.5)

7 52 yK? ~ g
—=07v— —v+ L5,V d
(7.7) ¢ ! ¢ ! /em(\/)Q(s 5V)v(e) ds

+ Vo — (02,8 + V) ¥ — 0. (¥0,®) — Vi, d,¢) = 0,

where @Q is a smooth function and Q = —p.,(7R?)/{ —mo/(tR2Q)+O(V) as V — 0.
Observe that (7.7) is a (regular) perturbation of the equation

—18377) - / (pl(TR?) /¢ + mo /(7 R*¢))v(3)d5 =0 on OBg.

¢ CR? 9Br

Under condition (4.6) the latter equation has the only (even) solution cos %, up
to multiplication by a constant. On the other hand, since the multiplicity of zero
eigenvalue of the operator A(V) is at least two (VV'), and the same holds for A*(V),
equation (7.7) always has at least one nontrivial solution. Thus, after writing (7.7)
in the operator form £(V)v = 0 in L2(8Q(V)), we see that £(V') has simple isolated
eigenvalue A\ = 0. Then for some § > 0 and sufficiently small V the operator
(A — L(V))~! is bounded if 0 < |A| < & and operator norms ||(A — £(V))~!|| are
uniformly bounded for complex A with |A\| = §. Therefore, if ¢ is an approximation
of an eigenfunction v then we have

: A= L(V) LW

Moo — 5 = —
27 [A|=6

(this representation is obtained by taking the integral over the circle [A| = 0 of
the identity $+0 = (A — L(V))7'0 — $(A = L(V))) "' L(V))?), where II; denotes the
spectral projector on the null space of E(V) Thus

T8 — 8[| L2 o0vy) < CILV)B] L2 (a0(v))

and, since the principal term of £(V) is —%837;,

one can improve this bound to

10 — 3]l 2 a0(vy) < CILV) L2 (00(v))-
Now consider 9 := —(v, +2AVY2 + V(B — A) (see (6.24)). Introducing the pair
(w, k(w)) that solves

Aw — Cw 4+ Ae® V2w = k(w)Ae® V" in Q(V), 0,w =17 on dQV),
with the additional con~dition faﬂ(V) o,wds = Cfg(v) w dzxdy, we get by virtue of
Lemma 6.2 that |[w — ¢l o, gy = O(V2)Vj € Z, k(w) = koV + O(V?), where
&, ko are given by (6.22) and (6.18). Direct calculations show that

IL(V)3]lcanny = O(V?).
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1830 VOLODYMYR RYBALKO AND LEONID BERLYAND

Indeed, observe that & = £+V20(1), w = —moRr,+VO(1), d;w = mory+VO(1),
92,® + Vv, = moV Ry, + V?O(1) and

Orr (Oyw0) = (—Cup + 2AVV2)" =C(kv,) — 4AV (kvevy)

¢ 4
= gV~ ﬁAV(%i - 1) +V?0(1)
on 0Q(V), where O(1) stands for various uniformly bounded functions on 9Q(V).
Then

- 6vA
(7.8) L= (ng2 g — ¢+ é)Vug
3vyA | 1B Py (mR?) 2
— (m() + W + W + 27TR?B +m0/€0)V+ 14 O(l)

Both the coefficient in front of V2 and the coefficient in front of V in (7.8) vanish
by virtue of formulas (6.20) for A and B. Thus we have [[v—70|| 290y < CV? for
a properly normalized s~oluti~on v of (7;7). Finally, retrieving first the number k and
the auxiliary function ¢ = ¢ + k(1 + 1) via (7.4)—(7.6) for 0,¢ = v and repeating
this procedure with ¥ in place of v, then reconstructing W5 and its approximation
corresponding to ¥ one completes the proof of Lemma 7.1 (details are left to the
reader). O

Asymptotic expansions constructed in Section 5 suggest that the operator A(V)
has a small nonzero eigenvalue A(V') and
E'(R)

(7.9) V) = =37 VM (V)4 0(V)) a5V =0,

Theorem 7.2. Assume that conditions of Theorem 4.1 are satisfied and also that
M' (V) #£ 0 for sufficiently small V # 0. Then the spectrum of the operator A(V)
has the following structure near zero: A(V) has a small eigenvalue (V') given by
the asymptotic formula (7.9) in addition to the zero eigenvalue with multiplicity two
whose eigenvector is given by (5.6) and generalized eigenvector is given by (5.7).
Other eigenvalues are bounded away from zero.

Remark 7.3. In generic case M"(0) # 0 (for almost all values of the parameters py,
ke, ¢, and ). Then formula (7.9) is simplified to

2 E(R)

" 3
MS/S(R)M 0)+0(V°) asV —0.

(7.10) A(V) =

Remark 7.4. In Theorem 7.2 we tacitly assume that operator A(V') is restricted
to the subspace of vectors that are symmetric with respect to the z-axis, while
the general case without any symmetry restrictions on eigenvectors and generalized
eigenvectors is considered in Section 8, see Theorem 8.3.

Proof. Let W5 be a generalized eigenvector of A*(V') corresponding to the eigen-
vector Wi = (1,Ae®~V2), A*(V)W5 = W;. The space L2(Q(V)) x L2(0Q(V))
decomposes into the direct sum of invariant subspaces span{Wy, W5} and

(A1) T(V) = (W € LX(QV)) x L2@QV)); (W.W7)z = (W, W)Lz = 0}
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of the operator A(V), where Wy, Wy are given by (5.6)—(5.7) (the eigenvector of
A(V') corresponding to the zero eigenvalue and a generalized eigenvector). This
induces also the decomposition of the domain

D(A(V)) = {(m, p) € H*(Q(V)) x H*(092(V)) such that (5.5) holds}

into the sum D(A(V)) = D(A(V)) NZ(V) @ span{Wi, Wa}.

Fix a sufficiently small § > 0 such that As(R) does not have eigenvalues A
with 0 < |A] < 6. Then we claim that for sufficiently small V' the operator (A —
A(V))~! exists and is uniformly bounded on §/2 < |A| < §. Indeed, assume by
contradiction that for a sequence V; — 0 3W; € D(A(V;)) NZ(V;), W; = (m;, p;),
with ||ij2L2(Q(VJ)) + ||ij%2(aQ(vj)) =1, such that norms of U; = (\; — A(V;))W;
in L2(Q(V;)) x L2(092(V;)) tend to zero as j — oo. We use Lemma 7.5 which
provides a priori estimates implying that norms ||m;l|z2(a(v,)) and [[p;jl a3 aav,))
are uniformly bounded.

Lemma 7.5. There exists K = K(V) > 0 such that for all V with |V| <V every
pair (m, p) solving

(7.12) Ap+m=Cop inQ(V),
(7.13) (o + Vep) = pL(1Q(V)]) /{m(v) p(s)ds +~(p" + K2p)  on IQ(V),
o6  *® oL
(7.14) o+ Kp= 8—f+wp— <E+Vz/y) o on IQ(V),
(7.15)  f4+ Km = Am+Vo,m — div(Ae® V*Ve) — div(mV®) in QV),
2
(7.16) dym + Ae®~V® (g%p - <?3‘_(f + Vl/y>p/) =0 ondQV)

satisfies the bound

(7.17) ol zs vy + Imll a2y < Clllellczovy) + 1 fllz2@ovy))-

Proof. Without loss of generality we can assume that p and m are sufficiently
smooth. Also, for brevity we suppress hereafter the dependence of the domain 2
on V.

The crucial a priori bound is obtained multiplying equation (7.12) by the har-
monic extension H(p) of p from 9 into Q (AH(p) = 0in Q, and H(p) = p on IN)
and integrating over 2. This yields, after integrating by parts twice and eliminating
¢, 0,¢ from the integrals over the boundary with the help of (7.13) and (7.14),

18) K | prds—L | poH(pyds = [ (Co- dd
(7.18) N C/mpc??i(p)s /Q(Csb m)H(p) dzdy

2 2
L Gy 'y
+/zm <( R Vyw)pau?[(p)—ka]ﬂp <8T+Vl/y o'p—po)ds.

Next observe that the left hand side of (7.18) represents square of a norm in
H3/2(0Q) when K > 0 is sufficiently large. Actually, the second term solely de-
fines a seminorm in H3/2(0Q) if x > 0. Indeed, using the Frenet-Serret formulas

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1832 VOLODYMYR RYBALKO AND LEONID BERLYAND

0-Vg = KTy = —Kly, 0;vy = KTy = KU, and the fact that AH(p) = 0 we find

(7.19)
- pllauH(p) = _3T(8TH(/)))6VH(/))
= K(OH(p)? + 0, H(p) (22 H(p) + 201,02 H(p) + 1202, H(p))

(7.20)

8 M1(p))0- (8, H(p)) = (- H(p))* + VH(p) - 8, VH(p)
— 8, H(p) (V202 H(p) + w2102, H(p) + v, 00, H(p)) .

yryy

Then taking the half-sum of these identities and integrating over 02 we obtain,
using integration by parts and the fact that AH(p) =0

1 1
_ / PO, H(p)ds = —+ / PO H(p) ds+ = [ 0, H(p))d (0, H(p)) ds
89 2 Joa 2 Joq

1 1
(7.21) _ —/ KIVH)2ds + = [ VH(p) - 8,V H(p) ds
2 Jaq 2 Jaq

1 1
= —/ H\VH(p)Fder—/ |V2H(p)|? dzdy.
2 o0 2 Q

Thus — 2[5 0" 0, H(p) ds > 9||PHH3/2 29) C||PH2L2(39) with some constants 6 > 0
and C that does not depend on p, and one derives from (7.18) the following bound
KllplZ200) + 5 IIPIIHe/2 o) < HP||H3/2 o) T Cilloll1z a0
+a(mm%m+mmﬂmmwwmﬁWmﬁmﬁ-

To find a bound for L2-norm of ¢, represent ¢ as ¢ = %H(p”) + G, where G is
the solution of

(7.23) AG = (G +~H(p") —m,

(7.24) dG+V%m:meDLQM@%+v¥p<m8Q

Assume for a moment that a bound for |H(p”)|| 2 is known, then by elliptic esti-
mates we have

(7.25) 1Glz2(2) < Clpl @0 + IHE ) L2 @) + [mllz2()-

We proceed with derivation of a bound for || H(p"”)|[z2(q). To this end consider
the solution of the Dirichlet problem Ag = H(p”) in £, ¢ = 0 on 91, along
with the functions H(9,g), H(p') and its harmonic conjugate H*(p’) (such that
OH*(p') = —0-H(p') = —p"). We have

[ 1 dody = [ (" Agdady
Q Q

— [ vogds—= [ 9@ M@ ds =~ [ VH() VH(D.g) dudy,
o o Q
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while by elliptic estimates

/Q|VH(3VQ)|2d$d1/ < Col|0ugllrr200) < Csllgllaz @) < C’4/Q [H(p")|? dady,

[ 19 dedy = [ [9HP dedy < ol s < Clolsrony
Thus ||H(,0”)||2L2(Q) < CuCsllpll gs/2 (02, and in view of (7.25) we have

(7.26) 18ll2) < C6 (lollgsrz(a0) + Imllr2)) -
Using (7.26) in (7.22) we see that for K > C; 4 1 the following bounds hold,

1ol357200) < C (lelZzcom + Iml3acq) ) -

1613209 < © (llel320m) + 132y ) -

It remains to find a bound for m. To this end multiply (7.15) by m and integrate
over Q. Using (7.16), (7.12) and the fact that 9,(® — V) = 0 on 99, we find
(7.28)

K | m?*dzdy+ | |[Vm|?dzdy = — | fmdxdy + A | ¢div(mVe?~V®) dzdy
Q Q Q Q

(7.27)

+ / (VOym —Vm - V& — mA® + Ae®Ve(m — (¢)) mdxdy
Q

0%® 0P
>V
_ /39 Ae (Wp — <§ + Vl/y>p/) mds.

The right hand side of (7.28) can be estimated with the help of bounds (7.27) and
the inequality for traces [,, [m[*ds < C [,(]Vm|* +m?) dzdy, as the result we get
(7.29)

1
K/de:cdy—i——/ |Vm|? dedy < Cy (/ |m|2dmdy+/ |f2dxdy+||g||%2(am).
Q 2 Q Q Q

Thus for K > max{Cy,C7} + 1 we have obtained a bound for H!-norm of m in
terms of L?-norms of ¢ and f. Then by (7.27) we also have ||p|| 3/2(90) + 10/ 2(0) <
C (loll2(o) + 1 fllL2())-  Consequently, applying elliptic estimates to problem
(7.12), (7.14) one can show that ||¢|| g1 90) < C (HQHLz(aQ) + ||fHL2(Q)). This, in
turn implies, in view of equation (7.13), that ||p|| gz (a0) < C (llollz200) + [1fll22())-
Finally, one completes the proof of Lemma 7.5 by applying elliptic estimates to
(7.12)~(7.13) and (7.15)—(7.16). O

Proof of Theorem 7.2 (Continued). Writing the equation U; = (A — X;(V;))W; as
AV;))W; + KW; = (A\; + K)W,; + U, and applying Lemma 7.5 we see that norms
Il 2 vy and [|pjll a3a0(vy) are uniformly bounded. Therefore there exists
A with §/2 < |A\| < 6, a function ¢ € H3/?(Bg) and nontrivial pair (m,p) €
H?(Bg) x H*/?(0Bpg) such that, up to a subsequence, \; — A,

(pj (Ljs/(2mR)), ¢j (x (Ljs/(2mR)) ,y (Ljs/ (2w R)))) = (p(s), ¢(x(s),y(s)))

weakly in H3(0BR) x H' (0BRr) (where L; denotes the length of 9(V;)) and m; —
m, ¢; — ¢ strongly in H 1 on every compact subset of Br. Then passing to the
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1834 VOLODYMYR RYBALKO AND LEONID BERLYAND

limit in (variational formulation of) problem (5.4)-(5.5) with a smooth test function
v(x,y) we find

(7.30) A mudxdy = — Vm - Vudzdy + mg / (m — ¢o)vdzdy,
Br Br Br

where we have used (5.1) to eliminate A¢;. Thus m € H?(Bg) and m satisfies
Am = Am + mo(m — (¢) in Bg along with the boundary condition d,m = 0
on OBg. Passing to the limit in (5.1) with test functions from C§°(Bg) we get
A¢ = (¢ —m in Bg, thus the equation for m rewrites as Am = Am —mgA¢ in Bg.
Also, taking limit in (5.2) yields (¢ = p.(|Brl) [y5,, p(s)ds +~(p" + 2:p) on OBg.
Finally, using a smooth test function v(x,y) in variational formulation of equation
(5.1) with boundary condition (5.3) we obtain

(7.31)

0= —/ Vo; - Vudxdy + / (mj — Coj)vdady + / Ajp;ivds + o(1)
V) Q(v;) 29(V;)

= —/ V(;S-Vvdxdy—i—/ (m—(gb)vdwdy—i—/ Apvds + o(1),
Br Br 9Br

implying that Ap = 0,.¢ on OBg. Thus A is an eigenvalue of the operator Ags(R),
contradicting the assumption. Repeating this reasoning for §/2 in place of ¢, then
0/4 etc. we conclude that all eigenvalues A of A(V)) with |A| < § necessarily
converge to zero as V — 0.

To establish convergence of eigenvalues with multiplicities, consider for suffi-
ciently small V spectral projectors on the generalized eigenspaces corresponding to
eigenvalues \ with |A| < 4,

(7.32) Ty(V) i= % L pama

Let us show that restrictions H5(V)‘I(v) of II5(V') to Z(V) converge (in the sense
described below) to

T (0) = ! ]{Mé_()\ — Ags(R)) ™t d) restricted to Z(0),

T 2mi
as V' — 0, where
T(0) = (W € L(Br) x L*(0Bn); (W, Wlv—o)r2 = (Wi (@) — 2,0))12 = 0}

(cf. (7.11)). Namely, we claim that for any sequence V; — 0 and (m;, p;) € Z(V;)
such that p; (Ljs/(2nrR)) — p in L?*(0Bg), and m; — m in L?(R?) (where we
assume m; and m continued by zero in R? \ Q(V;) and R? \ Bp, correspondingly)
the sequence of pairs (f;, 0;) := II5(V;)(m;, p;) converges to IIy(0)(m, p) weakly
in H?(Br) x H*(0BRg), more precisely this convergence holds for functions f; ex-
tended to Bp (if necessary) by standard reflection through the normal of 92(V)
and rescaled o; = p; (L;s/(2mR)). The proof of this claim follows exactly the lines
above: we use Lemma 7.5 to get uniform a priori bounds for (A — A(V;))~!(my, pj)
in H2(Q(V;)) x H3(0Q(V;)) and then pass to limit in variational formulations of cor-
responding problems with smooth test functions. Moreover, since (m;, p;) € Z(V;)
we have ((mj, p; )W) 2 = Viko((m;, pj), W5) 2 = 0, therefore passing to the limit
we get, by virtue of Lemma 7.1, {(m, p))W7|v=o)r2 = {(m,p), (®Y — 2,0))r2 = 0,
ie. (m,p) € Z(0). Thus I(0)(m, p) € U(0)Z(0).
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1835

By Lemma 6.1 we have IIy(0)Z(0) = span{W1|v=o}. Therefore the dimension of
the space I15(V)Z(V') is at most one for sufficiently small V. Indeed, otherwise there
exists a sequence V; — 0 and elements W;, W; of I15(V;)Z(V;) that are mutually or-
thogonal and normalized to one in L?(2(V;)) x L2(02(V;)). Since W; = I15(V;)W;
and Wj = H5(Vj)Wj, after extracting a subsequence, if necessary, both W; and Wj
converge strongly in L2-topology to limits belonging to I15(0)Z(0) = span{Wi |y o},
a contradiction. Furthermore, we construct below

(7.33) W =Wans — W1 € Z(V) with § = O(V),
out of the vectors W, from Lemma 5.1, then we have
(7.34) L5 (V)W — TIo(0)W, = W, # 0.
V=0
Therefore A(V) ’I W) has for sufficiently small V exactly one simple eigenvalue A(V')
with [A(V)] < §, and A(V) — 0 as V — 0. Moreover, by virtue of Lemma 5.1 we
get
(7.35) AW — VZN(VI)W (|2 = O(VZM'(V)).
Then, since
1 -1 (3 2
0=— A— AV AVIVE = AV) ) WdA
3 f,, A=AV (AVE - Aw)
+ L (A—A(V)™ ()\ - Z\(V)VQ) W dA
27 [A|=6

we have
AWV)W = A(V)V2W |2
[T (V)W 2

It remains to find = 6(V) such that W = Wy, — W7 € Z(V). According to

Lemma 5.1 we have (A(V)W — A(V)V2W, W) 2 = 0, therefore
AVIVEHW, W) 12 = (A(V)W, W) 2 = (W, A7 (V)W) 12 = 0.

Thus we only need to choose € such that (W1, W)z = (Waee, Wo)p2. Since
<A(V2Wast, Wire = (Wast, Wf>L2 = 0(W, W)z = 0{AV YWy, W) 2 = 0, we

have A(V)V2(Wost, Wihpe = (AV)V2Wast — A(V)Wast, W) 12, while by Lemma
5.1 and Lemma 7.1

IAV) = A(V)V?| < = O(VEM'(V)).

AV Wagr — A(V)Wast, Wi ) 12

< AVt = AV W
< [W5ll 2 = O(IM'(V)]PV?).

This leads to the bound (Wast, W)z = O(VM'(V)), and since (Wy, W) 2
(AVYWo, W32 = (Wo, W{)2 = M'(V) we obtain the required bound |6
C|V|. Theorem 7.2 is completely proved.

OIA Il

While Theorem 7.2 describes the smallest (in absolute value) nonzero eigenvalue
of A(V), the following Theorem 7.6 shows that all eigenvalues of A(V') converge to
the spectrum of Ags(R) uniformly in half-planes Cj. = {A € C;Re(\) > K}.

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1836 VOLODYMYR RYBALKO AND LEONID BERLYAND

Theorem 7.6. Assume that conditions of Theorem 4.1 are fulfilled. Let o(A(V))
and o(Ass(R)) be spectra of operators A(V') and Ass(R), respectively. Then VK €
R the distance d = sup {dist (\,0(Ass(R))); A € o(A(V))NCL} from o(A(V)) N
Ck to 0(Ass(R)) tends to zero as V. — 0. Moreover, given an eigenvalue \ €
o(Ass(R)), there is a neighborhood w > X\ such that the number #o(A(V)) Nw
of eigenvalues of A(V') (counting algebraic multiplicities) in w is less than or equal
than the multiplicity of A (as an eigenvalue of Ass(R)) for sufficiently small V.

Proof. Observe that arguments applied in Theorem 7.2 in a neighborhood of zero
can be readily applied to any complex A. That is arguing as in Theorem 7.2 one
shows that if A & o(Ass(R)) then a neighborhood of A belongs to the resolvent set
of A(V) for sufficiently small V. Next, for A € o(Ass(R)) one can consider spectral
projectors given by the integral 5= ¢, (A —A(V))"tdA (cf. (7.32)) and, reasoning
as in Theorem 7.2, prove that #0(A(V)) Nw does not exceed the multiplicity of A
for sufficiently small V. It remains to show that VK € R the eigenvalues of A(V)
whose real parts are larger than K stay uniformly bounded when V' — 0.

Let A be an eigenvalue of A(V) such that Re(A) > K. Consider corresponding
eigenvector W = (m, p) normalized by

(7.36) /|m|2d9cdy+/ Ip|*ds =1,
Q oN

hereafter for brevity we write 2 in place of Q(V'). Functions p and m satisfy

dp  0*® 0P
(7.37) Ap = 5 T el <E + Vl/y) p on 09Q,

(7.38)
M= Am 4+ Voym — AVe? ™V . Ve + Ae® "V (m — (¢) — div(mV®) in Q,

along with boundary condition (5.5), the auxiliary function ¢ being a unique solu-
tion of (5.1)—(5.2). Consider, as in Lemma 7.5, the harmonic extension H(p) of p
from 09 into 2 and multiply (5.1) by the complex conjugate H(p) of H(p), then
integrating over 2 we get (cf. (7.18))

(7.39)

2 _1 " — _ _ —
A /d ol s /a () ds / (Co — m)H(P) dedy
2 02 0 .
+ /an <<% - VVx)PauH(ﬁ) + sz - <§ + VVy> p P> ds.

Notice that by (7.21), —ZRe (for P OuH(P) ds) > 9Hp||§{3/2(89) — C||PH2L2([)Q) with
some constants # > 0 and C' that does not depend on p. Therefore taking real part
of (7.39) and estimating various terms in the right hand side of (7.39) as in the
proof of Lemma 7.5, we obtain

0
(7.40) 5HP||H3/2(89) < —Re(M)|lpll72(50)+C1 <||P||%2(asz) + ||m||%2(sz)) < Ci+|K],
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1837

where we have also used (7.36) and the inequality Re(\) > K. Next, multiply
(7.38) by m and integrate over ) to derive, analogously to (7.28),
(7.41)

A / |m|? dwdy-+ / |Vm|? dedy = A / pdiv(mVe? V) drdy
Q Q Q

+ / (VO,m — Vm - VO — mA® + Ae® V" (m — (¢)) m dedy
Q

9% 0P
P—Va —
,/BQAe (ayzp—(&_ +V1/y)p’>md3-
Taking real part of (7.41) one can show (as in the proof of Lemma 7.5) that

lm| g1 < C. Now, add (7.39) to (7.41) and collect terms with the factor A
to see that

Al < +C,

ljﬁw@mmw
¢ Joa

i.e. we need only to obtain a bound for the term % Joq PO H(p) ds. To this end
one combines inequalities

| oo ds
o

with the bound (7.40). O

<" r-1r200) 1OH D) 11172 (002) < CHPH?qs/z(aQ)

Remark 7.7. Unlike Theorem 4.1, the above result holds without symmetry assump-
tions, i.e. it covers all eigenvalues, not necessarily corresponding to eigenvectors
with reflection symmetry (with respect to the z-axis).

8. LINEAR STABILITY ANALYSIS OF TRAVELING WAVE SOLUTIONS WITH SMALL
VELOCITIES UNDER PERTURBATIONS WITHOUT SYMMETRY ASSUMPTIONS

So far we assumed reflection symmetry with respect to the z-axis of traveling
waves (that are solutions ¢ = ®(x,y, V), @ = Q(V) of (4.2)—(4.3)) and their per-
turbations. In this section we consider general perturbations with no symmetry
assumptions on the pairs (m, p) from the domain of the linearized operator A(V).
We begin with the case V' = 0, i.e. we consider linearization around the stationary
radial solution with the radius R = R, that satisfies the bifurcation conditions
(4.18). The linearized operator A(0) = Ags(R) has the same eigenvalues as under
the above symmetry assumption, but multiplicities of nonradial eigenvectors double
since the odd Fourier modes m = 7, (r) sinnp, p = p, sinny are also considered.
In particular, Ass(R) has zero eigenvalue with two eigenvectors corresponding to
infinitesimal shifts (in z- and y-directions)

(81) (m,p) = (O,I/x) = (O’COS 50)’ (m,p) = (O’Vy) = (OaSin Qo)a
and two generalized eigenvectors
(8.2) (m, p) = (mo (@Y (2,y) — 2),0),  (m,p) = (mo(PV(y, ) —y),0)

(cf. (5.7) with V' = 0), where ®9, is the unique solution of (4.14). By virtue of
Lemma 6.1 the multiplicity of zero eigenvalue equals to five, the complementary
eigenvector being (2mRp, (7 R?) + v/R?,1). For V # 0 the generalized eigenspace
corresponding to zero eigenvalue is described in
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1838 VOLODYMYR RYBALKO AND LEONID BERLYAND

Proposition 8.1. The operator A(V') defined in (5.1)-(5.5) has the zero eigenvalue
with multiplicity at least four. There are two eigenvectors Wy = (mq,p1), W3 =
(ms, p3) corresponding to infinitesimal shifts,

(8.3) my = —A(V)0,e® V" p1i= vy, my = —A(V)0,e® VT, p3i=1,,

the generalized eigenvector Wy given by (5.7) (which is obtained by taking derivative
of the traveling wave solution in' V'), and the following generalized eigenvector Wy =

(m4ap4)7
(8.4)
AV) ) o-ve _ AV) “Va Ve 1
my ‘= —Tawe(b Ve — T(yazeq) v _xayeq) v )a P4 = V(—yVm‘Fny),

which represents infinitesimal rotations of the traveling wave solution. The gener-

alized eigenvectors Wa, Wy satisfy A(V)Wo = Wy, AV )W, = Ws.

Remark 8.2. The eigenvectors Wy, W3 appear due to translational invariance of
the problem (2.9)—(2.13) under shifts of the frame in 2 and y respectively. This
problem is also invariant under rotations. However, equations (4.2)—(4.3) for the
traveling wave solutions and corresponding linearized operator are written in the
frame that moves with velocity V. That is why rotational invariance gives rise to
the generalized eigenvector Wy rather than eigenvector.

Proof. First we show that A(V)W3 = 0. Clearly (5.1) is satisfied with ¢ =
—0y®, also (A(V)W3),, (given by (5.4)) equals zero identically. To verify that
(A(V)W3), = 0 take the tangential derivative of the boundary condition 9,® = Vi,
(this amounts to differentiating with respect to the arc length s):

(8.5) =02, 9v,v, + 8§y<1>ui - 6iy<I>V§ + 8§y<1>uxl/y — 0:Prvy + 0yPriy = —VRyy,

where we have used the Frenet-Serret formulas v, = —£u, 1/; = KkV,. Multiply this
relz;iti?ln by v, and add to its both sides 02, Pv, = (92, Pv;+202, Pr,vy+0;, Dv2 )y,
to fin

0=0,0,® — 9;,Pvy + Ky (0:® + Vi) = 8,0,® — 87, Qv + (0, + Vi )v,.

The verification of (5.5) is analogous, while to show (5.2) we differentiate the equal-
ity (® = p.(|Q|) — & in s and obtain (9, ® = —y«’. Then recalling that 9,® = Vu,
we derive

—(0y® = —((0; Py + 0, Q1) = yK'T, — (Veyy = (v, + K*vy) — (V.

Clearly, all the above arguments apply to show that W7 is also an eigenvector. An
alternative, more direct proof of this fact is given in Appendix A. It is also shown
there that A(V)Wy = W1, by taking finite differences to approximate the derivative
of the traveling wave solution in V.

We proceed now with the vector W,. Take the derivative of A® +A(V)e?~V* =
(P in ¢ to obtain that (5.1) is satisfied with ¢ = —0,®. Also, taking the de-
rivative in ¢ of the equation —V9,e?~V% = Ae®~V* — div(e?~V2V®) and using
the identities 0,0, = 0,0, - =0y, 0,0, = 0,0, - +0,- we get m3 = Amy +
Vmy — div(mgV®) +A(V)div(e®V*VH,®). Considering equations on the bound-
ary 0Q(V') we provide details only for equation (5.3), the verification of (5.2) and
(5.5) being similar. Multiply the equation 9,0,® — 92, Pv, + (0,® + Viy)v, =0
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1839

by y and subtract the equation —8,8,® + 92, vy, — (9-® + Vi), = 0 multiplied
by x. After simple manipulations we obtain

0= —0,0,® — 1,0, P + 1,0, + 0., B (w1, — yvz) + (0, + Vi) (yv, — a1y
= —0,0,® + 0,® + 02,0 (zvy — yvs)+(0,® + Vi) (yve — 21 — y'vat+a'y,),

where 2’ and y' are derivatives of z = z(s) and y = y(s) in s. Since 2’ =7, = —,
and y' = 7, = v, we finally get

—0,0,® + 02,®(2vy — yv) — (0:® + V) (zvy, — yvp) = V.
Proposition 8.1 is proved. O

While Theorem 7.2 describes all small (in absolute value) eigenvalues of the
operator A(V) in the space of vectors possessing symmetry with respect to the
z-axis, Theorem 7.6 and Proposition 8.1 show that in general case, without the
said symmetry assumption, the structure of the spectrum of A(V') near zero is the
same as in Theorem 7.2 but the multiplicity of zero eigenvalue changes to four.
Then, taking into account Theorem 3.5, we arrive at the following result which
summarizes spectral analysis of the operator A(V).

Theorem 8.3. Assume that conditions of Theorem 4.1 are satisfied, and M' (V') #
0 for sufficiently small V- # 0. Then the operator A(V') has for small V £ 0 zero
etgenvalue and its multiplicity is equal to four. The next smallest in absolute value
eigenvalue is A(V') # 0, this eigenvalue is simple and it is given by the asymptotic
formula (7.9). All other eigenvalues have real parts bounded away from zero. If
additionally conditions of Theorem 3.5 are satisfied then nonzero eigenvalues other
than A(V') have negative real parts.

Notice that under the condition (3.17) the radially symmetric stationary solu-
tions (3.1) with radii R close to the critical radius R = Ry can be reparametrized
by their total myosin masses M;, see Remark 3.6. Then the factor E'(R)/M.,(R)
in the formula (7.9) writes as

E'(R)  dE

ML(R) — dMs’
Moreover, using Lemma 4.4 one can derive an explicit formula for this factor.
Considering the total myosin mass of traveling waves in the companion paper [29]
an explicit formula for M"(0) is obtained via asymptotic expansions in the limit of
small velocities (see [29], Supplementary Material). Then performing computations

2z
§ Traveling waves
>
Stable Unstable
N ~

Station\ﬂ@ Total myosin
mass

FIGURE 1. Supercritical pitchfork bifurcation.
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1840 VOLODYMYR RYBALKO AND LEONID BERLYAND

for factors in formula (7.9) (more precisely, its particular case (7.10)) we see that
in a wide range of parameters bifurcation of traveling wave solutions is always
the supercritical pitchfork, since the real part of the key eigenvalue A(V) is always
negative for sufficiently small V. In particular, this holds when the condition (3.17)
and conditions of Theorem 3.5 are satisfied. This result agrees with 1D results from
[27], where the normal form analysis revealing the structure of the bifurcation was
performed for the first time. Also, Fig. 2 (borrowed from [29]) depicts approximate
shapes of traveling wave solutions and densities of myosin for small velocities V.
The shape becomes asymmetric with increasing V' and the myosin accumulates at

V=0.um/s V=0.01uym/s V=0.02pm/s V=0.025pm/s V=0.03um/s

QO00P

FIGURE 2. Traveling wave solutions with increasing velocities.
Motion is to the right. Darker colors correspond to higher myosin
density. See [29, Supplementary Material] for parameter values.

the rear. This myosin accumulation is consistent with experimental results from
[30].

APPENDIX A. DERIVATION OF THE LINEARIZED OPERATOR

Consider problem (2.9)—(2.13) in the frame moving with constant velocity V'
in z-direction, and assume that a solution is represented in the perturbative form
(5, 1) + AeP@IV VT 90 = {(a(s), y(s)) + p(s, O (s); (w(5), y(s)) € OAV)}
with respect to the traveling wave (Ae®@%V)=Vz (V) (which is a stationary
solution in moving frame), assume also the representation ¢(z,y,t) + ®(x,y, V) for
the solution of problem (2.9)—(2.10). Hereafter we assume that m, p and ¢ are
small and smooth enough functions, and the function ® is extended as a smooth
function in a neighborhood of (V) (such an extension exists thanks to the C*°

smoothness of the boundary and the function ®, ® € C*°(£2(V))). Then we have

(A1) —Ap+Chp—m=AD—(D+Ae®> V" inQ,

(A.2) (o = (p(12]) = p(I1QV)])) = (€2 — pu(I12(V)]) +vK) —v(H — k) on 0,
(A.3) VN—%:VQS-(N—V)—FS—;{\;—VNI on 99,

(A.4)

om — Am—Vd,m + div(Ae®~V*Ve) + div(mVe)
=A (A V" + Ve V" —div(e* V@) — div(mVe) in Q,

(A.5) om=Vm-(v—N)— Aa%eq’*vm on 02,

where N is the outward pointing normal to 0f2, Vy denotes the normal velocity of
09, and H stands for the curvature of 2. The last term —V N, in (A.3) appears
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1841

because of passing to the moving frame. The boundary 02 is parametrized by
the arc length s on 9Q(V) via the map s — (z(s),y(s)) + p(s,t)v(s). Therefore
considering vectorial line element on 92 one can calculate the tangent vector T
using Frenet-Serre formulas v’ = k7, 7/ = —kv,

1
A _
(40 V()2 + (1 + kp)?

and derive that the length element do on 0f) is given by
do = \/(p')? + (1 + kp)2ds.

(L+rp)T +p'v),

It follows from (A.6) that
1

A7 N = 1+ kp)v —p'1).
(A.7) NI ETTE (L+rp)y = p'7)
Since dN = HTdo, one can derive the formula
1
(A8) H= 37 (k(1+ pr)® = p"(1 + Kp) + Kpp’ + 26(p)?)

((0')? + (1 + £p)?)
for the curvature H. Thus, assuming that p, p’ and p” are small and expanding
the right hand side, we obtain after dropping higher order terms,

(A.9) H=r—-p" —r%p+...,
this leads to the linear approximation
(A.10) —y(H — k) = (0" +K°p) + ...

of the last term in the right hand side of (A.2). Also, one can show that the linear
part of the area change is given by || — |QQ(V)| = fasz(v) pds—+ ..., so that we have

(A.11) (1) = p(1Q(V)]) = p.(12(V)] pds + ...
a0(V)
Finally taking two terms of the expansion
D(x(8) 4+ pva, y(s) + prz, V) = ®(x(s),y(s), V) + 0, P(x(s),y(s), V)p+ ...,
and recalling that 9,® = V,, (& = p.(|2V)]) — v& on 9Q(V), we obtain
—CD(a(5) + pras y(s) + pry, V) + pulIQV)]) = vk = —CVap + ...

Thus, substituting this formula along with (A.10)-(A.11) in (A.2) we obtain the
linearized boundary condition (5.2).
Next, the following computations show that (5.3) is in fact linearization of (A.3),

VN =0pN -v=0p+0p(N—-v)-v=0p+...
(from (A.7) one sees that N —v = —p'T7+...),

Vo (N —v)+ 22 VN, = Vo (N - )

ON
+ g—(llj)(z(s) + pra, y(s) + prvy, V) — g—(f(x(s),y(s), V)
+ VO(z(s) + pvg,y(s) + pvy, V) - (N —v)
+ Z—f(w(s),y(s), V)=V, — V(N — v,)
0% , 00

= pw(x(s),y(s), V) - p E(.’E(S),y(s),‘/) + VP/Tz o
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Writing exactly the same expansion for Vm - (v — N) — AB%G‘I)*V‘” one can derive
the linearized counterpart (5.5) of the boundary condition (A.5). Finally notice
that the first term in the right hand side of (A.4) is identically zero, while the right
hand side of (A.1) vanishes on (V). Thus in the linear approximation one finds
equations (5.4) and (5.1).

Remark that linearized equations (5.1) and (5.4) are derived in the domain
rather than Q(V). However Q is a small perturbation of (V) and one can pass
from 2 to Q(V') by constructing a diffeomorphic mapping close to the identity map
(with the rate controlled by p and its derivatives). More detailed derivation of the
linearized problem requires also discussion of regularity of solutions that we are
not dwelling on. However, the above reasonings, as they are, lead to an alternative
proof of the fact that A(V)W; = 0, where W; = (—Ad,e®~V? v,), that is more
insightful than the formal proof presented in Proposition 8.1. Indeed, consider
the solution Ae®@—ew:V)=Vi(z=2) ' = {(2,9);(z — &,y) € Q(V)} (a stationary
solution of (2.9)—(2.13) in the moving frame), shifted by € in the a-direction. Here
€ is a small parameter and, as above, we assume that ¢ is smoothly extended on
the exterior of Q(V). We consider (Ae®@=¥:V)=V(@=¢) ) as a perturbation of
(Ae®=V= Q(V)), and define m, = 2(ePe=V(@=e) — Vo) ¢ = 1(d, — @) and
pe(s) as the scaled by factor 1/e signed distance from 9. to 9Q(V) (s denotes arc
length parameter on 9Q(V)). Then m = em., ¢ = €. and p = ep. satisly the
stationary version of (A.1)-(A.5), i.e. with Viy =0 and dym = 0, so that dividing
equalities in (A.1)—(A.5) by ¢ and passing to the limit as ¢ — 0 one obtains that
lim. ,om. = —Ad,e® V% lim. ,9p. = v, is a stationary solution of (5.1)-(5.5)
(with ¢ = —0,®).

Similar arguments can be applied to show that A(V)Wy = W;, where Wy =
(af/(A(V)eq)_Vx)v 6\75(3’ V)) ’f/:v' ~
with velocity V' the pair (A(V)e®~V# Q(V)) yields a traveling wave solution with
velocity V — V. Therefore considering ¢ = V — V as a small parameter, we can
employ the above derivation of the linearized problem to find A(V)W;. Indeed,
define

To this end observe that in the frame moving

me 1= 1 (A(V +€)e<1>(x,y,v+a)—(v+a)m _ A(V)ed)(a;,y,v)—Vm) ,
£

1 1.
¢E = g (‘b(l‘,y, Vv +5) - (I)(I,y, V))a Pe = gp(sa Vv +5)’

then m = em., ¢ = ed. and p = ep. satisfy (A.1)-(A.5) with Vy = &N, and
—e0,m — 0, (A(V)e®@¥:V)=V2) in place of dym. After dividing equalities in
(A.1)-(A.5) by e and passing to the limit as ¢ — 0 one finds that A(V)Wy =
(—A0,e®~V® 1,), where the auxiliary function ¢ = 9y ®(x,y,V) (appearing in the
definition of the operator A(V')) and components of Wy are obtained as the limits
of ¢. and m., p.. This completes the proof of the fact that W5 is a generalized
eigenvector of A(V) corresponding to the zero eigenvalue.
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