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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY

IN A FREE BOUNDARY MODEL OF CELL MOTILITY

VOLODYMYR RYBALKO AND LEONID BERLYAND

Abstract. We consider a 2D free boundary model of cell motility, inspired
by the 1D contraction-driven cell motility model due to P. Recho, T. Putelat,
and L. Truskinovsky [Phys. Rev. Lett. 111 (2013), p. 108102]. The key
ingredients of the model are the Darcy law for overdamped motion of the
acto-myosin network, coupled with the advection-diffusion equation for myosin
density. These equations are supplemented with the Young-Laplace equation
for the pressure and no-flux condition for the myosin density on the boundary,
while evolution of the boundary is subject to the acto-myosin flow at the edge.

The focus of the work is on stability analysis of stationary solutions and
translationally moving traveling wave solutions. We study stability of radi-
ally symmetric stationary solutions and show that at some critical radius a

pitchfork bifurcation occurs, resulting in emergence of a family of traveling
wave solutions. We perform linear stability analysis of these latter solutions
with small velocities and reveal the type of bifurcation (sub- or supercritical).
The main result of this work is an explicit asymptotic formula for the stability
determining eigenvalue in the limit of small traveling wave velocities.

1. Introduction

Cell motility, i.e. self-sustained motion of living cells using metabolic energy, is a
fundamental process involved in a variety of biological phenomena, e.g. wound heal-
ing, tissue remodeling (physiological or pathological), immune response, metastatic
tumor cell migration etc. In the general context of soft matter physics the interest
to the phenomenon led to a recent development of the so-called “Active gel physics”,
see [24]. Experimental studies of cell motility are often performed on keratocyte
cells that are widely considered as a case study example thanks to their fast and
persistent migration and stable shape. These cells, found in fish skin and human
corneas, are of particular interest due to their medical relevance as key players in
wound healing (e.g., in retina). From the modeling perspective keratocytes are also
advantageous because of their flat shape that allows one to use 2D mathematical
models.

The two leading mechanisms of cell motility are protrusion generated by poly-
merization of actin filaments (more precisely, filamentous actin or F-actin) and
contraction due to myosin motors [18], [20]. The goal of this work is to study the
contraction-driven cell motility, since contractile stresses caused by myosin motors
prevail in cell polarization and initiation of motion [27]. To this end we introduce
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and investigate a 2D model with free boundary that generalizes the 1D free bound-
ary model proposed in [26], [27]. Despite of its simplicity this 1D model captures
the bifurcation of stationary solutions to traveling waves, which is the signature
property of cell motility. While mathematical analysis in the 2D case is obviously
much more involved than in the 1D case, especially in a free boundary setting,
the results of the bifurcation analysis of the 2D model agrees with findings of [26],
[27] for the 1D case. In particular, both models exhibit a supercritical bifurcation.
However, modeling of the important phenomenon of cell shape evolution requires
consideration beyond the 1D setting, and results of this work capture breaking
of the shape symmetry, as depicted in Fig. 2, which is an important biological
phenomenon, see, e.g., [2] and [31]. Moreover, the main results of the work, in
particular the explicit asymptotic formula (7.10) for the eigenvalue that decides on
stability, and the asymptotic expansion of the corresponding eigenvector provide a
new insight for both 1D and 2D models.

Various 2D free boundary models for cell motility were introduced in, e.g., [2],
[7], [6], while [12] proposes a model of motion with fixed shape. The problems in
[7] and [6] model the polymerization driven cell motion when myosin contraction is
dominated by polymerization, which naturally complements present work. These
models extend the classical Hele-Shaw model by adding fundamental active matter
features such as the presence of persistent motion modeled by traveling wave so-
lutions. The Keller-Segel system with free boundaries as a model for contraction
driven motility was first introduced in [26], in the 1D setting. Its 2D counterpart
introduced and analyzed numerically in [2] accounts for both polymerization and
myosin contraction. A simplified version of this model was studied analytically in
[5], where the traveling wave solutions were established. Notice that the Keller-
Segel system in fixed domains appears in various chemotaxis models and it has
been extensively studied in mathematical literature (see, e.g., the review paper [4],
also see [8] for traveling waves in the 1D flux-limited Keller-Segel model).

Traveling wave solutions were also addressed in other 1D and 2D free boundary
problems of cell motility, e.g. [10], [21]. Besides, we mention closely related free
boundary problems in tumor growth models. However, in these models the area
of domain undergoes significant changes and no persistent motion was established
(see, e.g., [14], [23], and [19]).

While in the model [2] the kinematic condition on the free boundary contains
its curvature, in the present work we assume continuity of the flow at the cell edge
following the 1D model introduced in [26]. Still a term proportional to the curvature
appears in the force balance on the boundary since we adapt the Young-Laplace
equation for the pressure. This provides the same regularizing effect as in the 2D
Hele-Shaw model.

The main purpose of this work is to study stability questions in the onset of
motion. Specifically, we consider stationary solutions and traveling wave solutions
with small velocities. To show emergence of traveling waves we employ bifurcation
analysis of the family of radially symmetric stationary solutions, following the idea
originally proposed in [16] in the framework of a tumor growth model and followed
in many subsequent works on such models, e.g., [15], [17]. While the aforemen-
tioned works deal with bifurcation from radial to non-radial stationary solutions
via eigenvectors, in the present work we establish existence of traveling wave solu-
tions bifurcating via generalized eigenvectors rather than eigenvectors. Similarly to
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[15] we use the Crandall-Rabinowitz bifurcation theorem to justify bifurcation to a
family of traveling wave solutions parametrized by their velocity V . However, the
functional framework for application of this theorem significantly differs from that
used for tumor growth models.

The main mathematical novelty of this work is in the study of spectral properties
of the generator A(V ) of the evolution semigroup linearized around traveling wave
solutions. The spectrum of the operator A(V ) near zero has rather interesting
asymptotic behavior in the limit of small traveling wave velocities due to presence
of generalized eigenvectors for multiple zero eigenvalue. Specifically, A(V ) has
zero eigenvalue with multiplicity five for V = 0 that splits into zero eigenvalue
with multiplicity four and a (small) simple non zero eigenvalue λ(V ) �= 0 for V �= 0
whose sign determines stability of traveling waves. The main result of this work is an
explicit asymptotic formula (7.9) for λ(V ), which determines stability of traveling
waves in terms of the total myosin mass and a special eigenvalue E describing
movability (see Remark 3.1) of stationary solutions.

The outline of the paper is as follows. Section 2 is devoted to the description
of the model. In Section 3 we consider the family of stationary radially symmetric
solutions with constant myosin densities and study their linear stability via the
Fourier analysis. The main finding of this section is in the identification of the
eigenvalue E(R) which determines stability of the solution with radius R. In Sec-
tion 4 we show that at the critical radius R = R0 such that E(R0) = 0 a pitchfork
bifurcation occurs. A family of traveling wave solution emerges, these solutions
are parametrized by their velocities V . Then, throughout Sections 5–7 we study
the asymptotic behavior of the spectrum of the operator A(V ) (obtained by the
linearization around the traveling wave solution) in the limit of small velocities V .
We restrict the analysis to perturbations possessing axial symmetry of the traveling
wave, since the eigenvector corresponding to the eigenvalue λ(V ) (which determines
stability) has this symmetry. Notice that in the space of perturbations with this
axial symmetry the multiplicity of the zero eigenvalue equals two. In Section 5 we
construct asymptotic expansions that lead to the formula (7.9) for λ(V ) for small
V �= 0. This construction requires a four term ansatz for the eigenvector which has
an interesting structure: the first two terms are proportional to the eigenvector and
the generalized eigenvector of A(V ) for the zero eigenvalue (see pairs mi, ρi, i = 1, 2
in (5.9)–(5.10)). Moreover, a solvability condition for the fifth term yields the for-
mula (7.9) for λ(V ). This formula, despite the technical derivation, is remarkably
simple. The principal term in the asymptotic expansion of λ(V ) is given in terms of
two key quantities: the derivative of the eigenvalue E(R) (at the bifurcation point)
with respect to the total myosin mass and the derivative M ′(V ) of the total myosin
mass M(V ) of the traveling wave solution with respect to the velocity V (see ex-
planation after the main Theorem 8.3). However, its justification is rather involved
and requires passing to the invariant subspace complementary to the generalized
eigenspace for the zero eigenvalue. To this end in Section 6 we study the generalized
eigenvector (corresponding to the zero eigenvalue) of the adjoint operator A∗(V ).
It exhibits a singular behavior (it blows up) as V → 0 (actually, after a proper nor-
malization, it converges to an eigenvector of A∗(0)). Section 7 contains the proofs
of results obtained in Sections 5 and 6. The main ingredient of these proofs is the
demonstration of resolvent convergence and convergence of spectral projectors. An
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important technical step there is Lemma 7.5 that deals with the resolvent oper-
ators and establishes regularity of solutions of the corresponding boundary value
problems. Finally, in Section 8 we extend the results for symmetric perturbations
to general perturbations of the traveling wave solutions. The key observation there
is that infinitesimal shifts of traveling wave solutions in the direction orthogonal to
motion and their infinitesimal rotations yield a complementary pair of eigenvector
and generalized eigenvector corresponding to the zero eigenvalue.

2. The model

We consider a 2D model of motion of a cell on a flat substrate. The cell occupies
a domain Ω(t) with free boundary. The flow of the acto-myosin network inside the
domain Ω(t) is described by the velocity field u. In the adhesion-dominated regime
(overdamped flow, cf. [7], [6]) u obeys Darcy’s law

(2.1) −∇p = ζu in Ω(t),

where −p stands for the scalar stress (p is the pressure) and ζ is the constant effec-
tive adhesion drag coefficient. We describe the acto-myosin network by a compress-
ible fluid continuum equation, for incompressible cytoplasm fluid can be squeezed
into the dorsal direction in the cell [22]. The main modeling assumption is the
following constitutive law for the scalar stress −p

(2.2) −p = μdivu+ km− ph in Ω(t),

where μdivu is the hydrodynamic stress (μ being the effective bulk viscosity of
the gel), the term km is the active component of the stress which is proportional
to the density m = m(x, y, t) > 0 of myosin motors with a constant contractility
coefficient k > 0, ph is the constant hydrostatic pressure. Throughout this work we
assume that the effective bulk viscosity μ and the contractility coefficient k in (2.2)
are scaled to μ = 1, k = 1. We prescribe the following condition on the boundary

(2.3) p+ pe = γκ on ∂Ω(t),

known as the Young-Laplace equation, where κ denotes the curvature (positive if
Ω(t) is convex), γ > 0 is a constant coefficient and pe is the effective elastic restoring
force which describes the mechanism of approximate conservation of the area due
to the membrane-cortex tension. The elastic restoring force pe generalizes the one-
dimensional nonlocal spring condition introduced in [26], [27], see more recent work
[25] which also introduces the cell volume regulating pressure,1 and we similarly
assume the simple linear dependence of pe = pe(|Ω|) on the area2:

(2.4) pe = ke(|Ωh| − |Ω|)/|Ωh|,

1The authors are grateful to L. Truskinovsky for bringing [25] to their attention and helpful
discussions on bifurcations during the preparation of the manuscript.

2An alternative way to this mean field elasticity approach (used to regularize the minimal
model) could be incorporating the Kelvin-Voigt model which accounts for the elastic response at
long time scales. To this end one can introduce the intracellular density �, whose transport is
governed, e.g., by ∂t� + div(�u) = 0 and modify the constitutive law (2.2) by a term P (�) with
appropriate linear or nonlinear function P . For a discussion of different approaches of elastic reg-
ularization of the minimal model in 1D case, including also Maxwell model, we address interested
reader to [28].
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where ke is the inverse compressibility coefficient (characterizing membrane-cortex
elastic tension), |Ωh| is the area of the reference configuration Ωh in which pe = 0
(cf. vertex models [13], [1]).

The evolution of the myosin motors density is described by the advection-diffu-
sion equation

(2.5) ∂tm = Δm− div(um) in Ω(t)

and no flux boundary condition in the moving domain

(2.6) ∂νm = (u · ν − Vν)m on ∂Ω(t),

where ν stands for the outward pointing normal vector and Vν is the normal velocity
of the domain Ω(t). Finally, we assume continuity of velocities on the boundary

(2.7) Vν = u · ν,

so that (2.6) becomes the homogeneous Neumann condition. Combining (2.1)–(2.7)
yields a free boundary model of the cell motility investigated in this work. While
there are several models of cell motility in literature (both free boundary and phase
field models), in this work we perform analytical study of stability of stationary
and persistently moving states in the model (2.1)–(2.7).

It is convenient to introduce the potential for the velocity field u using (2.1):

(2.8) u = ∇φ = −∇1

ζ
p, φ := −1

ζ
(p− ph),

and rewrite problem (2.1)–(2.7) in the form

Δφ+m = ζφ in Ω(t),(2.9)

ζφ = p∗(|Ω(t)|)− γκ on ∂Ω(t),(2.10)

Vν = ∂νφ on ∂Ω(t),(2.11)

∂tm = Δm− div(m∇φ) in Ω(t),(2.12)

∂νm = 0 on ∂Ω(t),(2.13)

where we introduced the notation

(2.14) p∗(|Ω|) := ph + pe(|Ω|) = ph − ke(|Ω| − |Ωh|)/|Ωh|

for the sum of the hydrostatic pressure ph and the effective elastic restoring force
pe. We consider the coefficient ke to be sufficiently large so that it penalizes changes
of the area. For instance, it prevents from shrinking of Ω to a point or from infinite
expanding. The precise lower bound on ke/|Ωh| is given below in (3.17).

Remark 2.1. Evolution problem (2.9)–(2.13) is naturally considered in the phase
space of two unknowns m(x, y, t) and Ω(t), while the potential φ(x, y, t) is regarded
as auxiliary unknown function determining evolution of the free boundary. Instan-
taneously φ is defined as the unique solution of the elliptic problem (2.9)–(2.10),
while its normal derivative ∂νφ determines normal velocity of the boundary ∂Ω(t).

Following [9] one can establish local (in time) existence of a solution of (2.9)–
(2.13) and its uniqueness in appropriate Hölder spaces. Indeed, introducing σ1 :=
φ− p∗(|Ω|)/ζ one rewrites (2.9)–(2.13) as a Hele-Shaw type problem

(2.15) Δσ1 = H(φ,m) in Ω(t), σ1 = −γ

ζ
κ and Vν = ∂νσ1 on ∂Ω
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with the source term H(φ,m) = ζφ −m, where φ = σ1 + p∗(|Ω|)/ζ and m solves
(2.12)–(2.13). Then similarly to [9] the above problem can be treated with the
help of the Banach fixed-point theorem. Notice also that every solution of (2.9)–
(2.13) enjoys an important feature of conservation of the total mass of myosin
M =

∫
Ω(t)

m(x, y, t)dxdy, as follows from (2.11)–(2.13).

Remark 2.2. Observe that if the initial data have reflection symmetry with respect
to the x-axis then solutions of problem (2.9)–(2.13) also have this symmetry. We
adopt this symmetry assumption throughout Sections 3–7 in the spectral analysis
of linearized problems and in the bifurcation analysis. Subsequently we relax this
assumption in Theorem 8.3 (see Section 8) to obtain a complete characterization
of linear stability of traveling wave solutions.

3. Linear stability analysis of radially symmetric

stationary solutions

In the class of radially symmetric stationary solutions of problem (2.9)–(2.13) for
a given radius R > 0 there exists the unique radial solution with constant myosin
density and it is given by

Ω = BR, m0 = p∗(πR
2)− γ/R, ζφ0 = p∗(πR

2)− γ/R,(3.1)

and we assume that R is such that p∗(πR
2)− γ/R > 0 to have the density m0 > 0.

To describe evolution of perturbations of (3.1), it is convenient to use the polar
coordinate system (r, ϕ),

(3.2) Ω = {(x = r cosϕ, y = r sinϕ); 0 ≤ r < R + ρ(ϕ, t)} .
Then linearizing problem (2.9)–(2.13) around a radially symmetric reference sta-
tionary solution (3.1), we get the following problem

Δφ+m = ζφ in BR,(3.3)

φ =
p′∗(πR

2)R

ζ

∫ π

−π

ρdϕ+
γ

R2ζ
(∂2

ϕϕρ+ ρ) on ∂BR,(3.4)

∂tρ = ∂rφ on ∂BR,(3.5)

∂tm = Δm−m0Δφ in BR, ∂rm = 0 on ∂BR,(3.6)

which can be rewritten in the operator form

(3.7)
d

dt
U = Ass(R)U,

where U = (m, ρ), and Ass(R) is the following operator

(3.8) (Ass(R)U)m = Δm−m0Δφ in BR, (Ass(R)U)ρ = ∂rφ on ∂BR.

Here φ solves the time independent problem (3.3)–(3.4) for givenm and ρ, and (3.8)
defines an unbounded operator in L2(BR) × L2(∂BR) whose domain is H2(BR) ∩
{m; ∂rm = 0 on ∂BR} ×H3(∂BR).

Operator Ass(R) has a compact resolvent (as one can prove following the lines
of the proof of Lemma 7.5), therefore its spectrum is discrete. Thanks to the radial
symmetry of the problem, the study of spectral properties of Ass(R) amounts to
the Fourier analysis. Moreover we will consider only perturbations possessing the
reflection symmetry with respect to the x-axis. That is we consider Fourier modes
m = m̂(r) cosnϕ and ρ = ρ̂ cosnϕ for integer n ≥ 0. Notice that the operator

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1805

Ass(R) always has zero eigenvalue with multiplicity at least two and eigenvectors
(m = 0, ρ = cosϕ) and (m = 2πRp′∗(πR

2) + γ/R2, ρ = 1). Indeed, Ass(R) is
obtained by linearizing problem (2.9)–(2.13) around the radially symmetric sta-
tionary reference solution with radius R, while stationary solutions (3.1) and their
shifts along x-axis form a smooth two parameter family of stationary solutions of
the nonlinear problem (2.9)–(2.13), thus taking derivatives of these solutions with
respect to the parameters yields two linearly independent eigenvectors of the lin-
earized operator. The first of these eigenvectors represents infinitesimal shifts in
the x-direction of a solution (3.1) when R is fixed, and the second one is obtained
by taking derivative in R when the position (center of the disk) is fixed at the
origin. Next we introduce the eigenvalue E(R) describing movability of stationary
solutions. It will be shown that at the critical radius when E(R) crosses zero a
family of traveling wave solutions emerges.

Notice that within the mode (m, ρ) = (m̂(r) cosϕ, ρ̂ cosϕ) the eigenvalue prob-
lem for m̂(r) decouples from ρ̂ since (3.4) becomes the homogeneous Dirichlet con-
dition. Thus the auxiliary function φ in this case does not depend on ρ and is the
unique solution of

(3.9) Δφ+m = ζφ in BR, φ = 0 on ∂BR.

The eigenvalue problem then reduces to λm = Δm+m0m−m0ζφ in BR, ∂rm = 0
on ∂BR, and if λ �= 0 then one retrieves the ρ-component of the eigenvector by
setting ρ = ∂rφ/λ. The reduced eigenvalue problem is self-adjoint and therefore
admits variational formulation. The first (maximal) eigenvalue is the solution of
the minimization problem3

(3.10) E(R) = − inf

{
Eζ(m)

/∫
BR

m2dxdy;m ∈ H1(BR),m = m̂(r) cosϕ

}
,

where Eζ(m) =

∫
BR

(
|∇m|2 −m0m

2 +m0ζ|∇φ|2 +m0ζ
2φ2

)
dxdy

and φ is the unique solution of (3.9). Minimizing the Rayleigh quotient in (3.10)
yields a minimizer m that satisfies Δm+m0m−m0ζφ = E(R)m in BR and ∂rm = 0
on ∂BR. As already mentioned, in the case when E(R) �= 0 one obtains the ρ-
component of the eigenvector by setting ρ = ∂rφ|r=R/E(R). If E(R) = 0, then the
pair (m, 0) is a generalized eigenvector of Ass(R) while Ass(R)(m, 0) = (0, ∂rφ|r=R)
is an eigenvector (corresponding to infinitesimal shifts).

Problem (3.10) admits separation of variables in polar coordinates and thus
can be reduced to an eigenvalue problem for a 1D system, leading to an integro-
differential equation. However, the sign of the eigenvalue E(R) can be determined
via the solution of simple problem (3.11) below, explicitly given in terms of a Bessel’s
function (see Theorem 4.1).

Remark 3.1. The Fourier mode with (m, ρ) = (m̂(r) cosϕ, ρ̂ cosϕ) is the only mode
that corresponds to motion (when the geometrical center of mass of Ω changes).
There are infinitely many eigenvectors within this Fourier mode. In particular, it
contains the eigenvector (0, cosϕ) (infinitesimal shifts) corresponding to the zero

3Technically E(R), given by formula (3.23), depends also on the physical parameter ζ > 0
which is considered fixed throughout the work, with the only exception occurring in the proof of
Lemma 3.3 (where it is explicitly stated), and therefore omitted to shorten the notation.
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1806 VOLODYMYR RYBALKO AND LEONID BERLYAND

eigenvalue. Then E(R) is the largest of the remaining eigenvalues. That is why
E(R) describes movability of the stationary solutions.

Lemma 3.2. Assume that m0 < ζ and E(R) = 0, then E(R) is a simple eigenvalue
of the variational problem (3.10), and the solution Ψ(r) of

(3.11)
1

r
(rΨ′(r))′− 1

r2
Ψ(r)+(m0−ζ)Ψ(r) = m0r 0 ≤ r < R, Ψ(0) = Ψ(R) = 0

satisfies the additional boundary condition

(3.12) Ψ′(R) = 1.

Proof. Let m be a minimizer of (3.10). Then the function m and the solution φ of

(3.9) are of the form m = m̂(r) cosϕ, φ = φ̂(r) cosϕ, and since Δ(m−m0φ) = 0, we
have m = m0(φ − Cr cosϕ). Clearly C �= 0, therefore we can assume that C = 1,
multiplying m and φ by a (same) constant if necessary. Then separating variables

in (3.9) leads to (3.11), i.e. φ̂ = Ψ(r), and since ∂rm = 0 on ∂BR we obtain (3.12).
Simplicity of the eigenvalue E(R) = 0 follows from the uniqueness of the solution
of (3.11). �

Lemma 3.3. Assume that m0 < ζ, then E(R) > 0, E(R) = 0 or E(R) < 0 if and
only if Ψ′(R) > 1, Ψ′(R) = 1 or Ψ′(R) < 1, correspondingly, where Ψ(r) is the
solution of (3.11).

Proof. Assume that Ψ′(R) ≥ 1 and consider the test function m := m0(Ψ(r) −
r) cosϕ. Observe that Δ(Ψ(r) cosϕ) + m = ζΨ(r) cosϕ, therefore we have, inte-
grating by parts,

E(R)

∫
BR

m2dxdy ≥ −Eζ(m) = −
∫
∂BR

m∂rmds

+

∫
BR

(Δm+m0m− ζm0Ψ(r) cosϕ)mdxdy = πR2m2
0(Ψ

′(R)− 1) ≥ 0.

Next we prove that E(R) ≤ 0 if Ψ′(R) ≤ 1. We argue by contradiction. Assume
that E(R) > 0 and notice that allowing the parameter ζ in (3.23) increase we have
a continuous function E(R, ζ) which becomes negative for sufficiently large ζ. To
prove the latter claim observe that otherwise there exists a sequence ζj → ∞ and
mj = m̂j(r) cosϕ such that ‖mj‖L2(BR) = 1 and Eζj (mj) ≤ 0. This gives the a
priori bound

(3.13)

∫
BR

|∇mj |2dxdy +m0ζj

∫
BR

(
|∇φj |2 + ζjφ

2
j

)
dxdy ≤ m0,

where Δφj +mj = ζjφj in BR, φj = 0 on ∂BR. Let us show that ζjφj −mj ⇀ 0
weakly in L2(BR). Indeed, multiply the equation Δφj + mj = ζjφj by a test
function v ∈ C∞

0 (BR) and integrate over BR,

(3.14)

∫
BR

∇φj · ∇vdxdy +

∫
BR

(ζjφj −mj)vdxdy = 0.

Then pass to the limit in this identity as j → ∞. By (3.13) we have ‖∇φj‖L2(BR) <

1/
√
ζj , therefore the first term in (3.14) tends to zero and thus the weak convergence

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1807

ζjφj −mj ⇀ 0 is established. It follows from (3.13) that there exists m∗ ∈ H1(BR)
such that, up to a subsequence, mj → m∗ strongly in L2(BR), consequently

lim inf
j→∞

‖ζjφj‖2L2(BR) − 1 = lim inf
j→∞

(‖ζjφj‖2L2(BR) − ‖mj‖2L2(BR))

= lim inf
j→∞

(‖ζjφj −mj‖2L2(BR)) ≥ 0.

Then (3.13) implies that lim supj→∞
∫
BR

|∇mj |2dxdy = 0, i.e. m∗ ≡ const. On

the other hand m∗ admits the representation m∗ = m̂∗(r) cosϕ. Therefore m∗ = 0
that contradicts the normalization ‖m∗‖L2(BR) = 1.

Thus, minEζ̃(m)/
∫
BR

m2dxdy = 0 for some ζ̃ > ζ. Then by Lemma 3.2 the

solution of

(3.15)
1

r
(rΨ̃′(r))′− 1

r2
Ψ̃(r)+(m0−ζ̃)Ψ̃(r) = m0r 0 ≤ r < R, Ψ̃(0) = Ψ̃(R) = 0

satisfies

(3.16) Ψ̃′(R) = 1.

But − 1
r (r(Ψ̃

′(r)−Ψ′(r)))′+ 1
r2 (Ψ̃(r)−Ψ(r))+(ζ−m0)(Ψ̃(r)−Ψ(r)) = (ζ− ζ̃)Ψ̃ > 0

for 0 < r < R, and Ψ̃(0) − Ψ(0) = Ψ̃(R) − Ψ(R) = 0. By the maximum principle

Ψ̃(r)− Ψ(r) > 0 for 0 < r < R, therefore Ψ̃′(R) < Ψ′(R) (due to the Hopf lemma
the inequality is strict), i.e. Ψ′(R) > 1, contradiction. Lemma 3.3 is proved. �

Remark 3.4. The condition m0 < ζ in Lemma 3.2 and Lemma 3.3 is not optimal. It
suffices to assume that m0−ζ is less than the first eigenvalue of −Δ in BR with the
homogeneous Dirichlet boundary condition on ∂BR. Then a unique solution of the
problem (3.11) exists and the maximum principle still holds, along with the Hopf
lemma. We nevertheless keep condition m0 < ζ to avoid unnecessary technicalities
hereafter.

The following result addresses linear stability of radial stationary solutions (3.1).

Theorem 3.5. Assume that the myosin density m0 is bounded above by the fourth
eigenvalue of the operator −Δ in BR with the homogeneous Neumann boundary
condition on ∂BR, also assume that p′∗(πR

2) satisfies

(3.17) p′∗(πR
2) < − (γ/R+ 2m0) /(2πR

2).

Then Ass(R) has zero eigenvalue with multiplicity two if E(R) �= 0 or three if
E(R) = 0 (in this case geometric multiplicity is still two), and all its eigenvalues
other than zero or E(R) have negative real parts.

Remark 3.6. In terms of the total myosin mass Mss(R) = πR2m0 = πR2p∗(πR
2)−

πRγ of the solution (3.1) condition (3.17) rewrites as

(3.18) M ′
ss(R) < 0.

This shows that (locally) stationary solutions can be reparametrized by their total
myosin mass.

Theorem 3.5 underscores the role of E(R) as a principal eigenvalue of Ass(R) and
provides a basis for applying the center manifold theory to problem (2.9)–(2.13).
In particular, if E(R) < 0 then (locally) the center manifold is formed by two
parameter family of radial stationary solutions (with different radii and positions),
the center space (slow space) is two-dimensional, while the unstable space is null.
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1808 VOLODYMYR RYBALKO AND LEONID BERLYAND

Using Theorem 3.5 one can establish stability of the linearized problem (3.3)–(3.6)
and then transfer this result to original evolution problem (2.9)–(2.13), taking into
account invariance of the problem with respect to shifts and the conservation of total
myosin mass property. We do not dwell into this nonlinear stability issue in this
work and refer an interested reader to, e.g., paper [3] which addresses nonlinear
stability of stationary solutions in (a close) framework of the tumor growth free
boundary problem.

For E(R) > 0 problem (3.3)–(3.6) is unstable, the same is true for E(R) = 0
because of linearly growing solutions.

Proof. Let λn be an eigenvalue corresponding to an eigenvector m = m̂n(r) cosnϕ,
ρ = ρ̂n cosnϕ with n ≥ 2. Multiply the equation λnm = Δm + m0m − m0ζφ by
the complex conjugate m of m and integrate over BR,
(3.19)

λn

∫
BR

|m|2dxdy = −
∫
BR

|∇m|2dxdy +m0

∫
BR

|m|2dxdy −m0ζ

∫
BR

φmdxdy.

Now multiply the equation m = ζφ−Δφ by m0ζφ and integrate over BR, then we
obtain the following representation for the last term in (3.19):

(3.20) m0ζ

∫
BR

φmdxdy = m0ζ

∫
BR

(
|∇φ|2 + ζ|φ|2

)
dxdy −m0ζ

∫
∂BR

φ∂rφds.

Since ∂rφ = λnρ and (by virtue of (3.4)) ρ = R2ζ
γ(1−n2)φ on ∂BR, equality (3.19)

rewrites as

λn

∫
BR

|m|2dxdy + λn
m0R

2ζ2

γ(n2 − 1)

∫
∂BR

|φ|2ds =
∫
BR

(
−|∇m|2 +m0|m|2

)
dxdy

−m0ζ

∫
BR

(
|∇φ|2 + ζ|φ|2

)
dxdy.

(3.21)

Notice that, thanks to the assumption that m0 is bounded by the fourth eigenvalue
of −Δ in BR with homogeneous Neumann boundary condition, we have

(3.22)

∫
BR

(
|∇m|2dxdy −m0|m|2

)
dxdy ≥ 0.

Therefore the right hand side of (3.21) is negative, so the real part of λn is also
negative.

Next we consider eigenvalues whose corresponding eigenvectors have the form
m = m̂(r) cosϕ, ρ = ρ̂ cosϕ. As already mentioned, the operator Ass(R) always
has the eigenvector (0, cosϕ) corresponding to the zero eigenvalue, while eigenvalue
problem for other eigenvalues is reduced to a self-adjoint one. These eigenvalues
can be arranged in nonincreasing order, E(R) = λ1,1 ≥ λ1,2 ≥ . . . and described
by the Courant minimax principle,

(3.23) λ1,j = − sup
codim(S)=j−1

inf
m∈S

Eζ(m)∫
BR

m2dxdy
,

where S is a subspace of
{
m ∈ H1(BR),m = m̂(r) cosϕ

}
. Then we have

(3.24) −λ1,2 > sup
codim(S)=1

inf
m∈S

|∇m|2dxdy∫
BR

m2dxdy
−m0
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(since

inf

{∫
BR

(
|∇φ|2 + ζφ2

)
dxdy; φ solves (3.9), ‖m‖L2(BR) = 1, ‖m‖H1(BR) ≤ C

}
> 0

∀C > 0, the inequality in (3.24) is strict). Notice that by Proposition 3.7 the first
term in the right hand side of (3.24) is greater than or equal to the fourth eigenvalue
of −Δ in BR with the homogeneous Neumann condition on ∂BR. Thus all eigen-
values, but possibly E(R), are negative and minimizers of (3.23) for j > 1 yield
m-components of eigenvectors. The same holds for j = 1 if E(R) �= 0, otherwise

we obtain a generalized eigenvector (m, 0), Ass(R)(m, 0) = φ̂′(R)(0, cosϕ), where

φ̂(r) = φ/ cosϕ and φ is the solution of (3.9).
Consider finally an eigenvalue λ0 corresponding to a radially symmetric eigen-

vector. We have, on ∂BR

(3.25) φ = (γ/R2 + 2πRp′∗(πR
2))ρ/ζ, λ0ρ = ∂rφ.

Multiply the equation λ0m = Δm + m0m − m0ζφ by m − 〈m〉 and add to the
equation −Δφ+ ζφ = m multiplied by m0ζ(φ− 〈φ〉), where 〈m〉, 〈φ〉 denote mean
values of m, φ (over BR). Integrating the result over BR we obtain,

(3.26)

λ0

∫
BR

|m− 〈m〉|2dxdy = −
∫
BR

|∇m|2dxdy +m0

∫
BR

|m− 〈m〉|2dxdy

−m0ζ

∫
BR

(
|∇φ|2 + ζ|φ− 〈φ〉|2

)
dxdy +m0ζ

∫
∂BR

(φ− 〈φ〉)∂rφds.

Assume that λ0 �= 0. Then we can evaluate 〈φ〉 in terms of ρ, integrating
equations λ0m = Δm+m0m−m0ζφ and −Δφ+ ζφ = m over BR and eliminating
〈m〉:

(3.27) 〈φ〉 = 1

πR2ζ
(1−m0/λ0)

∫
∂BR

∂rφds =
2

Rζ
(λ0 −m0)ρ.

Now we use (3.25) and (3.27) to rewrite the last term in (3.26) as

(3.28)
m0ζ

∫
∂BR

(φ− 〈φ〉)∂rφds =− 4πm0|λ0|2|ρ|2

+ 2πm0λ0|ρ|2
(
γ/R + 2m0 + 2πR2p′∗(πR

2)
)
.

Substitute (3.28) into (3.26), as the result we get

(3.29)

λ0

∫
BR

|m− 〈m〉|2dxdy+2πm0λ0|ρ|2
(
2λ0 − γ/R − 2m0 − 2πR2p′∗(πR

2)
)

= −
∫
BR

|∇m|2dxdy +m0

∫
BR

|m− 〈m〉|2dxdy

−m0ζ

∫
BR

(
|∇φ|2 + ζ|φ− 〈φ〉|2

)
dxdy.

Thanks to the radial symmetry of m the function m − 〈m〉 is orthogonal (with
respect to the standard inner product in L2(BR)) to the first three eigenfunctions
of the operator −Δ in BR with the homogeneous Neumann boundary condition
on ∂BR. Therefore

∫
BR

|∇m|2dxdy − m0

∫
BR

|m − 〈m〉|2dxdy ≥ 0. Thus (3.29)

implies that the real part of λ0 is negative. To complete the proof it remains
only to consider the case λ0 = 0. By virtue of (3.26) the m-component of any
eigenvector is constant in this case, i.e. the unique (up to multiplication by nonzero
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1810 VOLODYMYR RYBALKO AND LEONID BERLYAND

constant) eigenvector is (m = 2πRp′∗(πR
2) + γ/R2, ρ = 1). This eigenvector does

not have any associated generalized eigenvector, otherwise integrating the equation
2πRp′∗(πR

2)+γ/R2 = Δm−m0Δφ over BR and taking into account the boundary
condition 1 = ∂rφ on ∂BR we find that

0 =

∫
BR

(2πRp′∗(πR
2)+γ/R2)dxdy +m0

∫
∂BR

∂rφds

= πR(2πR2p′∗(πR
2) + γ/R+ 2m0)

contradictory to (3.17). Theorem 3.5 is proved. �

In the proof of Theorem 3.5 we have used the following simple result.

Proposition 3.7. The eigenfunctions corresponding to the second and the third (if
counted with multiplicity) eigenvalues of −Δ in BR with the homogeneous Neumann
condition on ∂BR have the form

(3.30) v2(r, ϕ) = v̂2(r) cos(ϕ+ ϕ0).

Proof. It suffices to show that v2(r, ϕ) is not radially symmetric. Let λ2 denote the
corresponding eigenvalue. Assume by contradiction that v2(r, ϕ) = v̂2(r), then by
straightforward differentiation of the eigenvalue equation one checks that v̂′2(r) cosϕ
is an eigenfunction of the equation −Δ(v̂′2(r) cosϕ) = λ2v̂

′
2(r) cosϕ in BR with the

homogeneous Dirichlet condition on ∂BR. Since each eigenvalue of −Δ in BR

with the homogeneous Dirichlet condition on ∂BR is strictly greater than that of
−Δ in BR with the homogeneous Neumann condition on ∂BR, λ2 must be the first
eigenvalue of the former operator. However the first eigenfunction is sign preserving,
a contradiction. �

4. Bifurcation of traveling waves from the family of stationary

solutions

In this section we prove that at the critical radius R = R0 such that E(R0) = 0
radially symmetric stationary solutions (3.1) bifurcate to a family of traveling wave
solutions. Notice that for R in a neighborhood of R0 and at R = R0 the geometric
multiplicity of the zero eigenvalue of Ass(R) is two, and the bifurcation takes place
via the generalized eigenvector appearing at R0.

Consider the ansatz of a traveling wave solution moving with velocity V > 0 in
x-direction

(4.1) m = m(x− V t, y), φ = φ(x− V t, y), Ω(t) = Ω + (V t, 0)

and substitute it to (2.9)–(2.13) to derive stationary free boundary problem for the
unknowns φ, Ω and M > 0,

Δφ+
M∫

Ω
eφ−V xdxdy

eφ−V x = ζφ in Ω, ∂ν(φ− V x) = 0 on ∂Ω,(4.2)

ζφ = p∗(|Ω|)− γκ on ∂Ω.(4.3)

Indeed, (2.12) yields −V ∂xm = Δm − div(m∇φ) in Ω while ∂νφ = V νx on ∂Ω,
then, taking into account the boundary condition ∂νm = 0, we see that

(4.4) m = Λeφ−V x, where Λ :=
M∫

Ω
eφ−V xdxdy

.

Here unknown constantM > 0 represents the total mass of myosin, M =
∫
Ω
mdxdy.
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1811

For radially symmetric stationary solutions (3.1) the total myosin mass Mss(R)
is given by

(4.5) Mss(R) = πR2p∗(πR
2)− πγR,

in terms of the radius R. It is convenient to keep the parameter R in the bifur-
cation analysis presented below, although the domain Ω is no longer a disk. Then
dependence on R will appear implicitly in the parametrization of the boundary ∂Ω,
as the radius of the reference disk, and explicitly in M := Mss(R) given by (4.5).
We also use the notation mss(R) for the densities of stationary solutions (3.1),

mss(R) := Mss(R)/(πR2) = p∗(πR
2)− γ/R,

reserving m0 for the density at R = R0.
We rely on Theorem 1.7 from [11] to get the following result on bifurcation of

traveling wave solutions.

Theorem 4.1. Let R0 be the critical radius, i.e. E(R0) = 0. Assume also that
m0 < ζ,

(4.6) p′∗(πR
2
0) < −(γ/R0 + 2m0)/(2πR

2
0),

and

(4.7) F ′(R0) �= 0,

where
(4.8)

F (R) :=
R3

Θ(R)

⎛
⎝ ζI1

(√
Θ(R)

)
√
Θ(R)I ′1

(√
Θ(R)

) −mss(R)

⎞
⎠ , Θ(R) = R2(ζ −mss(R)),

I1 is the 1st modified Bessel function of the first kind.
Then stationary solutions (3.1) at R = R0 bifurcate to a family of traveling wave

solutions, i.e. solutions of (4.2)–(4.3) parametrized by the velocity V . Moreover
for small V , |V | ≤ V (for some V > 0), these solutions (both the function φ and
the domain Ω) are smooth and depend smoothly on the parameter V .

Proof. As above we consider Ω in polar coordinates, Ω = {0 ≤ r < R + ρ(ϕ)}.
Since ζ > mss(R0), for sufficiently small ρ, V and R sufficiently close to R0 there is
a unique solution Φ = Φ(x, y;V,R, ρ) of (4.2). It depends on three parameters: the
scalar parameter V (the prescribed velocity), the radius R via the parametrization
of the domain and

M := Mss(R), where Mss(R) is given by (4.5),

and the functional parameter ρ that describes the shape of the domain Ω or, more
precisely, its deviation from the disk BR. As above we assume the symmetry of the
domain with respect to the x-axis and therefore its shape is described by an even
function ρ.

The condition (4.3) on the unknown boundary, described by ρ(ϕ), rewrites as
(4.9)

p∗(|Ω|)− γ
(R+ ρ)(R+ ρ− ρ′′) + 2(ρ′)2

((R+ ρ)2 + (ρ′)2)3/2
= ζΦ((R+ ρ) cosϕ, (R+ ρ) sinϕ;V,R, ρ).
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1812 VOLODYMYR RYBALKO AND LEONID BERLYAND

To get rid of infinitesimal shifts we will require that

(4.10)

∫ π

−π

ρ(ϕ) cosϕdϕ = 0.

Then introducing the function F which maps from X = C2
#(−π, π) × R × R to

Y = C#(−π, π)× R (where the subscript # means even periodic functions):
(4.11)

F((ρ, V ), R) :=

(
γ
(R+ ρ)2 + 2(ρ′)2 − ρ′′(R+ ρ)

ζ((R+ ρ)2 + (ρ′)2)3/2
+Φ− p∗(|Ω|)

ζ
,

∫ π

−π

ρ cosϕdϕ

)
,

we rewrite problem (4.2)–(4.3) in the form

(4.12) F((ρ, V ), R) = 0.

Next we apply the Crandall-Rabinowitz bifurcation theorem [11] (Theorem 1.7),
which guarantees bifurcation of new smooth branch of solutions provided that

(i) F(0, R) = 0 for all R in a neighborhood of R0;
(ii) there exist continuous ∂(ρ,V )F , ∂RF , and ∂2

(ρ,V ),RF in a neighborhood of

(ρ, V ) = 0, R = R0;
(iii) the null space Null(∂(ρ,V )F) at (ρ, V ) = 0, R = R0 has dimension one and

Range(∂(ρ,V )F) at (ρ, V ) = 0, R = R0 has co-dimension one;

(iv) (∂2
(ρ,V ),RF)(ρ, V ) /∈ Range(∂(ρ,V )F) at (ρ, V ) = 0, R = R0 for all (ρ, V ) ∈

Null(∂(ρ,V )F).

It is easy to see that condition (i) is satisfied, and condition (ii) can be verified
as in [5]. To verify (iii) we begin with calculating L := ∂(ρ,V )F at (ρ, V ) = 0.
Linearizing (4.11) around (ρ, V ) = 0 we get
(4.13)

L : (ρ, V ) �→
(
− γ

R2ζ
(ρ′′ + ρ) + V ∂V Φ(R cosϕ,R sinϕ; 0, R, 0)

+ 〈∂ρΦ, ρ〉
∣∣
(ρ,V )=0

− p′∗(πR
2)

ζ

∫ π

−π

Rρdϕ,

∫ π

−π

ρ cosϕdϕ
)
,

where 〈∂ρΦ, ρ〉
∣∣
(ρ,V )=0

denotes the Gateaux derivative of Φ at (ρ, V ) = 0, and

∂V Φ(x, y; 0, R, 0) =: Φ0
V (x, y) is the unique solution of the problem

(4.14) ΔΦ0
V +mss(R)(Φ0

V − x) = ζΦ0
V in BR, ∂νΦ

0
V = νx on ∂BR,

the latter problem being obtained by taking derivative with respect to V in (4.2)
(when Ω = BR) at V = 0. To calculate 〈∂ρΦ, ρ〉

∣∣
(ρ,V )=0

observe that for V = 0 the

solution of (4.2) is given by φ = Mss(R)/(ζ|Ω|), therefore

〈∂ρΦ, ρ〉
∣∣
(ρ,V )=0

= − 1

ζπR
mss(R)

∫ π

−π

ρdϕ.

Notice that the solution Φ0
V of (4.14) can be found in polar coordinates via sep-

aration of variables Φ0
V = Φ̂0

V (r, R) cosϕ, this yields the following problem for

Φ̂0
V (r, R):

(4.15)

1

r
∂r

(
r∂rΦ̂

0
V

)
− 1

r2
Φ̂0

V + (mss(R)− ζ)Φ̂0
V = mss(R)r 0 ≤ r < R,

Φ̂0
V (0, R) = 0, ∂rΦ̂

0
V (R,R) = 1.
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The operator L has a bounded inverse when Φ̂0
V (R,R) �= 0 and R is sufficiently close

to R0, as can be verified by Fourier analysis. Indeed, this operator4 has the eigen-
value − 1

ζR

(
γ/R + 2mss(R) + 2πR2p′∗(πR

2)
)
which is strictly positive by virtue of

the assumption (4.6), the corresponding eigenvector is (ρ = 1, V = 0); L has a

pair of (either real or imaginary) eigenvalues ±
√

πΦ̂0
V (R,R) whose correspond-

ing eigenvectors form the subspace span{(cosϕ, 0), (0, 1)}; also L has eigenvalues
γ

R2ζ (n
2 − 1), 2 ≤ n ∈ Z+ whose corresponding eigenvectors are (cosnϕ, 0). In the

case Φ̂0
V (R,R) = 0, in particular for R = R0 (by Lemma 3.2 Φ̂0

V (R,R) = 0 when
R = R0) the null space of L is one-dimensional (it is span{(ρ = 0, V = 1)}) and its
range consists of all the pairs (f, C) ∈ C#(−π, π)×R such that

∫ π

−π
f(ϕ) cosϕdϕ =

0. Thus, condition (iii) is satisfied.
It remains to verify the transversality condition (iv). We check if ∂RL(0, 1)

∣∣
R=R0

does not belong to the range of the operator L, where
(4.16)

∂RL
∣∣
R=R0

: (ρ, V ) �→
(

2γ

R3
0ζ

(ρ′′ + ρ) + V
d

dR
Φ̂0

V (R,R)
∣∣∣
R=R0

cosϕ+ Z

∫ π

−π

ρdϕ, 0

)

with some constant Z = Z(R). Since the range of L (described above) is all (f, C)
such that

∫ π

−π
f(ϕ) cosϕdϕ = 0, we must have a nonzero coefficient in front of

cosϕ in (4.16) to satisfy condition (iv). Thus this (transversality) condition can be
equivalently restated as

(4.17)
d

dR
Φ̂0

V (R,R)
∣∣∣
R=R0

�= 0.

In order to check (4.17) introduce ψ(r, R) := Φ̂0
V (Rr,R), this change of variable

reduces (4.15) to the following problem:

1

r
∂r (r∂rψ)−

1

r2
ψ +R2(mss(R)− ζ)ψ = R3mss(R)r 0 ≤ r < 1,

ψ(0, R) = 0, ∂rψ(r, R) = R.

The solution of this problem is given by

ψ(r, R) =
R3

Θ(R)

⎛
⎝ ζI1

(√
Θ(R)r

)
√
Θ(R)I ′1

(√
Θ(R)

) −mss(R)r

⎞
⎠ , Θ(R) = R2(ζ −mss(R)),

so that condition (4.17) writes as (4.7). �

Remark 4.2. By virtue of Lemma 3.3, the necessary bifurcation condition E(R0) =
0 is equivalent to the condition (3.12) (with R = R0), which, in turn, is equivalent

to the condition Φ̂0
V (R0, R0) = 0 for the solution Φ̂0

V (r, R0) of (4.15). Thus we have
E(R0) = 0 ⇔ F (R0) = 0, i.e. both the necessary bifurcation condition and the

4More precisely, a realization of L as an operator acting in the same space, e.g. H2
#(−π, π)×R.
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transversality condition write in terms of the function F (given by (4.8)) as follows

(4.18) F (R0) = 0, F ′(R0) �= 0.

Moreover, we show below, see (4.22), that F ′(R0) �= 0 iff E′(R0) �= 0.

Remark 4.3. Let Φ = Φ(x, y, V ), Ω(V ) = {(r cosϕ, sinϕ); 0 ≤ r < R0 + ρtw(ϕ, V )}
and M(V ) be solutions of (4.2)–(4.3), given via the construction in the proof of
Theorem 4.1. Then, by Theorem 1.18 in [11], the solutions depend smoothly on the
parameter V and the first term in the asymptotic expansion of ρtw is of order V 2,
i.e. ‖ρtw‖C2((−π,π]) ≤ CV 2, also M ′(0) = Λ′(0) = 0, so that Λ(V ) = Λ(0)+O(V 2),
where

Λ(V ) :=
M(V )∫

Ω(V )
eΦ(x,y,V )−V xdxdy

, Λ(0) = m0e
−m0/ζ .

Combining this with elliptic estimates one can improve bounds for ρtw to

(4.19) ‖ρtw‖Cj((−π,π]) ≤ CV 2 ∀j ∈ Z+

with C depending only on j, and derive the following expansion for Φ,

(4.20) Φ(x, y, V ) = m0/ζ + V Φ0
V (x, y) + V 2Φ̃(x, y, V ),

where Φ0
V is the unique solution of (4.14), Φ0

V = Φ̂0
V (r, R0) cosϕ, while functions Φ̃

and their derivatives with respect to the parameter V are uniformly (in V ) bounded

in Cj(Ω(V )) ∀j ∈ Z+. Note that Φ0
V extends as the solution of ΔΦ0

V +m0(Φ
0
V −x) =

ζΦ0
V to the entire space R2, being the product of the solution Φ̂0

V (r, R0) of (4.15)
and cosϕ.

The following technical lemma provides new formulas for F ′(R0) and E′(R0)
important in the subsequent analysis. These formulas show, in particular, that
F ′(R0) = 0 iff E′(R0) = 0.

Lemma 4.4. Assume that m0 < ζ and E(R0) = 0, then
(4.21)

F ′(R0) =
1

ζ
(ζ +m0 − (m0R0)

2)− γ/R3
0 + 2πp′∗(πR

2
0)

πζ

∫
BR0

|∇(Φ0
V − x)|2dxdy.

Moreover,

(4.22) E′(R0) = − R0πζF
′(R0)

m0

∫
BR0

(Φ0
V − x)2dxdy

,

where Φ0
V is the solution of (4.14) with R = R0.
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Proof. In polar coordinates function Φ0
V can be represented as Φ0

V = Φ̂0
V (r, R) cosϕ

with Φ̂0
V (r, R) solving (4.15). Taking derivative in (4.15) with respect to the pa-

rameter R we obtain that ∂RΦ̂
0
V (r, R)

∣∣
R=R0

=: Φ̂0
V,R(r) satisfies the equation

(4.23)
1

r
∂r

(
r∂rΦ̂

0
V,R

)
− 1

r2
Φ̂0

V,R+(m0−ζ)Φ̂0
V,R = −m′

ss(R0)(Φ̂
0
V −r) 0 ≤ r < R0,

with boundary conditions

(4.24) Φ̂0
V,R(0) = 0, ∂rΦ̂

0
V,R(R0) = −∂2

rrΦ̂
0
V (R0, R0) = 1/R0 −m0R0.

Multiply (4.23) by the function −r(ζ −m0)Φ̂
0
V (r, R0)−m0r

2 and integrate to get,
using (4.15),

(4.25)

R0

(
m0(m0R

2
0 − 1) + ζΦ̂0

V,R(R0)
)
=ζm′

ss(R0)

∫ R

0

(
Φ̂0

V − r
)
Φ̂0

V rdr

−m0m
′
ss(R0)

∫ R0

0

(
Φ̂0

V − r
)2

rdr.

Then observe that Φ̂0
V (r, R)− r satisfies

1

r
∂r

(
r∂r

(
Φ̂0

V − r
))

− 1

r2
(Φ̂0

V − r) = −m0(Φ̂
0
V − r) + ζΦ̂0

V ;

multiply this latter equation by −m′
ss(R0)(Φ̂

0
V − r)r, integrate and add to (4.25).

As a result we obtain

R0ζ(Φ̂
0
V,R(R0) + 1) = R0ζ −m0R0(m0R

2
0 − 1)

−m′
ss(R0)

∫ R0

0

((
∂rΦ̂

0
V − 1

)2

+
1

r2

(
Φ̂0

V − r
)2

)
rdr

= R0

(
ζ +m0 − (m0R0)

2
)
− γ/R2

0 + 2πR0p
′
∗(πR

2
0)

π

∫
BR0

|∇(Φ0
V − x)|2dxdy.

Since d
dR Φ̂0

V (R,R)
∣∣
R=R0

= Φ̂0
V,R(R0)+∂rΦ̂

0
V (R0, R0) = Φ̂0

V,R(R0)+1, the left hand

side of the above relation is equal to RζF ′(R). Thus (4.21) is proved.
To calculate the derivative of E(R) at R = R0, notice that since E(R0) = 0

is a simple (see Lemma 3.2) eigenvalue of the problem (3.10), one can choose a
smooth family of eigenfunctions m(x, y,R) = m̂(r, R) cosϕ such that for R in a
neighborhood of R0 it holds

(4.26) E(R)m = Δm+mss(R)m− ζmss(R)φ in BR, ∂rm = 0 on ∂BR,

where φ = φ(x, y,R) is the unique solution of problem (3.9), and m(x, y,R0) =
m0(Φ

0
V −x). Differentiating (4.26) in R at R = R0 we find that ∂Rm(x, y,R)

∣∣
R=R0

=: m̂R(r) cosϕ satisfies
(4.27)
E′(R0)m = m′

ss(R0)m− ζm′
ss(R0)φ+ (Δ+m0)(m̂R(r) cosϕ)− ζm0φR in BR0

,

where m = m0(Φ
0
V − x), φ = φ(x, y,R0) = Φ0

V , φR = ∂Rφ(x, y,R)
∣∣
R=R0

, and

(4.28)

∂rm̂R(R0) = −∂2
rrm̂(R0, R0) = −m0∂

2
rrΦ̂

0
V =

m0

R0
∂rΦ̂

0
V −m2

0R0 =
m0

R0
−m2

0R0.
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1816 VOLODYMYR RYBALKO AND LEONID BERLYAND

Now multiply (4.27) by Φ0
V − x and integrate over BR0

:
(4.29)

E′(R0)m0

∫
BR0

(Φ0
V − x)2dxdy = −ζm0

∫
BR0

(Φ0
V − x)φRdxdy

−
∫
∂BR0

∂rm̂R(R0)
x2

R0
ds+

∫
BR0

(
ΔΦ0

V +m0(Φ
0
V − x)

)
m̂R(r)

x

r
dxdy

+m′
ss(R0)

∫
BR0

(
m0(Φ

0
V − x)− ζΦ0

V

)
(Φ0

V − x)dxdy.

Since ΔΦ0
V +m0(Φ

0
V −x) = ζΦ0

V in BR0
and ∂r(Φ

0
V −x) = 0 on ∂BR0

, the last line
in (4.29) rewrites as m′

ss(R0)
∫
BR0

|∇(Φ0
V − x)|2dxdy, while the second term in the

second line can be written as ζ
∫
BR0

Φ0
V (−ΔφR + ζφR)dxdy, where we have used

the equation ΔφR + m̂R(r) cosϕ = ζφR in BR0
. Then integrating by parts,∫

BR0

Φ0
V (−ΔφR + ζφR)dxdy =

∫
∂BR0

φR
x

R0
ds−

∫
BR0

φR(−ΔΦ0
V + ζΦ0

V )dxdy,

we simplify (4.29) to

(4.30)

E′(R0)m0

∫
BR0

(Φ0
V − x)2dxdy =m′

ss(R0)

∫
BR0

|∇(Φ0
V − x)|2dxdy

+

∫
∂BR0

(ζφRx− ∂rm̂R(R0)x
2)/R0ds.

Similarly to (4.28) one can calculate that φR = −∂rΦ
0
V = −x/R0 on ∂BR0

. Thus
the second term in the right hand side of (4.30) is equal to−πR0

(
ζ+m0−(m0R0)

2
)
,

and calculating m′
ss(R0) = γ/R2

0+2πR0p
′
∗(πR

2
0) completes the proof of Lemma 4.4.

�

5. Asymptotic expansions of eigenvectors of the problem linearized

around traveling wave solutions with small velocities

Let R = R0 be the critical radius, i.e. E(R) = 0. By Theorem 4.1 there exist a
family of traveling wave solutions emanating from the radially symmetric stationary
solution (3.1) with the radius R. They are parametrized by their velocities V , and
hereafter we consider for small V �= 0 the linear evolution problem obtained via
linearization of (2.9)–(2.13) around the traveling wave solution with velocity V .
More precisely, we are interested in stability of this problem and therefore study
spectral properties of the generatorA(V ) (given by (5.1)–(5.5)) of the corresponding
semigroup. In this section we construct asymptotic expansions of an eigenvector
corresponding to a small eigenvalue λ(V ) whose sign determines stability of the
traveling wave solution. These expansions will be justified in Section 7. Throughout
this section, and Sections 6 and 7, we assume that conditions of Theorem 4.1 are
satisfied.

It is convenient to pass from the polar coordinates to the parametrization of
domains via the signed distance ρ from the reference domain Ω(V ). More precisely,
given a solution φ = Φ(x, y, V ), Ω = Ω(V ) of problem (4.2)-(4.3), we consider
problem (2.9)–(2.13) in the frame moving with constant velocity V in x-direction
so that the pair (ΛeΦ(x,y,V )−V x,Ω(V )) represents a stationary solution. We describe
perturbations of Ω(V ) by the function ρ such that the boundary of the perturbed
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1817

domain Ω is given by ∂Ω = {(x(s), y(s))+ρ(s, t)ν(s); (x(s), y(s)) ∈ ∂Ω(V )}, where
s is the arc length parametrization of ∂Ω(V ) and ν(s) denotes the outward pointing
unit normal to ∂Ω(V ). Perturbations of the myosin density m = ΛeΦ(x,y,V )−V x and
auxiliary function φ = Φ(x, y, V ) are described, with a slight abuse of notation,
by functions m(x, y, t) and φ(x, y, t). Then the linearized problem writes as, see
Appendix A,

Δφ+m = ζφ in Ω(V ),(5.1)

ζ(φ+ V νxρ) = p′∗(|Ω(V )|)
∫
∂Ω(V )

ρ(s)ds+ γ(ρ′′ + κ2ρ) on ∂Ω(V ),(5.2)

∂tρ = (A(V )(m, ρ))ρ :=
∂φ

∂ν
+

∂2Φ

∂ν2
ρ−

(
∂Φ

∂τ
+ V νy

)
ρ′ on ∂Ω(V ),(5.3)

∂tm = (A(V )(m, ρ)))m := Δm+ V ∂xm− div
(
ΛeΦ−V x∇φ+m∇Φ

)
in Ω(V ),

(5.4)

∂νm+ ΛeΦ−V x

(
∂2Φ

∂ν2
ρ−

(∂Φ
∂τ

+ V νy

)
ρ′
)

= 0 on ∂Ω(V ).(5.5)

Here and in what follows ρ′, ρ′′ denote derivatives of ρ with respect to the arc
length s, κ is the curvature of ∂Ω(V ), and ∂/∂τ denotes the tangential derivative
on ∂Ω(V ). The linearized operator A(V ) appearing in (5.1)–(5.5) is well defined on
smooth m ∈ L2(Ω(V )), ρ ∈ L2(∂Ω(V )) such that (5.5) holds. It can be extended
to the closed operator in L2(Ω(V ))× L2(∂Ω(V )) whose domain is the set of pairs
(m, ρ) from H2(Ω(V ))×H3(∂Ω(V )) satisfying (5.5).

Since traveling wave solutions bifurcate from radial stationary solutions the spec-
trum of the operator A(V ) for small V is close to the spectrum of the operator
A(0) = Ass(R) (this fact will be proved in Theorem 7.6). The latter operator has
zero eigenvalue with multiplicity at least three, in fact the multiplicity is exactly
equal to three as will be shown in Section 6, Lemma 6.1. Therefore in order to
study stability of traveling wave solutions it is crucial to investigate what happens
with zero eigenvalue for small V �= 0. Observe that for all V the operator A(V )
has zero eigenvalue with multiplicity at least two, this multiple zero eigenvalue ap-
pears because of translational invariance of problem (2.9)–(2.13) and existence of a
continuum of traveling waves with close velocities, see Appendix A. The operator
A(V ) has the eigenvector

(5.6) W1 = (m1, ρ1), m1 = −Λ(V )∂xe
Φ(x,y,V )−V x, ρ1 = νx

corresponding to the infinitesimal shifts along the x-axis, and the generalized eigen-
vector

(5.7) W2 = (m2, ρ2), m2 = ∂V

(
Λ(V )eΦ(x,y,V )−V x

)
, ρ2 = ∂Ṽ ρ̃

∣∣
Ṽ=V

that satisfies A(V )W2 = W1, where ρ̃ describes the boundary of the traveling

wave with velocity Ṽ via the signed distance to ∂Ω(V ). And these two vectors for
small V �= 0 exhaust the generalized eigenspace corresponding to zero eigenvalue.
Moreover, it will be shown that zero eigenvalue of multiplicity three at V = 0 splits
into zero eigenvalue of multiplicity two and a small nonzero eigenvalue λ = λ(V )
for V �= 0. The asymptotic behavior of λ(V ) as V → 0 is studied below. The main
difficulty in this analysis comes from the fact that the eigenvector corresponding to
λ(V ) merges as V → 0 with the eigenvector W1. Moreover, the next term in the
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1818 VOLODYMYR RYBALKO AND LEONID BERLYAND

expansion of this eigenvector is proportional to W2. That is why the asymptotic
problem for λ(V ) is a kind of singularly perturbed problem.

We seek the eigenvalue λ and the eigenvector (m, ρ) in the form

λ(V ) = λ̂V 2 + . . . ,(5.8)

m = m1 + λ̂V 2m2 + V 3m3 + V 4m4 + V 5m5 + . . . ,(5.9)

ρ = ρ1 + λ̂V 2ρ2 + V 3ρ3 + V 4ρ4 + V 5ρ5 + . . .(5.10)

with unknown λ̂, mk, ρk (k = 3, 4, 5) which do not depend on V , and will be found
via perturbation expansion in V . In contrast, m1, m2, ρ1, and ρ2 are expressed in
terms of the traveling wave solution via (5.6) and (5.7), and do depend on V . These
two terms belong to the domain of the operator A(V ) (which depends on V ) and

even with ansatz W1 + λ̂V 2W2, truncated to two terms, we have

A(V )(W1 + λ̂V 2W2) = λ̂V 2(W1 + λ̂V 2W2)− λ̂2V 4W2.

This suggests that in order to identify λ̂ we have to satisfy the eigenvalue equation
up to the order O(V 5). Regarding the auxiliary function φ (which appears in the
definition of A(V )) it is convenient now to consider φ as an independent unknown,
seeking it in the form

(5.11) φ = −∂xΦ+ λ̂V 2∂V Φ+ V 3φ3 + V 4φ4 + V 5φ5 + . . . .

Substitute expansions (5.8)–(5.11) into the equations

λρ =
∂φ

∂ν
+

∂2Φ

∂ν2
ρ−

(
∂Φ

∂τ
+ V νy

)
ρ′ on ∂Ω(V ),(5.12)

λm = Δm+ V ∂xm− div(ΛeΦ−V x∇φ)− div(m∇Φ) in Ω(V ),(5.13)

along with (5.1) and boundary conditions (5.2), (5.5), and collect term of the order
V 3 and V 4 (as already mentioned above the lower order terms vanish).

First we collect terms of the order V 3, replacing Ω(V ) by the disk BR (it ap-
proximates Ω(V ) to the order V 2, see Remark 4.3). This leads to the following
problem for m3, φ3 and ρ3,

Δφ3 +m3 = ζφ3 in BR,(5.14)

∂rφ3 = 0, ζφ3 = p′∗(πR
2)R

∫ π

−π

ρ3dϕ+
γ

R2
(∂2

ϕϕρ3 + ρ3) on ∂BR,(5.15)

Δm3 −m0Δφ3 = 0 in BR, ∂rm3 = 0 on ∂BR.(5.16)

Thus, up to the eigenvector corresponding to the infinitesimal shifts of the disk BR,

(5.17) ρ3 = α, ζφ3 = α(γ/R2 + 2πRp′∗(πR
2)), m3 = ζφ3.

The unknown parameter α will be determined by considering higher order terms in
(5.1)–(5.2), (5.5), (5.12)–(5.13).
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Next we collect terms of the order V 4 arriving at the following problem for m4,
φ4 and ρ4,

Δφ4 +m4 = ζφ4 in BR,(5.18)

Δm4 −m0Δφ4 = λ̂2m0(Φ
0
V − x) + α(γ/R2 + 2πRp′∗(πR

2))ΔΦ0
V in BR,(5.19)

ζ
(
φ4 + α∂rΦ

0
V

)
= p′∗(πR

2)R

∫ π

−π

ρ4(ϕ)dϕ+
γ

R2
(∂2

ϕϕρ4 + ρ4) on ∂BR,(5.20)

∂rm4 + αm0∂
2
rrΦ

0
V = 0 on ∂BR,(5.21)

∂rφ4 + α∂2
rrΦ

0
V = 0 on ∂BR.(5.22)

To determine solvability of (5.18)–(5.22) observe that after adding αm0∂rΦ
0
V to m4

and α∂rΦ
0
V to φ4, the problem is transformed to the formAss(R)(m4+αm0∂rΦ

0
V , ρ4)

= (f(r) cosϕ, � cosϕ) with some function f(r) and a constant �. Then (f, �) has
to be orthogonal to solutions of the adjoint homogeneous problem (see Section 6,
the adjoint operator A∗

ss(R) is given by (6.3), (6.4)–(6.6) with V = 0)

Δm̃+ φ̃ = 0 in BR, ∂rm̃ = 0 on ∂BR,(5.23)

Δφ̃− ζφ̃−m0Δm̃ = 0 in BR,(5.24)

with boundary conditions

ρ̃−m0m̃+ φ̃ = 0 on ∂BR,(5.25)

− γ

R
(∂2

ϕϕ∂rφ̃+ ∂rφ̃)−
R

ζ
p′∗(πR

2)

∫ π

−π

∂rφ̃dϕ = 0 on ∂BR.(5.26)

This problem has a nontrivial solution given by m̃ = Φ0
V −x in BR and ρ̃ = m0m̃−φ̃

on ∂BR, with φ̃ = −(ζ −m0)Φ
0
V −m0x (note that actually ρ̃ = 0). Then in order

to identify the unknown α multiply (5.19) by m̃ and integrate over BR,

∫
BR

(Δm4 −m0Δφ4)m̃dxdy = λ̂2m0

∫
BR

(Φ0
V − x)2dxdy

+ α(γ/R2 + 2πRp′∗(πR
2))

∫
BR

(Φ0
V − x)Δ(Φ0

V − x)dxdy.

(5.27)

The left hand side of (5.27) rewrites as follows, using integration by parts and
(5.18), (5.21)–(5.22), (5.23)–(5.24),∫

BR

(Δm4 −m0Δφ4)m̃dxdy =

∫
BR

(Δφ4 − (ζ −m0)φ4)φ̃dxdy

=

∫
∂BR

(∂rφ4φ̃− ∂rφ̃φ4)ds.

The traces of functions ∂rφ4, φ4, φ̃ and ∂rφ̃ on ∂BR are given by ∂rφ4 = α(1/R−
m0R) cosϕ, φ4 = −α cosϕ, φ̃ = −m0R cosϕ and ∂rφ̃ = −ζ cosϕ, therefore

(5.28)

∫
BR

(Δm4 −m0Δφ4)m̃dxdy =−m0πR
2α(1/R−m0R)− αζπR

= απR((m0R)2 −m0 − ζ).
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Thus combining (5.28) with (5.27) we get the following relation between λ̂ and α,

αR

(
π
(
ζ +m0 − (m0R)2

)
−
(
γ/R3 + 2πp′∗(πR

2)
) ∫

BR

|∇(Φ0
V − x)|2dxdy

)

= −λ̂2m0

∫
BR

(Φ0
V − x)2dxdy,

or, by Lemma 4.4,

(5.29) αE′(R) = λ̂2.

Besides the solution (m̃ = Φ0
V − x, ρ̃ = 0) the problem (5.23)–(5.26) has exactly

one linearly independent solution (m̃ = 1, ρ̃ = m0). Since (f(r) cosϕ, � cosϕ)
is orthogonal to (1,m0) (with respect to the pairing (6.1)) there is a solution of
(5.18)–(5.22). Moreover, if we require additionally that m4 has zero mean value
and

∫ π

−π
ρ4 cosϕdϕ = 0 then ρ4 = 0 and both m4 and φ4 are represented in the form

of products of radially symmetric functions and cosϕ. Then separating variables
in (5.18)–(5.19) we see that m4 and φ4 extend as solutions of (5.18)–(5.19) to the
entire plane R2.

Thus we have constructed a four term ansatz of the eigenvector, and functions
mk, φk, k = 3, 4 are defined on Ω(V ). However this ansatz is not in the domain
of the operator A(V ) as the boundary condition (5.5) is not exactly satisfied, but
with accuracy of the order V 5. This is why we introduce a correcting term mc

5 such
that

(5.30) ∂νm
c
5 = − 1

V
∂νm4 −

Λ(V )

V 2
eΦ−V x∂2

ννΦρ3 on ∂Ω(V ).

In view of (5.21), bounds (4.19) and the expansion (4.20) (see Remark 4.3) one
can show that the right hand side of (5.30) defines functions uniformly bounded
in Cj(∂Ω(V )) ∀j ∈ Z+. Therefore we can define mc

5 in Ω(V ), e.g., by solving the
equation Δmc

5 = mc
5 with the boundary condition (5.30), then we set

(5.31) Wans := (m1, ρ1) + λ̂V 2(m2, ρ2) + V 3(m3, α) + V 4(m4 + V mc
5, 0),

where m1=−Λ(V )∂xe
Φ−V x, ρ1=νx, m2=∂V (Λ(V )eΦ−Ṽ x), ρ2=∂Ṽ ρ̃tw(s, Ṽ )

∣∣
Ṽ=V

and ρ̃tw stands for the parametrization of ∂Ω(Ṽ ) via the signed distance to ∂Ω(V ).
The (corrected) four term ansatz given by (5.31) is in domain of the operator A(V ),
and introducing the unique solution φc

5 of

Δφc
5 +mc

5 = ζφc
5 in Ω(V )

with the boundary condition

ζφc
5 =

1

V 2

(
p′∗(|Ω(V )|)

∫
∂Ω(V )

ρ3ds+ γκ2ρ3 − ζ(φ3 + V νxρ3)
)
− ζ

V
φ4 on ∂Ω(V ),
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we can calculate the components of A(V )Wans − λ̂V 2Wans:

1

V 5

(
A(V )Wans − λ̂V 2Wans

)
m
=Δmc

5 + V ∂xm
c
5 − div(ΛeΦ−V x∇φc

5)− div(mc
5∇Φ)

(5.32)

+
1

V

(
Δm4 + V ∂xm4 − div(ΛeΦ−V x∇φ4)− div(m4∇Φ)

)
+

1

V 2

(
Δm3 + V ∂xm3 − div(ΛeΦ−V x∇φ3)− div(m3∇Φ)

)
− λ̂

V

(
λ̂∂V (Λ(V )eΦ−V x) + Vm3 + V 2m4 + V 3mc

5

)
,

1

V 5

(
A(V )Wans − λ̂V 2Wans

)
ρ
= ∂νφ

c
5 +

1

V
∂νφ4 +

1

V 2
∂νφ3

(5.33)

+
1

V 2
∂2
ννΦρ3 −

λ̂

V

(
λ̂∂Ṽ ρ̃tw

∣∣
Ṽ=V

+ V ρ3

)
.

Thanks to (5.15), (5.20) we have ‖φc
5‖Cj(∂Ω(V )) ≤ Cj ∀j ∈ Z+, and since Δφc

5 +
mc

5 = ζφc
5 in Ω(V ) one can show that ‖φc

5‖Cj(Ω(V )) ≤ Cj ∀j ∈ Z+ by elliptic esti-

mates. Furthermore, since m3, φ3 are constants the third line of (5.32) simplifies to
−m3ΔΦ/V 2 and substituting Δm4 from (5.19) we obtain after rearranging terms,

1

V 5

(
A(V )Wans − λ̂V 2Wans

)
m
=Δmc

5+V ∂xm
c
5 − div(ΛeΦ−V x∇φc

5)− div(mc
5∇Φ)

(5.34)

− λ̂2

V

(
∂V

(
Λ(V )eΦ−V x

)
−m0(Φ

0
V − x)

)
+

1

V

(
V ∂xm4 − div

(
(ΛeΦ−V x −m0)∇φ4

)
− div(m4∇Φ)

)
− λ̂(m3 + V m4 + V 2mc

5) +
m3

V 2

(
VΔΦ0

V −ΔΦ
)
,

1

V 5

(
A(V )Wans−λ̂V 2Wans

)
ρ=∂νφ

c
5+

1

V
∂νφ4+

1

V 2
∂2
ννΦρ3−

λ̂

V

(̂
λ∂Ṽ ρ̃tw

∣∣
Ṽ=V+V ρ3

)
.

(5.35)

Assuming that there exist next terms V 5m5 and V 5ρ5 of the asymptotic expan-

sions we have A(V )(m5, ρ5) = − 1
V 5 (A(V )Wans − λ̂V 2Wans) + λ̂V 2(m5, ρ5) + · · · =

− 1
V 5 (A(V )Wans + . . . . Since the null space of the adjoint operator A∗(V ) contains

(1,Λ(V )eΦ−V x) (see Section 6) we will require that

I(λ̂, V ) :=

∫
Ω(V )

(
A(V )Wans − λ̂V 2Wans

)
m

dxdy

+ Λ(V )

∫
∂Ω(V )

(
A(V )Wans − λ̂V 2Wans

)
ρ
eΦ−V x ds = 0.
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1822 VOLODYMYR RYBALKO AND LEONID BERLYAND

Then resolving the equation I(λ̂, V ) = 0 we will identify λ̂. To this end write

I(λ̂, V ) in the following form, integrating by parts and using (5.30), (5.35):
(5.36)

I(λ̂, V ) =
1

V

∫
∂Ω(V )

(Λ(V )eΦ−V x∂νφ4 − ∂νm4) ds−
∫
∂Ω(V )

λ̂ρ3Λ(V )eΦ−V x ds

+

∫
Ω(V )

(V ∂xm
c
5−div(mc

5∇Φ)) dxdy+
1

V

∫
Ω(V )

(
λ̂2m0(Φ

0
V −x)+m3ΔΦ0

V

)
dxdy

+
1

V

∫
Ω(V )

(
V ∂xm4 − div((ΛeΦ−V x −m0)∇φ4)− div(m4∇Φ)

)
dxdy

− λ̂

∫
Ω(V )

(
m3 + V m4 + V 2mc

5

)
dxdy

− λ̂2

V

(∫
Ω(V )

∂V (Λ(V )eΦ−V x) dxdy +

∫
∂Ω(V )

Λ(V )eΦ−V x∂Ṽ ρ̃tw
∣∣
Ṽ=V

ds

)
.

This formula is further simplified by noticing that the first term in the second line
of (5.36) is zero thanks to the fact that ∂νΦ = V νx on ∂Ω(V ). Also, observing
that, by virtue of (5.19) (see also (5.17)) the integrand in the second term equals
Δm4 −m0Δφ4, then collecting all the terms with the prefactor 1

V except the last
line, we see that these terms cancel each other. Finally, notice that the last line of

(5.36) is equal to − λ̂2

V M ′(V ). Thus

(5.37) I(λ̂, V ) = −λ̂απR(2m0 + γ/R+ 2πR2p′∗(πR
2) +O(V ))− λ̂2

V
M ′(V ),

and substituting α from (5.29) we obtain that the equation I(λ̂, V ) = 0 has nonzero
solution

(5.38) λ̂(V ) = − 1

V
M ′(V )E′(R)

1

πR (2m0 + γ/R + 2πR2p′∗(πR
2) +O(V ))

for sufficiently small V , provided that M ′(V ) �= 0 when V �= 0. Moreover, in the

nondegenerate case, when M ′′(0) �= 0, the solution λ̂(V ) has nonzero finite limit

(5.39) λ̂ = −M ′′(0)E′(R)/M ′
ss(R).

If M ′′(0) = 0 but M ′(V ) �= 0 for small V �= 0 there still exists a nonzero solution

λ̂(V ) of the equation I(λ̂, V ) = 0 and we can repeat the above construction ob-
serving that in this case mk, ρk, φk, k = 3, 4 and mc

5, φ
c
5 contain the small factor

α = O
(
(M ′(V )/V )2

)
.

We summarize the results of the above construction of asymptotic expansions in
the following

Lemma 5.1. Assume that M ′(V ) �= 0 for small V �= 0, and let λ̂(V ) be a nonzero

solution of the equation I(λ̂, V ) = 0. Then the vector Wans given by (5.31) is in
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the domain of A(V ) and

Wans = (−Λ(V )∂xe
Φ−V x, νx) +Wcor, ‖Wcor‖L2 = O(V 2),(5.40)

‖A(V )Wans − λ̂(V )V 2Wans‖L2 ≤ C|M ′(V )|2|V |3,(5.41)

〈A(V )Wans − λ̂(V )V 2Wans,W
∗
1 〉L2 = 0,(5.42)

where 〈 ·, ·〉L2 denotes the pairing defined by (6.1) and ‖ · ‖L2 is the corresponding

norm, W ∗
1 = (1,Λ(V )eΦ−V x). Moreover, there is a unique solution λ̂(V ) �= 0 of

I(λ̂, V ) = 0 for sufficiently small V �= 0 and it is given by the asymptotic formula

(5.43) λ̂(V ) = −E′(R)
M ′(V )

VM ′
ss(R)

(1 +O(V )) as V → 0.

Proof. For simplicity consider the nondegenerate case, when M ′′(0) �= 0, otherwise
one just has to take into account that all the terms in (5.34)–(5.35) contain the

small factor α = λ̂2(V )/E′(R) = O
(
(M ′(V )/V )2

)
.

First notice that (5.40) follows immediately from the definition (5.31) of Wans.
To prove (5.41) it suffices to show that right hand sides of (5.34)–(5.35) are uni-
formly bounded. To this end one can use the representation (4.20) for Φ and the

representation Λ(V ) = m0e
−m0/ζ + V 2Λ̃(V ) for Λ(V ) (where Λ̃(V ) and its deriva-

tives are bounded), see Remark 4.3, and derive that Λ(V )eΦ−V x = m0 + V O(1),
∂V

(
Λ(V )eΦ−V x

)
= m0(Φ

0
V −x)+V O(1), |∇Φ| = V O(1), ΔΦ = VΔΦ0

V +V 2O(1),
where O(1) stands for various uniformly bounded functions. This readily implies

that ρ-component of 1
V 5

(
A(V )Wans − λ̂(V )V 2Wans

)
is bounded. Next, regarding

(5.35) consider first the sum of two middle terms, 1
V (∂νφ4+

1
V ∂2

ννΦρ3), and write it,

by using (4.20), as 1
V (∂νφ4+∂2

ννΦ
0
V ρ3)+∂2

ννΦ̃ρ3. Recall that ρ3 = α and φ4 satisfies

(5.22) on ∂BR. Then, passing to polar coordinates we see that |∂νφ4+∂2
ννΦ

0
V ρ3| ≤

|∂rφ4 + ∂2
rrΦ

0
V ρ3| + CV 2 ≤ C1V

2 on ∂Ω(V ). Also, if ρtw(ϕ, V ) + R is the radial
coordinate of a point on ∂Ω(V ) then ∂Ṽ ρ̃tw

∣∣
Ṽ=V

= ∂V ρtw(ϕ, V )(νx cosϕ+νy sinϕ)

and since |∂V ρtw(ϕ, V )| ≤ C|V | the last term in (5.35) is also bounded. This com-

pletes the proof of (5.41). Finally, (5.42) is nothing but the equation I(λ̂, V ) = 0,
while the asymptotic formula (5.43) was derived above (see (5.38)). Lemma 5.1 is
proved. �

6. Adjoint operator and its generalized eigenvector

As usual in the spectral analysis of non-self-adjoint boundary value problems,
the adjoint operator plays an important role. To define the adjoint operator A∗(V )
with respect to the pairing

(6.1) 〈(m, ρ), (m̃, ρ̃)〉L2 =

∫
Ω(V )

mm̃dxdy +

∫
∂Ω(V )

ρρ̃ ds,

assume that (m̃, ρ̃) belongs to the domain of A∗(V ) and ρ̃ ∈ C∞(∂Ω(V )), m̃ ∈
C∞(Ω(V )), then ∀ m ∈ C∞(Ω(V )) and ρ ∈ C∞(∂Ω(V )) such that (m, ρ) belongs
to the domain of A(V ) we have 〈(m, ρ),A∗(V )(m̃, ρ̃)〉L2 = 〈A(V )(m, ρ), (m̃, ρ̃)〉L2 .
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1824 VOLODYMYR RYBALKO AND LEONID BERLYAND

Next, using integration by parts we write

〈A(V )(m, ρ), (m̃, ρ̃)〉L2 =

∫
∂Ω(V )

(
∂νφ+ ∂2

ννΦρ
)
ρ̃ ds−

∫
∂Ω(V )

(∂τΦ+ V νy) ρ
′ρ̃ ds

+

∫
Ω(V )

(Δm+ V ∂xm− div(m∇Φ)) m̃ dxdy −
∫
Ω(V )

div
(
ΛeΦ−V x∇φ

)
m̃ dxdy

=

∫
∂Ω(V )

(
∂νφ+ ∂2

ννΦρ
)
ρ̃ ds+

∫
∂Ω(V )

ρ ((∂τΦ+ V νy) ρ̃)
′ ds

+

∫
∂Ω(V )

(
ΛeΦ−V x

(
(∂τΦ+ V νy) ρ

′ − ∂2
ννΦρ

)
m̃−m∂νm̃− ΛeΦ−V x∂νφm̃

)
ds

+

∫
Ω(V )

m (Δm̃+∇Φ · ∇m̃− V ∂xm̃) dxdy −
∫
Ω(V )

φdiv
(
ΛeΦ−V x∇m̃

)
dxdy,

where we have used the boundary condition (5.5) for ∂νm and ∂νΦ = V νx on
∂Ω(V ). To eliminate φ and its derivatives, multiply (5.1) by an auxiliary function

φ̃, to be defined later, and integrate over Ω(V ) to obtain that∫
∂Ω(V )

(
∂νφφ̃− φ∂ν φ̃

)
ds+

∫
Ω(V )

(
φΔφ̃+mφ̃− ζφφ̃

)
dxdy = 0;

then we can rewrite 〈A(V )(m, ρ), (m̃, ρ̃)〉L2 as
(6.2)

〈A(V )(m, ρ), (m̃, ρ̃)〉L2 =

∫
∂Ω(V )

∂νφ
(
φ̃+ ρ̃− ΛeΦ−V xm̃

)
ds

+

∫
Ω(V )

φ
(
Δφ̃− ζφ̃− div

(
ΛeΦ−V x∇m̃

))
dxdy

+

∫
Ω(V )

m
(
Δm̃+∇Φ · ∇m̃− V ∂xm̃+ φ̃

)
dxdy −

∫
∂Ω(V )

m∂νm̃ ds

+

∫
∂Ω(V )

ρ
(
∂2
ννΦ(ρ̃− m̃ΛeΦ−V x) +

(
(∂τΦ+ V νy) (ρ̃− m̃ΛeΦ−V x)

)′)
ds

−
∫
∂Ω(V )

φ∂ν φ̃ds.

Define now the auxiliary function φ̃ as the unique solution of the problem

(6.3) Δφ̃−ζφ̃−div(ΛeΦ−V x∇m̃) = 0 in Ω(V ), φ̃ = ΛeΦ−V xm̃− ρ̃ on ∂Ω(V ),

this choice of φ̃ nullifies the first two terms in the right hand side of (6.2). Notice
also that using boundary condition (5.2) and integrating by parts the last term in
the right hand side of (6.2) can be written in the form

−
∫
∂Ω(V )

φ∂ν φ̃ds =

∫
∂Ω(V )

ρ

(
(V νx − γκ2

ζ
)∂ν φ̃− γ

ζ
∂2
ττ∂ν φ̃

)
ds

− p′∗(|Ω(V )|)
ζ

∫
∂Ω(V )

∂ν φ̃ ds

∫
∂Ω(V )

ρ ds.

Thus, we conclude by density of smooth functions from the domain of A(V ) in
L2(Ω(V ))× L2(∂Ω(V )) that

(6.4) ∂νm̃ = 0 on ∂Ω(V ),
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and components of A∗(V ) are given by

(6.5) (A∗(V )(m̃, ρ̃))m̃ = Δm̃+∇Φ · ∇m̃− V ∂xm̃+ φ̃ in Ω(V ),

(6.6) (A∗(V )(m̃, ρ̃))ρ̃ = ∂2
ννΦ(ρ̃− m̃ΛeΦ−V x) +

(
(∂τΦ+ V νy)(ρ̃− m̃ΛeΦ−V x)

)′
+
(
V νx − γκ2

ζ

)
∂ν φ̃− γ

ζ
∂2
ττ∂ν φ̃− p′∗(|Ω(V )|)

ζ

∫
∂Ω(V )

∂ν φ̃ ds on ∂Ω(V ).

Observe that the definition ofA∗(V ) admits an important simplification. Namely,

one can express the action of the operator A∗(V ) in terms of the only function φ̃
as follows. In view of (6.3) we have

(6.7) (A∗(V )(m̃, ρ̃))m̃ =
1

Λ(V )eΦ−V x
(Δφ̃− ζφ̃) + φ̃,

and, due to the boundary condition φ̃ = ΛeΦ−V xm̃− ρ̃ on ∂Ω(V ), (6.6) rewrites as
(6.8)

(A∗(V )(m̃, ρ̃))ρ̃ =− ∂2
ννΦφ̃− ∂τ

(
φ̃∂τΦ

)
− V ν′yφ̃− V νy∂τ φ̃

+ V νx∂ν φ̃− γκ2

ζ
∂ν φ̃− γ

ζ
∂2
ττ∂ν φ̃− p′∗(|Ω(V )|)

ζ

∫
∂Ω(V )

∂ν φ̃ ds.

Moreover, since

(6.9) div(ΛeΦ−V x∇m̃) = Δφ̃− ζφ̃ in Ω(V ), ∂νm̃ = 0 on ∂Ω(V ),

the following additional condition

(6.10)

∫
∂Ω(V )

∂ν φ̃ ds = ζ

∫
Ω(V )

φ̃ dxdy

must be satisfied by φ̃. Then one can reconstruct m̃, up to an additive constant,
by solving (6.9).

The following equivalent form of (6.8) is obtained by using the equation and the
boundary conditions from (4.2)–(4.3),

(6.11) (A∗(V )(m̃, ρ̃))ρ̃ = (Λ(V )eΦ−V x − ζΦ)φ̃+ (γκ′/ζ − V νy) ∂τ φ̃

+ V νx∂ν φ̃− γκ2

ζ
∂ν φ̃− γ

ζ
∂2
ττ∂ν φ̃− p′∗(|Ω(V )|)

ζ

∫
∂Ω(V )

∂ν φ̃ ds.

When V = 0 the operator A∗(0) coincides with the adjoint operator A∗
ss(R) of

Ass(R) at the critical radius R = R0.

Lemma 6.1. The algebraic multiplicity of the zero eigenvalue of A∗
ss(R) (and

Ass(R)) is equal to three, while its geometric multiplicity is equal to two.

Proof. Consider an element (m̃, ρ̃) of the null space of A∗
ss(R), then, passing to

the parametrization of ∂BR via the angle ϕ, we have problem (5.23)–(5.26). This

problem has the following solution: m̃ = 1, ρ = m0 with φ̃ = 0, while any other
linearly independent solution corresponds to a nonzero function φ̃. It follows from
(5.23)–(5.24) that φ̃ satisfies Δφ̃ + (m0 − ζ)φ̃ = 0 in BR therefore it is completely

determined by its normal derivative ∂rφ̃ on ∂BR. Moreover, ∂rφ̃ satisfies (5.26),
while all linearly independent (even and periodic) solutions of this equation are

∂rφ̃ = cosϕ and, possibly, ∂rφ̃ = 1. Even though ∂rφ̃ = 1 might satisfy (5.26)
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(for some particular values of parameters), this choice of ∂rφ̃ is inconsistent with
the boundary condition in (5.23) as can be seen by integrating equations in (5.23)–

(5.24) over BR. On the other hand assuming ∂rφ̃ = −ζ cosϕ on ∂BR does lead to

the triple φ̃ = −(ζ−m0)Φ
0
V −m0x, m̃ = Φ0

V −x and ρ̃ = 0 satisfying (5.23)–(5.26).
Thus the null space of A∗

ss(R) is of dimension two, therefore the operator Ass(R)
also has a two-dimensional null space. Recall that Ass(R) has two eigenvectors
(2πRp′∗(πR

2) + γ/R2, 1) and (0, cosϕ) corresponding to zero eigenvalue, and the
generalized eigenvector (Φ0

V − x, 0). We claim that the algebraic multiplicity of
zero eigenvalue is three. Otherwise there is a generalized eigenvector W such that
Ass(R)W = (2πRp′∗(πR

2) + γ/R2, 1) or Ass(R)W = (Φ0
V − x, 0). Both cases are

impossible, in the first one

0 = 〈W,A∗
ss(R)(1,m0)〉L2 = 〈Ass(R)W, (1,m0)〉L2 = 2π2R3p′∗(πR

2) + πγ+2πRm0

contradictory to (4.6); in the second case

0 = 〈W,A∗
ss(R)(Φ0

V − x, 0)〉L2 = 〈Ass(R)W, (Φ0
V − x, 0)〉L2 =

∫
BR

(Φ0
V − x)2 dxdy.

Thus, the algebraic multiplicity of zero eigenvalue of Ass(R) is equal to three, and
the same holds for A∗

ss(R). Lemma 6.1 is proved. �

While the generalized eigenspace of A(V ) corresponding to the zero eigenvalue
is explicitly given in terms of the solutions φ = Φ(x, y, V ), Ω = Ω(V ) of the free
boundary problem (4.2)–(4.3), for the operator A∗(V ) we know explicitly only the
eigenvector

(6.12) W ∗
1 = (1,Λ(V )eΦ−V x)

that is related to the conservation of the total myosin mass in the linearized problem.
While this eigenvector does not have any associated generalized eigenvector for
V = 0 (see proof of Lemma 6.1), such a generalized eigenvector appears for V �= 0
and it exhibits singular behavior for small velocities. Namely, we will show that if
A∗(V )(m̃, ρ̃) = (1,Λ(V )eΦ−V x) then (m̃, ρ̃) blows up as 1/V , when V → 0. This is
why it is natural to renormalize this generalized eigenvector and write the problem
in the form A∗(V )(m̃, ρ̃) = V k(1,Λ(V )eΦ−V x), assuming that (m̃, ρ̃) is bounded.

Consider the ansatz

(6.13) m̃ = Φ0
V − x+ V m̃1 + . . . , ρ̃ = V ρ̃1 + . . . ,

assuming the expansion φ̃ = −(ζ −m0)Φ
0
V −m0x + V φ̃1 + . . . for the solution of

(6.3), and substitute (6.13) in the equation A∗(V )(m̃, ρ̃) = V k(1,Λ(V )eΦ−V x) with
unknown for the moment constant k. Collecting the leading order terms, they are
of the order V , in the corresponding problems we obtain (as above we replace Ω(V )
by the disk BR which approximates Ω(V ) to the order V 2),

Δm̃1 + φ̃1 = k − |∇(Φ0
V − x)|2 in BR, ∂rm̃1 = 0 on ∂BR,(6.14)

Δφ̃1 − ζφ̃1 = m0Δm̃1 +m0div
(
(Φ0

V − x)∇(Φ0
V − x)

)
in BR,(6.15)

φ̃1 = m0m̃1 +m0R
2 cos2 ϕ− ρ̃1 on ∂BR,(6.16)

− γ

R2ζ
(∂rφ̃1 + ∂2

ϕϕ∂rφ̃1)−
p′∗(πR

2)

ζ

∫ π

−π

∂rφ̃1Rdϕ = ζ cos2 ϕ(6.17)

+m0(k − ∂2
rrΦ

0
V R cosϕ− cos 2ϕ) on ∂BR.
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Introduce a solution f of Δf = div
(
(Φ0

V − x)∇(Φ0
V − x)

)
in BR, ∂rf = 0 on ∂BR,

then we can rewrite problem (6.14)-(6.17) in the operator form:

A∗
ss(R)(m̃1 + f, ρ̃1 −m0f −m0R

2 cos2 ϕ)

= (k + (Φ0
V − x)Δ(Φ0

V − x),m0(k − ∂2
rrΦ

0
V R cosϕ− cos 2ϕ) + ζ cos2 ϕ),

and since the null space of A∗
ss(R) is nonzero, we can use solvability conditions to

identify k. Indeed, the operator Ass(R) has the eigenvector (γ/R2+2πRp′∗(πR
2), 1)

in its null space, and we necessarily have

(γ/R2 + 2πRp′∗(πR
2))

(
πR2k −

∫
BR

|∇(Φ0
V − x)|2 dxdy

)

+

∫ π

−π

(
km0 + (m0 −m2

0R
2) cos2 ϕ+ ζ cos2 ϕ

)
Rdϕ = 0.

This yields, after rearranging terms and using (4.5), (4.21)–(4.22),

(6.18) k = −πRζF ′(R)

M ′
ss(R)

= m0
E′(R)

M ′
ss(R)

∫
BR

(Φ0
V − x)2dxdy =: k0.

Then solving (6.17) we find

(6.19) ∂rφ̃1 = A cos 2ϕ+B = 2A cos2 ϕ+ (B −A) on ∂BR,

where

(6.20) A =
R2ζ

6γ

(
ζ −m0 −m2

0R
2
)
, B = −ζ

2k0m0 +m0 −m2
0R

2 + ζ

2 (γ/R2 + 2πRp′∗(πR
2))

.

Also, eliminating m̃1 from (6.14)–(6.15) we have that φ̃1 satisfies

(6.21)
1

m0

(
Δφ̃1 − ζφ̃1

)
+ φ̃1 = k0 + (Φ0

V − x)Δ(Φ0
V − x) in BR.

The unique solution of this equation with boundary condition (6.19) is represented
as the sum of a radially symmetric function and the product of another radially
symmetric function with cos 2ϕ, therefore it extends as a solution of (6.21) to the
entire R

2. Thus the function

(6.22) φ̃ = −(ζ −m0)Φ
0
V −m0x+ V φ̃1

is well defined on Ω(V ). One can define m̃1 by solving (6.14) and then ρ̃1 by (6.16),

completing the construction of the ansatz (6.13). The properties of φ̃ needed for
the justification of the ansatz (6.13) are collected in

Lemma 6.2. The function φ̃ given by (6.22) satisfies for small V∥∥∥Δφ̃− ζφ̃+ Λ(V )eΦ−V xφ̃− k0V Λ(V )eΦ−V x
∥∥∥
Cj(Ω(V ))

= O(V 2) ∀j ∈ Z+,(6.23) ∥∥∥∂ν φ̃−
(
−ζνx + 2AV ν2x + V (B − A)

)∥∥∥
Cj(∂Ω(V ))

= O(V 2) ∀j ∈ Z+,(6.24)

and

(6.25)

∫
∂Ω(V )

∂ν φ̃ ds− ζ

∫
Ω(V )

φ̃ dxdy = O(V 2).
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Proof. Bound (6.23) follows from the construction of φ̃ and representation (4.20)
for Φ − V x in conjunction with the formula Λ(V ) = Λ(0) + O(V 2) (see Remark
4.3). To verify (6.24) one passes to polar coordinates and uses (6.19) together with

the bound (4.19). Finally, (6.25) follows from the construction of φ̃ (recall that∫
∂BR

∂rφ̃ ds− ζ
∫
BR

φ̃ dxdy = 0) and (4.19). �

Remark 6.3. Using (4.21) and (6.18) one can derive the following formula for B,
cf. (6.20),

B = − ζ

2M ′
ss(R)

(
πR2

(
ζ +m0 −m2

0R
2
)
+ 2m0

∫
BR

|∇(Φ0
V − x)|2 dxdy

)
,

which shows that B is well defined even if the denominator in (6.20) is zero.

7. Asymptotic formula for eigenvalues of the operator linearized

around traveling wave solutions with small velocities

In this section we justify asymptotic expansions constructed in Section 5. We
begin with the generalized eigenvector of the adjoint operator A∗(V ). Recall that
A∗(V ) has the eigenvector W ∗

1 = (1,Λ(V )eΦ−V x) that is related to the total myosin
mass conservation property in problem (2.9)–(2.13) and its linearized counterpart
(5.1)–(5.5).

Lemma 7.1. The operator A∗(V ) has a generalized eigenvector W ∗
2 = (m∗

2, ρ
∗
2),

A∗(V )W ∗
2 = W ∗

1 , whose first component expands when V → 0 as follows,

(7.1) m∗
2 =

1

k0V + V 2k1(V )
(Φ0

V − x+ V m̃1) + V χ

with bounded k1(V ) and uniformly in V bounded χ(·, V ) (in Cj(Ω(V )) ∀j ∈ Z+),
while ‖ρ∗2‖Cj(Ω(V ))

= O(1) ∀j ∈ Z+. The constant k0 in (7.1) is given by (6.18),

Φ0
V is the solution of problem (4.14), and m̃1 is a smooth function independent of

V (and defined on the entire plane R2).

Proof. Consider the problem of finding generalized eigenvector in the form

A∗(V )(m̃, ρ̃) = k(1,Λ(V )eΦ−V x) (with constant k �= 0),

then

(7.2) Δφ̃− ζφ̃+ ΛeΦ−V xφ̃ = kΛeΦ−V x in Ω(V ).

If we waive the condition k �= 0 then solving (7.2) with
(7.3)

−γ

ζ
∂2
ττ∂ν φ̃− γκ2

ζ
∂ν φ̃− p′∗(|Ω(V )|)

ζ

∫
∂Ω(V )

∂ν φ̃ ds

−
(
∂2
ννΦ+ V ν′y

)
φ̃− ∂τ

(
φ̃∂τΦ

)
− V νy∂τ φ̃+ V νx∂ν φ̃ = kΛeΦ−V x on ∂Ω(V )

and condition (6.10) yields an element of the generalized space of the operator
A∗(V ) corresponding to zero eigenvalue. Moreover, if such an element is nontrivial
then it never belongs to the linear span of the eigenvector (1,Λeφ−V x).

The number k can be found in terms of the normal derivative ∂ν φ̃ on ∂Ω(V ).

To this end multiply (7.2) by the solution ψ̃1 of the problem

(7.4) Δψ̃1 − ζψ̃1 + ΛeΦ−V xψ̃1 = ζ in Ω(V ), ∂ν ψ̃1 = 0 on ∂Ω(V ),
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and integrate over Ω(V ). Using integration by parts and condition (6.10) we derive

(7.5) k =

∫
∂Ω(V )

∂ν φ̃(1 + ψ̃1) ds

Λ
∫
Ω(V )

eΦ−V xψ̃1 dxdy
.

Also, we have φ̃ = ψ̃ + k(1 + ψ̃1), where ψ̃ is the solution of the problem

(7.6) Δψ̃ − ζψ̃ + ΛeΦ−V xψ̃ = 0 in Ω(V ), ∂ν ψ̃ = ∂ν φ̃ on ∂Ω(V ).

Then problem (7.2)–(7.3) with condition (6.10) is reduced to the following integro-

differential equation on ∂Ω(V ) for the only unknown v := ∂ν φ̃,

(7.7)
−γ

ζ
∂2
ττv −

γκ2

ζ
v +

∫
∂Ω(V )

Q(s, s̃, V )v(s̃) ds̃

+ V νxv −
(
∂2
ννΦ+ V ν′y

)
ψ̃ − ∂τ

(
ψ̃∂τΦ

)
− V νy∂τ ψ̃ = 0,

where Q is a smooth function and Q = −p′∗(πR
2)/ζ−m0/(πR

2ζ)+O(V ) as V → 0.
Observe that (7.7) is a (regular) perturbation of the equation

−γ

ζ
∂2
ττv −

γ

ζR2
v −

∫
∂BR

(p′∗(πR
2)/ζ +m0/(πR

2ζ))v(s̃) ds̃ = 0 on ∂BR.

Under condition (4.6) the latter equation has the only (even) solution cos s
R , up

to multiplication by a constant. On the other hand, since the multiplicity of zero
eigenvalue of the operator A(V ) is at least two (∀V ), and the same holds for A∗(V ),
equation (7.7) always has at least one nontrivial solution. Thus, after writing (7.7)

in the operator form L̃(V )v = 0 in L2(∂Ω(V )), we see that L̃(V ) has simple isolated
eigenvalue λ = 0. Then for some δ > 0 and sufficiently small V the operator
(λ − L̃(V ))−1 is bounded if 0 < |λ| ≤ δ and operator norms ‖(λ − L̃(V ))−1‖ are
uniformly bounded for complex λ with |λ| = δ. Therefore, if ṽ is an approximation
of an eigenfunction v then we have

Π̃0ṽ − ṽ =
1

2πi

∮
|λ|=δ

(λ− L̃(V ))−1L̃(V )ṽ
dλ

λ

(this representation is obtained by taking the integral over the circle |λ| = δ of

the identity 1
λ ṽ = (λ − L̃(V ))−1ṽ − 1

λ (λ − L̃(V ))−1L̃(V )ṽ), where Π̃0 denotes the

spectral projector on the null space of L̃(V ). Thus

‖Π̃0ṽ − ṽ‖L2(∂Ω(V )) ≤ C‖L̃(V )ṽ‖L2(∂Ω(V ))

and, since the principal term of L̃(V ) is −γ
ζ ∂

2
ττ ·, one can improve this bound to

‖Π̃0ṽ − ṽ‖H2(∂Ω(V )) ≤ C‖L̃(V )ṽ‖L2(∂Ω(V )).

Now consider ṽ := −ζνx +2AV ν2x +V (B−A) (see (6.24)). Introducing the pair
(w, k(w)) that solves

Δw − ζw + ΛeΦ−V xw = k(w)ΛeΦ−V x in Ω(V ), ∂νw = ṽ on ∂Ω(V ),

with the additional condition
∫
∂Ω(V )

∂νw ds = ζ
∫
Ω(V )

w dxdy, we get by virtue of

Lemma 6.2 that ‖w − φ̃‖
Cj(Ω(V ))

= O(V 2) ∀j ∈ Z+, k(w) = k0V + O(V 2), where

φ̃, k0 are given by (6.22) and (6.18). Direct calculations show that

‖L̃(V )ṽ‖C(∂Ω(V )) = O(V 2).

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1830 VOLODYMYR RYBALKO AND LEONID BERLYAND

Indeed, observe that κ = 1
R+V 2O(1), w = −m0Rνx+V O(1), ∂τw = m0νy+V O(1),

∂2
ννΦ+ V ν′y = m0V Rνx + V 2O(1) and

∂ττ (∂νw) = (−ζνx + 2AV ν2x)
′′ =ζ(κνy)

′ − 4AV (κνxνy)
′

=
ζ

R2
νx − 4

R2
AV (2ν2x − 1) + V 2O(1)

on ∂Ω(V ), where O(1) stands for various uniformly bounded functions on ∂Ω(V ).
Then

(7.8) L̃ṽ =
(
m2

0R
2 +m0 − ζ +

6γA

ζR2

)
V ν2x

−
(
m0 +

3γA

ζR2
+

γB

ζR2
+ 2πR

p′∗(πR
2)

ζ
B +m0k0

)
V + V 2O(1).

Both the coefficient in front of V ν2x and the coefficient in front of V in (7.8) vanish
by virtue of formulas (6.20) for A and B. Thus we have ‖v− ṽ‖H2(∂Ω(V )) ≤ CV 2 for
a properly normalized solution v of (7.7). Finally, retrieving first the number k and

the auxiliary function φ̃ = ψ̃ + k(1 + ψ̃1) via (7.4)–(7.6) for ∂νφ = v and repeating
this procedure with ṽ in place of v, then reconstructing W ∗

2 and its approximation
corresponding to ṽ one completes the proof of Lemma 7.1 (details are left to the
reader). �

Asymptotic expansions constructed in Section 5 suggest that the operator A(V )
has a small nonzero eigenvalue λ(V ) and

(7.9) λ(V ) = − E′(R)

M ′
ss(R)

VM ′(V )(1 +O(V )) as V → 0.

Theorem 7.2. Assume that conditions of Theorem 4.1 are satisfied and also that
M ′(V ) �= 0 for sufficiently small V �= 0. Then the spectrum of the operator A(V )
has the following structure near zero: A(V ) has a small eigenvalue λ(V ) given by
the asymptotic formula (7.9) in addition to the zero eigenvalue with multiplicity two
whose eigenvector is given by (5.6) and generalized eigenvector is given by (5.7).
Other eigenvalues are bounded away from zero.

Remark 7.3. In generic case M ′′(0) �= 0 (for almost all values of the parameters ph,
ke, ζ, and γ). Then formula (7.9) is simplified to

(7.10) λ(V ) = −V 2 E′(R)

M ′
ss(R)

M ′′(0) +O(V 3) as V → 0.

Remark 7.4. In Theorem 7.2 we tacitly assume that operator A(V ) is restricted
to the subspace of vectors that are symmetric with respect to the x-axis, while
the general case without any symmetry restrictions on eigenvectors and generalized
eigenvectors is considered in Section 8, see Theorem 8.3.

Proof. Let W ∗
2 be a generalized eigenvector of A∗(V ) corresponding to the eigen-

vector W ∗
1 = (1,ΛeΦ−V x), A∗(V )W ∗

2 = W ∗
1 . The space L2(Ω(V )) × L2(∂Ω(V ))

decomposes into the direct sum of invariant subspaces span{W1,W2} and

(7.11) I(V ) := {W ∈ L2(Ω(V ))× L2(∂Ω(V )); 〈W,W ∗
1 〉L2 = 〈W,W ∗

2 〉L2 = 0}

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1831

of the operator A(V ), where W1, W2 are given by (5.6)–(5.7) (the eigenvector of
A(V ) corresponding to the zero eigenvalue and a generalized eigenvector). This
induces also the decomposition of the domain

D(A(V )) = {(m, ρ) ∈ H2(Ω(V ))×H3(∂Ω(V )) such that (5.5) holds}

into the sum D(A(V )) = D(A(V )) ∩ I(V )⊕ span{W1,W2}.
Fix a sufficiently small δ > 0 such that Ass(R) does not have eigenvalues λ

with 0 < |λ| ≤ δ. Then we claim that for sufficiently small V the operator (λ −
A(V ))−1 exists and is uniformly bounded on δ/2 ≤ |λ| ≤ δ. Indeed, assume by
contradiction that for a sequence Vj → 0 ∃Wj ∈ D(A(Vj)) ∩ I(Vj), Wj = (mj , ρj),
with ‖mj‖2L2(Ω(Vj))

+ ‖ρj‖2L2(∂Ω(Vj))
= 1, such that norms of Uj = (λj −A(Vj))Wj

in L2(Ω(Vj)) × L2(∂Ω(Vj)) tend to zero as j → ∞. We use Lemma 7.5 which
provides a priori estimates implying that norms ‖mj‖H2(Ω(Vj)) and ‖ρj‖H3(∂Ω(Vj))

are uniformly bounded.

Lemma 7.5. There exists K = K(V ) > 0 such that for all V with |V | < V every
pair (m, ρ) solving

Δφ+m = ζφ in Ω(V ),(7.12)

ζ(φ+ V νxρ) = p′∗(|Ω(V )|)
∫
∂Ω(V )

ρ(s)ds+ γ(ρ′′ + κ2ρ) on ∂Ω(V ),(7.13)

�+Kρ =
∂φ

∂ν
+

∂2Φ

∂ν2
ρ−

(
∂Φ

∂τ
+ V νy

)
ρ′ on ∂Ω(V ),(7.14)

f +Km = Δm+ V ∂xm− div(ΛeΦ−V x∇φ)− div(m∇Φ) in Ω(V ),(7.15)

∂νm+ ΛeΦ−V x

(
∂2Φ

∂ν2
ρ−

(∂Φ
∂τ

+ V νy

)
ρ′
)

= 0 on ∂Ω(V )(7.16)

satisfies the bound

(7.17) ‖ρ‖H3(∂Ω(V )) + ‖m‖H2(Ω(V )) ≤ C(‖�‖L2(Ω(V )) + ‖f‖L2(Ω(V ))).

Proof. Without loss of generality we can assume that ρ and m are sufficiently
smooth. Also, for brevity we suppress hereafter the dependence of the domain Ω
on V .

The crucial a priori bound is obtained multiplying equation (7.12) by the har-
monic extension H(ρ) of ρ from ∂Ω into Ω (ΔH(ρ) = 0 in Ω, and H(ρ) = ρ on ∂Ω)
and integrating over Ω. This yields, after integrating by parts twice and eliminating
φ, ∂νφ from the integrals over the boundary with the help of (7.13) and (7.14),

(7.18) K

∫
∂Ω

ρ2 ds− γ

ζ

∫
∂Ω

ρ′′∂νH(ρ) ds =

∫
Ω

(ζφ−m)H(ρ) dxdy

+

∫
∂Ω

((γκ2

ζ
− V νx

)
ρ∂νH(ρ) +

∂2Φ

∂ν2
ρ2 −

(
∂Φ

∂τ
+ V νy

)
ρ′ρ− ρ�

)
ds.

Next observe that the left hand side of (7.18) represents square of a norm in
H3/2(∂Ω) when K > 0 is sufficiently large. Actually, the second term solely de-
fines a seminorm in H3/2(∂Ω) if κ ≥ 0. Indeed, using the Frenet-Serret formulas
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∂τνx = κτx = −κνy, ∂τνy = κτy = κνx and the fact that ΔH(ρ) = 0 we find

− ρ′′∂νH(ρ) = −∂τ (∂τH(ρ))∂νH(ρ)

(7.19)

= κ(∂νH(ρ))2 + ∂νH(ρ)
(
ν2x∂

2
xxH(ρ) + 2νxνy∂

2
xyH(ρ) + ν2y∂

2
yyH(ρ)

)
,

∂τH(ρ))∂τ (∂νH(ρ)) = κ(∂τH(ρ))2 +∇H(ρ) · ∂ν∇H(ρ)

(7.20)

− ∂νH(ρ)
(
ν2x∂

2
xxH(ρ) + 2νxνy∂

2
xyH(ρ) + ν2y∂

2
yyH(ρ)

)
.

Then taking the half-sum of these identities and integrating over ∂Ω we obtain,
using integration by parts and the fact that ΔH(ρ) = 0,

(7.21)

−
∫
∂Ω

ρ′′∂νH(ρ) ds = −1

2

∫
∂Ω

ρ′′∂νH(ρ) ds+
1

2

∫
∂Ω

∂τH(ρ))∂τ (∂νH(ρ)) ds

=
1

2

∫
∂Ω

κ|∇H(ρ)|2 ds+ 1

2

∫
∂Ω

∇H(ρ) · ∂ν∇H(ρ) ds

=
1

2

∫
∂Ω

κ|∇H(ρ)|2 ds+ 1

2

∫
Ω

|∇2H(ρ)|2 dxdy.

Thus −γ
ζ

∫
∂Ω

ρ′′∂νH(ρ) ds ≥ θ‖ρ‖2
H3/2(∂Ω)

−C‖ρ‖2L2(∂Ω) with some constants θ > 0

and C that does not depend on ρ, and one derives from (7.18) the following bound

(7.22)
K‖ρ‖2L2(∂Ω) +

θ

2
‖ρ‖2H3/2(∂Ω) ≤ −θ

4
‖ρ‖2H3/2(∂Ω) + C1‖ρ‖2L2(∂Ω)

+ C1

(
‖�‖2L2(∂Ω) + ‖ρ‖L2(∂Ω)‖φ‖L2(Ω) + ‖m‖2L2(Ω)

)
.

To find a bound for L2-norm of φ, represent φ as φ = γ
ζH(ρ′′) + G, where G is

the solution of

ΔG = ζG+ γH(ρ′′)−m,(7.23)

ζ(G+ V νxρ) = p′∗(|Ω|)
∫
∂Ω

ρ(s)ds+ γκ2ρ on ∂Ω.(7.24)

Assume for a moment that a bound for ‖H(ρ′′)‖L2 is known, then by elliptic esti-
mates we have

(7.25) ‖G‖L2(Ω) ≤ C(‖ρ‖H1(∂Ω) + ‖H(ρ′′)‖L2(Ω) + ‖m‖L2(Ω)).

We proceed with derivation of a bound for ‖H(ρ′′)‖L2(Ω). To this end consider
the solution of the Dirichlet problem Δg = H(ρ′′) in Ω, g = 0 on ∂Ω, along
with the functions H(∂νg), H(ρ′) and its harmonic conjugate H∗(ρ′) (such that
∂νH∗(ρ′) = −∂τH(ρ′) = −ρ′′). We have

∫
Ω

|H(ρ′′)|2 dxdy =

∫
Ω

H(ρ′′)Δg dxdy

=

∫
∂Ω

ρ′′∂νg ds = −
∫
∂Ω

∂νH∗(ρ′)H(∂νg) ds = −
∫
Ω

∇H∗(ρ′) · ∇H(∂νg) dxdy,

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1833

while by elliptic estimates∫
Ω

|∇H(∂νg)|2 dxdy ≤ C2‖∂νg‖H1/2(∂Ω) ≤ C3‖g‖H2(Ω) ≤ C4

∫
Ω

|H(ρ′′)|2 dxdy,∫
Ω

|∇H∗(ρ′)|2 dxdy =

∫
Ω

|∇H(ρ′)|2 dxdy ≤ C2‖ρ′‖H1/2(∂Ω) ≤ C5‖ρ‖H3/2(∂Ω).

Thus ‖H(ρ′′)‖2L2(Ω) ≤ C4C5‖ρ‖H3/2(∂Ω)2 , and in view of (7.25) we have

(7.26) ‖φ‖L2(Ω) ≤ C6

(
‖ρ‖H3/2(∂Ω) + ‖m‖L2(Ω)

)
.

Using (7.26) in (7.22) we see that for K ≥ C1 + 1 the following bounds hold,

(7.27)
‖ρ‖2H3/2(∂Ω) ≤ C

(
‖�‖2L2(∂Ω) + ‖m‖2L2(Ω)

)
,

‖φ‖2L2(Ω) ≤ C
(
‖�‖2L2(∂Ω) + ‖m‖2L2(Ω)

)
.

It remains to find a bound for m. To this end multiply (7.15) by m and integrate
over Ω. Using (7.16), (7.12) and the fact that ∂ν(Φ− V x) = 0 on ∂Ω, we find
(7.28)

K

∫
Ω

m2 dxdy+

∫
Ω

|∇m|2 dxdy = −
∫
Ω

fmdxdy + Λ

∫
Ω

φdiv(m∇eΦ−V x) dxdy

+

∫
Ω

(
V ∂xm−∇m · ∇Φ−mΔΦ+ ΛeΦ−V x(m− ζφ)

)
mdxdy

−
∫
∂Ω

ΛeΦ−V x

(
∂2Φ

∂ν2
ρ−

(∂Φ
∂τ

+ V νy

)
ρ′
)
mds.

The right hand side of (7.28) can be estimated with the help of bounds (7.27) and
the inequality for traces

∫
∂Ω

|m|2ds ≤ C
∫
Ω
(|∇m|2 +m2) dxdy, as the result we get

(7.29)

K

∫
Ω

m2 dxdy+
1

2

∫
Ω

|∇m|2 dxdy ≤ C7

(∫
Ω

|m|2 dxdy +

∫
Ω

|f |2 dxdy + ‖�‖2L2(∂Ω)

)
.

Thus for K ≥ max{C1, C7} + 1 we have obtained a bound for H1-norm of m in
terms of L2-norms of � and f . Then by (7.27) we also have ‖ρ‖H3/2(∂Ω)+‖φ‖L2(Ω) ≤
C
(
|�‖L2(∂Ω) + ‖f‖L2(Ω)

)
. Consequently, applying elliptic estimates to problem

(7.12), (7.14) one can show that ‖φ‖H1(∂Ω) ≤ C
(
‖�‖L2(∂Ω) + ‖f‖L2(Ω)

)
. This, in

turn implies, in view of equation (7.13), that ‖ρ‖H3(∂Ω) ≤ C
(
‖�‖L2(∂Ω) + ‖f‖L2(Ω)

)
.

Finally, one completes the proof of Lemma 7.5 by applying elliptic estimates to
(7.12)–(7.13) and (7.15)–(7.16). �

Proof of Theorem 7.2 (Continued). Writing the equation Uj = (A− λj(Vj))Wj as
A(Vj))Wj +KWj = (λj +K)Wj +Uj and applying Lemma 7.5 we see that norms
‖mj‖H2(Ω(V )) and ‖ρj‖H3(∂Ω(V )) are uniformly bounded. Therefore there exists

λ with δ/2 ≤ |λ| ≤ δ, a function φ ∈ H3/2(BR) and nontrivial pair (m, ρ) ∈
H2(BR)×H5/2(∂BR) such that, up to a subsequence, λj → λ,

(ρj (Ljs/(2πR)) , φj (x (Ljs/(2πR)) , y (Ljs/(2πR)))) → (ρ(s), φ(x(s), y(s)))

weakly in H3(∂BR)×H1(∂BR) (where Lj denotes the length of ∂Ω(Vj)) and mj →
m, φj → φ strongly in H1 on every compact subset of BR. Then passing to the
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limit in (variational formulation of) problem (5.4)-(5.5) with a smooth test function
v(x, y) we find

(7.30) λ

∫
BR

mvdxdy = −
∫
BR

∇m · ∇vdxdy +m0

∫
BR

(m− ζφ)vdxdy,

where we have used (5.1) to eliminate Δφj . Thus m ∈ H2(BR) and m satisfies
λm = Δm + m0(m − ζφ) in BR along with the boundary condition ∂νm = 0
on ∂BR. Passing to the limit in (5.1) with test functions from C∞

0 (BR) we get
Δφ = ζφ−m in BR, thus the equation for m rewrites as λm = Δm−m0Δφ in BR.
Also, taking limit in (5.2) yields ζφ = p′∗(|BR|)

∫
∂BR

ρ(s)ds+ γ(ρ′′ + 1
R2 ρ) on ∂BR.

Finally, using a smooth test function v(x, y) in variational formulation of equation
(5.1) with boundary condition (5.3) we obtain

(7.31)

0 = −
∫
Ω(Vj)

∇φj · ∇v dxdy +

∫
Ω(Vj)

(mj − ζφj)vdxdy +

∫
∂Ω(Vj)

λjρjvds+ o(1)

= −
∫
BR

∇φ · ∇v dxdy +

∫
BR

(m− ζφ)vdxdy +

∫
∂BR

λρvds+ o(1),

implying that λρ = ∂rφ on ∂BR. Thus λ is an eigenvalue of the operator Ass(R),
contradicting the assumption. Repeating this reasoning for δ/2 in place of δ, then
δ/4 etc. we conclude that all eigenvalues λ of A(V )) with |λ| ≤ δ necessarily
converge to zero as V → 0.

To establish convergence of eigenvalues with multiplicities, consider for suffi-
ciently small V spectral projectors on the generalized eigenspaces corresponding to
eigenvalues λ with |λ| < δ,

(7.32) Πδ(V ) :=
1

2πi

∮
|λ|=δ

(λ−A(V ))−1 dλ.

Let us show that restrictions Πδ(V )
∣∣
I(V )

of Πδ(V ) to I(V ) converge (in the sense

described below) to

Π0(0) =
1

2πi

∮
|λ|=δ

(λ−Ass(R))−1 dλ restricted to I(0),

as V → 0, where

I(0) := {W ∈ L2(BR)× L2(∂BR); 〈W,W ∗
1 |V=0〉L2 = 〈W, (Φ0

V − x, 0)〉L2 = 0}
(cf. (7.11)). Namely, we claim that for any sequence Vj → 0 and (mj , ρj) ∈ I(Vj)
such that ρj (Ljs/(2πR)) → ρ in L2(∂BR), and mj → m in L2(R2) (where we
assume mj and m continued by zero in R

2 \ Ω(Vj) and R
2 \ BR, correspondingly)

the sequence of pairs (fj , �j) := Πδ(Vj)(mj , ρj) converges to Π0(0)(m, ρ) weakly
in H2(BR) ×H3(∂BR), more precisely this convergence holds for functions fj ex-
tended to BR (if necessary) by standard reflection through the normal of ∂Ω(V )
and rescaled �j = �j (Ljs/(2πR)). The proof of this claim follows exactly the lines
above: we use Lemma 7.5 to get uniform a priori bounds for (λ−A(Vj))

−1(mj , ρj)
inH2(Ω(Vj))×H3(∂Ω(Vj)) and then pass to limit in variational formulations of cor-
responding problems with smooth test functions. Moreover, since (mj , ρj) ∈ I(Vj)
we have 〈(mj , ρj)W

∗
1 〉L2 = Vjk0〈(mj , ρj),W

∗
2 〉L2 = 0, therefore passing to the limit

we get, by virtue of Lemma 7.1, 〈(m, ρ)W ∗
1 |V=0〉L2 = 〈(m, ρ), (Φ0

V − x, 0)〉L2 = 0,
i.e. (m, ρ) ∈ I(0). Thus Π0(0)(m, ρ) ∈ Π0(0)I(0).
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1835

By Lemma 6.1 we have Π0(0)I(0) = span{W1|V=0}. Therefore the dimension of
the space Πδ(V )I(V ) is at most one for sufficiently small V . Indeed, otherwise there

exists a sequence Vj → 0 and elements Wj , W̃j of Πδ(Vj)I(Vj) that are mutually or-
thogonal and normalized to one in L2(Ω(Vj))×L2(∂Ω(Vj)). Since Wj = Πδ(Vj)Wj

and W̃j = Πδ(Vj)W̃j , after extracting a subsequence, if necessary, both Wj and W̃j

converge strongly in L2-topology to limits belonging to Π0(0)I(0) = span{W1|V =0},
a contradiction. Furthermore, we construct below

(7.33) W = Wans − θW1 ∈ I(V ) with θ = O(V ),

out of the vectors Wans from Lemma 5.1, then we have

(7.34) Πδ(V )W −→
V→0

Π0(0)W1 = W1 �= 0.

Therefore A(V )
∣∣
I(V )

has for sufficiently small V exactly one simple eigenvalue λ(V )

with |λ(V )| ≤ δ, and λ(V ) → 0 as V → 0. Moreover, by virtue of Lemma 5.1 we
get

(7.35) ‖AW − V 2λ̂(V )W‖L2 = O(V 2M ′(V )).

Then, since

0 =
1

2πi

∮
|λ|=δ

(λ−A(V ))−1
(
λ̂(V )V 2 −A(V )

)
W dλ

+
1

2πi

∮
|λ|=δ

(λ−A(V ))
−1

(
λ− λ̂(V )V 2

)
W dλ

= Πδ(V )
(
λ̂(V )V 2 −A(V )

)
W +

(
λ(V )− λ̂(V )V 2

)
Πδ(V )W,

we have

|λ(V )− λ̂(V )V 2| ≤ ‖A(V )W − λ̂(V )V 2W‖L2

‖Πδ(V )W‖L2

= O(V 2M ′(V )).

It remains to find θ = θ(V ) such that W = Wast − θW1 ∈ I(V ). According to

Lemma 5.1 we have 〈A(V )W − λ̂(V )V 2W,W ∗
1 〉L2 = 0, therefore

λ̂(V )V 2〈W,W ∗
1 〉L2 = 〈A(V )W,W ∗

1 〉L2 = 〈W,A∗(V )W ∗
1 〉L2 = 0.

Thus we only need to choose θ such that θ〈W1,W
∗
2 〉L2 = 〈Wast,W

∗
2 〉L2 . Since

〈A(V )Wast,W
∗
2 〉L2 = 〈Wast,W

∗
1 〉L2 = θ〈W1,W

∗
1 〉L2 = θ〈A(V )W2,W

∗
1 〉L2 = 0, we

have λ̂(V )V 2〈Wast,W
∗
2 〉L2 = 〈λ̂(V )V 2Wast − A(V )Wast,W

∗
2 〉L2 , while by Lemma

5.1 and Lemma 7.1∣∣∣〈λ̂(V )V 2Wast −A(V )Wast,W
∗
2 〉L2

∣∣∣ ≤ ∥∥∥λ̂(V )V 2Wast −A(V )Wast

∥∥∥
L2

× ‖W ∗
2 ‖L2 = O(|M ′(V )|2V 2).

This leads to the bound 〈Wast,W
∗
2 〉L2 = O(VM ′(V )), and since 〈W1,W

∗
2 〉L2 =

〈A(V )W2,W
∗
2 〉L2 = 〈W2,W

∗
1 〉L2 = M ′(V ) we obtain the required bound |θ| ≤

C|V |. Theorem 7.2 is completely proved. �

While Theorem 7.2 describes the smallest (in absolute value) nonzero eigenvalue
of A(V ), the following Theorem 7.6 shows that all eigenvalues of A(V ) converge to
the spectrum of Ass(R) uniformly in half-planes C+

K = {λ ∈ C; Re(λ) > K}.
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1836 VOLODYMYR RYBALKO AND LEONID BERLYAND

Theorem 7.6. Assume that conditions of Theorem 4.1 are fulfilled. Let σ(A(V ))
and σ(Ass(R)) be spectra of operators A(V ) and Ass(R), respectively. Then ∀K ∈
R the distance d = sup

{
dist (λ, σ(Ass(R))) ;λ ∈ σ(A(V )) ∩ C

+
K

}
from σ(A(V )) ∩

C
+
K to σ(Ass(R)) tends to zero as V → 0. Moreover, given an eigenvalue λ ∈

σ(Ass(R)), there is a neighborhood ω � λ such that the number #σ(A(V )) ∩ ω
of eigenvalues of A(V )(counting algebraic multiplicities) in ω is less than or equal
than the multiplicity of λ (as an eigenvalue of Ass(R)) for sufficiently small V .

Proof. Observe that arguments applied in Theorem 7.2 in a neighborhood of zero
can be readily applied to any complex λ. That is arguing as in Theorem 7.2 one
shows that if λ �∈ σ(Ass(R)) then a neighborhood of λ belongs to the resolvent set
of A(V ) for sufficiently small V . Next, for λ ∈ σ(Ass(R)) one can consider spectral
projectors given by the integral 1

2πi

∮
∂ω

(λ−A(V ))−1 dλ (cf. (7.32)) and, reasoning
as in Theorem 7.2, prove that #σ(A(V )) ∩ ω does not exceed the multiplicity of λ
for sufficiently small V . It remains to show that ∀K ∈ R the eigenvalues of A(V )
whose real parts are larger than K stay uniformly bounded when V → 0.

Let λ be an eigenvalue of A(V ) such that Re(λ) > K. Consider corresponding
eigenvector W = (m, ρ) normalized by

(7.36)

∫
Ω

|m|2 dxdy +

∫
∂Ω

|ρ|2 ds = 1,

hereafter for brevity we write Ω in place of Ω(V ). Functions ρ and m satisfy

λρ =
∂φ

∂ν
+

∂2Φ

∂ν2
ρ−

(
∂Φ

∂τ
+ V νy

)
ρ′ on ∂Ω,(7.37)

λm = Δm+ V ∂xm− Λ∇eΦ−V x · ∇φ+ ΛeΦ−V x(m− ζφ)− div(m∇Φ) in Ω,

(7.38)

along with boundary condition (5.5), the auxiliary function φ being a unique solu-
tion of (5.1)–(5.2). Consider, as in Lemma 7.5, the harmonic extension H(ρ) of ρ
from ∂Ω into Ω and multiply (5.1) by the complex conjugate H(ρ) of H(ρ), then
integrating over Ω we get (cf. (7.18))
(7.39)

λ

∫
∂Ω

|ρ|2 ds−γ

ζ

∫
∂Ω

ρ′′∂νH(ρ) ds =

∫
Ω

(ζφ−m)H(ρ) dxdy

+

∫
∂Ω

((γκ2

ζ
− V νx

)
ρ∂νH(ρ) +

∂2Φ

∂ν2
|ρ|2 −

(
∂Φ

∂τ
+ V νy

)
ρ′ρ

)
ds.

Notice that by (7.21), −γ
ζRe

(∫
∂Ω

ρ′′∂νH(ρ) ds
)
≥ θ‖ρ‖2

H3/2(∂Ω)
−C‖ρ‖2L2(∂Ω) with

some constants θ > 0 and C that does not depend on ρ. Therefore taking real part
of (7.39) and estimating various terms in the right hand side of (7.39) as in the
proof of Lemma 7.5, we obtain

(7.40)
θ

2
‖ρ‖H3/2(∂Ω) ≤ −Re(λ)‖ρ‖2L2(∂Ω)+C1

(
‖ρ‖2L2(∂Ω) + ‖m‖2L2(Ω)

)
≤ C1+|K|,
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EMERGENCE OF TRAVELING WAVES AND THEIR STABILITY 1837

where we have also used (7.36) and the inequality Re(λ) > K. Next, multiply
(7.38) by m and integrate over Ω to derive, analogously to (7.28),
(7.41)

λ

∫
Ω

|m|2 dxdy+
∫
Ω

|∇m|2 dxdy = Λ

∫
Ω

φdiv(m∇eΦ−V x) dxdy

+

∫
Ω

(
V ∂xm−∇m · ∇Φ−mΔΦ+ ΛeΦ−V x(m− ζφ)

)
mdxdy

−
∫
∂Ω

ΛeΦ−V x

(
∂2Φ

∂ν2
ρ−

(∂Φ
∂τ

+ V νy

)
ρ′
)
mds.

Taking real part of (7.41) one can show (as in the proof of Lemma 7.5) that
‖m‖H1(Ω) ≤ C. Now, add (7.39) to (7.41) and collect terms with the factor λ
to see that

|λ| ≤
∣∣∣∣γζ

∫
∂Ω

ρ′′∂νH(ρ) ds

∣∣∣∣+ C,

i.e. we need only to obtain a bound for the term γ
ζ

∫
∂Ω

ρ′′∂νH(ρ) ds. To this end

one combines inequalities∣∣∣∣
∫
∂Ω

ρ′′∂νH(ρ) ds

∣∣∣∣ ≤ ‖ρ′′‖H−1/2(∂Ω)‖∂νH(ρ)‖H1/2(∂Ω) ≤ C‖ρ‖2H3/2(∂Ω)

with the bound (7.40). �

Remark 7.7. Unlike Theorem 4.1, the above result holds without symmetry assump-
tions, i.e. it covers all eigenvalues, not necessarily corresponding to eigenvectors
with reflection symmetry (with respect to the x-axis).

8. Linear stability analysis of traveling wave solutions with small

velocities under perturbations without symmetry assumptions

So far we assumed reflection symmetry with respect to the x-axis of traveling
waves (that are solutions φ = Φ(x, y, V ), Ω = Ω(V ) of (4.2)–(4.3)) and their per-
turbations. In this section we consider general perturbations with no symmetry
assumptions on the pairs (m, ρ) from the domain of the linearized operator A(V ).
We begin with the case V = 0, i.e. we consider linearization around the stationary
radial solution with the radius R = R0 that satisfies the bifurcation conditions
(4.18). The linearized operator A(0) = Ass(R) has the same eigenvalues as under
the above symmetry assumption, but multiplicities of nonradial eigenvectors double
since the odd Fourier modes m = m̂n(r) sinnϕ, ρ = ρ̂n sinnϕ are also considered.
In particular, Ass(R) has zero eigenvalue with two eigenvectors corresponding to
infinitesimal shifts (in x- and y-directions)

(8.1) (m, ρ) = (0, νx) = (0, cosϕ), (m, ρ) = (0, νy) = (0, sinϕ),

and two generalized eigenvectors

(8.2) (m, ρ) = (m0(Φ
0
V (x, y)− x), 0), (m, ρ) = (m0(Φ

0
V (y, x)− y), 0)

(cf. (5.7) with V = 0), where Φ0
V is the unique solution of (4.14). By virtue of

Lemma 6.1 the multiplicity of zero eigenvalue equals to five, the complementary
eigenvector being (2πRp′∗(πR

2) + γ/R2, 1). For V �= 0 the generalized eigenspace
corresponding to zero eigenvalue is described in
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1838 VOLODYMYR RYBALKO AND LEONID BERLYAND

Proposition 8.1. The operator A(V ) defined in (5.1)-(5.5) has the zero eigenvalue
with multiplicity at least four. There are two eigenvectors W1 = (m1, ρ1), W3 =
(m3, ρ3) corresponding to infinitesimal shifts,

(8.3) m1 := −Λ(V )∂xe
Φ−V x, ρ1 := νx, m3 := −Λ(V )∂ye

Φ−V x, ρ3 := νy,

the generalized eigenvector W2 given by (5.7) (which is obtained by taking derivative
of the traveling wave solution in V ), and the following generalized eigenvector W4 =
(m4, ρ4),
(8.4)

m4 := −Λ(V )

V
∂ϕe

Φ−V x =
Λ(V )

V
(y∂xe

Φ−V x − x∂ye
Φ−V x), ρ4 :=

1

V
(−yνx + xνy),

which represents infinitesimal rotations of the traveling wave solution. The gener-
alized eigenvectors W2, W4 satisfy A(V )W2 = W1, A(V )W4 = W3.

Remark 8.2. The eigenvectors W1, W3 appear due to translational invariance of
the problem (2.9)–(2.13) under shifts of the frame in x and y respectively. This
problem is also invariant under rotations. However, equations (4.2)–(4.3) for the
traveling wave solutions and corresponding linearized operator are written in the
frame that moves with velocity V . That is why rotational invariance gives rise to
the generalized eigenvector W4 rather than eigenvector.

Proof. First we show that A(V )W3 = 0. Clearly (5.1) is satisfied with φ =
−∂yΦ, also (A(V )W3)m (given by (5.4)) equals zero identically. To verify that
(A(V )W3)ρ = 0 take the tangential derivative of the boundary condition ∂νΦ = V νx
(this amounts to differentiating with respect to the arc length s):

(8.5) −∂2
xxΦνxνy + ∂2

xyΦν
2
x − ∂2

xyΦν
2
y + ∂2

yyΦνxνy − ∂xΦκνy + ∂yΦκνx = −V κνy,

where we have used the Frenet-Serret formulas ν′x = −κνy, ν
′
y = κνx. Multiply this

relation by νx and add to its both sides ∂2
ννΦνy = (∂2

xxΦν
2
x+2∂2

xyΦνxνy+∂2
yyΦν

2
y)νy

to find

0 = ∂ν∂yΦ− ∂2
ννΦνy + κνx(∂τΦ+ V νy) = ∂ν∂yΦ− ∂2

ννΦνy + (∂τΦ+ V νy)ν
′
y.

The verification of (5.5) is analogous, while to show (5.2) we differentiate the equal-
ity ζΦ = p∗(|Ω|)−γκ in s and obtain ζ∂τΦ = −γκ′. Then recalling that ∂νΦ = V νx
we derive

−ζ∂yΦ = −ζ(∂τΦτy + ∂νΦνy) = γκ′τy − ζV νxνy = γ(ν′′y + κ2νy)− ζV νxνy.

Clearly, all the above arguments apply to show that W1 is also an eigenvector. An
alternative, more direct proof of this fact is given in Appendix A. It is also shown
there that A(V )W2 = W1, by taking finite differences to approximate the derivative
of the traveling wave solution in V .

We proceed now with the vector W4. Take the derivative of ΔΦ+Λ(V )eΦ−V x =
ζΦ in ϕ to obtain that (5.1) is satisfied with φ = −∂ϕΦ. Also, taking the de-
rivative in ϕ of the equation −V ∂xe

Φ−V x = ΔeΦ−V x − div(eΦ−V x∇Φ) and using
the identities ∂ϕ∂x· = ∂x∂ϕ · −∂y·, ∂ϕ∂y· = ∂y∂ϕ · +∂x· we get m3 = Δm4 +
Vm4−div(m4∇Φ)+Λ(V )div(eΦ−V x∇∂ϕΦ). Considering equations on the bound-
ary ∂Ω(V ) we provide details only for equation (5.3), the verification of (5.2) and
(5.5) being similar. Multiply the equation ∂ν∂xΦ − ∂2

ννΦνx + (∂τΦ + V νy)ν
′
x = 0
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by y and subtract the equation −∂ν∂yΦ+ ∂2
ννΦνy − (∂τΦ+ V νy)ν

′
y = 0 multiplied

by x. After simple manipulations we obtain

0 = −∂ν∂ϕΦ− νy∂xΦ+ νx∂yΦ+ ∂2
ννΦ(xνy − yνx) + (∂τΦ+ V νy)(yν

′
x − xν′y)

= −∂ν∂ϕΦ+ ∂τΦ+ ∂2
ννΦ(xνy − yνx)+(∂τΦ+ V νy) ((yνx − xνy)

′ − y′νx+x′νy) ,

where x′ and y′ are derivatives of x = x(s) and y = y(s) in s. Since x′ = τx = −νy
and y′ = τy = νx we finally get

−∂ν∂ϕΦ+ ∂2
ννΦ(xνy − yνx)− (∂τΦ+ V νy)(xνy − yνx)

′ = V νy.

Proposition 8.1 is proved. �

While Theorem 7.2 describes all small (in absolute value) eigenvalues of the
operator A(V ) in the space of vectors possessing symmetry with respect to the
x-axis, Theorem 7.6 and Proposition 8.1 show that in general case, without the
said symmetry assumption, the structure of the spectrum of A(V ) near zero is the
same as in Theorem 7.2 but the multiplicity of zero eigenvalue changes to four.
Then, taking into account Theorem 3.5, we arrive at the following result which
summarizes spectral analysis of the operator A(V ).

Theorem 8.3. Assume that conditions of Theorem 4.1 are satisfied, and M ′(V ) �=
0 for sufficiently small V �= 0. Then the operator A(V ) has for small V �= 0 zero
eigenvalue and its multiplicity is equal to four. The next smallest in absolute value
eigenvalue is λ(V ) �= 0, this eigenvalue is simple and it is given by the asymptotic
formula (7.9). All other eigenvalues have real parts bounded away from zero. If
additionally conditions of Theorem 3.5 are satisfied then nonzero eigenvalues other
than λ(V ) have negative real parts.

Notice that under the condition (3.17) the radially symmetric stationary solu-
tions (3.1) with radii R close to the critical radius R = R0 can be reparametrized
by their total myosin masses Mss, see Remark 3.6. Then the factor E′(R)/M ′

ss(R)
in the formula (7.9) writes as

E′(R)

M ′
ss(R)

=
dE

dMss
.

Moreover, using Lemma 4.4 one can derive an explicit formula for this factor.
Considering the total myosin mass of traveling waves in the companion paper [29]
an explicit formula for M ′′(0) is obtained via asymptotic expansions in the limit of
small velocities (see [29], Supplementary Material). Then performing computations

Total myosin

mass

V
el
o
ci
ty

Stable

Stationary solutions

Unstable

Traveling waves

Figure 1. Supercritical pitchfork bifurcation.
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for factors in formula (7.9) (more precisely, its particular case (7.10)) we see that
in a wide range of parameters bifurcation of traveling wave solutions is always
the supercritical pitchfork, since the real part of the key eigenvalue λ(V ) is always
negative for sufficiently small V . In particular, this holds when the condition (3.17)
and conditions of Theorem 3.5 are satisfied. This result agrees with 1D results from
[27], where the normal form analysis revealing the structure of the bifurcation was
performed for the first time. Also, Fig. 2 (borrowed from [29]) depicts approximate
shapes of traveling wave solutions and densities of myosin for small velocities V .
The shape becomes asymmetric with increasing V and the myosin accumulates at

Figure 2. Traveling wave solutions with increasing velocities.
Motion is to the right. Darker colors correspond to higher myosin
density. See [29, Supplementary Material] for parameter values.

the rear. This myosin accumulation is consistent with experimental results from
[30].

Appendix A. Derivation of the linearized operator

Consider problem (2.9)–(2.13) in the frame moving with constant velocity V
in x-direction, and assume that a solution is represented in the perturbative form
m(x, y, t) + ΛeΦ(x,y,V )−V x, ∂Ω = {(x(s), y(s)) + ρ(s, t)ν(s); (x(s), y(s)) ∈ ∂Ω(V )}
with respect to the traveling wave (ΛeΦ(x,y,V )−V x,Ω(V )) (which is a stationary
solution in moving frame), assume also the representation φ(x, y, t)+Φ(x, y, V ) for
the solution of problem (2.9)–(2.10). Hereafter we assume that m, ρ and φ are
small and smooth enough functions, and the function Φ is extended as a smooth
function in a neighborhood of Ω(V ) (such an extension exists thanks to the C∞

smoothness of the boundary and the function Φ, Φ ∈ C∞(Ω(V ))). Then we have

(A.1) −Δφ+ ζφ−m = ΔΦ− ζΦ+ ΛeΦ−V x in Ω,

(A.2) ζφ = (p∗(|Ω|)− p∗(|Ω(V )|))− (ζΦ− p∗(|Ω(V )|) + γκ)− γ(H − κ) on ∂Ω,

(A.3) VN − ∂φ

∂ν
= ∇φ · (N − ν) +

∂Φ

∂N
− V Nx on ∂Ω,

(A.4)
∂tm−Δm−V ∂xm+ div(ΛeΦ−V x∇φ) + div(m∇Φ)

= Λ
(
ΔeΦ−V x + V ∂xe

Φ−V x − div(eΦ−V x∇Φ)
)
− div(m∇φ) in Ω,

(A.5) ∂νm = ∇m · (ν −N)− Λ
∂

∂N
eΦ−V x on ∂Ω,

where N is the outward pointing normal to ∂Ω, VN denotes the normal velocity of
∂Ω, and H stands for the curvature of ∂Ω. The last term −V Nx in (A.3) appears
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because of passing to the moving frame. The boundary ∂Ω is parametrized by
the arc length s on ∂Ω(V ) via the map s �→ (x(s), y(s)) + ρ(s, t)ν(s). Therefore
considering vectorial line element on ∂Ω one can calculate the tangent vector T
using Frenet-Serre formulas ν ′ = κτ , τ ′ = −κν,

(A.6) T =
1√

(ρ′)2 + (1 + κρ)2
((1 + κρ)τ + ρ′ν),

and derive that the length element dσ on ∂Ω is given by

dσ =
√

(ρ′)2 + (1 + κρ)2ds.

It follows from (A.6) that

(A.7) N =
1√

(ρ′)2 + (1 + κρ)2
((1 + κρ)ν − ρ′τ ).

Since dN = HTdσ, one can derive the formula

(A.8) H =
1

((ρ′)2 + (1 + κρ)2)3/2
(
κ(1 + ρκ)2 − ρ′′(1 + κρ) + κρρ′ + 2κ(ρ′)2

)
for the curvature H. Thus, assuming that ρ, ρ′ and ρ′′ are small and expanding
the right hand side, we obtain after dropping higher order terms,

(A.9) H = κ− ρ′′ − κ2ρ+ . . . ,

this leads to the linear approximation

(A.10) −γ(H − κ) = γ(ρ′′ + κ2ρ) + . . .

of the last term in the right hand side of (A.2). Also, one can show that the linear
part of the area change is given by |Ω|− |Ω(V )| =

∫
∂Ω(V )

ρds+ . . . , so that we have

(A.11) p∗(|Ω|)− p∗(|Ω(V )|) = p′∗(|Ω(V )|
∫
∂Ω(V )

ρds+ . . . .

Finally taking two terms of the expansion

Φ(x(s) + ρνx, y(s) + ρνx, V ) = Φ(x(s), y(s), V ) + ∂νΦ(x(s), y(s), V )ρ+ . . . ,

and recalling that ∂νΦ = V νx, ζΦ = p∗(|Ω(V )|)− γκ on ∂Ω(V ), we obtain

−ζΦ(x(s) + ρνx, y(s) + ρνy, V ) + p∗(|Ω(V )|)− γκ = −ζV νxρ+ . . . .

Thus, substituting this formula along with (A.10)–(A.11) in (A.2) we obtain the
linearized boundary condition (5.2).

Next, the following computations show that (5.3) is in fact linearization of (A.3),

VN = ∂tρN · ν = ∂tρ+ ∂tρ(N − ν) · ν = ∂tρ+ . . .

(from (A.7) one sees that N − ν = −ρ′τ + . . . ),

∇φ · (N − ν) +
∂Φ

∂N
−V Nx = ∇φ · (N − ν)

+
∂Φ

∂ν
(x(s) + ρνx, y(s) + ρνy, V )− ∂Φ

∂ν
(x(s), y(s), V )

+∇Φ(x(s) + ρνx, y(s) + ρνy, V ) · (N − ν)

+
∂Φ

∂ν
(x(s), y(s), V )− V νx − V (Nx − νx)

= ρ
∂2Φ

∂ν2
(x(s), y(s), V )− ρ′

∂Φ

∂τ
(x(s), y(s), V ) + V ρ′τx + . . . .

Licensed to Penn St Univ, University Park. Prepared on Fri Jun 23 12:13:57 EDT 2023 for download from IP 128.118.7.114.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1842 VOLODYMYR RYBALKO AND LEONID BERLYAND

Writing exactly the same expansion for ∇m · (ν −N)−Λ ∂
∂N eΦ−V x one can derive

the linearized counterpart (5.5) of the boundary condition (A.5). Finally notice
that the first term in the right hand side of (A.4) is identically zero, while the right

hand side of (A.1) vanishes on Ω(V ). Thus in the linear approximation one finds
equations (5.4) and (5.1).

Remark that linearized equations (5.1) and (5.4) are derived in the domain Ω
rather than Ω(V ). However Ω is a small perturbation of Ω(V ) and one can pass
from Ω to Ω(V ) by constructing a diffeomorphic mapping close to the identity map
(with the rate controlled by ρ and its derivatives). More detailed derivation of the
linearized problem requires also discussion of regularity of solutions that we are
not dwelling on. However, the above reasonings, as they are, lead to an alternative
proof of the fact that A(V )W1 = 0, where W1 = (−Λ∂xe

Φ−V x, νx), that is more
insightful than the formal proof presented in Proposition 8.1. Indeed, consider
the solution ΛeΦ(x−ε,y,V )−V (x−ε), Ωε = {(x, y); (x − ε, y) ∈ Ω(V )} (a stationary
solution of (2.9)–(2.13) in the moving frame), shifted by ε in the x-direction. Here
ε is a small parameter and, as above, we assume that Φ is smoothly extended on
the exterior of Ω(V ). We consider (ΛeΦ(x−ε,y,V )−V (x−ε),Ωε) as a perturbation of
(ΛeΦ−V x,Ω(V )), and define mε := Λ

ε (e
Φε−V (x−ε) − eΦ−V x), φε := 1

ε (Φε − Φ) and
ρε(s) as the scaled by factor 1/ε signed distance from ∂Ωε to ∂Ω(V ) (s denotes arc
length parameter on ∂Ω(V )). Then m = εmε, φ = εφε and ρ = ερε satisfy the
stationary version of (A.1)–(A.5), i.e. with VN = 0 and ∂tm = 0, so that dividing
equalities in (A.1)–(A.5) by ε and passing to the limit as ε → 0 one obtains that
limε→0 mε = −Λ∂xe

Φ−V x, limε→0 ρε = νx is a stationary solution of (5.1)–(5.5)
(with φ = −∂xΦ).

Similar arguments can be applied to show that A(V )W2 = W1, where W2 =

(∂Ṽ (Λ(Ṽ )eΦ−Ṽ x), ∂Ṽ ρ̃(s, Ṽ ))
∣∣
Ṽ=V

. To this end observe that in the frame moving

with velocity V the pair (Λ(Ṽ )eΦ−Ṽ x,Ω(Ṽ )) yields a traveling wave solution with

velocity Ṽ − V . Therefore considering ε = Ṽ − V as a small parameter, we can
employ the above derivation of the linearized problem to find A(V )W2. Indeed,
define

mε :=
1

ε

(
Λ(V + ε)eΦ(x,y,V +ε)−(V+ε)x − Λ(V )eΦ(x,y,V )−V x

)
,

φε :=
1

ε
(Φ(x, y, V + ε)− Φ(x, y, V )) , ρε :=

1

ε
ρ̃(s, V + ε),

then m = εmε, φ = εφε and ρ = ερε satisfy (A.1)–(A.5) with VN = εNx and
−ε∂xm − ε∂x(Λ(V )eΦ(x,y,V )−V x) in place of ∂tm. After dividing equalities in
(A.1)–(A.5) by ε and passing to the limit as ε → 0 one finds that A(V )W2 =
(−Λ∂xe

Φ−V x, νx), where the auxiliary function φ = ∂V Φ(x, y, V ) (appearing in the
definition of the operator A(V )) and components of W2 are obtained as the limits
of φε and mε, ρε. This completes the proof of the fact that W2 is a generalized
eigenvector of A(V ) corresponding to the zero eigenvalue.
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