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Abstract—As radar technology becomes more readily available
to researchers and users, it is thus being explored how to
better process this data for real-time implementations. To process
this radar data, the short time Fourier transform (STFT) has
been implemented to then find the micro-Doppler spectrogram.
When computing the STFT, there are parameters which can
be adjusted to alter the size of the resulting micro-Doppler
spectrogram. In this work, these parameters were adjusted to
find the optimal representation of micro-Doppler radar returns of
human activities, which were recorded using a 77 GHz Frequency
Modulated Continuous Wave (FMCW) millimeter wave radar.
To determine these optimal combinations, the resulting micro-
Doppler spectrograms were used to train and test a Convolutional
Autoencoder (CAE). The t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) and k-Nearest Neighbor Classification (kNN)
were also utilized to find the nearest representations in a low-
dimensional space of the spectrograms.

Index Terms—radar, micro-Doppler, deep learning, time-
frequency transform

I. INTRODUCTION

In recent years, low-cost and low-power radars have become
more accessible to researchers and other users thanks to the
increasing research and development for commercial radar
uses. With this increasing accessibility, the opportunities for
how to implement radars has become endless. A particularly
interesting area of implementation has been attempts to create
real-time radar systems. There are currently limitations to
implementing a fully real-time radar system, but this type of
implementation could be of great use for detection systems,
such as that for drones [1], in applications where the radar
returns are used for control such as in self-driving cars [2], or
in health monitoring systems [3]. For each of these systems
having real-time feedback is critical for system implementa-
tion.

A key challenge to real-time radar system implementation
lies in the complexity of the data representation, and resulting
dimensionality, of micro-Doppler returns [4]. The genera-
tion of time-frequency transforms (TFT), e.g. the short-time
Fourier transform (STFT), from the radar data is dependent
on a variety of parameters, such as the number of FFT
points, windowing size, window overlap, and overall dwell
time. Each of these parameters impact the dimensionality of
the resulting TFT, which influences the resulting complexity
and time to process the radar returns. While the generation
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of spectrograms comprised of a large number of pixels, e.g.
smaller windows and overlaps, may reveal finer features of the
signature, high dimensional inputs increases the time required
to compute the spectrogram while not necessarily having a
proportional benefit in terms of deep neural network (DNN)
based classification. Indeed, due to the curse of dimensionality,
typically utilization of spectrograms beyond a certain size in
fact do not result in greater classification accuracy.

Current research into the design of real-time radar systems
have implemented a variety of methods for dealing with the
computational challenges of TFT generation. In [5], the fast
Fourier transform (FFT) was utilized for signal processing,
with the number of FFT points being determined as the number
of samples per chirp. While the FFT is able to convert a signal
into the frequency domain, it cannot be used to find the change
in time of the signal as can be done when using a TFT such
as the short-time Fourier transform. Because of this, there is
a limit on the variety of uses for the transformed data from
the FFT. Instead of using the FFT alone, [6] and [7] each
implement the STFT for processing, with Hamming windows
of 0.2s and 0.3s and an overlap of 95%. Another option for
detection using the STFT is seen in [8], where the STFT is
implemented to then generate the cadence velocity diagram.

Another approach instead of initially processing the radar
data is to input the raw radar data directly into a deep neural
network. This process was implemented in [9], where a tracker
was implemented to achieve Bayesian classification. While this
approach can save time on processing the data, the network
needed to process this data is a complex network, which
will increase the processing complexity. Also, the raw data
has a significantly larger dimensionality than the processed
spectrogram, which also increases the processing complex-
ity and thus the processing time for the complex network.
Additionally, DNNs designed to directly processes raw RF
data are often limited to classification of a few number of
classes and may be more susceptible to clutter or other artifacts
that degrade performance. Computation of data representations
such as the spectrogram allow for the application of signal
processing techniques to boost signal-to-noise ratio (SNR),
such as moving taget indication (MTI) filtering, or physics-
aware machine learning techniques [10].

This study systemically investigates the optimal parameters



of the short-time Fourier transform and resulting spectro-
gram for micro-Doppler radar returns as inputs to DNNs for
classification. In Section II, which parameters of the short-
time Fourier transform that are adjusted are discussed as well
as how they change the resulting spectrogram. In Section
III, the means for testing the spectrogram is described, with
details on the Convolutional Autoencoder as well as the t-
Distributed Stochastic Neighbor Embedding and k-Nearest
Neighbor Classification which were utilized. Lastly, the results
of the testing methods are presented in Section IV, with the
optimal hyper-parameters of the short-time Fourier transform
discussed.

II. MICRO-DOPPLER SIGNATURE GENERATION

The received signal for an FMCW radar is a complex time-
stream of I/Q samples that are comprised of a time-delayed and
frequency-shifted version of the transmitted signal. This data
can be re-shaped into a radar data cube that has dimensions of
fast-time (range), slow-time (velocity), and channel (number
of antenna elements). Typically, the micro-Doppler signature
is computed by finding the TFT of a slow-time slice of the
data matrix for a given channel at the target location.

A. Short-Time Fourier Transform (STFT)

The most commonly applied TF transform is the spectro-
gram, denoted by S(t,w), which is the square modulus of the
STFT. It can be expressed in terms of the employed window
function, w(t), as

S(t,w) = ‘/00 z(tw(t —7)e " da ’ ()

The spectrogram reveals the micro-Doppler frequency mod-
ulations which are centered about the main Doppler shift
related to translational movement [11]. While reaping the
benefits of linearity, STFTs though must trade-off time and
frequency resolution due to fixed length windows [12].

When computing the STFT, there are a number of parame-
ters which can be adjusted to trade-off resolution in time and
frequency. These parameters include the number of fast Fourier
transform points (NFFT), window size, and window overlap.
Use of longer windows improves frequency estimation, while
lowering temporal resolution. Reducing the overlap between
windows reduces the time between frequency estimates. In-
creasing the number of FFT points increases the fineness
of the frequency representation. Thus, these parameters have
an important impact not just on the ability of the TFT to
capture fine micro-Doppler features, but also the resulting
dimensionality (number of pixels comprising the image) of
the micro-Doppler signature.

B. Parameter Variations

In this study, the NFFT was defined to be 29, or 512, and the
window size was varied as either 128, 256, or 512. The pixel
size may be computed based on the length of the input data,

window size, and window overlap according to the following
relation:
DataLength — WindowSize — 1

N =
WindowSize — Overlap

2

With this equation, it is found that the pixel size directly
corresponds to the length of the second dimension of the
STFT while the first dimension corresponds to the number
of FFT points. This in turn means that the Pixel size dictates
the resolution in the time domain of the resulting spectrogram.

Using Eq. 2, the window overlap was found for the window
sizes corresponding to pixel sizes of 128, 256, 512, and 1024.
It was found that for a pixel size of 128, only a window
size of 512 could be used, and for a pixel size of 256, only
window sizes of 256 and 512 could be used since there was no
possible window overlap size that would result in the desired
pixel size for any of the defined representations. Also, as the
desired pixel size increases, the variance of the actual pixel
size increases as well since for a given window size there
will be no window overlaps that result in the exact pixel
size desired. This can be seen in Table I, where the desired
pixel size and actual pixel size is listed for each parameter
combination. For the purpose of this paper, the NFFT was
kept fixed and therefore the dimension corresponding to the
pixel size was adjusted. The variance in this dimension is
tested for the rest of this paper, with the intention of finding
combinations that reduce the pixel size while retaining decent
accuracy for testing with a DNN.

III. EXPERIMENT DESIGN
A. Dataset Utilized

The dataset used in this study was acquired with a TI
AWR1642 single-chip 76-GHz to 81-GHz automotive radar
in an indoor environment. The radar was placed on a table
1.5 meters up from the ground facing a walkway that was
6 meters long and 3 meters wide. Data was acquired from
10 participants for 13 different ambulatory and 2 in-place
activities:

1) Normal walking

2) Short steps

3) Walking with a cane

4) Walking with crutches

5) Skipping

6) Scissors gait

7) Walking on toes

8) Marching

9) Limping

10) Vacuuming the floor

11) Dragging furniture

12) Walking while carrying a load in one hand

13) Walking while carrying a load in both hands

14) Putting books on a bookshelf

15) Folding laundry

Each activity was articulated while moving towards the
radar and a total of 1436 samples were acquired. Examples of
the micro-Doppler spectrograms of the human activity classes
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Fig. 1: Micro-Doppler spectrograms for Vaccuming, Normal walking, Short steps, and Walking with a cane. Row 1: window
size of 512 and pixel size of 256. Row 2: window size of 256 and pixel size of 512, and Row 3: window size of 512 and

pixel size of 1024.
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Fig. 2: CAE Network Structure.

is shown in Figure 1, with each individual class containing
between 92 to 106 samples except for class 15 Folding laundry,
which contains 47 samples.

B. Classification Approach

In this study, a convolutional autoencoder (CAE) was used
to evaluate the accuracy resulting from varying the parameters
of the spectrogram and resulting input data dimensionality.
The CAE was trained on 80% of the spectrograms while the
remaining 20% were used for testing. Additionally, the k-
nearest neighbor classifier was found for the spectrograms.
Examples of the spectrogram images used for training can
be seen in Figure 1, corresponding to spectrograms generated
with window sizes of 512, 256, and 512, and pixel sizes of

256, 510, and 1024, respectively.

The architecture of the CAE utilized is shown in Figure
2. CAEs are composed of an encoder and decoder. Initially,
the encoder takes as input all images, which are then encoded
through the first 16 layers. This encoded output is then sent
to the decoder, where the goal of the decoder is to recreate
the initial input to the encoder. After training the full CAE,
the model for training and testing for classification of the
images removes the decoder and instead inputs the output
of the encoder directly to the classifier, which consists of a
batch normalization layer, 2 dense layers each followed by a
dropout layer, and then a dense layer followed by a softmax
layer for prediction. The results from utilizing the CAE for
classification is discussed in Section IV.



TABLE I: Results Per Window Size and Pixel Size

[ WINDOW SIZE H 512 256 [ 512 [ 128 [ 256 [ 512 [ 128 [ 256 [ 512 ]
[ DESIRED PIXEL SIZE H 128 256 [ 256 [ 512 [ 512 [ 512 [ 1024 [ 1024 [ 1024 ]
[ ACTUAL PIXEL SIZE H 128 256 [ 256 [ 511 [ 510 [ 512 [ 1014 [ 1012 [ 1024 ]
[ MEAN ACCURACY H 64.76 75.4 [ 78.24 [ 73.07 [ 77.19 [ 61.1 [ 76.36 [ 69.3 [ 78.3 ]
[ BEST ACCURACY H 75.3 77.4 [ 82.9 [ 79.02 [ 82.9 [ 73.6 [ 78.8 [ 75.7 [ 84.4 ]
TABLE II: Distance of kNN .
Average !
. . . . distance  from ‘5
Pixel Size Window Size center of 1024 ,
512 -
128 512 6.1592 T - .
256 256 7.6355 i
256 512 2.5758 : s .
512 128 7.7816
512 256 4.3760
512 512 9.3176 25 - - - : . .
1024 128 5.0756
1024 256 5.6929 @
1024 512 0.4758

C. Neighbor Classification

In addition to using a CAE for classification, neighbor
classification methods were utilized to compare the similar-
ities between micro-Doppler spectrograms created with the
different window and pixel sizes. For neighbor classification,
t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-
Nearest Neighbor Classification (kNN) was utilized. The t-
SNE is used to preserve the local structure of data by matching
pairwise similarity distributions in both the higher-dimensional
original data space and the lower-dimensional projected space
[13]. Initially, the t-SNE was implemented to map each 10-
second data sample into a 1x3 low-dimensional space. Each of
these 1x3 results were then stacked to form a 1436x3 matrix,
where each row corresponds to a single data sample. This
matrix was then utilized to find the distance between k-nearest
neighbors of each window and pixel size combination with the
samples created with a window size of 512 and a pixel size of
1024, since that combination was shown to have the highest
classification accuracy in Section IV.

IV. RESULTS

The classification results of the CAE can be seen in Table 1.
To attain this result, the model was trained and tested 5 times
for each window and pixel combination. It was then found
what the mean classification accuracy is based on the 5 trials
as well as the highest classification accuracy during the 5 trials.
From these results, it can be seen that for a window size of 512
and a pixel size of 1024 the best mean classification accuracy
was observed to be 78.3% and the highest classification
accuracy was observed as 84.4%. The next best combination
was then observed for a window size of 512 and a pixel size of
256, where the mean classification accuracy was observed as
78.24% and the highest classification accuracy was observed
as 82.9%. With this combination, the average classification
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Fig. 3: t-SNE feature plots comparing layers (a) 1 and 2, (b)
1 and 3, and (c¢) 2 and 3.

accuracy and highest observed accuracy were each the second
best among all of the combinations. The only other combina-
tion to observe a maximum classification accuracy above 80%
was the combination with a window size of 256 and a pixel
size of 512, which was only 1 percentage point off the average
accuracy of the combination with a window size of 512 and
a pixel size of 256. Example micro-Doppler spectrograms of



these three window and pixel size combinations is displayed
in Figure 1. With these results, it was then observed how these
parameter combinations compared for the k-Nearest Neighbor
classification.

For comparing the neighbor classification, the distance
between k-Nearest Neighbors for k being 5 is displayed in
Table II. Each combination of window size and pixel size was
compared to the combination with a window size of 512 and a
pixel size of 1024. This base parameter combination was used
for all comparisons since it was observed to have produced
the best classification accuracy when trained and tested on the
CAE network, as demonstrated in Table I. The results here
correlate with the classification results of the CAE, where the
parameter combination with a window size of 512 and a pixel
size of 256 had the closest distance from the comparison case.
The next closest combination was once again the parameter
combination with a window size of 256 and a pixel size of 512
as well. It is then observed that none of the other parameter
combinations is within a distance of 5.0.

Lastly, the comparisons of the t-SNE spaces was plotted and
labeled for each data point as shown in Figure 3. Three plots
were made to compare each of the three channels from the
RGB spectrogram images that was created as the t-SNE, which
can be seen in Figures 3(a), 3(b), and 3(c). In each of these
three plots, the closest cluster to the cluster corresponding to
a window size of 512 and a pixel size of 1024 is once again
the combination with a window size of 512 and a pixel size
of 256, which reinforces the CAE and kNN results reported
above.

V. CONCLUSION

This paper has demonstrated how adjusting the window size
and pixel size of the short-time Fourier transform can result
in optimal combinations for data processing. Each of the nine
combinations were initially implemented in a Convolutional
Autoencoder to find the classification accuracy, where it was
observed that a window size of 512 and a pixel size of 1024
resulted in the best trained CAE. It was also observed that
a window size of 512 and a pixel size of 256 had the next
best results out of the 9 parameter combinations. Then, the t-
SNE was implemented on the micro-Doppler spectrogram data
matrices and the k-Nearest Neighbors was found between each
combination, where it was confirmed that the combination with
a window size of 512 and a pixel size of 256 was closest to the
combination with a window size of 512 and a pixel size of
1024. This reduced pixel size will allow for micro-Doppler
spectrograms to be generated with a significantly smaller
size without significantly reducing the classification accuracy
resulting from this micro-Doppler spectrogram, thus allowing
for a sped-up processing time in real-time applications.
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