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We study the spectral convergence of graph Laplacians to the Laplace-Beltrami
operator when the kernelized graph affinity matrix is constructed from N random
samples on a d-dimensional manifold in an ambient Euclidean space. By analyzing
Dirichlet form convergence and constructing candidate approximate eigenfunctions
via convolution with manifold heat kernel, we prove eigen-convergence with rates as
N increases. The best eigenvalue convergence rate is N~1/(4/2+2) (when the kernel
bandwidth parameter € ~ (log N/N)'/(4/2+2)) and the best eigenvector 2-norm
convergence rate is N~1/(#/243) (when € ~ (log N/N)!/(4/2+3)) These rates hold up
to a log N-factor for finitely many low-lying eigenvalues of both un-normalized and
normalized graph Laplacians. When data density is non-uniform, we prove the same
rates for the density-corrected graph Laplacian, and we also establish new operator
point-wise convergence rate and Dirichlet form convergence rate as intermediate
results. Numerical results are provided to support the theory.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Graph Laplacian matrices built from data samples are widely used in data analysis and machine learning.

The earlier works include Isomap [2], Laplacian Eigenmap [3], Diffusion Map [10,30], among others. Apart

from being a widely-used unsupervised learning method for clustering analysis and dimension reduction

(see, e.g., the review papers [33,30]), graph Laplacian methods also drew attention via the application in

semi-supervised learning [24,12,29,15]. Under the manifold setting, data samples are assumed to lie on low-

dimensional manifolds embedded in a possibly high-dimensional ambient space. A fundamental problem

is the convergence of the graph Laplacian matrix to the manifold Laplacian operator in the large sample
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Table 1
List of default notations
M d-dimensional manifold in R” D degree matrix of W, D;; = Z;.Vzl Wi
p data sampling density on M Lyn un-normalized graph Laplacian
Apm Laplace-Beltrami operator, also as A Ly random-walk graph Laplacian
s population eigenvalue of —A En graph Dirichlet f.orm N
Yk population eigenfunctions of —A pPx function evaluation operator, px f = {f(z:)}iz,
. ; . w density-corrected affinity matrix,
Ak empirical eigenvalue of graph Laplacian =

W=D 'wbD™!

Vg empirical eigenvector of graph Laplacian D degree matrix of W
Vm manifold gradient, also as V
H, manifold heat kernel Asymptotic Notations
Q+ semi-group operator of manifold diffusion, o) f=0(g9): |f| £ Clg| in the limit, C > 0, O,(-)

Qr = et declaring the constant dependence on a
X dataset points used for computing W o) f=06(g): for f, g >0, Cig < f < Cag in the limit,
N number of samples in X C1,C2 >0
€ kernel bandwidth parameter ~ f ~ g same as f = ©(g)
K. graph affinity kernel, W;; = K.(z;, x;), o(") f=o(g): for g >0, [f|/g — 0in .the lim'{t )

K _ 7d/2h(Hz,sz) Q) f=Q(g): for f,g >0, f/g — oo in the limit

(@, y.) ¢ € Oo(+) O(-) multiplied another factor involving a log, defined
h a function [0, 00) — R . .
5 every time used in text

mo mo[h] = fRd h(lul*)du When the superscript , is omitted, it declares that the con-
mo ma[h] :== % [pa lul*h(Jul?)du stants are absolute ones. f = O(g1, g2) means that f =
w kernelized graph affinity matrix O(lg1] + lg21)-

limit. The operator point-wise convergence has been intensively studied and established in a series of works
[19,18,4,10,27], and extended to variant settings, such as different kernel normalizations [23,36] and general
class of kernels [31,5,9]. The eigen-convergence, namely how the empirical eigenvalues and eigenvectors
converge to the population eigenvalues and eigenfunctions of the manifold Laplacian, is a more subtle issue
and has been studied in [4,34,6,35,28,14] (among others) and recently in [32,7,11,8].

The current work proves the eigen-convergence, specifically the consistency of eigenvalues and eigenvectors
in 2-norm, for finitely many low-lying eigenvalues of the graph Laplacian constructed using Gaussian kernel
from i.i.d. sampled manifold data. The result covers the un-normalized and random-walk graph Laplacian
when data density is uniform, and the density-corrected graph Laplacian (defined below) with non-uniformly
sampled data. For the latter, we also prove new point-wise and Dirichlet form convergence rates as an
intermediate result. We overview the main results in Section 1.1 in the context of literature, which are also
summarized in Table 2.

The framework of our work follows the variational principle formulation of eigenvalues using the graph
and manifold Dirichlet forms. Dirichlet form-based approach to prove graph Laplacian eigen-convergence
was firstly carried out in [6] under a non-probabilistic setting. [32,7] extended the approach under the
probabilistic setting, where x; are i.i.d. samples, using optimal transport techniques. Our analysis follows
the same form-based approach and differs from previous works in the following aspects: Let € be the (squared)
kernel bandwidth parameter corresponding to diffusion time, N the number of samples, and d the manifold
intrinsic dimensionality,

e Leveraging the observation in [10,27] that the bias error in the point-wise rate of graph Laplacian
can be improved from O(y/€) to O(e) using a C? kernel function, we show that the improved point-wise

rate Errpy = O (e, A/ %) of Gaussian kernelized graph Laplacian translates into an improved eigen-

convergence rate than using compactly supported kernels. Specifically, the eigenvector (2-norm) convergence
rate is O((log N/N)Y/(4/243)) "achieved at the optimal choice of € ~ (log N/N)/(d/2+3),

e We show that the eigenvalue convergence rate matches that of the Dirichlet form convergence rate

Errform = O (e, 1/ ﬁfﬁ) in [9], which is better than the point-wise rate Erry,. This leads to an eigenvalue

convergence rate of O((log N/N)/(4/242)) “achieved at the optimal choice of € ~ (log N/N)/(4/2+2) The
optimal € for eigenvalue and eigenvector estimation differs in order of N.
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e In obtaining the initial crude eigenvalue lower bound (LB), called Step 1 in below, we develop a short
proof using manifold heat kernel to define the “interpolation mapping”, which constructs from a vector v a
smooth function f on M. The manifold variational form of f, defined via the heat kernel, naturally relates
to the graph Dirichlet form of v when the graph affinity matrix is constructed using a Gaussian kernel.
The analysis makes use of special properties of manifold heat kernel and only holds when the graph affinity
kernel locally approximates the heat kernel, like the Gaussian. This specialty of heat kernel has not been
exploited in previous graph Laplacian analysis to obtain eigen-convergence rates.

Towards the eigen-convergence, our work also recaps and develops several intermediate results under
weaker assumptions of the kernel function (i.e., non-Gaussian), including an improved point-wise con-
vergence rate of density-corrected graph Laplacian. The density-corrected graph Laplacian, originally
proposed in [10], is an important variant of the kernelized graph Laplacian where the affinity matrix is
W = D-'WD~!. In applications, the data distribution p is often not uniform on the manifold, and then
the standard graph Laplacian with W recovers the Fokker-Planck operator (weighted Laplacian) with mea-
sure p?, which involves a drift term depending on Vlogp. The density-corrected graph Laplacian, in
contrast, recovers the Laplace-Beltrami operator consistently when p satisfies certain regularity condition,
and thus is useful in many applications. In this work, we first prove the point-wise convergence and Dirichlet
form convergence of the density-corrected graph Laplacian with T, both matching those of the standard
graph Laplacian, and this can be of independent interest. Then the eigen-consistency result extends to
such graph Laplacians (with Gaussian kernel function), also achieving the same rate as the standard graph
Laplacian when p is uniform.

In below, we give an overview of the theoretical results starting from assumptions, and end the intro-
duction section with some further literature review. In the rest of the paper, Section 2 gives preliminaries
needed in the analysis. Sections 3-5 develop the eigen-convergence of standard graph Laplacians, both
the un-normalized and the normalized (random-walk) ones. Section 6 extends to density-corrected graph
Laplacian, and Section 7 gives numerical results. We discuss possible extensions in the last section.

Notations. Default and asymptotic notations like O(+), Q(-), ©(-), are listed in Table 1. In this paper, we
treat constants which are determined by h, M, p as absolute ones, including the intrinsic dimension d. We
mainly track the number of samples NV and the kernel diffusion time parameter €, and we may emphasize
the constant dependence on p or M in certain circumstances, using the subscript notation like Opq(+). All
constant dependence can be tracked in the proof.

1.1. Owverview of main results

We first introduce needed assumptions, and then provide a technical overview of our analysis in Sec-
tion 1.1.2 (Steps 0-1) and Section 1.1.3 (Steps 2-3), summarized as a roadmap at the end of the section.

1.1.1. Set-up and assumptions
The current paper inherits the probabilistic manifold data setting, namely, the dataset {z;} ; consists
of i.i.d. samples drawn from a distribution on M with density p satisfying the following assumption:

Assumption 1 (Smooth M and p). (A1) M is a d-dimensional compact connected C> manifold (without
boundary) isometrically embedded in RP.
(A2) p € C°°(M) and uniformly bounded both from below and above, that is, Ipmin, Pmaz > 0 S.t.

0< Pmin < p(ﬂf) < Prmaz < 00, Ve € M.

Suppose M is embedded via ¢, and when there is no danger of confusion, we use the same notation x to denote
r € M and «(z) € RP. We have the measure space (M,dV): when M is orientable, dV is the Riemann
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Table 2
Summary of theoretical results.
p uniform p non-uniform Needed assumptions Error bound
Lun with W Ly, with W Lrw with W on h on € (€ — 0+)
Eigenvalue Proposi- Proposi- Proposition 6.5 Assumption 2 e?/? = Q(I“%N) form rate
UB tion 3.1 tion 3.6
Crude Proposi- Proposi- Proposition 6.6 Gaussian /22 5 o IOETN O(1)
eigenvalue tion 4.1 tion 4.4
LB
Eigenvector Proposi- - - Gaussian V22 5 op % point-wise rate
convergence tion 5.2
Eigenvalue Proposi- - - form rate
convergence tion 5.3
Eigen- Theorem 5.4 Theorem 5.5 Theorem 6.7 Gaussian ed/2+3  log N Both A and vy:
value/vector (optimal order of € O(N~1/(d/243))
combined to minimize Err,;)
convergence ed/242 % A :
(optimal order of € O(N Y/ (d/242)y,
to minimize Vg
ErT form) O(N 1/ (d+4)y
Point-wise Theorem 5.1 [27,9]" Theorem 6.2 Assumption 2 %/2F1 = Q(ligNA) point-wise rate
convergence
Dirichlet Thm. 3.2 [9]" Theorem 6.3 Assumption 2 e?? = Q(lii,ﬁ) form rate
form
convergence

. log N . . . log N
“form rate” is Errgorm = O <€, \/ %), “point-wise rate” is Errpy = O (e, ,/%),

In the table, convergence of first k,,q. eigenvalues and eigenvectors are concerned, where ky,q. is fixed. In the most right column,
“Xr” means the error of eigenvalue convergence, and “vi” means the error of eigenvector convergence (in 2-norm). O() stands
for the possible involvement of a factor of (log N) for some o > 0. In the 2nd (3rd) column, the eigenvector and eigenvalue
convergences are proved in Theorem 5.5 (Theorem 6.7) and are not written as separated propositions. *The point-wise convergence
and Dirichlet form convergence results of graph Laplacian with W hold when p satisfies Assumption 1(A2), i.e., when p is not
uniform. The Dirichlet form convergence with rate may hold when h is not differentiable, e.g., when h = 1|¢ 1), cf. Remark 2.

volume form; otherwise, dV is the measure associated with the local volume form. The smoothness of p and
M fulfills many application scenarios, and possible extensions to less regular M or p are postponed. Our
analysis first addresses the basic case where p is uniform on M, i.e., p = W and is a positive constant.
For non-uniform p as in (A2), we adopt and analyze the density correction graph Laplacian in Section 6.
In both cases, the graph Laplacian recovers the Laplace-Beltrami operator A . In below, we write A as
A, Vg as V.

Given N data samples, the graph affinity matrix W and the degree matriz D are defined as

N
Wij = Ke(wi,z;), Di; = ZW”
=1

W is real symmetric, typically W;; > 0, and for the kernelized affinity matrix, W;; = K¢(x;, x;) where

2
o —
Ke('T’ay) = 67d/2h (ﬂ> ) (1)
€
for a function h : [0,00) — R. The parameter € > 0 can be viewed as the “time” of the diffusion process.
Some results in literature are written in terms of the parameter /e > 0, which corresponds to the scale of
2

the local distance ||z — y|| such that h(@) is of O(1) magnitude. Our results are written with respect
to the time parameter €, which corresponds to the squared local distance length scale.
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Our main result of graph Laplacian eigen-convergence considers when the kernelized graph affinity is
computed with

1
ot/

h(f) = (47'l')d/2 )

¢ €[0,00), (2)

—4/2 ig included in the definition of

we call such h the Gaussian kernel function. (The constant factor (4m)
h for theoretical convenience, and may not be needed in algorithm, e.g., in the normalized graph Laplacian
the constant factor is cancelled.)

The Gaussian h belongs to a larger family of differentiable functions:

Assumption 2 (Differentiable h). (C1) Regularity. h is continuous on [0,00), C? on (0,00).
(C2) Decay condition. 3a,ay, > 0, s.t., |hF) (&) < are™ for all € >0, k=0,1,2.
(C3) Non-negativity. h > 0 on [0,00). To exclude the case that h =0, assume ||h]oc > 0.

A summary of results with needed assumptions is provided in Table 2, from which we can see that several
important intermediate results, which can be of independent interest, only require h to satisfy Assumption 2
or weaker, including

- Point-wise convergence of graph Laplacians.
- Convergence of the graph Dirichlet form.
- The eigenvalue upper bound (UB), which matches to the Dirichlet form convergence rate.

The point-wise convergence and Dirichlet form convergence of standard graph Laplacian only require a
differentiable and decay condition of h as originally taken in [10], and even without Assumption 2(C3)
non-negativity. Our analysis of density-corrected graph Laplacian assumes W;; > 0, and our main result of
eigen-convergence needs h to be Gaussian, thus we include (C3) in Assumption 2 to simplify exposition. The
need of Gaussian h shows up in proving the (initial crude) eigenvalue lower bound (LB), to be explained in
below, and it is due to the fundamental connection between Gaussian kernel and the manifold heat kernel.

1.1.2. Eigenvalue UB/LB and the interpolation mapping
To explain these results and the difference in proving eigenvalue UB and LB, we start by introducing the
notion of point-wise rate and form rate. In the current paper,

e Point-wise convergence of graph Laplacians is shown to have the rate of O (e, A/ %) We call this
rate the “point-wise rate”, and denote by Erry;.

1 T
Nz U

u = {f(z;)}¥, for f smooth on M, is shown to have the rate of O (e, \/ ﬁfd]/l > We call this rate the “form

rate”, and denote by Errfoppm,.

e Convergence of the graph Dirichlet form (D — W)u applied to smooth manifold functions, i.e.,

In literature, the point-wise convergence of random-walk graph Laplacian (I — D~1W) with differentiable

and decay h was firstly shown to have rate O(e, \/%) in [27]. The exposition in [27] was for Gaussian

h but the analysis therein extends directly to general h. The Dirichlet form convergence with differentiable

log N
Ned/2

both the random-walk and the un-normalized graph Laplacian (D — W). The analysis in [9] was mainly

h was shown to have rate O(e, ) in [9] via a V-statistic analysis. [9] also derived point-wise rate for
developed for kernel with adaptive bandwidth, and higher order regularity of h (C* instead of C?) was
assumed to handle the complication due to variable kernel bandwidth. For the fixed-bandwidth kernel as in
(1), the analysis in [9] can be simplified to proceed under less restrictive conditions of h. We include more
details in below when quoting these previous results, which pave the way towards proving eigen-convergence.
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Table 2 illustrates a difference between eigenvalue UB and LB analysis. Specifically, the eigenvalue UB
holds for general differentiable h, while the initial crude eigenvalue LB, and consequently the final eigenvalue
and eigenvector convergence rate, need h to be Gaussian. This difference between eigenvalue UB and LB
analysis is due to the subtlety of the variational principle approach in analyzing empirical eigenvalues. To
be more specific, by “projecting” the population eigenfunctions to vectors in R and use as “candidate”
eigenvectors in the variational form, the Dirichlet form convergence rate directly translates into a rate of
eigenvalue UB (for fixed finitely many low-lying eigenvalues). This is why the eigenvalue UB matches the
form rate before any LB is derived, and we call this the “Step 0” of our analysis.

The eigenvalue LB, however, is more difficult, as has been pointed out in [6]. In [6] and following works
taking the variational principle approach, the LB analysis is by “interpolating” the empirical eigenvectors to
be functions on M. Unlike with the population eigenfunctions which are known to be smooth, there is less
property of the empirical eigenvectors that one can use, and any regularity property of these discrete objects
is usually non-trivial to obtain [8]. The interpolation mapping in [6] first assigns a point z; to a Voronoi cell
Vi, assuming that {z;}; forms an e-net of M to begin with (a non-probabilistic setting), and this maps a
vector u to a piece-wise constant function P*u on M; next, P*u is convolved with a kernel function which
is compacted supported on a small geodesic ball, and this produces “candidate” eigenfunctions, whose
manifold differential Dirichlet form is upper bounded by the graph Dirichlet form of u, up to an error,
through differential geometry calculations. Under the probabilistic setting of i.i.d. samples, [32] constructed
the mapping P* using a Wasserstein-oco optimal transport (OT) map, where the co-OT distance between
the empirical measure % >, 0z, and the population measure pdV is bounded by constructing a Voronoi
tessellation of M when d > 2. This led to an overall eigen-convergence rate of O(N~'/24) in [32] when h
is compactly supported and satisfies certain regularity conditions and d > 2, the O() indicating a possible
a factor of certain power of log N. A typical example is when h is an indicator function h = 1y 1), which
is called “e-graph” in computer science literature (¢ corresponds to /€ in our notation). The approach was
extended to kNN graphs in [7], where the rate of eigenvalue and 2-norm eigenvector convergence was also
improved to match the point-wise rate of the epsilon-graph or kNN graph Laplacians, leading to a rate of
O(N~Y/(@+49) when e¥/?+2 = Q(%) The same rate was shown for co-norm consistency of eigenvectors
in [8], combined with Lipschitz regularity analysis of empirical eigenvectors using advanced PDE tools.
Eigenvalue consistency with degraded rate was obtained under the regime e%/? = Q(%), which is very
sparse graph just beyond graph connectivity threshold [7].

In the current work, we take a different approach for the interpolation mapping in the eigenvalue LB
analysis. Our method is based on manifold heat kernels, and the analysis makes use of the fact that at short
time and on small local neighborhoods, the heat kernel Hy(z,y) can be approximated by

1 A (ay)?
Gi(z,y) = We €, (3)

and consequently by K;(x,y) when h is Gaussian as in (2). The first approximation H; =~ G; is by classical
results of elliptical operators on Riemannian manifolds, cf. Theorem 2.1. Next, we show that G; ~ K,
because K; replaces geodesic distance daq(x,y) with Euclidean distance ||z — y|| in G, and the two locally
match by dy(z,y) = ||z — y|| + O(]]z — y||*). (The constant in the big-O here depends on the second
fundamental form, and by compactness of M is universal for z. Similar universal constant in big-O holds
throughout the paper.) These estimates allow us to construct interpolated C*°(M) functions I,[v] from
%, where 0 < § < 1 is a fixed
constant determined by the first K = k4, + 1 low-lying population eigenvalues py of —A. Specifically,

discrete vector v € RY by convolving with the heat kernel at time r =

0 is inversely proportional to the smallest eigen-gap between puy for k < K (uj assumed to have single
multiplicity in the first place, and then the result generalizes to greater than one multiplicity), which is an
O(1) constant determined by —A and K. Applying the variational principle to the operator I — @, where
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Q; is the diffusion semi-group operator and @Q;’s spectrum is determined by that of —A, allows to prove an
initial eigenvalue LB smaller than half of the minimum first-K eigen-gap.

The step to derive O(1) initial crude eigenvalue LB using manifold heat kernel interpolation mapping is
called “Step 1”7 in our analysis. While the interpolation mapping by convolving with a smooth kernel has
been used in previous works [6,32,7], using the manifold heat kernel plays a special role in the eigenvalue
LB analysis, and this cannot be equivalently achieved by other choices of kernels (unless the kernel locally
approximates the heat kernel, like the Gaussian kernel here). Specifically, Lemma 4.3 is proved using heat
kernel properties (without using concentration of i.i.d. data samples), and the lemma connects the continuous
integral form of interpolated candidate eigenfunctions with the graph Dirichlet form.

1.1.3. Road-map of analysis

The previous subsection has explained Step 0 and 1 of our analysis. Here we summarize the rest of the
analysis and provide a road-map.

After an O(1) initial crude eigenvalue LB is obtained in Step 1, we adopt the “bootstrap strategy” from
[7], named as therein, to obtain a refined (2-norm) eigenvector consistency rate to match to the graph
Laplacian point-wise convergence rate. We call this “Step 2”. Note that the use of smooth kernel (like
Gaussian) has an improved bias error in the point-wise rate than compactly supported kernel function, and
then consequently improves the eigen-convergence rate, see more in Remark 4.

Next, leveraging the eigenvector consistency proved in Step 2, we further improve the eigenvalue con-
vergence to match the form rate, which is better than the point-wise rate. We call this “Step 3”. Then
the refined eigenvalue LB matches the eigenvalue UB in rate. In the process, the first K many empirical
eigenvalues are upper bounded to be O(1), which follows by the eigenvalue UB proved in the beginning.

In summary, our eigen-convergence analysis consists of the following four steps,

- Step 0. Eigenvalue UB by the Dirichlet form convergence, matching to the form rate.

Step 1. Initial crude eigenvalue LB, providing eigenvalue error up to the smallest first K eigen-gap.
Step 2. 2-norm consistency of eigenvectors, up to the point-wise rate.

- Step 3. Refined eigenvalue consistency, up to the form rate.

Step 1 requires h to be non-negative and currently only covers the Gaussian case. This may be relaxed,
since the proof only uses the approximation property of h, namely that K. ~ H.. In this work, we restrict
to the Gaussian case for simplicity and the wide use of Gaussian kernels in applications.

1.2. More related works

As we adopt a Dirichlet form-based analysis, the eigen-convergence result in the current paper is of the
same type as in previous works using variational principle [6,32,7]. In particular, the rate concerns the
convergence of the first k,,,, many low-lying eigenvalues of the Laplacian, where k.. is a fized finite
integer. The constants in the big-O notations in the bounds are treated as O(1), and they depend on
kmaz and these leading eigenvalues and eigenfunctions of the manifold Laplacian. Such results are useful
for applications where leading eigenvectors are the primary focus, e.g., spectral clustering and dimension-
reduced spectral embedding. An alternative approach is to analyze functional operator consistency [4,34,28,
26], which may provide different eigen-consistency bounds, e.g., co-norm consistency of eigenvectors using
compact embedding of Glivenko-Cantelli function classes [11].

The current work considers noise-less data on M, while the robustness of graph Laplacian against noise in
data is important for applications. When manifold data vectors are perturbed by noise in the ambient space,
[13] showed that Gaussian kernel function h has special property to make kernelized graph Laplacian robust
to noise (by a modification of diagonal entries). More recently, [20] showed that bi-stochastic normalization
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can make the Gaussian kernelized graph affinity matrix robust to high dimensional heteroskedastic noise
in data. These results suggest that Gaussian h is a special and useful choice of kernel function for graph
Laplacian methods.

Meanwhile, bi-stochastically normalized graph Laplacian has been studied in [23], where the point-wise
convergence of the kernel integral operator to the manifold operator was proved. The spectral conver-
gence of bi-stochastically normalized graph Laplacian for data on hyper-torus was recently proved to be
O(N~1/(@/2449+0(1)y in [36]. The density-corrected affinity kernel matrix W = D~'WD~!, which is an-
alyzed in the current work, provides another normalization of the graph Laplacian which recovers the
Laplace-Beltrami operator. It would be interesting to explore the connections to these works and extend
our analysis to bi-stochastically normalized graph Laplacians, which may have better properties of spectral
convergence and noise-robustness.

2. Preliminaries
2.1. Graph and manifold Laplacians

We define the following moment constants of function h satisfying Assumption 2,

molt]i= [ AQlulP)dn, ma) =g [l b= 50
R4 R4

By (C3), h > 0 and the case h = 0 is excluded, thus mg[h],mz[h] > 0. With Gaussian h as in (2), mg = 1,
ms = 2, and m = 1. Denote mo[h] and mq[h] by ms and mg for a shorthand notation, and

e The un-normalized graph Laplacian L, is defined as

1
2peN

Note that the standard un-normalized graph Laplacian is usually D — W and we divide by the constant
“2peN for the convergence of Ly, to —A.
e The random-walk graph Laplacian L,., is defined as

Ly = ! 6(I —-D'w), (5)

m2
2m0

with the constant normalization to ensure convergence to —A.

The matrix L,,, is real-symmetric, positive semi-definite (PSD), and the smallest eigenvalue is zero. Suppose
eigenvalues of L,, are A\, Kk =1,2,---, and sorted in ascending order, that is,

The L,., matrix is well-define when D; > 0 for all i, which holds w.h.p. under the regime that ¢%/2? = Q(%),
cf. Lemma 3.5. We always work under the e%/? = Q(IC%TN) regime, namely the connectivity regime. Due to
that D~'W is similar to D~Y/2W D~1/2 which is PSD, L,., is also real-diagonalized and has N non-negative
real eigenvalues, sorted and denoted as 0 = A1(Lyy) < Ao(Lyw) < -+ < An(Lpy). We also have that, by

the min-max variational formula for real-symmetric matrix,
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0T Lo

T )

Mie(Lyn) = min sup
LCRY, dim(L)=k yeLv#£0 V'V

k=1,---,N.

We define the graph Dirichlet form En(u) for u € RY as

1 1
En() = g (D - W>fmkm w)? 0
1,7=1
By (4), Ex(u) = pxu” Lynu, and thus
E
Aie(Lyn) = min su Enlv) k=1,---,N. (7)

p i )
LCRN, dim(L)=k ve Lv£0 D7 ||v]|?
Similarly, we have

En(v)
A (L) = BNk —=1,... N 8
k(Lrw) = LCRNHcll'lL%(L) kvesLu};o =z D’ ®)

To introduce notations of manifold Laplacian, we define inner-product in H := L?(M,dV) as {f,g) :=
S f(2)g(2)dV (), for f,g € L*(M,dV). We also use (-, )4 to denote inner- product in LQ(M qu) qdV be-
ing a general measure on M (not necessarily probability measure), that is (f, g)q := [, f Yq(z)dV (x),
for f,g € L?*(M,qdV). For smooth connected compact manifold M, the (mmus) mamfold Laplacian-
Beltrami operator —A has eigen-pairs { i, ¥r} 52 4,

O:M1<M2S.'.§/’Lk‘§'.'7
7Awk:,ufkwka <wk7wl> :5k,l, wk GCOO(M)v kal:132,"’ .
The second eigenvalue ps > 0 due to connectivity of M. When p; = -+ = p;41—1 = p for some eigenvalue
1 of —A having multiplicity [, the eigenfunctions v;,--- ,1;1;—1 can be set to be an orthonormal basis of
the [-dimensional eigenspace associated with p. Note that ¢y € C*°(M) for generic smooth M.

2.2. Heat kernel on M

We leverage the special property of Gaussian kernel in the ambient space R” that it locally approximates
the manifold heat kernel on M. We start from the notations of manifold heat kernel. Since M is smooth
compact (no-boundary), the Green’s function of the heat equation on M exists, namely the heat kernel
H;(x,y) of M. We denote the heat diffusion semi-group operator as @; which can be formally written as
Q; = e, and

Qif (z /Ht z, ) f(y)dV(y), Yf e L*(M,dV).

By that Q; is semi-group, we have the reproduce property

/mmwmmmwwzmmw,wWeM,w>a

Meanwhile, by the probability interpretation,
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/Ht(z,y)dV(y) =1, VzxeM, Vt>0.
M

Using the eigenvalue and eigenfunctions {ug, ¥ tr of —A, the heat kernel has the expansion representation
Hy(z,y) = Y poq e # by (x)Yr(y). We will not use the spectral expansion of Hy in our analysis, but only
that 1, are also eigenfunctions of Q, that is,

Qt¢k = eit‘u‘kw/w k= 1) 27 e (9)

Next, we derive Lemma 2.2, which characterizes two properties of the heat kernel H; at sufficiently short
time: First, on a local neighborhood on M, H(z,y) can be approximated by Ky(z,y) in the leading order,
where K, is defined as in (1) with Gaussian h; Second, globally on the manifold the heat kernel Hy(z,y)
has a sub-Gaussian decay. These are based on classical results about heat kernel on Riemannian manifolds
[21,16,25,17], summarized in the following theorem.

Theorem 2.1 (Heat kernel parametriz and decay [25,16]). Suppose M s as in Assumption 1 (A1), and
m > d/2+ 2 is a positive integer. Then there are positive constants to < 1, 0y < inj(M) i.e. the injective
radius of M, and both tg and 69 depend on M, and

1) Local approximation: There are positive constants Cy, Cy which depending on M, and ug, -+ , U
€ C™°(M), where ug satisfies that

|U0(£L’,y) - 1| < CldM(xvy)2a Vy € M; d./\/l(yvx) < 50;

and Gy is defined as in (3), such that, when t < tq, for any x € M,

|Ht(x, y) — Gi(z,y) (Z tlul(z,y)> < Cot™ L Wy € M, d(y, x) < do- (10)
=0

2) Global decay: There is positive constant Cs depending on M such that, when t < tg,

IVICEN

Hy(z,y) < Cst™ 257 | Va,y e M. (11)

Part 1) is by the classical parametrix construction of heat kernel on M, see e.g. Chapter 3 of [25], and
Part 2) follows the classical upper bound of heat kernel by Gaussian estimate dating back to 60s [1,17]. We
include a proof of the theorem in Appendix B for completeness.

The theorem directly gives to the following lemma (proof in Appendix B), which is useful for our con-
struction of interpolation mapping using heat kernel. We denote by Bs(x) the Euclidean ball in R? centered
at point x of radius 9.

Lemma 2.2. Suppose M is as in Assumption 1 (A1), and t — 0+. Let 6, := \/6(10 + )tlog 1, and K,(z,y)

t’
be with Gaussian kernel h, i.e., Ki(x,y) = (47rt)*d/26’”"”’y“2/4t. Then there is positive constant €y depending
on M such that, when t < eg, for any x € M,

Hy(z,y) = Ki(z,y)(1 + O(t(logt=1)%)) + O(t?), Vy € Bs,(z) N M, (12)
Hy(z,y) = O(t"?), Vy¢ Bs,(v) N M, (13)
Hy(z,y) = O(t~%?), Va,ye M. (14)

The constants in big-O in all the equations only depend on M and are uniform for all x.
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3. Eigenvalue upper bound

In this section, we consider uniform p on M, and standard graph Laplacians L,, and L., with the
kernelized affinity matrix W, W;; = K¢(x;,x;) defined as in (1). We show the eigenvalue UB for general
differentiable h satisfying Assumption 2, not necessarily Gaussian.

8.1. Un-normalized graph Laplacian eigenvalue UB
We now derive Step 0 for L, the result being summarized in the following proposition.

Proposition 3.1 (Eigenvalue UB of Ly, ). Under Assumption 1(A1), p being uniform on M, and Assump-
tion 2. For fized K € N, if as N — 0o, € — 0+ and €¥/? = Q(%), then for sufficiently large N, w.p.
>1—4K2N-10,

Ak (Lun) < pr + O (6, ;;f—;;;) , k=1,--- K.
The proposition holds when the population eigenvalues i, have more than 1 multiplicities, as long as they
are sorted in an ascending order. The proof is by constructing a k-dimensional subspace L in (7) spanned
by vectors in RN which are produced by evaluating the population eigenfunctions v, at the N data points.
The proof is given in the end of this subsection after we introduce a few needed middle-step results.
Given X = {;}¥,, define the function evaluation operator px applied to f : M — R as

pXZC(M>—>RN7 pr:(f(xl)v"'vf(xN))'

We will use uy, = % px ¥y as “candidate” approximate eigenvectors. To analyze EN(% px¥r), the following
result from [9] shows that it converges to the differential Dirichlet form

Wk, (—A)r)p2 = p

with the form rate. The result is for general smooth p and weighted Laplacian A,, which is defined as
A=A+ % -V for measure qdV on M. A, is reduced to A when ¢ is uniform.

Theorem 3.2 (Theorem 3.4 in [9]). Under Assumptions 1 and 2, as N — 0o, € — 0+, ¢¥/2 = Q(IOIgVN), then
for any f € C>®(M), when N is sufficiently large, w.p. > 1 — 2N 710,

Ex(px) = (=B fy + Ops () +0 | | 0 [ 1911852
M

The constant in Oy ;(-) depends on the C* norm of p and f on M, and that in O(-) is an absolute one.

Proof of Theorem 3.2. The proof is by a going through of the proof of Theorem 3.4 of [9] under the simplified
situation when § = 0 (no normalization of the estimated density is involved). Specifically, the proof uses the
concentration of the V-statistics V;; := L K, (z;, ;) (f(z;) — f(z;))?. The expectation of EVj;, i # j, equals
Ll S Ko ) (@) = F(0)*p(@)p(y)aV (2)aV (y) = malhl(f, Ay f)ye + Ops(e). Meanwhile, [Viy| is
bounded by O(e~%/2), and the variance of the V;; can also be bounded by O(e~%?) with the constant as in the
theorem, following the calculation in the proof of Theorem 3.4 in [9]. The concentration of m Zf\fj:l Vij
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at EV;; then follows by the decoupling of the V-statistics, and it gives the high probability bound in the
theorem.

Note that the results in [9] are proved under the assumption that h to be C* rather than C?, that is,
requiring Assumption 2(C1)(C2) to hold for up to 4-th derivative of h. This is because C* regularity of
h is used to handle complication of the adaptive bandwidth in the other analysis in [9]. With the fixed
bandwidth kernel K (z,y) as defined in (1), C? regularity suffices, as originally assumed in [10]. O

Remark 1 (Relazation of Assumption 2). Since the proof only involves the computation of moments of
the V-statistic, it is possible to relax Assumption 2(C3) non-negativity of h and replace with certain non-
vanishing conditions on mg[h] and ms[h], e.g., as in [10] and Assumption A.3 in [9]. Since the non-negativity
of Wj; is used in other places in the paper, and our eigenvalue LB needs h to be Gaussian, we adopt the
non-negativity of h in Assumption 2 for simplicity. The C* regularity of f may also be relaxed, and the
constant in O, ¢(-) may be improved accordingly. These extensions are not further pursued here.

Remark 2 (Dirichlet form convergence with compactly supported h). The “epsilon-graph” corresponds to
construct graph affinity using the indicator function kernel h = 1} 1). Note that the “epsilon” stands for
the scale of local distance and thus is the /€ here, because our € is “time”. When h = 1j0,1), using the same
method as in the proof of Lemma 8 in [10], one can verify that (proof in Appendix C.1), for ¢ # j,

EVij = ma[h](f, —Ap2f)p2 + Opf(e), f € CT(M). (15)

The boundedness and variance of V;; are again bounded by O(e=%?), and thus the Dirichlet form convergence
log N
Ned/2
UB also has the same rate, following the same proof of Proposition 3.1. The final eigen-convergence rate

with h = 1jg 1) has the same rate O(e, ) as in Theorem 3.2. This firstly implies that the eigenvalue

also depends on the point-wise rate of the graph Laplacian, see more in Remark 4.

In Theorem 3.2 and in below, the log N factor in the variance error bound is due to the concentration
argument. Throughout the paper, the classical Bernstein inequality Lemma B.1 is intensively used.
To proceed, recall the definition of Ex(u) as in (6), we define the bi-linear form for u,v € R as

1 1

—_— T p—
a2 U (D — W,

By (u,v) := %(EN(UJWU) —En(u—v)) =

which is symmetric, i.e., By(u,v) = By(v,u), and By(u,u) = En(u). The following lemma characterizes
the forms En and By applied to px v, proved in Appendix C.1.

Lemma 3.3. Under Assumption 1 (A1), p being uniform on M, and Assumption 2. As N — oo, € — 0+,
€¥2N = Q(log N). For fired K, when N is sufficiently large, w.p. > 1 — 2K?N~10,

1 [log N

(16)
1 1 log N
By(— y — =0 (0] —— |, k#L1<EkI<K.
N(\/ﬁpX'l/Jk \/ﬁpxﬂfl) () + (\/ Ned/2> #1L,1<kIl<
We need to show the linear independence of the vectors pxs,---,px¥k such that they span a K-

dimensional subspace in RY. This holds w.h.p. at large N, by the following lemma showing the near-isometry
of the projection mapping px, proved in Appendix C.1.
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Lemma 3.4. Under Assumption 1 (A1), p being uniform on M. For fized K, when N is sufficiently large,
w.p. >1—-2K2N-10

1,1 log N

2 _
a7)
i) (Gopxt) = OO 55 kAL 1< kIS K

Given these estimates, we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. For fixed K, consider the intersection of both good events in Lemma 3.3 and 3.4,
which happens w.p. > 1 —4K2N 19 with large enough N. Let u;, = \/%;Pxi/}k, by (17), the set {uy, -+ ,ux}
is linearly independent.

For any 1 < k < K, let L = Span{uy, - ,u}, then dim(L) = k. By (7), to show the UB of A4 as in the
proposition, it suffices to show that

1 log N
sup —En(W) <up+0(e) + O — .
verolPN P ~N(v) < (€) Ned/2

For any v € L, ||[v]|* = N, there are ¢;, 1 < j < k, such that v = SOk cju;. By (17),

j=1

1 r log N r log N log N
1= — 2 = 2 1 j = 2 1 K

1ol ]EZI:CJ( +0( — ))+#l§jl_1|c]|010(\/ ) = lelF (1 + 0 )

thus [|c]|? =1+ O(4/ %) Meanwhile, En(v) = EN(Z:;?:1 ciuj) = Z?,l:l ¢ By (uj,w;), and by (16),

b 9 log N r log N
EN(U) = ch p/.l/] + 0(6, —Ned/2) + Z |Cj||Cl|O(€, W)
=1 LG =1
k
log N log N
= PZMC? + Kl|e]*O(e, \/ W) < lel? {P,Uk + O(e, 4/ W)} ; (18)
j=1

where since K is fixed integer, we incorporate it into the big-O. Also, pp < px = O(1), and then

%EN(U) < <1+O( lofVN)> {Mk+0(€)+0< %)} :Mk+0(€)+0< —]l\c;fdj/\g> ;

which finishes the proof. O

3.2. Random-walk graph Laplacian eigenvalue UB

We fist establish a concentration argument of D; in the following lemma, which shows that D; > 0
w.h.p., by that %Di concentrates at the value of mgp > 0. Consequently, ﬁuTDu also concentrates and
the deviation is uniformly bounded for all u € RY, which will be used in analyzing (8).

Lemma 3.5. Under Assumption 1(A1), p uniform, and Assumption 2. Suppose as N — 0, ¢ — 0+ and
€2 = Q(I%TN) Then, when N is large enough, w.p. > 1 — 2N 9,
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1) The degree D; concentrates for all i, namely,

1 [ log N .
NDi:mgp—FO(e, W)’ Vi=1,---,N. (19)

2) The from ﬁuTDu concentrates for all u, namely,

1 1 log N
ﬁuTDu = NHUHQ <m0p+ 0 (e, %)) . YueRYN. (20)

The constants in big-O in (19) and (20) are determined by (M, h) and uniform for all i and u.

Part 2) immediately follows from Part 1), the latter being proved by standard concentration argument of
independent sum and a union bound for N events. With Lemma 3.5, the proof of the following proposition
is similar to that of Proposition 3.1, and the difference lies in handling the denominator of the Rayleigh

quotient in (8). The proofs of Lemma 3.5 and Proposition 3.6 are in Appendix C.1.

Proposition 3.6 (Eigenvalue UB of L., ). Suppose M, p uniform, h, K, pr, and € are under the same
condition as in Proposition 3.1, then for sufficiently large N, w.p. > 1 —2N"2 —4K2N—10 D, > 0 for all

i, and
[log N
)\k(Lrw)S,uk-FO(e, W)’ k=1, K.

4. Eigenvalue crude lower bound in Step 1

In this section, we prove O(1) eigenvalue LB in Step 1, first for L,,,, and then the proof for L,., is similar.
We consider for ¢ > 0 the operator £; on H = L?(M,dV) defined as

Lom1-Qu Lof(x) = flz) / Hi(e,y)f()dV(y), e H.
M

The semi-group operator @; is Hilbert-Schmidt, compact, and has eigenvalues and eigenfunctions as in (9).
Thus, the operator L; is self-adjoint and PSD, and has

Loy = (1 —e M)y k=1,2,---

For any ¢t > 0, the eigenvalues {1 — e~ t*}, are ascending from 0 and have limit point 1. We denote
| fII? = (f, f) for f € H. By the variational principle, we have that when ¢t > 0, for any k,

1 — e the = <f, Etf>

inf sup ‘
LCH, dim(L)=k jer, | fll220 (f'f)

(21)
For the first result, we assume that py are all of multiplicity 1 for simplicity. When population eigenvalues
have greater than one multiplicity, the result extends by considering eigenspace rather than eigenvectors in
the standard way, see Remark 5.
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4.1. Un-normalized graph Laplacian eigenvalue crude LB
We now derive Step 1 for L,,, the result being summarized in the following proposition.

Proposition 4.1 (Initial crude eigenvalue LB of Ly ). Under Assumption 1 (A1), suppose p is uniform on
M, and h is Gaussian. For fived kpar € N, K = kmar + 1, suppose 0 = p1 < -+ < pg < oo are all of
single multiplicity, and define

_min (g — o), (22)

1
T S ks

vk > 0 and is a fized constant. Then there is a absolute constant cx determined by M and kpq. (specifically,

cx = c(’fy—i)d/Q’yI}Q, where ¢ is a constant depending on M), such that, if as N — oo, ¢ — 0+, and

€d/242 > CK%, then for sufficiently large N, w.p. > 1 — 4K?N~10 —4N—9,

We prove Proposition 4.1 in the end of this subsection after we introduce heat kernel interpolation and
establish the needed lemmas.

Suppose {Ax,vx HE | are eigenvalue and eigenvectors of Ly, to construct a test function fr on M from
the vector v, we define the interpolation mapping (the terminology “interpolation” is inherited from [6])
by the heat kernel with diffusion time r, 0 < r < € to be determined. Specifically, define

N
Z (z,2), I :RYN = C®(M),
and then for any t > 0,

1 & 1 &
rlu], Qedr[ul) = 55 > wiwHopy(wi, ), (I[u], Iu]) = N2 > iy Haop (s, ;). (23)

ij=1 ij=1

We define the quadratic form

gs(u) == N2 E wiu; He(x,25), >0, ueRY.
1,j=1

We also define qgo) and qu) as below, and then for any u € RY | g,(u) = q§°) (u) — qu) (u), where

1 N
N2 > Hylwizg)(ui —uy)? (24)

i,5=1

N =

1 1
_Nz NZ s(xiag) | aP(u) =

We will show that qgo) (u) ~ p%|lul|? by concentration of the independent sum Zjvzl Hy(x;, x;); (2)( ) >
0 by definition, and will be O(s) when u is an eigenvector with |lu> = N.

Lemma 4.2. Under Assumption 1 (A1), p being uniform on M. Suppose as N — 0, s — 0+ and 52 =
Q(lOgN) Then, when N is large enough, w.p. > 1 —2N~9,

log N

¢ (u) = HUH2 <p+OM( Nod/2

)), Vu € RY,
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The notation Oaq(-) indicates that the constant depends on M and is uniform for all u.

Proof of Lemma 4.2. By definition, ¢ (u) = + Zl Lu2(Dy);, where (Dy); = %Zj\le Hy(z,2;), and
{(Ds);}}¥, are N positive valued random variables. It suffices to show that with large enough N, w.p.

[log N .

This can be proved using concentration argument, similar as in the proof of Lemma 3.5 1), where we use
the boundedness of the heat kernel (14) in Lemma 2.2. The proof of (25) is given in Appendix C.2. Note
that (25) is a property of the r.v. Hg(x;,x;) only, which is irrelevant to the vector u. Thus the threshold of
large N in the lemma and the constant in big-O depend on M and are uniform for all . O

indicated in the lemma,

Lemma 4.3. Under Assumption 1 (p can be non-uniform), h being Gaussian, let 0 < a < 1 be a fized
constant. Suppose € — 0+ as N — oo, then with sufficiently small €, for any realization of X,

0<qP(u) = (1 + O(e(log %)2)> uT(DN—2 W)u + ||1;\|]|2O(63), Yu € RN, (26)

and

"D =Wu | ul®
< g@(w) < 110922
0 — qae (u) - o N2 + N

O(e®), YueRY, (27)
The constants in big-O only depend on M and are uniform for all u and a.

Proof of Lemma 4.3. For any u € RY, q£2)( ) =1 z].\’j,l H (i, zj)(u; —uj)?® > 0. Since € = o(1), take ¢
in Lemma 2.2 to be €, when € < €, the three equations hold. By (13), truncate at an d. = 1/6(10 + 4)elog L

Euclidean ball,

1 1 N 11 I
P () = - — He(24,25) 10, e 85, (w0} (Wi — uj)? + O(e 10)2N2 > (i —u ).
i,j:l 7,7=1

By that 5 Y Yy (wi—uj)? < Z[|ul?, and apply (12) with the short hand that O(e) stands for O(e(log 1)?),

N
1 - ull?
@ (w) = 2 Z (00 2,)(1 4+ 0(6)) + () Lz ety oy (1 — uy)? + 0(e) LA
T ON? ] N
N
~ w11 Kl
= (1+0(6 E—N P l‘l,xj)l{zjeBs( )}( —u]) —l—O( ) N

By the truncation argument for K.(x;,x;), we have that

N

11 ul'(D—=W)u  ||ul?

SNZ > Ke(i,7) (a8, (20} (Wi — uj)* = IE +y O("). (28)
t,j=1

Putting together, we have



148 X. Cheng, N. Wu / Appl. Comput. Harmon. Anal. 61 (2022) 132-190

[ull?
N )

@ =+ o) (P4 o) ) + o

which proves (26).
To prove (27), since a < 1 is a fixed positive constant, 0 < ae < € < €g, we then apply Lemma 2.2 with
t therein being ae. With a truncation at d,.-Euclidean ball, and by (12),

N
11 5 [Jul?
qgi) §N_ Z ae $z7l‘j 1 + O(ae)) + O(a363)) 1{EjEBaae($i)}(ui - Uj)2 + TO(EIO)
syl 1l v 2, lul? ) s
= (]_ —|—O(€ 5 Z Koze xl?x])1{$J€Boa5(f€7)}(u —’Ltj) + TO(G )
1,j=1
Suppose € is sufficiently small such that 1 4 O(e) is less than 1.1. Note that
_ 1 R 1 1 ] A 7
Kae(x7y) - We 4 S mme 4 =« Kﬁ(xay)7 vay S M7 (29>
then, by that l{a:jEBsm (z:)} < 1{903-6356 (z:)}s and again with (28),
11« Jull*
qge)( ) <L 17@ aid/2Ke(Iiaxj)l{wjeBae(aci)}(ui - Uj)2 + N 0(63)
1,j=1
T 2 2
_ _age (u (D =W)u ] 10 [l 3
and this proves (27). O
We are ready to prove Proposition 4.1.
Proof of Proposition 4.1. For fixed k4., since vy < pg, define
0.5
5= —2K 5, (30)
1204
6 > 0 and is a fixed constant determined by M and k4. For € > 0, let
1)
ro= EE, t=€e—2r=(1-9)e
For L,,vi = Arvi, where v are normalized s.t.
L
—v v =0k, 1<EkI<N, (31)
N
let fp = I[ux], k =1, -+, K, then f, € C°(M) C H. Because e%/?>+? > cKlof;VN, (1), e¥/? =

Q(%) Thus, under the assumption of the current proposition, the condition needed in Proposition 3.1 is
satisfied, and then when N is sufficiently large, there is an event Eyp which happens w.p. > 1 —4K2N~10
under which

A S pp +01pg <1llpg, 1<k<K. (32)
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We first show that {f; }]K:1 are linearly independent by considering (f%, f1). By definition, for 1 < k < K,

(frs fr) = qor(0k) = ¢ (vr) — 4§ (v),

and for k #£1, 1 <k, I <K,

(fr = 1), (Fx £ £1)) = qor (v £ 0) = &2 (0k £ 1) — ¢52) (vp £ 7).

Because s = de, under the condition of the proposition, s satisfies the condition in Lemma 4.2, and thus,
with sufficiently large N, there is an event E(©) which happens w.p. > 1 — 2N 9, under which

log N

log N
Ned/2 )’

Ned/Q)’

0 (v) = p+ O( 1<k <K; ¢2r+v)=2p+0( k#1,1<k1<K,

where we used that the factor 6-%2 is a fixed constant. Meanwhile, applying (27) in Lemma 4.3 where
«a = §, and note that

+o)(D-W +
— ped: (v £ v1) (NQ ) (Vs vl):pe()\k—i—)\l), k£11<kl<K,

vl (D — W)y,
N2

we have that
02 () = O(6~Y?)pery + O(*), 1<k <K,
452 (n £ 0) = O~ 2)pe(A + \) +20(e%),  k#L,
and by that A\gx, \; < 1.1ug which is a fixed constant, so is §, we have that
() =0(e), 1<k<K; ¢Pptu)=0(), k#l,1<kl<K. (33)

Putting together, we have that

[log N
<fk7fk>:p+0( W,E), lngK,

(34)
(fr, f1) = i(qée(vk +v1) = gse(vi — vr)) = O(4/ %,6), E#1,1<kI<K.

This proves linear independence of {f; szl when N is large enough, since O(4/ %, €) =o(1).

We consider first K eigenvalues of £;, t = (1 — 0)e. For each 2 < k < K, let Ly = Span{f1,---, fx} be a
k-dimensional subspace in H, then by (21),

1 767(176)6/1% < sup <f7 L:tf> _ <fa f> — <f7 Qtf> (35)

feLu IfI220 (fs ) (f; )

For any f € Ly, ||f||?> # 0, there is ¢ € R¥, ¢ # 0, such that f = Z?Zl ¢; f;. Thus

k k k
f= chlr[vj] = IT[Z cjvi] = Ip[v], wv:= chvj.
i=1 i=1 i=1

Because v; are orthogonal, |v;[|?> = N, we have that
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k
o) oT(D = W)
=l e =Y

¢ (ped;) < Awpelc]®.

j=1

By definition, (f, f) = gsc(v), and (f, Q+f) = q.(v).
We first upper bound the numerator of the r.h.s. of (35). By that q((;z) (v) >0,

(1) = (1 Quf) = ase(v) = ae(0) = a0’ (v) = 457 (0) = 4V (0) + 4P (v)
< (a5 (v) = 4! () + ¢ (v). (36)

We have already obtained the good event E(®) when applying Lemma 4.2 with s = de. We apply the
lemma again to s = ¢, which gives that with sufficiently large N there is an event E(!) which happens
w.p. >1—2N"2 and then under £ n E®,

log N log N
A () = lelP 0+ Om(y 62500, O (0) = el (b + Omaly| o) (37

We track the constant dependence here: the constant in Oaq(+) in Lemma 4.2 is only depending on M
(and not on K), thus we use the notation Op(-) in (37) and below to emphasize that the constant is
M-dependent only and independent from K. Then (37) gives that

(0) 0 25 —d/4 log N
a50 (v) =0 (v) = ||| ?6~ O (\/ Ned/2> :

The UB of qEQ)(v) follows from (26) in Lemma 4.3, with the shorthand that O(e) stands for O(e(log 2)?),

i) = P14 00) + 12066 < ellel(upl1 + O(0) + O(2))

Thus, (36) continues as

(1) = £:@uf) < elel? (Akpu +0(0) + 0() + 6-d/4oM<§\/}3§—dﬁ>) . (39)

Next we lower bound the denominator (f, f). Here we use (27) in Lemma 4.3, which gives that

vI(D - W)v

0< g (v) O —"1;

PO < el (MpO(2) + 0(e2))

Note that we assume under event Eyp so that the eigenvalue UB (32) holds, thus A\gp©(6~%2) + O(e?) =
O(1). Together with that ¢ is a fixed constant, we have that

a2 (v) = ||elPO(e).

Then, again under F(1),

log N log N
() = 050 (0) = 452 (v) = el <p+o< 5‘d/2§fd/2>—0<€>>2|0||2 (p—% Ng—d/)>
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Putting together with (38), and by that Ay < 1.1ug, we have that

e[ Mp+ O(e) + 6400 (L) el )
(f, f) = (f, Qcf) ( kP (© mle Nedm) ~ C [logN
. [ioey Se( MO+ Ty e |-
’ p—O(e, ]\cf)egd/z) ¢
where C' = ¢(M)§~%*, and ¢(M) is a constant only depending on M. We set
C 2 (M) oca —

= = §d/2~ 2

and since we assume e%/2+2 > cK% in the current proposition, we have that % Jl\cf’fdj/\; < 0.17g. Then,

comparing to L.h.s. of (35), we have that

(-eur < 1) = f,Quf)
- (£, f)

By the relation that 1 —e™® >z — 22 for any « > 0, 1 — e~ =9k > (1 —§) (uy — (1 — 0)ep?), and when
€ is sufficiently small s.t. eu? < e(1.1uk)? < 0.17k,

1—e” <e ()\k + O(e) + 0.171() .

1— e~ U= > ¢(1 - §) (g, — 0.1yx) > 0.

Noting that for k > 2, pg > pe > 2vk > 0, because 1 = 0. Thus, when ¢ is sufficiently small and the O(e)
term is less than 0.1y, under the good events E(Y) N Eyp, which happens w.p. > 1 —4K2N 10 — 4N—9,
we have that

0< (1—08)(ur —0.17k) < M+ O(€) + 0.1vx < A\, 4+ 0.27k-.

Recall that by definition (30), dux = 0.57k, then dup < dux = 0.5vk, also 0 < § < 0.5. Re-arranging the
terms give that ;< A 4+ 0.8vk. This can be verified for all 2 < k < K, and note that the good event F(1)
is w.r.t. X, and Eyp is constructed for fixed k.42, and none is for specific k < K. O

4.2. Random-walk graph Laplacian eigenvalue crude LB

The counterpart result of random-walk graph Laplacian is the following proposition. It replaces Propo-
sition 3.1 with Proposition 3.6 in obtaining the eigenvalue UB in the analysis, and consequently the high
probability differs slightly.

Proposition 4.4 (Initial crude eigenvalue LB of L., ). Under the same condition and setting of M, p being
uniform, h being Gaussian, and kpyaz, px, € same as in Proposition 4.1. Then, for sufficiently large N,
wp.>1—4K2N"10 — 6N, A\p(Lyw) > pr — x> fork=2,--- | K.

The proof is similar to that of Proposition 4.1 and left to Appendix C.2. The difference lies in that
the empirical eigenvectors vy are D-orthonormal rather than orthonormal, and the degree concentration
o] 1

Lemma 3.5 is used to relate -5~ with WUTD’U for arbitrary vector v.

5. Steps 2-3 and eigen-convergence

In this section, we obtain eigen-convergence rate of L, and L,,, from the initial crude eigenvalue bound
in Step 1. We first derive the Steps 2-3 for L., and the proof for L, is similar.
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kmaz =3
Ly A1 A2 A3 W
TK K = kmaz +1
¥ /{ 1 A £ 1 Y 1 \ 1
0 \ ]\ A ]
—Am M1 M2 M3 Ha

Fig. 1. Population eigenvalues pj of —A, and empirical eigenvalues Ay of graph Laplacian matrix Ly, Ln can be Ly, or Ly,. The
positive integer kp,qz is fixed, and the constant i is half of the minimum first-K eigen-gaps, defined as in (22). Eigenvalue UB
and initial LB are proved for k < K, which guarantees (41). Extending to greater than one multiplicity by defining vx as in (46).

5.1. Step 2 eigenvector consistency

In Step 1, the crude bound of eigenvalue (the UB already matches the form rate, the LB is crude) gives
that for fixed kyq. and at large N, each Ay will fall into the interval (ug — Vi, px + YK ), where v is less
than half of the smallest eigenvalue gaps (p2 — 1), -+, (fk,0nt1 — Mkynas ), illustrated in Fig. 1. This means
that Ay is separated from neighboring px—1 and pr41 by an O(1) distance away. This O(1) initial separation
is enough for proving eigenvector consistency up to the point-wise rate, which is a standard argument, see
e.g. proof of Theorem 2.6 part 2) in [7]. In below we provide an informal explanation and then the formal
statement in Proposition 5.2, with a proof for completeness.

We first give an illustrative informal derivation. Take k = 2 for example, let Ly = Ly, Lyur = A\pug,
and we want to show that uy and px. are aligned.

ry i= Ly (pxtha) — px (=A)hy € RN, ry(i) = Ln(pxtha) (i) — (—A)aba (),

the point-wise convergence of graph Laplacian gives L> bound of the residual vector rq, suppose ||rz||2 <
ellpx2ll2. Meanwhile, for any I = 1,3,---, N, the crude bound of eigenvalues A3 gives that

A3 > p2 + kK,

where v > 0 is an O(1) constant determined by k4 and M. Because empirical eigenvalues are sorted,
Ay for [ > 3 are also yx away from po. As a result,

|)\1—M2‘>7K>0, l#2, 1<I<N.

Then we use the relation that for each I # 2, ul'ro = uf (Ln(px2) — papxtb2) = (M — p2)uf (pxtb2), which
gives that

|Ul 72|

Il (pxib2)| = v — pig] =

—HUzll lox 2 ]l2-

This shows that px2 has O(e) alignment with all the other eigenvectors than ug, and since {uy, - ,un}
are orthogonal basis in R, this guarantees 1 — O(¢) alignment between px e and us.

To proceed, we use the point-wise rate of graph Laplacian with C? kernel h as in the next theorem.
The analysis of point-wise convergence was given in [27] and [9]: The original theorem in [27] considers the
normalized graph Laplacian (I — D~'W). The analysis is similar for (D — W) and leads to the same rate,
which was derived in [9] under the setting of variable kernel bandwidth. These previous works consider a
fixed point xy on M, and since the concentration result has exponentially high probability, it directly gives
the version of uniform error bound at every data point x;, which is needed here.

Theorem 5.1 (/27,9]). Under Assumptions 1 and 2, if as N — 0o, € — 0+, e¥/?+1 = Q(IO%N), then for any
fectm,
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1) When N is large enough, w.p. > 1 —4N~?,

w (1= D7 W)(px ), = =By f() e, swp |l = O() + O e ).

om0 1<i<N

2) When N is large enough, w.p. >1—2N~9,

1 log N
p()N (D =W)(pxf)); = —Ap2 f(x:) + &5, 1;1SPN leil = O(e) + O(y/ %)

The constants in the big-O notations depend on M, p and the C* norm of f.

Note that Theorem 5.1 holds for non-uniform p, while in our eigen-convergence analysis of graph Laplacian
with W in below, we only use the result when p is uniform. Meanwhile, similar to Theorem 3.2, Assump-
tion 2(C3) may be relaxed for Theorem 5.1 to hold, cf. Remark 1.

Proof of Theorem 5.1. Consider the N events such that ¢; is less than the error bound. For each of the
i-th event, condition on x;, Theorem 3.8 in [9] can be directly used to show that the event holds w.p.
> 1—4N~19 for the case 1) random-walk graph Laplacian. For the case 2) un-normalized graph Laplacian,
adopting the same technique of Theorem 3.6 in [9] proves the same rate as for the fixed-bandwidth kernel,
and gives that the event holds w.p. > 1 — 2N 10, Specifically, the proof is by showing the concentration
of the & Zj\]:l Kc(zi,2;)(f(z;) — f(z;)), which is an independent summation condition on z;. The r.v.
Hj = LK (zs,25)(f(z;) — f(xi), j # i, has expectation EH; = "2p(x;)Ap2 f(2;) + Ofp(€), and EH?

can be shown to be bounded by ©(¢~%2~1) and |H,| is also bounded by ©(¢~%2~1), following the same
calculation as in the proof of Theorem 3.6 in [9]. This shows that the bias error is O(¢), and the variance

error is O(4/ %), by classical Bernstein. Same as in Theorem 3.2, C? regularity and decay up to 2nd
derivative of h are enough here.

Strictly speaking, the analysis in [9] is for the “ ij\;i,j:f’ summation and not the “% géi’jzl” one
here. However, the difference between ﬁ and % only introduces an O(%) relative error and is of higher
order, and the i = j term cancels out in the summation of (D — W)px f. In proving this large deviation
bound at x;, the needed threshold for large N is determined by (M, f,p) and uniform for ;. Then, when N
exceeds a threshold uniform for all z;, by the independence of the z;’s, the i-th event holds w.p.> 1 —4N 10
and > 1 — 2N 710 for cases 1) and 2) respectively. The current theorem, in both 1) and 2), follows by a

union bound. 0O

We are ready for Step 2 for the unnormalized graph Laplacian Ly, = —ma— (D — W). Here we consider

e"#pN

eigenvectors normalized to have 2-norm 1, i.e., Lypur = Apug, u:,gul = 01, and we compare uy to

Pk = ﬁpxwk eRY, (39)

where 1)), are population eigenfunctions which are orthonormal in H = L?(M,dV), same as above.

Proposition 5.2. Under Assumption 1(A1), p being uniform on M, and h is Gaussian, for fized kpyqr € N,
K = kmae + 1, assume that the eigenvalues py, for k < K are all single multiplicity, and vyx > 0 as defined
in (22), the constant cx as in Proposition J.1. If as N — 00, € — 0+, e¥/?+2 > CK%, then for sufficiently
large N, w.p. > 1 —4K2N~10 — (2K +4)N =9, there exist scalars oy, # 0, actually |ax| = 1+0(1), such that

log N
Huk - ak¢k”2 =0 €, gi , 1< k< kmag-
Ned/2+1
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Proof of Proposition 5.2. The proof uses the same approach as that of Theorem 2.6 part 2) in [7], and since
our setting is different, we include a proof for completeness.

When k =1, we always have A\; = 3 = 0, u; is the constant vector u; = \/LNIN, and ) is the constant
function, and thus ¢; = u; up to a sign. Under the condition of the current proposition, the assumptions of
Proposition 4.1 are satisfied, and because ¢%/2+2 > CK% implies that e¥/?+1 = Q(%) the assumptions
of Theorem 5.1 2) are also satisfied. We apply Theorem 5.1 2) to the K functions 1, - ,9¥ k. By a union

bound, we have that when N is large enough, w.p. > 1 — 2KN~° ||Lundr — prdrllcc = ﬁ(O(e) +

O(y/ =2 )) for 2 < k < K. By that ||[v]2 < VN ||v||e for any v € RN, this gives that there is Err,; > 0,

Ned/2+1
log N
[ Lun®k — prdrllz < Errpy, 2 <k <K, Errp =0(e) + O(4/ W) (40)

The constants in big-O depend on first K eigenfunctions and are absolute ones because K is fixed. Applying

Proposition 4.1, and consider the intersection with the good event in Proposition 4.1, we have for each
2 <k <K, |ur — M| < vk. By definition of vk as in (22),

: — \. <k<
1§j1§n]{/{1j7ék \,uk AJ‘ > YK > 07 2 >~ k > kmax, (41)

For each k < Kyaz, let Sy = Span{uy} be the 1-dimensional subspace in RY and let SkL be its orthogonal
complement. We will show that [|Pg.¢y2 is small. By definition, Pg1p¢y = Z]\;k] Lt (u] dp)uy, and
meanwhile, PSkLLunqbk = Zﬁék,jzl(quungék)uj = Zﬁék] 1 ( Tér)u;. Subtracting the two gives that
Py (ukdr — Lundr) = Zj]\;ék,jzl(:uk — Aj)(u] ¢r)u;. By that uj; are orthonormal vectors, and (41),

N N
1Py (e = Lund)l3 = D (e = Ag)*(u) Z (uf on)* = Vil Ps 2 onl3-
j#k,j=1

Then, combined with (40), we have that v || Pg1 dkll2 < [[Pst (1sdr—Lundi)ll2 < [|tedk —Lundkll2 < Errp,

Errp:

namely, || Py gy 2 < 2zt

By definition, P ¢ = dr—(uF ¢ )ug, where ||ug||2 = 1. Note that ¢, are unit vectors up to an O(4/ %)
error: Because the good event in Proposition 4.1 is under that in the eigenvalue UB Proposition 3.1, and
specifically that of Lemma 3.4. Thus (17) holds, which means that |||¢x]|> — 1| < EtTperm, 1 < k < K, where

Errporm = O(4/ %) Then, one can verify that

luf | = 1+ O(ErTnopm, Erry) = 1+ 0(1), (42)
and then we set o, = T o0 and have that
O(Err O(Err
n%m—wm—|(pfsl(mg WEM)—mmwm+0@mWWM@»—mm%»
k - norm: pt

The bound holds for each k < kqe. O

5.2. Step 3: refined eigenvalue LB

We now derive Step 3 for L., the result being summarized in the following proposition.
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Proposition 5.3. Under the same condition of Proposition 5.2, kmaz 15 fized. Then, for sufficiently large N,
with the same indicated high probability,

[log N
|,uk - /\k| =0 <€7 W) , 1< k< k7nuw~

Proof of Proposition 5.3. We inherit the notations in the proof of Proposition 5.2. Again u; = A; = 0. For
2 < k < kpaz, note that

up (Lundr — pxdr) = Ak — pr)up o, (43)

and meanwhile, we have shown that u, = axdi + €k, where o, = 1+ 0(1) and ||ek|l2 = O(Erry;). Thus the
Lh.s. of (43) equals

(ardk +er) " (Lundk — pidi) = o (@f Lundr — el oxll3) + et (Lundr — prdr) = @ + @.

By definition of ¢y, ¢F Lundr = piN(pxile)TLun (pxvr) = z%EN(pXt/Jk). The good event in Proposition 5.2
is under the good event Eyp, under which Lemma 3.3 and Lemma 3.4 hold. Then by (16), Ex(pxtr) =

p? s +O(€, 1/ Jl\?fd]/\;); By (17), [|¢xl|? = 1+ O0(y/ %) Putting together, and by that ay, = 1+0(1) = O(1),

log N log N log N
® = (6] Lundic — il xl13) = O(1) <uk+0<e, Noar) — L+ 0| 25 >>>=0<e, )

Meanwhile, by (40), || Lun®r — pedrll2 < Erry, and then

@] < llekll2l| Lundr — prdrlls = O(Errs,).

Because ¢%/22 > cK% for some cx > 0, ledg/]z\il = elef/é\iz < &, thus Erryy = O(e + \/%) =
O(y/€), and then @ = O(Errit) = O(e). Back to (43), we have that

log N
Ned/2

Ak — x| lui dx| = (@ +@| = OCe, )+ OC(e),

and by (42), |u} ¢r| =1+ o(1), thus |\ — pi| = B‘g(@l))l = 0(|©+@|) = O(e, 4/ ﬁff/\g) The above holds for
all k < kpae. O

5.3. Figen-convergence rate

We are ready to prove the main theorems on eigen-convergence of graph Laplacians, when p is uniform
and the kernel function h is Gaussian.

Theorem 5.4 (eigen-convergence of Ly, ). Under Assumption 1 (A1), p is uniform on M, and h is Gaussian.
For kpar € N fized, assume that the eigenvalues py for k < K := kpqa:+1 are all single multiplicity, and the
constant cx as in Proposition 4.1. Consider first kpyq. eigenvalues and eigenvectors of Lyy,, Lynur = Agug,
ulw; = g1, and the vectors ¢y are defined as in (39). If as N — o0, € — 0+, /242 > cp lo‘fVN, then for
sufficiently large N, w.p. > 1 —4K2N~10 — (2K +4)N~9,

log N

|,Uk—/\k| =0 <€7 W

) s 1<k <kmaa, (44)
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and there exist scalars ay, # 0, actually |ag| =14 o(1), such that

[ log N
Huk - ak¢k”2 =0 (67 ]V€§/2+1> , 1<k <knaz- (45)

Remark 3 (Choice of € and overall rates). The eigen-convergence bounds (44) and (45) are provided in the
combined form of ¢ and N, as long as the condition ¢ = o(1) and €%/2*2 > ¢ log N/N holds. The bias
error in both cases is O(¢), and the variance error has a different inverse power of ¢ (—d/4 and —d/4 —1/2

respectively). The eigenvalue convergence (44) achieves the form rate Erryopm, = O (e, w%), which
is the rate of the Dirichlet form convergence, cf. Theorem 3.2. The (2-norm) eigenvector convergence (45)
achieves the point-wise rate Err,; = O (e, . ledg}é\;l ), which is the rate of point-wise convergence of graph

Laplacian, cf. Theorem 5.1.

The different powers of € lead to different optimal choice of €, in order of N, to achieve the best overall
rates for eigenvalue and eigenvector convergence respectively. Specifically,

« The optimal choice of € to minimize Err oy, is when e = (c’%)l/(dm“) for ¢ > ¢k (which is also
the smallest order of € allowed by the theorem). This choice leads to

Ik — Ak] = O ((IOg N/N)l/(d/2+2)) - O(Nfl/(d/2+2))’ 1 <k <kmaa,

which is the best overall rate of eigenvalue convergence by our theory. We use O() to denote the
involvement of certain factor of log N. In this case, ||ur — ardi|l2 = O((%)l/(ﬁ”‘l)).
o The optimal choice of € to minimize Err,; is when e ~ (log N/N)'/(@/2+3)  which leads to

k= ndille = O ((log N/NYV/2D ) = ON=VAZED), 1 <k < K,
which is the best overall rate of eigenvector convergence. In this case, |ux — A\| = O(N—1d/2+3)),

We can see that the overall rate of eigenvalue convergence achieves the best overall rate of form convergence
O(N—1/(4/242)) "and that of eigenvector (2-norm) convergence achieves the best overall rate of point-wise
convergence O(N~1/(4/243)) "at the optimal € for each convergence respectively.

Proof of Theorem 5.4. Under the condition of the theorem, the eigenvector and eigenvalue error bounds
have been proved in Proposition 5.2 and Proposition 5.3. For the two specific asymptotic scaling of ¢, the
rate follows from the bounds involving both e and N. O

Remark 4 (Comparison to compactly supported h). For h = 1) (see also Remark 2), the point-wise

convergence of graph Laplacian is known to have the rate as Errp ing = O <\/E, @/]\%), see [19,4,

27,7) among others. While our way of Step 1 cannot be applied to such h, [7] covered this case when
d > 2, and provided the eigenvalue and eigenvector consistency up to Errp; ;ng when €d/2+2 = Q(%)
The scaling e?/2t2 — (:)(N _1) is the optimal one to balance the bias and variance errors in Errp ind,
and then it gives the overall error rate as O(N -1/ (d+4)), which agrees with the eigen-convergence rate in
[7]. Here O(-) and ©(:) indicate that the constant is possibly multiplied by a factor of certain power of
log N. Meanwhile, we note that, if following our approach of using the Dirichlet form convergence rate, the
eigenvalue consistency can be improved to be squared namely O(N~1/(#/242)) when ¢ = Q(N~1/(4/2+2)),

Specifically, by Remark 2, the Dirichlet form convergence with indicator % is Errfopm, ind = O(e, \/%).
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Then, once the initial crude eigenvalue LB is established, in Step 2, the eigenvector 2-norm consistency
can be shown to be Errp:nq. In Step 3, the eigenvalue consistency for the first k., eigenvalues can

be shown to be O(Errforde,Eer ) = O(e, 4/ }3572) This would imply the eigenvalue convergence

ptyind
rate of O(N~/(#/2+2)) under the regime where e = O(N—/(4/242)) while the eigenvector consistency
remains O(N -1 (d+4)). Compared to Remark 3, these rates are the same as Gaussian kernel when setting
€ = O(N~Y/(4/242)) (the optimal order to minimize the eigenvalue rate which is Err ., ). However, using
Gaussian kernel allows to obtain a better rate for eigenvector convergence, namely O(N—1/(@/2+3)) by
setting € ~ O(N~1/(4/2+3)) (the optimal order to minimize the eigenvector convergence rate which is Err,;).
This improved eigenvector (2-norm) rate is due to the improved point-wise rate of smooth kernel Err,; than
that of the indicator kernel Errp; ;nq, and specifically, the bias error is O(e) instead of O(v/e).

Remark 5 (Extension to larger eigenvalue multiplicity). The result extends when the population eigenvalues

. have multiplicity greater than one. Suppose we consider 0 = p < @ < ... < M) < ... which
are distinct eigenvalues, and p(™ has multiplicity I, > 1. Then let kmas = an\le I, K = Z%ill I,

pr = pM+D and {pr, ¥i | are sorted eigenvalues and associated eigenfunctions. Step 0. eigenvalue UB
holds, since Proposition 3.1 does not require single multiplicity. In Step 1, the only place in Proposition 4.1
where single multiplicity of uy is used is in the definition of 7k . Then, by changing to

1
(M) _ + . (m+1) _ ,,(m)
Y =5 1§mlgM('u M ) >0, (46)

and defining § = 0.5%, 0 < § < 0.5 is a positive constant depending on M and K, Proposition 4.1 proves
that |\ — ,u(m)\ < ~M) for all k < K, i.e. m < M + 1. This allows to extend Step 2 Proposition 5.2 by
considering the projection Pg: where the subspace in RY is spanned by eigenvectors whose eigenvalues
M\ approaches j, = p(™) similar as in the original proof of Theorem 2.6 part 2) in [7]. Specifically,
suppose ft; = -+ = piys, 1 = p"™, 2 < m < M, let S = Span{u;, -+ ,uiy,, 1}, and the index set
I, = {i,--,i+ L, — 1}. For eigenfunction vy, k € I, then u = '™ similarly as in the proof of
Proposition 5.2, one can verify that

1P(somys (rdn = Lundi) 3 = D (e = )2 (uf 60)? = (V)2 Y7 (uf du)* = (M) (| Prsiom o i3,
j¢l7” j¢11n

which gives that ||¢x — Pt ¢ll2 = || Psemyr ¢rll2 < ﬁErrPt, for all k € I,,. By that {¢;}/, are near
orthonormal with large N (Lemma 3.4), this proves that there exists an l,,-by-l,, orthogonal transform
Qm, and |ag| =1+ o(1), such that ||up — ar@)||2 = O(Erry) = O(e,d%% k € I,,, where [¢}|ker,, =
[0k)ker,, @m, and the notation [v;];cs stands for the N-by-|J| matrix formed by concatenating the vectors
v; as columns. This proves consistency of empirical eigenvectors u; up to the point-wise rate for k < k4.
Finally, Step 3 Proposition 5.3 extends by considering (43) for uy and ¢}, making use of ||uy — ax@}|2 =
O(Erry;), the Dirichlet form convergence of En(pxt) (Lemma 3.3), and that {¢} }rer,, is transformed
from {¢r trer,, by an orthogonal matrix Q,,.

To address the eigen-convergence of L,.,,, we define the D/N-weighted 2-norm as

1
NUTDU,

ull%, =

and recall that eigenvectors of L,,, are D-orthogonal. The following theorem is the counterpart of Theo-
rem 5.4 for L, obtaining the same rates.
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Theorem 5.5 (eigen-convergence of Ly, ). Under the same condition and setting of M, p being uniform, h
being Gaussian, and kmpqr, K, px, € same as in Theorem 5.4. Consider first kpq. eigenvalues and eigenvec-
tors of Ly, Ly = A\, v,{Dvl = 0, Np, i.e. |[vx]|% = p, and the vectors ¢ defined as in (39). Then,
for sufficiently large N, w.p. > 1 — 4K?>N~10 — (4K —1; 6)N=2, |loklla = 1+ o(1), and the same bound of
|k — Ag| and vk, — ardill2 as in Theorem 5.4 hold for 1 < k < kpqqz, with certain scalars oy, satisfying
lak| =1+ o(1),

The extension to when iy has greater than 1 multiplicity is possible, similarly as in Remark 5. The proof
of L., uses almost the same method as for L,,,, and the difference is that vy are no longer orthonormal but
D-orthogonal. This is handled by that ||u||3 and %||u||% /n agrees in relative error up to the form rate, due
to the concentration of D;/N (Lemma 3.5). The detailed proof is left to Appendix C.3.

6. Density-corrected graph Laplacian

We consider p as in Assumption 1(A2). The density-corrected graph Laplacian is defined as [10]

1 W N
Lyw = (I-D'W), W= D‘g-’ D, = ZWU’
m =] j=1
where W;; = K(x;,x;) as before, and D is the degree matrix of W. The density-corrected graph Laplacian
recovers Laplace-Beltrami operator when p is not uniform. In this section, we extend the theory of point-wise

convergence, Dirichlet form convergence, and eigen-convergence to such graph Laplacian.
6.1. Point-wise convergence of Ly,

This subsection proves Theorem 6.2, which shows that the point-wise rate of I~/m is same as that of L,
without the density-correction. The result is for general differentiable h satisfying Assumption 2, which can
be of independent interest.

We first establish the counterpart of Lemma 3.5 about the concentration of all %Di = % Zjvzl W;; when
p is not uniform. The deviation bound is uniform for all i and has an bias error at O(e?).

Lemma 6.1. Under Assumptions 1 and 2, suppose as N — 0o, € — 0+, €¥/? = Q(%) Then,
1) When N s large enough, w.p. >1—2N"9 D; >0 for all i s.t. W is well-defined, and

1 _ _ 9 [log N o - .
NDZ' = mope(z;) + O (6 ) W) ; Pei=p+me(wp+Ap), 1<i<N. (47)
where w € C®°(M) is determined by manifold extrinsic coordinates, and m[h] = 2";30[[}2].

2) When N is large enough, w.p. > 1 — 4N, D; >0 for alli s.t. Ly, is well-defined, and

N
1 [log N .
]:

The constants in big-O in parts 1) and 2) depend on (M,p), and are uniform for all i.

The proof is left to Appendix D. The following theorem proves the point-wise rate of L.
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Theorem 6.2. Under Assumptions 1 and 2, if as N — oo, € — 0+, ¢¥/2t1 = Q(IOZgVN), then for any
f € C*(M), when N is large enough, w.p. > 1 — 8N,

1 - s N _ _ L | log N
627250 (I =D W)(px f)(z:i) = —Af (i) + &, 1215\[ leil = O(e) + O < Ned/2+1> :

The constants in the big-O notation depend on M, p and the C* norm of f.

The theorem slightly improves the point-wise convergence rate of O(e, 4/ lejé\irz) in [28]. Tt is proved

using the same techniques as the analysis of point-wise convergence of L., in [27,9], and we include a proof
for completeness here.

Proof of Theorem 6.2. By definition,

1 1 Y 1Wu'4(m

S qx D
T T me (I - D_lw)(pr)(ml) = "o
€2mq €2mo Zj:l VVZJDL

(49)

The proof of Lemma 6.1 has constructed two good events F; and Fy (E; is for Part 1) to hold, Part 2)
assumes E; and E), such that with large enough N, E; N Ey happens w.p. > 1 — 4N~? under which
D;, D; > 0 for all i, W and L,,, are well-defined, and equations (47), (D.1), and (48) hold. (48) provides
the concentration of the denominator of the r.h.s. of (49). We now consider the numerator. Note that,
with sufficiently small €, P, is uniformly bounded from below by O(1) constant pl,;,. This is because
w,p € C®°(M), M is compact, then (wp + Ap) is uniformly bounded, and meanwhile p is uniformly
bounded from below. Thus, under E1,

N
1 flag) = flzi) — f(@)) _ (2 [logN
N z:: ~D; N Z mope (1+¢;) 1I<I;a<XN|EJ| O\ Nears):

== ! + = !
e DENLT Cnende) NZT mapde)
log N
— ! 2
= 0+0Q, max &)= O0(, Ned/Q)

and we analyze the two terms respectively.
To bound |®@|, we use W;; > 0 and again that p.(z) > pl,;, > 0 to have

moPe(z;) / MOPyin

. / N
‘@‘ < — ¥ Z Wz]‘f(mj) f(-’lh)‘ |E/-| < maxj<j<nN |5J| . %szjlf(xj) _ f(xz)l
j=1

j=1

We claim that, for large enough N, w.p. > 1 — 2N 2, and we call this good event E3, under which
1N
~ 2 Wil () = f(2:)] = O(Ve), 1<i<N, (50)
j=1

and the proof is in below. With (50), under Es, |@| can be bounded by
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01 = (i, [ DO(VA) = 0, | TEZI0WE) = 02, | 5250, (1)

The analysis of @ uses concentration of independent sum again. Condition on x; and consider

N N
flog) = flz) 1
Z Ke(xi’zj) ﬁe(xj) TON-—-1 Z Y}?

j#i,j=1 J#i,5=1

and we have © = m%, (1—+)@'". Due to uniform boundedness of . from below by p/,,;,, > 0, |Y;| are bounded
by Ly = 0O(¢~%?). We claim that the expectation (proof in below)

IEyj:/K(m“y)f(y)p(y) f(@: /K iy L

Pe(y)
M

50 )dv<y>=%eAf<xi>+o<eQ>. (52)

The variance of Y} is bounded by

= / Ke(wi,9)* (Fy) = £(@:)" pn)dV (y) < vy = Opp(e/2H),

which follows the same derivation as in the proof of the point-wise convergence of L,.,, without density-
correction, cf. Theorem 5.1 1), and can be directly verified by a similar calculation as in (54). We attempt

at the large deviation bound at O(4/ %I/y) ~ (ledg/é\ll )}/2 which is of small order than 75 = O(€) under

the theorem condition that ¢%/2+! = Q(*°&8X) Thus the classical Bernstein gives that for large enough N,
where the threshold is determined by (M, f,p) and uniform for x;, w.p. > 1 — 2N 19,

log N m log N
O = EY; + 0\ =) = 5 el f(w:) + O() + O =5,
~ log N
CD:meAf(l‘i)—FO(eQ)—FO(\/W)' (53)

By a union bound over the events needed at N points, we have that (53) holds at all z; under a good event
E, which happens w.p. > 1 —2N"9,
Putting together, under F5 and E4, by (51) and (53), at all a;,

1 N N ; ~ log N log N
- ZWHW =mAf(x;) + O(e) + O(\/%) + O(e¥/2, \/7 %)
j=1
log N
=mAf(z;) + O(e, \/%)

Combined with (48), under Ey, Fs, E3, Ey,

1 Wy T e Af () + O(e ) wifo) og N

em Z] 1 U D 1+ 0(67 ]l\?Eng/VZ)

and as a result,
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It remains to establish (50) and (52) to finish the proof of the theorem.
Proof of (50): Define r.v. Yj = Wi;| f(2;)— f(x;)| and condition on x;, for j # i, EY; = [, K(zi,y)|f(y)—
f(z)|p(y)dV (y). Let 6. = 1/ (4t20)elog L, for any z € M, K(z,y) = O(e'®) when y ¢ Bs, (z), then

/ K. (x,9)|f(y) — f(2)lp()dV (y)

/ Ee(z,y)lf(y) = F@)lp@)dV (y) + O() | flcllpll o

/ Ee(2,)(IV fllsslly = 2)p(y)dV (y) + Ogp (")

Bs, (x)

= Of’p<\/g) + Of,p(glo) = O0(Ve).

The Oy ,(1/€) is obtained because ||p||so, ||V f|loo are finite constants, and

2

_ z—yll? ly—x

/ Ke(z, y)lly —z[ldV(y) = / € d/zh(H ” )H ”dV(y)
€ \/E

B(ge(:v) B(S (513)

oy ll2 _
S / eid/za e~ g lz—ull® y” ”y\/EdeV( )
Bs, (z)

€

< aoe—ﬁnun HUH

00 L+ O0(lul*)du = O(1), (54)

lull<1.16., ueRd

where u € R? is the projected coordinates in the tangent plane T, (M), and the comparison of ||z — y||gp

to |lu|| (namely 0.9]|z — y||lgp < ||ul| < 1.1]jz — y|lgp) and the volume comparison (namely dV (y) =

(1 + O(||u||?))du) hold when 6, < §o(M) which is a constant depending on M, see e.g. Lemma A.1 in [9].
Meanwhile, |Y;| is bounded by Ly = || f||«©(e~%?2), and the variance of Y; is bounded by EY} and then

bounded by vy = ©(e~%?*1), by a similar calculation as in (54). We attempt at the large deviation bound
at ©(y/ & N ) ~ (lef/év -)'/2 which is of small order than 7= = O(e) under the theorem condition that
€l/2+1 = Q(logN ). Thus, for each i, when N is enough where the threshold is determined by (M, f,p) and

uniform for z;, w.p. > 1 — 2N~

T Y =BV 4+ 0| %) = 0(Va) +ole) = O(VR).

J#i

The j = ¢ term in (50) equals zero. By the same argument of independence of z; from {z,};2; and the
union bound over N events, we have proved (50).

Proof of (52): Note that

P 1
r =

A
— = :l—em(w+—p)+62r€=l—er1+e2r€,
Pe 1+em(w+ 7) p

where r; = m(w + %) is a deterministic function, r; € C°(M); r. € C°(M), and ||7¢|lcc = O(1) when €
is less than some O(1) threshold due to that |jw + %Hw = O(1). Then,
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/K(ml,y) /K 20 fW) (1 = ert + 2r)(y)dV (y)

/K i, y) f(y)dV (y fe/K 23, y)(fr1)(y)dV (y /K i, ) (fre)(v)dV (y)
= (maf (@) + el + Af@:) +0(2) = e (mofri(e) +0(e) + O)
= mof (@) + "p2e(wf + Af = = fri)(w) + O(e),

and taking f =1 gives that

/ Koot 9) 20V () = mo + e = r1)(a) + O(E).

Putting together and subtracting the two terms in (52) proves that EY; = Z2eA f(z;) + O(e?). O
6.2. Dirichlet form convergence of density-corrected graph Laplacian

The graph Dirichlet form of density-corrected graph Laplacian is defined as

c

- 1 - al 1 & (u; — u;)?
2m2 m2 =1 m3 " 4 j=1 v

We establish the counter part of Theorem 3.2, which achieves the same form rate. The theorem is for general
differentiable h, which can be of independent interest.

Theorem 6.3. Under Assumptions 1 and 2, if as N — oo, € — 0+, €¥/2N = Q(log N), then for any
f € C®(M), when N is sufficiently large, w.p. >1—2N-9 —2N~10

log N
En(pxf) = (f,—Af) + Opy (67 \/%) '

Proof of Theorem 6.3. By definition (55),

m26N2
,j=1 N

The following lemma (proved in Appendix D) makes use of the concentration of D;/N to reduce the graph
Dirichlet form to be a V-statistics up to a relative error at the form rate.

Lemma 6.4. Under the good event in Lemma 6.1 1),

- 2 log N

(xJ

and the constant in big-O is determined by (M,p) and uniform for all u.
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We consider under the good event in Lemma 6.1 1), which is called F; and happens w.p. > 1 — 2N 9.
Then applying Lemma 6.4 with © = px f, we have that

N T;) — €T, 2 (0] (0]
En(oxf) = § sz Y Wi, PRI b 1 (e[ F570) =801+ 0(e | R 60

1

in (56 1N - . 1 N @) —f () -
The term @ in (56) equals §z >7; ., Vi, where V; j := —— K (s, z;) pGen(ay —» and Vi = 0. We follow

the same approach as in the proof of Theorem 3.4 in [9] to analyze this V-statistic, and show that (proof in

Appendix D)
log N
{®in (56) } = (£. ~Af) + Opple, | i) (57)

Back to (56), we have shown that under E; N Ej,

log N log N log N
o)) = <<f,—Af> +0(e, Ng—/>> (1+ 0\ va7))

log N
= (1.0 +0le | oa7s)

and the constant in big-O depends on M, f and p. O

6.3. Eigen convergence of Ly,

In this subsection, let \; be eigenvalues of Em and v, the associated eigenvectors. By (55), recall that

m the analogue of (8) is the following

2m’

.. 1

LD -W) 5 -En(v)
J— 3 €m J— 0

A = min su = = _

LCRN, dim(L)=k yeL,v£0 v Du vT Dy

1<k<N. (58)

The methodology is same as before, with a main difference in the definition of the heat interpolation mapping
with weights p(z;) as in (59). This gives to the p-weighted quadratic form §,(u) defined in (60), for which
we derive the concentration argument of for qgo) in (D.13) and the upper bound of qﬁ,?) in Lemma D.2. The
other difference is that the D-weighted 2-norm is considered because the eigenvectors are D-orthogonal. All
the proofs of the Steps 0-3 and Theorem 6.7 are left to Appendix D.

Step 0. We first establish eigenvalue UB based on Lemma 6.1 and the form convergence in Theorem 6.3.

Proposition 6.5 (Eigenvalue UB of Ly, ). Under Assumptions 1 and 2, for fited K € N, Suppose 0 = ju; <
<< pg < oo are all of single multiplicity. If as N — 0o, € — 04, and €%/? = Q(logN) then for sufficiently
large N, w.p. >1— 4N~ —4K2N~10 L . is well-defined, and

[log N
AkSMkJrO(Q W)a kil,,K

Step 1. Eigenvalue crude LB. We prove with the p-weighted interpolation mapping defined as

L
:NZ:

(@, x;) = L [a], @ =wui/p(z;). (59)
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Then, same as before, (I,.[u], I.[u]) = gsc(@), and (I,[u], Q:I,[u]) = q(@), where for s > 0,

_ _ 1 al Hy(zi i) 0 )\ ~(2)
QS(U> T NQ iJZZI p(%)p(xj)uluj - qs(u) - qs (U) qs (U),
> o~ Hy(wi, ;) o~ Hy(wi,75) 0
0 () e N2 [ Ly Hslwa i) | ey L Hy(zi, ) (032
G N; Z N;P(%)p(%‘) SRR 5;1 plaiplay)

Proposition 6.6 (Initial crude eigenvalue LB of Erw). Under Assumption 1, h is Gaussian. For fived kpqr €
N, K = kpaz + 1, and pg, € and N satisfy the same condition as in Proposition 4.1, where the definition
of ck is the same except that ¢ is a constant depending on (M,p). Then, for sufficiently large N, w.p.>
1—4K2N~10 - 8N \p > g — Vi, fork=2,--- | K.

Steps 2-3. We prove eigenvector consistency and refined eigenvalue convergence rate. Define

N
lull% == u?D;, VYuecRY, (61)

=1

The proof uses same techniques as before, and the differences are in handling the D-orthogonality of the
eigenvectors and using the concentration arguments in Lemma 6.1. Same as before, extension to when py
has greater than 1 multiplicity is possible (Remark 5).

Theorem 6.7 (eigen-convergence of I:JM,). Under the same condition and setting of M, p being uniform,
h being Gaussian, and kmpae, K, pr, € same as in Theorem 5./, where the definition of cx is the same
except that ¢ is a constant depending on (M,p). Consider first kpyq. eigenvalues and eigenvectors of Ly,
Ly = Ay, and vy are normalized s.t. N||vk\|2D = 1. Define for 1 <k < K,

~ 1
Pk = px (\/—Nl/]k) .
Then, for sufficiently large N, w.p.> 1 —4K?N=19 — (4K + 8)N~2, |lu|l2 = ©(1), and the same bounds as

in Theorem 5.4 hold for |pr — Ag| and |lvg — ozk(ngg, for 1 < k < kpae, with certain scalars oy, satisfying
lag| =1+ o(1),

7. Numerical experiments

In this section gives numerical results of point-wise convergence and eigen-convergence of graph Laplacians
built from simulated manifold data. Codes are released at https://github.com/xycheng/eigconvergence
gaussian__ kernel.

7.1. FEigen-convergence of L.,

We test on two simulated datasets, which are uniformly sampled on S! (embedded in R*, the formula is
in Appendix A) and unit sphere S? (embedded in R?). For both datasets, we compute over an increasing
number of samples N = {562, ---,1584} and a range of values of €, where the grid points of both N and e
are evenly spaced in log scale. For each value of N and €, we generate N data points, construct the kernelized
matrix W;; = K.(z;,z;) as defined in (1) with Gaussian h, and compute the first 10 eigenvalues A, and
eigenvectors vy of L,,,. The errors are computed by
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Error of eigenvector
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3.1

log,y N

Fig. 2. Data points are sampled uniformly on S* embedded in R*. (a) The eigenvalue relative error RelErry, visualized (in log,,) as
a field on a grid of (log,;) N and €, kymaz = 9. The red curve on the left plot indicates the post-selected optimal € which minimizes
the error, and that minimal error as a function of N is plotted on the right in log-log scale. (b) Same plot as (a) for eigenvector
relative error RelErr,. The relative errors are defined in (62). The empirical errors are averaged over 500 runs of experiments,
and the log error values are smoothed over the grid for better visualization. Plots of the raw values are shown in Fig. A.1. (For

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

8%, Ly Error of eigenvalue

slope = -0.3343

-0.85

-0.9

-0.95

-1.05
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log;y N

3.1

log;y N

(a)

log; NV
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Error of eigenvector

slope = -0.4968

29 3
logyy N

3.1

Fig. 3. Data points are sampled uniformly on S? embedded in R®, same plots as Fig. 2. kmas = 9, and the plots of raw values are

shown in Fig. A.2.

k k
RelErry = ———, RelErr, = _, (62)
,; ik ° kzﬁ |Gkl

where ¢, is as defined by (39). The experiment is repeated for 500 replicas from which the averaged empirical
errors are computed. For the data on S, e = {1072% ... [ 107*}. The manifold (in first 3 coordinates) is
illustrated in Fig. 4(a) but the density is uniform here. See more details in Appendix A. For the data on S2,
e= {10702 ..
at least for RelErry. Note that for S, the population eigenvalues starting from uo are of multiplicity 2, and

-,10718}. These ranges are chosen so that the minimal error over € for each N are observed,

for S2, the multiplicities are 3, 5, - - -.

The results are shown in Figs. 2 and 3. For data on S*, Fig. 2 (a) shows that RelErry as a function
of N (with post-selected best €) shows a convergence order of about N %4 which is consistent with the
theoretical bound of N~1/(4/2+2) in Theorem 5.5, since d = 1 here. In the left plot of colored field, the log
error values are smoothed over the grid of N and €, and the best € scales with N as about N~%4. The
empirical scaling of optimal € is less stable to observe: depending on the level of smoothing, the slope of
log, € varies between -0.2 and -0.5 (the left plot), while the slope for best (log) error is always about -0.4
(the right plot). The result without smoothing is shown in Fig. A.1. The eigenvector error in Fig. 2(b) shows
an order of about N~%?, which is better than the theoretical prediction. For the data on S2, the eigenvalue
convergence shows an order of about N~033 in agreement with the theoretical rate of N~1/(4/2+2) when
d = 2. The eigenvector error again shows an order of about N % which is better than theory. The small
error of eigenvector estimation at very large value of € may be due to the symmetry of the simple manifolds
S1 and S2. In both experiments, the eigenvector estimation prefers a much larger value of e than the
eigenvalue estimation, which is consistent with the theory.
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data x(1:3) N = 2000, ¢ = 1.0000¢ — 04 1 N = 2000, Lrwof

slope = -0.7468, 1.0840

1000

0.05 500

005,
0.1

o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) (b) (c)

Fig. 4. (a) Random sampled data on S* embedded in R*, the first 3 coordinates are shown, and colored by the density. (b) Density
p and the test function f plotted as a function of intrinsic coordinate (arc-length) on [0, 1) of S'. (c) One realization of L., (px f)
plotted in comparison with the true function of px (Af). (d) Log relative error log,, RelErry;, as defined in (63), computed over a
range of values of €, averaged over 50 runs of repeated experiments. The two fitted lines show the approximate scaling of RelErr,;
at small e, where variance error dominates, and at large €, where bias error dominates.
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Fig. 5. Same eigenvalue and eigenvector relative error plots as Fig. 2, where data are non-uniformly sampled on S! as in Fig. 4(a).
kmaz = 9, and the plots of raw values are shown in Fig. A.3.

7.2. Density-corrected graph Laplacian

To examine the density-corrected graph Laplacian, we switch to non-uniform density on S!, illustrated
in Fig. 4(a). We first investigate the point-wise convergence of — L., f to Af, on a test function f: S1 — R,
see more details in Appendix A. The error is computed as

— Lrwpxf — px (Af)1
lox(Af)]x ’

and the result is shown in Fig. 4. Theorem 6.2 predicts the bias error to be O(e) and the variance error to
be O(e~4/41/2) = O(e=3/*) since N is fixed, which agrees with Fig. 4(d).

The results of RelErry and RelErr, are shown in Fig. 5. The order of convergence with best ¢ appears
to be about N %8 for both eigenvalue and eigenvector errors, which is better than those of L., (when p is
uniform) in Fig. 2, and better than the theoretical prediction in Theorem 6.7.

RelErr,; = ” (63)

8. Discussion

The current result may be extended in several directions. First, for manifold with smooth boundary,
the random-walk graph Laplacian recovers the Neumann Laplacian [10], and one can expect to prove the
spectral convergence as well, such as in [22]. Second, extension to kernel with variable or adaptive bandwidth
[5,9], and other normalization schemes, e.g., bi-stochastic normalization [23,20,36], would be important to
improve the robustness against low sampling density and noise in data, and even the spectral convergence as
well. Related is the problem of spectral convergence to other manifold diffusion operators, e.g., the Fokker-
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Error of eigenvector

slope = -0.4959
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Fig. A.1. Same plots as Fig. 2 where the log error values on the (log) grid of N and e are without smoothing.

Planck operator, on L?(M,pdV). It would also be interesting to extend to more general types of kernel
function h which is not Gaussian, and even not symmetric [37], for the spectral convergence. Relaxing the
condition on the kernel bandwidth e can also be useful: the optimal transport approach was able to show
spectral consistency in the regime just beyond graph connectivity, namely when €%/2 >> log N /N [7], which is
less restrictive than the condition needed by Gaussian kernel in the current paper. Being able to extend the
analysis to very sparse graph is important for applications. At last, further investigation is needed to explain
the good spectral convergence observed in experiments, particularly that of the eigenvector convergence and
the faster rate with density-corrected graph Laplacian. For the eigenvector convergence, the current work
focuses on the 2-norm consistency, while the oo-norm consistency as has been derived in [11,8] is also
important to study.
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Appendix A. Details of numerical experiments

In the example of S* data, the isometric embedding in R* is by

2 2
u(t) (cos(27rt), sin(27t), 3 cos(2m3t), 3 sin(27r3t)) ,

1
N 27r\/5

where ¢ € [0,1) is the intrinsic coordinate of S! (arc-length). In the example in Section. 7.2 where p is not
uniform, p(t) = 1+ 1 sin(272t) + %8 sin(2n5¢), and the test function f(t) = 0.2sin(4mt) — 0.8 sin(472¢). In
the example of S? data, sample are on unit sphere in R3.

In both plots of the raw error data without smoothing, Figs. A.1 and A.2 the slope of error convergence
rates (about -0.4 and - 0.33) are about the same. The slope of post-selected optimal (log) € as a function of
(log) N changes, due to the closeness of the values over the multiple values of e.

Appendix B. More preliminaries
Throughout the paper, we use the following version of classical Bernstein inequality, where the tail

probability uses v > 0 which is an upper bound of the variance. We use the sub-Gaussian near-tail, which
holds when the tempted deviation threshold ¢t < %”
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Error of eigenvalue Error of eigenvector

-1.05
slope = -0.3327 slope = -0.5000

-0.85

log;y €

-1.05 -
2.8 2.9 3 3.1 28 29 3.1 2.8 2.9 3 3.1 238 29 3 3.1

log,y N log,y N log,y N log,y N

(a) (b)

3
Fig. A.2. Same plots as Fig. 3 where the log error values on the (log) grid of N and e are without smoothing.

2.8 2.9 3 3.1 28 29 3 3.1 : 2.8 2.9 3 3.1
logyy N log,y N logy N

(a) (b)

Error of eigenvector

slope = -0.8368

S, Ly Exrror of eigenvalue

slope = -0.7923

slope = -0.8206

Fig. A.3. Same plots as Fig. 5 where the log error values on the (log) grid of N and e are without smoothing.

Lemma B.1 (Classical Bernstein). Let & be i.i.d. bounded random variables, j = 1,--- ,N, E§ = 0. If
€] < L and ]E§]2 <v for L,v >0, then

N N
1 1
PT[N E fj > t], PI‘[N E fj < _t] < eXP{— }7 vt > 0.
=1 j=1

In particular, when tL < 3v, both the tail probabilities are bounded by exp{—%Nth}.
Additional proofs in Section 2:

Proof of Theorem 2.1. Part 1): We provide a direct verification of (10) based on the parametrix construction
for completeness, which is not explicitly included in [25].
First note that there is tg, determined by M s.t. when ¢ < tg,

/ Gyl y)dV (y) = / Guly,2)dV(y) < Co, Yz € M,
M M

for some Cs > 0 depending on M. This is because [, G¢(x,y)dV (y) up to an O(t) truncation error equals
the integral on By := {y € M, dm(z,y) < & = 1/(d/2+ 1)tlog +}. By change to the projected coordinate

u in T;(M), the integral domain of u is contained in 1.18;-ball in R? for small enough &;, then

1 _dp ()2 1 _0.9]|u|?
/Gt($,y)dV(y) = W/e at dV(y) S W / e 4t (1 -+ O(5f))du
By By

uw€ERY, ||ul|<1.18¢

< O(1)(1 4 O(tlog %)) — 0(1).
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Next, as has been shown in Chapter 3 of [25], there exist u; € C°(M x M) for I =1,--- ,m, ug satisfies
the needed property, and we define P, (t,z,y) = Gi(z,y) (X~ t'w(z,y)), Pn € C®((0,00), M x M). By
Theorem 3.22 of [25],

t

Hy(z,y) — Pn(t,z,y) = /ds/Qm(t —8,2,2) P (s, z,y)dV (2),
0 M

where by Lemma 3.18 of [25], there is C7(to) and thus is determined by M s.t.

sup |Qm(s,z,y)| < Crs™= 42 v < s<t.
z,yeM

As a result, for ¢ < t,

t

Hy(2,y) — Pt 2)] < / ds / (Qua(t — 5,2, 2)|Calz0y) av(z)
0 M

m
Z tlul (Za y)
=0

m t
< Cotm (S ) [ ds [ Guzm)av(e)
1=0 0o M

< C«?tmfd/Q(Z ||ulHoo)Cﬁt _ O(tmfd/2+1).
=0

Part 2) is a classical result proved in several places, see e.g. Theorem 1.1 in [16] combined with
sup, e He(z,x) < Cst=%2 for some Cs depending on manifold, which can be deduced from Part 1).
The constant 5 in 5¢ in the exponential in (11) can be made any constant greater than 4, and the constant
Cj5 change accordingly. O

Proof of Lemma 2.2. Let m = [2 + 3], m is a positive integer m — ¢ > 3. Since t — 0, and §; = o(1),
the Euclidean ball of radius J; contains d;-geodesic ball and is contained (1.1d;)-geodesic ball, for small
enough t. Then both claims in Theorem 2.1 hold when ¢ < ¢ for some ¢y depending on M, and in 1) for
y € Bs,(x) N M, Cot™=4/2+1 = O(3). Here by choosing larger m can make the term of higher order of t,
yet O(t3) is enough for our later analysis.

Proof of (12): We use the shorthand notation O(t) to denote O(tlog 1). In Theorem 2.1, m is fixed, [0

for [ < m are finite constants depending on M, thus
Hy(z,y) = Gi(z,y) (uo(z,y) + O(t)) + O(t%).

Note that da(z,y)? = ||z — y||*(1 + O(||x — y||?)), and thus when y € Bs, (), dp(z,y)? = O(||lz — y||?) =
O(6?) = O(t). By the property of u,

ug(z,y) = 1+ O(dp(x,y)?) = 1+ O(t).

Meanwhile, by mean value theorem and that da(z,y) > ||z — ¥,

_dpm@y)? _llz—yl2(+0Ulz—ylI%) _llz—y)?
t t t

1+ odr=v))

e

and then
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Gutay) = Kol )1+ 0T =20) = )1 + O(t008 1))

Thus, for any y € Bs, () N M,

Hy(z,) = Kol )(1+ Ole(log 3)%)) (14 0(1) + O(1)) + O),

which proves (12), and the constants in big-O are all determined by M.
Proof of (13) and (14): When y is outside the §;-Euclidean ball, it is outside the d;-geodesic ball. Then, by

2
Theorem 2.1 2) and the definition of §;, Hy(z,y) < Cgt*d/ze*% < (5t which proves (13). (14) directly
follows from (11). O

Appendix C. Proofs about graph Laplacians with W
C.1. Proofs in Section 3

Proof of (15) in Remark 2. We want to show that

+ [ [ B @) — 1) Pr@pw)dV @V @) = malb(f, By flye +O(6)
MM

First consider when p is uniform. Denote by B,(x) the Euclidean ball in R” centered at = with radius r.
When y € B z(z) N M, (f(z) — f(¥)* = (Vf(2)Tu)? + Qus(u) + O(J|lul|*), where v € R is the local
projected coordinate, i.e., let ¢, be the projection onto T, (M), u = ¢, (y — ), also |lu| < |ly — x| < Ve.
Q2,3(+) is a three-order polynomial where the coeflicients depend on the derivatives of extrinsic coordinates
of M and f at x. Then,

[l — yHQ)(f(w) — W),

€ €

¢ [ K r@) - sw)av ) = [ (v) (1)
M

M

- efd/‘z/ ((W(m)T“)Q + QT’(U) + 0<e>> (1+0(e))du, B = u(Be(x) N M)

€

and B C B /¢(0; R?), where we used the volume comparison relation dV (y) = (1 + O(||u]|?))du. By the
metric comparison, ||y — x| = ||ul|(1 + O(||u]|?)), thus

Vol(B, z(0; R\ B) < Vol(B_z(0; RY\B, z(1_ 0 (0;R?)) = €¥/20(e).

Meanwhile, the integration of odd power of w vanishes on [ Bf(ode)du' Thus one can verify that

e 42 |5 Wdu = ma[R]|Vf(2)> + O(e), e %2 [ Q””+(u)du = O(¢*/?), and thus the Lh.s. of (C.1)
= ma[h]|V f(z)|> + O(e). Integrating over [, dV (z) proves that the bias error is O(e). When p is not uni-
form, one can similarly show that £ [\ Kc(x,y)(f(z) — f(y))*p(y)dV (y) = m2[h]|V f(z)*p(x) + O(e) and
the proof extends. O

Proof of Lemma 3.3. Since p is a constant, Ay = A. Apply Theorem 3.2 to when f = ¢y, and (¢, % ;)
where k # [, which are K? cases and are all in C°°(M). Since the set {15 }X_, is orthonormal in L2(M, dV),

(W, — AU 2 = pug; pT (W 0, —AWE W) = p(p + ), k#L1<kI<K.
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Under the intersection of the K2 good events which happens with the indicated high probability, (16) holds.
The needed threshold of N is the max of the K2 many ones. These thresholds and the constants in the
big-O’s depend on p and ¢y for k£ up to K, and K is a fixed integer. This means that these constants are
determined by M, and thus are treated as absolute ones. O

Proof of Lemma 3.4. First, for any f € C(M), when N > N; depending on f, w.p. > 1 —2N 10,

logN)
N

Slox I3 = (7, £y + O (©2)
This is because, by definition, % |px fl|I3 = + Zjvzl f(z;)?, which is independent sum of r.v. Y; := f(x;)%
EY; = [y f(y)?*pdV(y) = (f,f)p, and boundedness Yj| < Ly := |[fl|% o which is Of(1) constant.
The variance of Y; is bounded by ]EY]2 i y)*pdV (y) := vy, which again is Of(1) constant. Since
log N/N = o(1), (C.2) follows by the classical Bernsteln

Now consider the K vectors u, = ﬁpx%« Apply (C.2) to when f = ﬁwk and %(d}k + ) for
k # 1, and consider the intersection of the K? good events, which happens w.p. > 1 — 2K2N 10 when
N exceeds the maximum thresholds of N for the K? cases. By (¢,91), = pdi, and the polar formula
dufwp = |lug + w|]? — ||ug — w||?, this gives (17). Both the K? thresholds and all the constants in big-O in
(17) depend on {¢}5_,. O

Proof of Lemma 3.5. Suppose Part 1) has been shown with uniform constant in big-O for each 4, then
under the good event of Part 2), Part 2) holds automatically. In particular, since (19) is a property of the
random r.v. W;; only, where W;; are determined by the random points x; and irrelevant to the vector u,
the threshold of large N is determined by when Part 1) holds and is uniform for all .

It suffices to prove Part 1) to finish proving the lemma. For each i, we construct an event under which
the bound in (19) holds for D;, and then apply a union bound. For ¢ fixed,

1 1
NDi = yHelizi) + ZKe(%‘,%’) = 0+0.
J#i
By Assumption 2(C2), K (z;,z;) = ¢ ¥2h(0) < O(e~%¥?). and thus ® = O(N~'e~%?2). Consider @ :=
] > ji Ke(@i, z;), which is an independent sum condition on z; and over the randomness of {z;};;.
The (N —1) r.v
ij = Ke(l'ivxj)a J 7é i7

satisfies that (Lemma 8 in [10], Lemma A.3 in [9])

BY; = [ Kulaip)paV () = prmo +0(c).

Boundedness: again by Assumption 2(C2), |Y;| < Ly = ©(¢~%2). Variance of Y} is bounded by
- )2 _ —apagllw —yl?
= [ Ke(zs,y)pdV(y) =p [ €D (F——)dV(y),
M M
where since h?(r) as a function on [0, c0) also satisfies Assumption 2,

IEY]»2 = e 2p(mo[h?] + O(e)) < vy = O(e"¥?).
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The constants in the big-© notation of Ly and vy are absolute ones depending on M and do not depend on
x;. Since 4/ Jl\?egd]/vz = 0(1), the classical Bernstein gives that when N is sufficiently large w.p. > 1 — 2N 10,

log N log N

@~ EY;| = Oy 5%) = 0/ .7)

| condition on ;.

Under this event, @ = O(1), and then @ = (1 — 3;)@’ gives that

log N 1 log N
@ =mgp + O(e) + O( W) + O(ﬁ) =mop + O(e, \/ Nedr2 );

and then

1
N

1 log N log N
o 1_—d/2 _

D; =O(N~" e %)+ mop + Ole, Ned/z) = mgp + O(e, Ned/2)'

By that z; is independent from {z;};.;, and that the bound is uniform for all location of x;, we have that
w.p. > 1 —2N"1% the bound in (19) for 4, and applying union bound to the N events proves Part 1). O

Proof of Proposition 3.6. Under the condition of the current proposition, Lemma 3.5 applies. For fixed K,
take the intersection of the good events in Lemma 3.5, 3.4 and 3.3, which happens w.p. > 1 — 4K2N~10 —
2N 9 for large enough N. Same as before, let u;, = %pxwf, and by 3.4, the set {uy, -+ ,ux} is linearly
independent. Let L = Span{uy,---,ux}, then dim(L) = k for each k¥ < K. For any v € L, v # 0, there

are ¢;, 1 < j < k, such that v = 2%_, ¢;u;. Again, by (17), we have Liol? = [lell(1 + O(y/ &), and

Jj=1

together with Lemma 3.5 2),

1 1 5 1 9 log N 9 log N log N
— —vT'Dv== ~7735) = 1 — N2
mo v2¥ Pv= gl + 06/ am)) = lell"(+ 04/ == ) + Ole ) 7 a7s))
log N
— 2 o
= [lelPp(1+ Oe, | o), (€3)

and the constant in O(-) is uniform for all v. For En(v), (18) still holds, and by that K is fixed it gives

log N
2
Exn(v) < || (puk +0(e, NEM)) .

Together with (C.3), we have that

En(v) puk + O(e, ) 3255%) log N
L LT Dy = oz, Tk +0( Ned/2 )
mo N? p(1+O(e, J\(f)sgd/Q )

and the r.h.s. upper bounds A\, (L) by (8). O
C.2. Proofs in Section /
Proof of (25) in Lemma 4.2. Suppose s is small enough such that Lemma 2.2 holds with € being s here. For

each i, we construct an event under which the bound in (25) holds for (Dj);, and then apply a union bound.
For i fixed,
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1 1
(Ds)i = NHs(xi;xi) +tN ;Hs(xi,xj) =D+
j#i

By (14), Hy(z,2;) = O(s~%?), and thus ® = O(N~1s~%/2). Consider @ := > ji Hs(xi, x5), which is
an independent sum condition on z; and over the randomness of {z;};;. The (N —1) r.v. Y := H(x;, x;),

j # 1, satisfies that EY; = [, H,(2i,y)pdV (y) = p, and boundedness: again by (14), |Y;| < Ly = O(s~?).
Variance of Y; is bounded by EY2 fM s(z5,y)?pdV (y) = pHos (4, 7;) < vy = @(s*dm). The constants
in the big-© notation of Ly and vy are frorn (14) which only depend on M and not on z;. We use the
notation O (-) to stress this. Since 4/ % = 0(1), the classical Bernstein gives that with sufficiently large
N, wp.>1—-2N"10

log N
N

log N
Ngd/2

) = Om(

@ —p|=O0(/vy ) | condition on ;.
The rest of the proof is the same as that of Lemma 3.5 1), namely, by that @ = (1 — %)@’, one can verify

that both @ and then (Dy); equals p+ O ( ]{}jfd%) w.p. > 1—2N~10 and then (25) follows from applying

union bound to the N events. O

Proof of Proposition 4.4. The proof is by the same method as that of Proposition 4.1, and the difference
is that the eigenvectors are D-orthogonal here and normalized differently. Denote Ay (L) as Ak, and let
LV = AUk, normalized s.t.

1

szval O0p, 1<k, Il<N.

Note that this normalization of vy differs from what is used in the final eigen-convergence rate result,
Theorem 5.5, because the current proposition concerns eigenvalue only.

Because €%/2+2 > CK%, ed/? = Q(lo}gVN), then the conditions needed in Proposition 3.6 are satisfied.
Thus, with sufficiently large N, there is an event Ej; 5 which happens w.p. > 1 — 2N~ —4K2N~10 under
which D; > 0 for all ¢ s.t. L, is well-defined, and (32) holds for Ay = Ap(L;y). Because the good event

E},z in Proposition 3.6 assumes the good event in Lemma 3.5, then (20) also holds for all the vy, and vy £ vy,

which gives that (mo = 1 because h is Gaussian)

L r 1 2 log N
1= <z Do = NHkaI (p+0(e,ww)), 1<k<K,
1 1 log N
2= (e 0) Doy tw) = wloe£ul* 0+ 0/ 5575) k#L1<kI<K,

and, equivalently (because p > 0 is a constant)

1 o 1 log N
NHWH —];(14'0(6,\/@))7 1<k<K,
1 1 log N (4
2 _ og
NHUkiUlH *];(QJFO(G, W))’ k#1,1<kIl<K.

We set 8, 7, t, in the same way, and let f, = I.[vz], fx € C>(M). Because the good event E(®) only concerns
randomness of Hs.(x;,;), under E© which happens w.p. > 1 — 2N~
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() _ log N _ log N
a5 () = —||ka (p+O(y/ _d/g)) =1+ 0(e, W)v 1<k<K,

log N
Ned/2

(C.5)
log N

)):2‘1'0(6, W

1
ase) (v £ v1) = ellow £ il *(p + O ) kALISKISK.

Next, note that since (D — W)vy, = meAp D, and with Gaussian h, m = 1, and v, are D-orthogonal,

F(D- 1
ve(D=Wve _ 1 oIDuy = e, 1<k <K,
N2 N2 (C.6)
+u)7(D - + '
(v £u) " ( NZW)(Uk ) et ), kAL1<EI<K.
Then, (27) in Lemma 4.3 where o = ¢ gives that
a5 (ve) = O(6~)eNy + O(*), 1<k <K,
a5 (ox £0) = O e + M) +20(%), k#L1<kI<K,
then same as in (33), they are both O(e). Together with (C.5), this gives that
log N
(fi, fr) =1+ OCe, ]\C;gd/2> +0(e), 1<k<K,
(C.7)
log N
(fu, fir) = (qzse(vk + 1) — gse(ve —vi)) = OCe, Ned/Q) +0(e), k#l,1<kI<K.

Then due to that O(e, ]‘é’fd%) = o(1), we have linear independence of {f;}X, with large enough N.
Again, we let Ly = Span{fi,---, fr}, and have (35). For any f € Ly, f = Z?Zlcjfj, f = I.[v],
k
vi= ) Gy

—UTD’U = ZCJ N2 Ui T'Dv; = ||e|?,

and, by that Lemma 3.5 2) holds, (20) applies to v to give s>v7 Dv = % ||v[|*(p + OCe, \/ e VY thus

Ned/2
i| ||2 _ ||CH2 1+0 log N (C 8
o =1L o). 9)
Meanwhile, by (C.6),
vI'(D - W)u b 0] (D= W) 2
e = chNi Zc eXj < elgllc]]”. (C.9)

With the good event E(!) same as before (Lemma 4.2 at s = ¢), under E® N E®  and the Op4(-) notation
means that the constant depends on M only and not on K,

log N
Ned/2

0 1 o logN
Do (0) = S0+ Oaly/ 622 00), (C.10)

1
dO0) = TII0+ Oul

and then, again,
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1 lell?

_ log N log N
0! (v) = a(0) = FoIP oM Gam) = 7 -1+ Otey 1o

_ [log N
:||C||20M(5 4/ W)’

where we used (C.8) to substitute the 3 |[v||? term after the leading + [|v||?p term is canceled in the sub-

log N
Ned/z)

)Om (6~

traction. The UB of ¢'* (v) is similar as before, namely, by (26) in Lemma 4.3, inserting (C.9), and with
the shorthand that O(e) stands for O(e(log 1)?),

_ vI(D - W)v

w7 (L 0(0) + [el*O() < ellel|*(Ax(1 + O(e)) + O(e?)).

Thus we have that

(1) = (£,Qcf) < (@ (0) = 40 (0)) + 42 (v)

sl (Ak(l +0(9) +0(e) + é‘d/4oM<%\/113§:d]/\g>>

~ 1 /logN
= e||C||2 (Ak +O(e) + 5*‘1/40/\/1(2\/ Nfd/2)> . (by A < 11pg) (C.11)

To lower bound (f, f), again by (27) in Lemma 4.3, inserting (C.9),

T
D —
0< g () < O/ P

< o+ el20(€%) < ellel* (MO(E=2) + O(e?))

and then since \,0(6~%2) +O(e?) = O(1), we again have that qu) (v) = ||¢[|*O(e€). We have derived formula
of qf;g) (v) in (C.10) under E© N EM  and inserting (C.8),

log N
Ned/2

) = [lel2(1 + 0(e, /22N (C.12)

Oy _ Lo
45 (v) = Nllvll (p+O( Ned/2

Thus,

(o F) = 050 ) = 452 (0) = el (1 FO(e | o200 - 0<e>> > || (1 -0, \/%O :

Together with (C.11), this gives

€ NNe —d/4 1 [logN
<f,f>—<f7Qtf>< ()\k+0()+5 OM(E Ned/2)> <e )\k+0~(€)+€ /M
(f, f) - 1-0(e /logN) - e V Ned/2 )’

) Ned/2

where the notation of C is defined in the same way as in the proof of Proposition 4.1. The rest of the

proof is the same, and the intersection of all the needed good events F(®), EM) and E}; 5, which happens
wp.>1—-2N"9? —4K2N-10 4N [
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C.3. Proofs in Section 5

Proof of Theorem 5.5. With sufficiently large N, we restrict to the intersection of the good events in Propo-
sition 4.4 and the K = kyq: + 1 good events of applying Theorem 5.1 1) to {4y }%_;, which happens
w.p.>1—4K2N71% — (6 +4K)N 9. The good event in Proposition 4.4 is contained in the good event Ej; 5
of Proposition 3.6 of the eigenvalue UB, which is again contained in the good event of Lemma 3.5. As a
result, D; > 0 for all ¢, and thus L,,, is well-defined, and (20) holds.

Applying (20) to u = v, and because ||vk|\%/N = p, we have that (mg = 1 due to that h is Gaussian)

log N
p= HkaQ% = pllok3(1 + O, W))’ 1<k<K. (C.13)
This verifies that |lvg]|3 =1+ O(e, ,/%) =14o0(1),for 1<k <K.

Because the good event EY; is under that in Lemma 3.4, ||¢x]|3 = 1+ O(4/ %), 1 <k < K, and then,
applying (20) to u = ¢y,

log N log N
||<251~c||2W = pllgrl*(1+ O(e, W)) =p(1+O(e, W»’ 1<k<K. (C.14)

Step 2. for L,,,: We follow a similar approach as in Proposition 5.2. When £ = 1, Ay = 0, and v is
always the constant vector, thus the discrepancy is zero. Consider 2 < k < K, by Theorem 5.1 1), and that
[ull2 < VN||ul|oo for any u € R,

log N
[ Lrw@r — prdrll2 = O(e 4 W), 2<k<K, (C.15)

and then by (20) which holds uniformly for all u € RY,

[ Lrw@k — pe@kll o = | Lrwdr — prdrll2y/P(1 + O(e, )) = O(|| Lywdr — prdr|l2)-

Ned/2

Thus, there is Err,; > 0, s.t.

log N

| Lrwdr — prdrllp < Errp, 2<k <K, Errp=O0(e Ned/2i1

). (C.16)
The constant in big-O depends on first K eigenfunctions, and is an absolute one because K is fixed. Next,
same as in the proof of Proposition 5.2, under the good event of Proposition 4.4 and by the definition of
vk as the maximum (half) eigen-gap among {ux}1<r<k, (41) holds for Ag.

Let S = Spaun{(%)l/%k}7 S, is a 1-dimensional subspace in RY. Because v;’s are D-orthogonal, Si- =
Span{(£)/?v;, j # k,1 < j < N}. Note that

N . T/D
P (B mae) = (72 S X, c17)

2
N AT HUJH%
and because

w

1 1
Ll Dv; = —(I - WD) Dv; = (D = W)v; = DAjuy, (C.18)
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N T(D
b D Y (_)Lrw¢k erv ) ¢
Pg.. ((N)lm[frw(bk) = (N)1/2 E Jﬁ\’vi“z _ 1/2 2: i ( s HQJ v
J#k,j=1 s Gk, j=1 j
N 1 T
D 1/2 ~ (Dv;)" éx,
SIAD Dl T (C.19)
Jj#k,j=1 N

Subtracting (C.17) and (C.19) gives

D N D
P <(N)1/2(Lrw¢k Nk¢k)> = > () ”] Aﬂfk(N)l/Qv],
]

k=1

and by that v; are D-orthogonal, and (41),

D N 2 N 2
[Pt <(N)1/2(Lrw¢kuk¢k)> 5= 1N —ml u H(zk' > D M

12
j#k,j=1 v j#k,j=1 o ]”%
The square-root of the Lh.s.

D

D
[P ((N)I/Q(meﬁk - Nk¢k)> 2 < ||(N)1/2(Lrw¢k — tkdr)ll2 = | Lrwdr — prdrll o < Errpy,

and the last inequality is by (C.16). This gives that

N L\ 12
Z M <EITpt
k=1 v ﬂl% UK
T
Meanwhile, Pg. (B)2¢r) = Z;\;M ) \Isgj\lllgm(%)l/%j’ and by D-orthogonality of v; again,
N
N [vT D ¢, |2
Zjaék,jzl ﬁv;\IHsz = ”PS,L% ((%)1/2@9) |2. Thus,
N
| P, (D)1/z¢ I i vl R ol 1/2<Errpt o \/W) (©.20)
= _ (e [ JosN |
s\ )= 2 TR ) = TV e
J= N
Finally, define
oF (B) e D
I L
D
~

Ps; ((%)1/2@)—(%)1/2@—195( )20k = (3 D)2 (6~ Biv).

and then, together with (C.20),

D log N
16 = Bl g = 1Ps; ()76 ) I = Ol 7287

Applying (20) to u = ¢y, = By, |dr — Brvrlle = (5(1+0(e, \/ 5%02))) || ¢ — Brvell 2 = Ol dr — Brvxll ),

and we have shown that
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log N
I = Brvnllz = OClén — Brvellg) = Oe, | o)

To finish Step 2, it remains to show that |3x| = 1 + o(1), and then we define oy, = B%c By definition of S,

D

D D
16 = I 20ul = WPy (G201 ) 1+ DB 20ul = WPy (G200 ) B + 821 only

by that ||v|2 L =P and (C.14), and (C.20), this gives p(1 + o(1)) = o(1) + B2p, and thus 37 = 1 + o(1).
Step 3. of Lyq,: For 2 < k < kypaq, by the relation (C.18),
0f D(Lypwr, — prdr) = (L, Do) — pwvf Dr = (A — px)vfl Db,

and we have shown that

log N
vk = Fep, ap =1+40(1),  erllp = O(e ﬁ)

Similar as in the proof of Proposition 5.3,

rD

D
IAe — pellvf Néf’k\ = |vg ( rw®k — UrPr)| = [(ardr + 5k)TN(Lrw¢k — pdr)|

D D
< |ag||dt <= Lrwdr — prllokll% | + |eF = (Lrwdr — prodr)| = © + @,
N N N

By (C.14), ||¢k|| =p(1+0(e, 1/ 7= dl/vz)), and meanwhile, qbg%Lrwgbk = lEN(ng/Jk) = pug +O(e, };’fj)’?)

by (16). Thus @ O(|¢f B Lydi — uk||¢k||2%|) = O(e, 4/ Jl\?fd%) By (C.16) and the bound of ¢, |@] <
llek]] o || Lrwr — kbl b = (Err2 ) which is O(e) as shown in the proof of Proposition 5.3. Finally, by the
definition of B, and that Hvk” L=

log N
|)\k _NkHﬁk‘ < |®| + |©| _ O(E’ 1\(/)egd/2) +O(€) _ O(e logN)
= el p VN2
N

Since |Bk| =14 o(1), this proves the bound of |\ — pk|, and the argument for all k < kpp. O
Appendix D. Proofs about the density-corrected graph Laplacian with W
D.1. Proofs of the point-wise convergence of Ly,

Proof of Lemma 6.1. Part 1): By that +D; = +(Y; + Z;\;ZYJ), Y = K(z;,z;). For j # 4, Y; has
expectation (Lemma 8 in [10], Lemma A.3 in [9])

/ Kl p)plu)dV (y) = mop(a) + “S2e(wp(e:) + Ap(z) + Ople),

where w € C%°(M) is determined by manifold extrinsic coordinates; Meanwhile, K (x;, x;) = e~ %2h(0) =
O(e~%2); In the independent sum = 3=, Yj, |Y;| is bounded by ©(e~%/2) and has variance bounded by
O(e=%/?). The rest of the proof is the same as in proving Lemma 3.5 1).
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Part 2): By part 1), under a good event Ej, which happens w.p. > 1 — 2N~ (47) holds. Because
() = pmin > 0 for any & € M, we then have

1 - (D) (D) o IOgN
NDi =mop(x;)(1+¢;7), 1;}5\[ le; /| = OCe, \/ W) (D.1)

Since O(e, \/2800) — o(1), with large enough N and under Ey, D; > 0, then W is well-defined. Furtherly,

N N
1 1 1 W
—E Wij~ Z—E: .
N ¥ NS mgp(ay)(1+ )

N
11 1 log N
= = ZWij 4 <1 + O(e, W)> . (by that p > 0, W;; > 0)

Consider the r.v. Y; = K(z;,z;)p ' (z;) (condition on z;), for j # i,

BY; = [ Ku(owy)p  pwdV () = [ Koo y)aV () = mo + 0(e),
M M

Y; is bounded by @(e_d/ 2) and so is its variance, where the constants in big-© depend on p. Then, similar
as in proving (47), we have a good event Ey which happens w.p. > 1 — 2N ~? under which

N
11 1 [log N .
——E Wi =140 — 1<i<N D.2
mOszl z]p(xj) + (6, Ned/2)7 1> 9 ( )

and the constant in big-O depends on p, the function h, and is uniform for all x;. Then under E; N Fy,

1 log N log N log V
> Wi = (1 +0(e, W)> <1 +0(e, Ned/2)> =1+06E Fear):
J

Jj=1

which proves (48). Meanwhile, combining (48) and (D.1),

N

~ N Wi, 1 log N 1 log N
ND; = — 1= 14+ O(e, = 14+ 0(e,\/ —=+)), D.3
D2 D maptega e OV = g O an ) 09

i

and thus under Fy N 5, with large N, D; >0 and L,,, is well-defined. O
D.2. Proofs of the Dirichlet form convergence
Proof of Lemma 6.4. As has been shown in the proof of Lemma 6.1, under the good event in Lemma 6.1

1), (47) and then (D.1) hold. Notation of 5§D) as in (D.1), and omitting & in the notations ms, mg, we have
that

- 1 1 (u; — uy)?
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— Li Z Wi (u —UJ)Q

mae N 2= p(ap(ay)(1+ 7)1+ (7))
N
L1 (s —uy)? (D) (D)
= 3 Wi j g 14 ¢€;5), _O ,
mae N7 2 ey o) =757
N
1 (ui — uy) log N
= ; 1+ 0(e, | 2220y,
mae N2 22 Wi ity | OO0 year)

(“z_uj)z

where the last row uses the non-negativity of W; ; MEANENE
i J

Proof of (57) in the proof of Theorem 6.3:

Proof. Proof of (57) : By definition, for i # j,

EV,, — mi / / K. (x,9)(f(2) — f(4))*dV (2)dV (y)

-2 / (wK z,y)(f(z) — f(y)dV(y) | dV(z)
(y)dV (y) =

By Lemma A.3 in [9], [, Kc(z,y)(f(x) — f B2 Af(x) + Of(e?), and thus,
EVij = (f.—Af) + Oy (e).

Meanwhile, by that p > ppin > 0, 0 < Vi3 < 0,(1 )—EKe(:Ei,xj)(f(xi) — f(z;))?, and then by the
boundedness and variance calculation in the proof of Theorem 3.4 of [9], one can verify that, with constants
depending on (f,p),

Vil SL=0(?), EVE<v=0("?)

Then, by the same decoupling argument to derive the concentration of V-statistics, under good event F3

which happens w.p. > 1 — 2N 10,
log N
Z Vij =EVi; + Of,p(\/ W)'

1# 1,5=1
As a result,
. ) 1 log N
@in (56) = (1— N Z Vij=(1- N) ((f, —Af) +05(e) + Of( Ned/2)> ’
l?fj, =1
which proves (57) because O(+:) is higher order than O( };’fd% ). O

D.3. Proofs of the eigen-convergence of Ly

Proof of Proposition 6.5. The proof is similar to that of Proposition 3.6. We first restrict to the good events
F1N E; in Lemma 6.1, which happens w.p. > 1 —4N~? under which W and L,,, are well-defined, and (47)
and (48) hold.
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Let u, = px . The following lemma, proved in below, shows the near D-orthonormal of the vectors uy,
and is an analogue of Lemma 3.4.

Lemma D.1. Under the same assumption of Lemma 6.1, when N is sufficiently large, w.p. > 1 —4N"9 —

2K2N—10
1 [log N
2 — .
||pX¢k||D_mO(1+O(€7 N€d/2)), 1<k<K;

log N
Ned/2

(D.4)

(px¥r) " D(px i) = OCe, ), k#1,1<kl<K.

Under the good event of Lemma D.1, called E5 C E; N Fy, D; > 0 for all i, and with large enough N,
the set {D'/2u;}J< | is linearly independent, and then so is the set {uz}/_,. Let L = Span{uy,--- ,ux},

then dim(L) = k for each k < K. For any v € L, v # 0, there are ¢;, 1 < j <k, such that v = Z§=1 cju;.
By (D.4), we have
log N
2 2
mollv[| 5 = [lef*(1 + O(e, W))' (D.5)

Meanwhile, by defining By (u,v) = i(EN(u + v) — Ex(u — v)), similarly as in Lemma 3.3, applying
Theorem 6.3 to the K? cases where f = 1, and (1 +1/;) gives that, under a good event Eg which happens

w.p.>1—2K2N"10,
log N
En(pxtr) = pr + O(e, 4/ W)’ k=1, K,

(D.6)
log N
By (pxtr, pxti) = O, W)’ k#1,1<kIl<K.
Then, similar as in (18),
k
- log N log N
E Z CJCkBN u],uk ZC (,u]+0 Ned/2>> + Z |Cj||Cl|O(6, Ned/Q)
Jil=1 J#£Lj,l=1
k
log N log N
= Z/ijc? + |lel[PEK O, Ned/g) <ell? <Nk + O(e, W)> . (D.7)
Back to the r.h.s. of (58), together with (D.5), we have that
1 &= log N
LEnw) ket 06/ Norz) log N
TDy = e, Ol o) (D-8)
1+ O, Nfd/Q)

and thus provides an UB of ;. The bound holds for all the 1 < k£ < K, under good events E5 N Eg. O

Proof of Lemma D.1. Restrict to the good events F; N E, in Lemma, 6.1, which happens w.p. > 1 —4N 9,
under which W and L, are well-defined, and (D.3) holds. Then,

[log N lpx (P~ 24|12 log N
1+O( Ned/g)): N (1+0(e, Ned/z))a 1<k<K,

mo

N
1
loxrllF = I Z
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o llox (072w £ )12
lox (Yr £l = Noto (1+0(e,

log N
Ned/2

), k#1L1<kl<K.

Apply (C.2) to when f = p~/2¢y and p~'/? (s, &) for k # I, and recall that (g, 1) = 61, we have

log N
N

logN)
N 9

%HPX(p_l/ka)”Q =1+0( ), %pr(p—l/?(wk +))|I2 = 2+ O(

under a good event which happens w.p.> 1 — 2K2N 10 with large enough N, and then

1 log N
2 — —_—
||pxwk||]j_m0(1+0(€7 Ned/Q))) 1§kSl<7

2 log N
lox (e £ 0)|1% = m—(l +0(e,/ W))’ k#1,1<kIl<K,

0

which proves (D.4). O

Proof of Proposition 6.6. The proof follows the same strategy of proving Proposition 4.4, where we introduce

weights by p(x;) in the heat kernel interpolation map when constructing candidate eigenfunctions from

eigenvectors.

We restrict to the good event Ef; 5 in Proposition 6.5, which is contained in E7 N Es in Lemma 6.1. Under
El's, D; > 0, D; > 0, and L,,, is well-defined, and, with sufficiently large N, A, < Mg < 1.lugx = o(1).

Let Ly, = A,vg, normalized s.t.
’U;‘:DWZ(SM, 1<kI<N.

Note that always A; = 0. Under E; N Ey, (D.3) holds, and thus

u? [ log N N

and the constant in big-O is determined by (M, p) and uniform for all u. Define the notation

2=
1=

N
mo ~
i=1

©
I

=

2
1 u;

N — p(ﬂﬁz)

Jull2-s o=

o
Il

Taking u to be v and (v £ v;) gives that

log N
mo = ol (14 Ole, | 7o), 1<k <K,

, YueRN. (D.10)

(D.11)

log N
_ 2 /
2mo = [lvg £ ui;-2 (1 + O(e, Ned/2))’ k#A1,1<kI<K.

Set &, 7, t in the same way as in the proof of Proposition 4.4, and define I.[u] as in (59). We have
(I-[u], I [u]) = gse(@), (I [u], Q¢ [u]) = qc(@), and (60) for s > 0. Next, similar as in the proof of Lemma 4.2,

one can show that with large N and w.p.> 1 — 2N 9,

N

1N Hy(wg ;) 1 log N ,

— E = 14+0 — 1<i<N D.12
N = P(%)P(Cﬂg) p(%)( + M,P( NSd/2))’ ) ( )
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where the notation Oy ,(-) indicates that the constant depends on (M, p) and is uniform for all ;. Applying
(D.12) to s = de gives that, under a good event Eéo)’ which happens w.p.> 1 — 2N 9,

- 1 u? _ log N
B () = 55 D 5 (1 Opgp(8 /4 )

— p(xi) Ned/2
_ log N
= [JullZ-2 (1 + O p(6~4* Noaz)) VuE RY. (D.13)

Applying (D.12) to s = € gives the good event Eél), which happens w.p.> 1 — 2N ~?, under which

- log N
0O ) = [[ull;+ (1 + Opmp(yf 5roars)s Vu € RY. (D.14)

The constants in big-O in (D.13) and (D.14) are determined by (M, p) only and uniform for all .
We also need an analogue of Lemma 4.3 to upper bound (]’E;Z , proved in below. The proof follows same
method of Lemma 4.3, and makes use of the uniform boundedness of p from below, and Lemma 6.4.

Lemma D.2. Under Assumption 1, h being Gaussian, let 0 < o < 1 be a fized constant. Suppose € = o(1),
€l/? = Q(%), then with sufficiently large N, and under the good event Ey of Lemma 6.1 1),

5 1 log N ~ <
0< ¢ (u) = (1 +0 (e(log ;)2, \/ ﬁ)) (W"(D = W)u) + ||ul2-10(¢*), VueRY, (D.15)

and
0< ¢ () <1.1a~Y2(Wr(D - W)u) + Jul2-,0(e*), VueRN. (D.16)

The constants in big-O only depend on (M, p) and are uniform for all u and «.

We proceed to define f, = _fT[vkL fr € C°°(M). Next, note that since (I — D_lI/T/)v;C = eA\pvg, and vy
are D-orthonormal, then

U]Z(.D — W)Uk = EAkU,{.D’Uk = 6)\k, 1 S k S K,

L D.17
(vp £v)T(D = W)(vp £v) =eM +N), k#1,1<kI<K. (D-17)

Taking v = ¢ in Lemma D.2, (D.16) then gives
12 () = O(6~Y?)eds + O(), 1<k<K,
@52 (on £ 01) = 06~ )e(h + M) +20(), kALLI<kI<K,

and both are O(e). Meanwhile, (D.13)and (D.11) give that (with that 6 > 0 is a fixed constant determined
by K and —A)

(0 log N log N
30 () = ol (1 + O | oors)) = mo(1 4+ Oleny| vo2)), 1<k <K,

. [log N [log N
qgg)(vkivl) = |‘Uk:|:’l)l||12)_1(1+0( W)) :2m0(1+0(e, W)), k?él, 1 Sk,l SK

(D.18)
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Putting together with the bounds of qge), this gives that

(i i) = 2 (0) = G2 (o) = mo(1+ Oles | 1))~ 0(0), 1S k<K,

log N
Ne Ned/2

(D.19)

(fr, f1) = (Q(Se(vk + 1) = Gse(vr — 1)) = O(e, Y+ O0(e), k#1,1<kI<K.

Then due to that O(e, Jl\?fd 7z) = o(1), we have linear independence of {f;}/<, with large enough N.

Same as before, for any 2 < k < K, we let Ly = Span{f1,---, fx}, and have (35). For any f € Ly,
k
f= Zj:l ¢ify, = L], v = ijl ¢;jv;, and

k
v Dv = ZC?’U]TDUJ' = ||c||?.

Meanwhile, by (D.9), mo = 1,

log N
el = 1lvl1% = llvll3-2 (1 + O, Nea2)) (D.20)
and by (D.17),
B B k
V(D =W =e>_ A < ellel* M. (D.21)
j=1

Then, as we work under E(® N EM  (D.13) and (D.14) hold. Applying to u = v and subtracting the two,

- _ log N log N _ log N
a5 (v) = () = ol31 Orp (6™ | T2 = el (14 Ol 5722 Oman (6~ 7o)

log N

= [lel?Opp(6

where we used (D.20) to obtain the 2nd equality. To upper bound 615(2) (v), by (D.15), and with the shorthand
that O(e) stands for O(e(log 1)?),

log N
Ned/2

< (1 +0(9 + oq/}ﬁf—d%) lelPxe + el (1 + Ofe, |/ 2E70()
< elle||? {Ak (1 + O(e) + O(Vﬁfﬁ)) + O(?)} .

3 (v) = <1 +0(e) + 0 >> (W7 (D~ W)o) + o] O(e%)

Thus we have that

(o f) = (£,Qef) < (@2 () — ¢ (@) + ¢ (v)

- log N _aal [logN
< €||CH2 {)\k <1+O(€)+O( W)> +O(€2)+OM,p(5 d/4E —Ned/Q)}
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~ _qmu1l [logN
= elle]|® {Ak +0(6) + Omp(6~ 2 [ 205

>} - (by M < L1ug) (D.22)
To lower bound (f, f), again by (D.16), (D.20) and (D.21),
0<% (v) <OE AW (D = W)o) + [0]2-10(e) < ellel* (MB(B~) + O(e2)) = [el*0(e).

By (D.13) and (D.20),

B2 0) = I (14 O 2000) = el (1 + Oes 2, (D.2)

Thus,

1 1
(.0 =0 0) — 32 w) = [l (1+0<e, %>—O<e>>z|c|2<l—0<e, Jﬁ—jf))

the rest of the proof is the same as that in Proposition 4.4, where the constant C is defined as C' = cM,p(S_d/‘l,
cm,p being a constant determined by (M, p), and then the constant ¢ in the definition of ¢k also depends
on p. The needed good events are Eéo)v Eél), and Ef} g, and the LB holds for k < K. O

Proof of Lemma D.2. By definition, for any u € RY,

N
- 1 H(x;,25)
100 =358 2 peapln W) 20

(zi)p(z;)

l\DM—\

Take ¢ in Lemma 2.2 to be ¢, since € = o(1), the three equations hold when ¢ < €. By (13), truncate at an

0 = 4/6(10 + g)elog% Euclidean ball, there is C3, a positive constant determined by M, s.t.

l\:>|>—l

al H(z;,x;) u;)?
He(wi,25) 4 ‘) ey (i — uj)? < Cze 711% .
Z: p(xi)p(x ) { i¢Bs.( 7)}( J) N2 Z )p(z]) {x;¢Bs, (x:)}

Note that

i,j= 1 i=1 j=1 i=1
u2 N N 2
1 2 us 1 2
Yi < — : = ull?_1, D.24
thus,

11 X H (x4, 25)
i (u) = = — T I o (ug — uy)? 2 0(). D.25
W0 = 3RE 22 pangplay) et eor (s~ )+ [ullp- O (D-25)

Apply (12) with the short hand that O(e) stands for O(e(log 1)2),
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N ~
. 11 Kc(xi, 1) (14 O(e)) + O(e?)
EQ)u —— J 1., ey (s — ui)? + |lul[? O(er?
( ) 9 2 i’jZ:1 p(xl)p(x]) { JGB(SE( 7)}( ]) || ||p ( )
N N
~ 11 K(x;,xj) 1 (u;i — uy)?
(14 0()s s S BTeTi)y (g — )2+ O W =) )2, 00
( (6))2 D) iJZ:1 p(l‘l)p(m]) {z;€Bs.( @)}( ) ( )NQ ZjZ:1 p(l‘z)p(l‘g) || ”p (6 )
- 11 LK (zi,24)
— 1+ 00O) g 30 BRI gy — )+ [l O (by (D21)
z’,j:lp i)P\Tj

The truncation for K.(z;,x;) gives that K(z,2;)1(z,¢B;. (z,)} = O(€'°), and then similarly as in (D.25),

N N
1 Ke(w,25) o 11 K (i, ;) 2 2 10

— 1y, e (U —uj)° = =—5 ——(u; —u;)° — ||[ul|l2_.0(e”).  (D.26
Z p(l‘z’)p(l‘j) {z;€Bs.( )}( J) 2 N2 Z_ p($i>p(-73j)( J) H ||p ( ) ( )

By Lemma 6.4, and ms = 2 with Gaussian h, we have that under the good event F; of Lemma 6.1 1),

. 11 &

log N
En(u) = £

(u; —u;)? N
2¢ N2 YT p(xa)p(x;) , VueRY,
2¢ N2 S Jp(xz)p(x]) NEd/Q)) u

(1+0(e,
and the constant in big-O is determined by (M, p) and uniform for all w. This gives that

N
Ne O s s ) = B + Oler| TR (0-27)

J - ’ Ned/2

l\.’)l»—t

and as a result, together with (D.26),

3 (w) = (14 0(0) <eEN<u><1 +0(e | 220 - |u||f,1o<e10>> + 2 0()

= e (u)(1 4+ 0(6) + O 22200 + Jul.0()

Recall that En(u) = %uT(D — W)u, this proves (D.15).
To prove (D.16), since 0 < ae < ¢, apply Lemma 2.2 with ¢ = e, and similarly as in (D.25),

N
~ 11 Heyo(xi,x4)
q((fe)( ) = I N2 ml{me&m(zi)}(“i - Uj)2 + ||u||;2)710(610)
i,j=1

N ~
11 Koe(zi, 2:) (1 + O(ae)) + O(a3€e?
g Hoclooz) U+ Olac) £ OWTe)y - = up)? + [ul20) (by (12))

2N? 2= p(xi)p(x;)
11 N Kooz, 7;)
—(14+0(e)= — el i)y, (g — wi)? 2 0(3). D.24
( +O(€))2N2 i]zz:l p(wl)p(xj) {IJEBaae(wz)}(uZ u]) +Hu||p 0(6 ) (by( ))

Then, using (29), (D.26) and (D.27),

N
R - _ 1 K (i, x5)
@ () < (1 /2 \Ti, Tj) 4 ‘ N2 2 3
qae( ) = ( + 0(6))04 IN2 zz: p(xz)p(x]) {wJEBS(xe(I’L)}(ul ’LL]) + ||u||P 10(6 )
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= (14 O0(e))a"%? (eEN(u)(l + Oe, ]l\c;f—dj/\g)) - |u||§10(€10)> + HuH;ﬂO(eg)
= (14+0() + O(e, | o200~ e () + Jull2 1 O(E),

which proves (D.16) because O(e) 4+ O, Jl\(,’fdj/\;) = 0(1) and thus the constant in front of a=%? is less

than 1.1 for sufficiently small e. O

Proof of Theorem 6.7. With sufficiently large N, we restrict to the intersection of the good events in Propo-
sition 6.6 and the K = k4, + 1 good events of applying Theorem 6.2 to {¢k}£{=1- Because the good event
in Proposition 6.6 is already under Ef; of Proposition 6.5, and under E; N E5 of Lemma 6.1, the extra
good events in addition to what is needed in Proposition 6.6 are those corresponding to F5MN FEy in the proof
of Theorem 6.2 where f = 1)} for each 1 < k < K, and, by a union bound, happens w.p.> 1 — K - 4N 7.
This gives to the final high probability indicated in the theorem. In addition, D; > 0, D; > 0 for all i, and
L, is well-defined.

The rest of the proof follows similar method as that of Theorem 5.5, but differs in the normalization of
the eigenvectors and that of the eigenfunctions. With the definition of |u| 5 and [Jul[,~1 in (61) and (D.10)

respectively, As has been shown in (D.9), under E; N Ey,

log N

2 2
lully = lull;- (L +Oe | a7

), VueRY, (D.28)

and the constant in big-O is determined by (M, p) and uniform for all u. This also gives that with sufficiently

large N,
0.9 [Jul3 2 2 2 L1 [juf3 N
——2<09 1 < = < 1.1 1 < v R D.29
N S ully-2 < llullz < LAullp- < o N TWERT (D.29)
2 2
because Hu||f},1 =% vazl % is upper bounded by pm}”N |lul|3 and lower bounded by Iﬁ% Apply

(D.29) to u = vg, this gives that 0'91 oell3 < ol N =1< piTlnHka%, that is

Pma

Pmin: < Joglly < /2mez 1<k < K,
1.1 0.9

and this verifies that ||vg|l2 = ©(1) under the high probability event.
Meanwhile, because the good event Ef}p is under the one needed in Lemma D.1, as shown in the proof

of Lemma D.1, we have that

1 o ()2
loxwnls = 5 30 A =140
i=1 g

where the constant in big-O depends on (M, p) and is uniform for all £ < K. By definition, N||(;~Sk|\;,1 =
lpx k|1, and then, apply (D.28) to u = ¢,

log N 1 log N

) = (140,

16:1% = lloxll5-1 (1 + OCe, =N

), 1<k<K. (D.30)
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Step 2. for L,,: When k =1, A; = 0, and v; is always the constant vector, thus the discrepancy is zero.
Consider 2 < k < K, by Theorem 6.2 and that ||ull2 < vN||u/ s,

- - . log N
[ Lrwdr — prdrll2 = O(e, 4/ Nedri)h 2Sk<K (D.31)

Then, by (D.29), V'N || Lrwor — 1xdk || p = O Lrwdr — i drll2) = Ofe, \/%), that is, there is Err,, > 0,
s.t.

- - log N
VN || Lpwdi — pidillp < Erry, 2<k <K, Erry = O(e, \/ W) (D.32)

Meanwhile, because we are under EU g, (41) holds for Ag. The proof then proceeds in the same way as the
Step 2. in Theorem 5.5, replacing £ ~ with D. Specifically, let Sy, = Span{D'/?uv;}, Sik = Span{Dl/ij, j#

k,1 < j < N}. We then have PS;? ([)1/2,ukq~5k) D/? ZHH” 1 UHvDuz Hxv;, and because

LT Dv; = ! ~(I =WD™"Dv; = ~(D — W)v; = DA\juj, (D.33)

we also have PSL (Dl/ rw¢k) D1/? EFH” 1 U”vﬁld;k/\ vj. Take subtraction st_ (D /2(L Tw¢k — uk@c))

and do the same calculation as before, by (D.32), it gives that

1/2
N TN |2
- |vi Doyl Err; 1 log N
P (DV? = Y S| <A = Ol o) D.34
: 5 ( ¢k) . j#k,j=1 ||UJ||% “ VNyk VN ( Ned/2+1) ( )

We similarly define §; := ’“Dﬁ", B DY/ 2y, = Pskﬁl/zq;k, and PSkL (Dl/quk) = Dl/zqgk - PS,CDl/Q(Z);c =

llvx]

DY/ (ék — Bkvk). Then, by (D.34), we have ||¢~)k — Brokllp = HPSkL (Dl/zék) Iz = \/—%O(e, ,/%), and

by (D.29),
- log N
16 = Brvkll2 = O(e,\| 3—a7a7)-

To finish Step 2, it remains to show that |8x| = 1+ o(1), and then we define ay = Bik Note that

16012 = 1023413 = 1Ps; (DY/26:) 13 + 11 Ps, (D26x) I3 = I1Psy (D264 ) I + BRlloell.  (D.35)

By that [jvg % = +, inserting into (D.35) together with (D.34), (D.30),

1 logN . 1 log N | o 9 1
N(1+O(6’ W))_<\/—NO(€’VW)) +Bkﬁa

which gives that 1+ o(1) = o(1) + 87 by multiplying N to both sides.

Step 3. of Ly.,: The proof is the same as Step 3. in Theorem 5.5, replacing % with D. Specifically, using
the relation (D.33), and the eigenvector consistency in Step 2, we have

I\ = paxllvg Déil < lekl| @k DLrwdr — pill @l | + lek D(Lrwdr — pxdi)| =: ®+@.
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where |lex|lp = ﬁO(e,M%) and o = 1+ o(1). By (D.6), ¢ DL,wdr = En(dr) = &k +
O(e, \/%). Together with (D.30), one can show that N® = O, \/%). For @, with (D.32), one

D.3
can verify that @ < |lex| pl|Lrwdr — trdrlp = %O(Errit) = Olgf), where used that O(Errf)t) = O(e) same
as before. Putting together, and with the definition of 8y above,

O+ (Oe/225%) +0(e) /N log N
A — pel|Br| < = = O, W)

B 1/N
We have shown that |8x] =14 o(1), thus the bound of |\; — ug| is proved, and holds for k < k4. O
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