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We study the spectral convergence of graph Laplacians to the Laplace-Beltrami 
operator when the kernelized graph affinity matrix is constructed from N random 
samples on a d-dimensional manifold in an ambient Euclidean space. By analyzing 
Dirichlet form convergence and constructing candidate approximate eigenfunctions 
via convolution with manifold heat kernel, we prove eigen-convergence with rates as 
N increases. The best eigenvalue convergence rate is N−1/(d/2+2) (when the kernel 
bandwidth parameter ε ∼ (log N/N)1/(d/2+2)) and the best eigenvector 2-norm 
convergence rate is N−1/(d/2+3) (when ε ∼ (log N/N)1/(d/2+3)). These rates hold up 
to a log N -factor for finitely many low-lying eigenvalues of both un-normalized and 
normalized graph Laplacians. When data density is non-uniform, we prove the same 
rates for the density-corrected graph Laplacian, and we also establish new operator 
point-wise convergence rate and Dirichlet form convergence rate as intermediate 
results. Numerical results are provided to support the theory.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Graph Laplacian matrices built from data samples are widely used in data analysis and machine learning. 

The earlier works include Isomap [2], Laplacian Eigenmap [3], Diffusion Map [10,30], among others. Apart 

from being a widely-used unsupervised learning method for clustering analysis and dimension reduction 

(see, e.g., the review papers [33,30]), graph Laplacian methods also drew attention via the application in 

semi-supervised learning [24,12,29,15]. Under the manifold setting, data samples are assumed to lie on low-

dimensional manifolds embedded in a possibly high-dimensional ambient space. A fundamental problem 

is the convergence of the graph Laplacian matrix to the manifold Laplacian operator in the large sample 
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Table 1

List of default notations

M d-dimensional manifold in RD

p data sampling density on M
ΔM Laplace-Beltrami operator, also as Δ
μk population eigenvalue of −Δ

ψk population eigenfunctions of −Δ

λk empirical eigenvalue of graph Laplacian

vk empirical eigenvector of graph Laplacian

∇M manifold gradient, also as ∇
Ht manifold heat kernel

Qt semi-group operator of manifold diffusion, 
Qt = et∆

X dataset points used for computing W
N number of samples in X
ε kernel bandwidth parameter

Kε graph affinity kernel, Wij = Kε(xi, xj), 
Kε(x, y) = ε−d/2h( ‖x−y‖2

ε )
h a function [0, ∞) → R

m0 m0[h] :=
∫

Rd h(|u|2)du

m2 m2[h] := 1
d

∫

Rd |u|2h(|u|2)du

W kernelized graph affinity matrix

D degree matrix of W , Dii =
∑N

j=1 Wij

Lun un-normalized graph Laplacian
Lrw random-walk graph Laplacian
EN graph Dirichlet form

ρX function evaluation operator, ρX f = {f(xi)}N
i=1

W̃ density-corrected affinity matrix, 
W̃ = D−1W D−1

D̃ degree matrix of W̃

Asymptotic Notations

O(·) f = O(g): |f | ≤ C|g| in the limit, C > 0, Oa(·)
declaring the constant dependence on a

Θ(·) f = Θ(g): for f , g ≥ 0, C1g ≤ f ≤ C2g in the limit, 
C1, C2 > 0

∼ f ∼ g same as f = Θ(g)
o(·) f = o(g): for g > 0, |f |/g → 0 in the limit
Ω(·) f = Ω(g): for f, g > 0, f/g → ∞ in the limit

Õ(·) O(·) multiplied another factor involving a log, defined 
every time used in text

When the superscript a is omitted, it declares that the con-
stants are absolute ones. f = O(g1, g2) means that f =
O(|g1| + |g2|).

limit. The operator point-wise convergence has been intensively studied and established in a series of works 

[19,18,4,10,27], and extended to variant settings, such as different kernel normalizations [23,36] and general 

class of kernels [31,5,9]. The eigen-convergence, namely how the empirical eigenvalues and eigenvectors 

converge to the population eigenvalues and eigenfunctions of the manifold Laplacian, is a more subtle issue 

and has been studied in [4,34,6,35,28,14] (among others) and recently in [32,7,11,8].

The current work proves the eigen-convergence, specifically the consistency of eigenvalues and eigenvectors 

in 2-norm, for finitely many low-lying eigenvalues of the graph Laplacian constructed using Gaussian kernel 

from i.i.d. sampled manifold data. The result covers the un-normalized and random-walk graph Laplacian 

when data density is uniform, and the density-corrected graph Laplacian (defined below) with non-uniformly 

sampled data. For the latter, we also prove new point-wise and Dirichlet form convergence rates as an 

intermediate result. We overview the main results in Section 1.1 in the context of literature, which are also 

summarized in Table 2.

The framework of our work follows the variational principle formulation of eigenvalues using the graph 

and manifold Dirichlet forms. Dirichlet form-based approach to prove graph Laplacian eigen-convergence 

was firstly carried out in [6] under a non-probabilistic setting. [32,7] extended the approach under the 

probabilistic setting, where xi are i.i.d. samples, using optimal transport techniques. Our analysis follows 

the same form-based approach and differs from previous works in the following aspects: Let ε be the (squared) 

kernel bandwidth parameter corresponding to diffusion time, N the number of samples, and d the manifold 

intrinsic dimensionality,

• Leveraging the observation in [10,27] that the bias error in the point-wise rate of graph Laplacian 

can be improved from O(
√

ε) to O(ε) using a C2 kernel function, we show that the improved point-wise 

rate Errpt = O

(

ε,
√

log N
Nεd/2+1

)

of Gaussian kernelized graph Laplacian translates into an improved eigen-

convergence rate than using compactly supported kernels. Specifically, the eigenvector (2-norm) convergence 

rate is O((log N/N)1/(d/2+3)), achieved at the optimal choice of ε ∼ (log N/N)1/(d/2+3).

• We show that the eigenvalue convergence rate matches that of the Dirichlet form convergence rate 

Errform = O

(

ε,
√

log N
Nεd/2

)

in [9], which is better than the point-wise rate Errpt. This leads to an eigenvalue 

convergence rate of O((log N/N)1/(d/2+2)), achieved at the optimal choice of ε ∼ (log N/N)1/(d/2+2). The 

optimal ε for eigenvalue and eigenvector estimation differs in order of N .
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• In obtaining the initial crude eigenvalue lower bound (LB), called Step 1 in below, we develop a short 

proof using manifold heat kernel to define the “interpolation mapping”, which constructs from a vector v a 

smooth function f on M. The manifold variational form of f , defined via the heat kernel, naturally relates 

to the graph Dirichlet form of v when the graph affinity matrix is constructed using a Gaussian kernel. 

The analysis makes use of special properties of manifold heat kernel and only holds when the graph affinity 

kernel locally approximates the heat kernel, like the Gaussian. This specialty of heat kernel has not been 

exploited in previous graph Laplacian analysis to obtain eigen-convergence rates.

Towards the eigen-convergence, our work also recaps and develops several intermediate results under 

weaker assumptions of the kernel function (i.e., non-Gaussian), including an improved point-wise con-

vergence rate of density-corrected graph Laplacian. The density-corrected graph Laplacian, originally 

proposed in [10], is an important variant of the kernelized graph Laplacian where the affinity matrix is 

W̃ = D−1WD−1. In applications, the data distribution p is often not uniform on the manifold, and then 

the standard graph Laplacian with W recovers the Fokker-Planck operator (weighted Laplacian) with mea-

sure p2, which involves a drift term depending on ∇M log p. The density-corrected graph Laplacian, in 

contrast, recovers the Laplace-Beltrami operator consistently when p satisfies certain regularity condition, 

and thus is useful in many applications. In this work, we first prove the point-wise convergence and Dirichlet 

form convergence of the density-corrected graph Laplacian with W̃ , both matching those of the standard 

graph Laplacian, and this can be of independent interest. Then the eigen-consistency result extends to 

such graph Laplacians (with Gaussian kernel function), also achieving the same rate as the standard graph 

Laplacian when p is uniform.

In below, we give an overview of the theoretical results starting from assumptions, and end the intro-

duction section with some further literature review. In the rest of the paper, Section 2 gives preliminaries 

needed in the analysis. Sections 3-5 develop the eigen-convergence of standard graph Laplacians, both 

the un-normalized and the normalized (random-walk) ones. Section 6 extends to density-corrected graph 

Laplacian, and Section 7 gives numerical results. We discuss possible extensions in the last section.

Notations. Default and asymptotic notations like O(·), Ω(·), Θ(·), are listed in Table 1. In this paper, we 

treat constants which are determined by h, M, p as absolute ones, including the intrinsic dimension d. We 

mainly track the number of samples N and the kernel diffusion time parameter ε, and we may emphasize 

the constant dependence on p or M in certain circumstances, using the subscript notation like OM(·). All 

constant dependence can be tracked in the proof.

1.1. Overview of main results

We first introduce needed assumptions, and then provide a technical overview of our analysis in Sec-

tion 1.1.2 (Steps 0-1) and Section 1.1.3 (Steps 2-3), summarized as a roadmap at the end of the section.

1.1.1. Set-up and assumptions

The current paper inherits the probabilistic manifold data setting, namely, the dataset {xi}N
i=1 consists 

of i.i.d. samples drawn from a distribution on M with density p satisfying the following assumption:

Assumption 1 (Smooth M and p). (A1) M is a d-dimensional compact connected C∞ manifold (without 

boundary) isometrically embedded in RD.

(A2) p ∈ C∞(M) and uniformly bounded both from below and above, that is, ∃pmin, pmax > 0 s.t.

0 < pmin ≤ p(x) ≤ pmax < ∞, ∀x ∈ M.

Suppose M is embedded via ι, and when there is no danger of confusion, we use the same notation x to denote 

x ∈ M and ι(x) ∈ R
D. We have the measure space (M, dV ): when M is orientable, dV is the Riemann 
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Table 2

Summary of theoretical results.

p uniform p non-uniform 
L̃rw with W̃

Needed assumptions Error bound

Lun with W Lrw with W on h on ε (ε → 0+)

Eigenvalue 
UB

Proposi-
tion 3.1

Proposi-
tion 3.6

Proposition 6.5 Assumption 2 εd/2 = Ω( log N
N ) form rate

Crude 
eigenvalue 
LB

Proposi-
tion 4.1

Proposi-
tion 4.4

Proposition 6.6 Gaussian εd/2+2 > cK
log N

N O(1)

Eigenvector 
convergence

Proposi-
tion 5.2

- - Gaussian εd/2+2 > cK
log N

N point-wise rate

Eigenvalue 
convergence

Proposi-
tion 5.3

- - form rate

Eigen-
value/vector 
combined 
convergence

Theorem 5.4 Theorem 5.5 Theorem 6.7 Gaussian εd/2+3 ∼ log N
N

(optimal order of ε
to minimize Errpt)

Both λk and vk: 
Õ(N−1/(d/2+3))

εd/2+2 ∼ log N
N

(optimal order of ε
to minimize 
Errform)

λk :
Õ(N−1/(d/2+2)), 
vk :
Õ(N−1/(d+4))

Point-wise 
convergence

Theorem 5.1 [27,9]∗ Theorem 6.2 Assumption 2 εd/2+1 = Ω( log N
N ) point-wise rate

Dirichlet 
form 
convergence

Thm. 3.2 [9]∗ Theorem 6.3 Assumption 2 εd/2 = Ω( log N
N ) form rate

“form rate” is Errform = O

(

ε,
√

log N
Nεd/2

)

, “point-wise rate” is Errpt = O

(

ε,
√

log N
Nεd/2+1

)

.

In the table, convergence of first kmax eigenvalues and eigenvectors are concerned, where kmax is fixed. In the most right column, 
“λk” means the error of eigenvalue convergence, and “vk” means the error of eigenvector convergence (in 2-norm). Õ(·) stands 
for the possible involvement of a factor of (log N)α for some α > 0. In the 2nd (3rd) column, the eigenvector and eigenvalue 
convergences are proved in Theorem 5.5 (Theorem 6.7) and are not written as separated propositions. ∗The point-wise convergence 
and Dirichlet form convergence results of graph Laplacian with W hold when p satisfies Assumption 1(A2), i.e., when p is not 
uniform. The Dirichlet form convergence with rate may hold when h is not differentiable, e.g., when h = 1[0,1), cf. Remark 2.

volume form; otherwise, dV is the measure associated with the local volume form. The smoothness of p and 

M fulfills many application scenarios, and possible extensions to less regular M or p are postponed. Our 

analysis first addresses the basic case where p is uniform on M, i.e., p = 1
Vol(M) and is a positive constant. 

For non-uniform p as in (A2), we adopt and analyze the density correction graph Laplacian in Section 6. 

In both cases, the graph Laplacian recovers the Laplace-Beltrami operator ΔM. In below, we write ΔM as 

Δ, ∇M as ∇.

Given N data samples, the graph affinity matrix W and the degree matrix D are defined as

Wij = Kε(xi, xj), Dii =
N
∑

j=1

Wij .

W is real symmetric, typically Wij ≥ 0, and for the kernelized affinity matrix, Wij = Kε(xi, xj) where

Kε(x, y) := ε−d/2h

(‖x − y‖2

ε

)

, (1)

for a function h : [0, ∞) → R. The parameter ε > 0 can be viewed as the “time” of the diffusion process. 

Some results in literature are written in terms of the parameter 
√

ε > 0, which corresponds to the scale of 

the local distance ‖x − y‖ such that h(‖x−y‖2

ε ) is of O(1) magnitude. Our results are written with respect 

to the time parameter ε, which corresponds to the squared local distance length scale.



136 X. Cheng, N. Wu / Appl. Comput. Harmon. Anal. 61 (2022) 132–190

Our main result of graph Laplacian eigen-convergence considers when the kernelized graph affinity is 

computed with

h(ξ) =
1

(4π)d/2
e−ξ/4, ξ ∈ [0, ∞), (2)

we call such h the Gaussian kernel function. (The constant factor (4π)−d/2 is included in the definition of 

h for theoretical convenience, and may not be needed in algorithm, e.g., in the normalized graph Laplacian 

the constant factor is cancelled.)

The Gaussian h belongs to a larger family of differentiable functions:

Assumption 2 (Differentiable h). (C1) Regularity. h is continuous on [0, ∞), C2 on (0, ∞).

(C2) Decay condition. ∃a, ak > 0, s.t., |h(k)(ξ)| ≤ ake−aξ for all ξ > 0, k = 0, 1, 2.

(C3) Non-negativity. h ≥ 0 on [0, ∞). To exclude the case that h ≡ 0, assume ‖h‖∞ > 0.

A summary of results with needed assumptions is provided in Table 2, from which we can see that several 

important intermediate results, which can be of independent interest, only require h to satisfy Assumption 2

or weaker, including

- Point-wise convergence of graph Laplacians.

- Convergence of the graph Dirichlet form.

- The eigenvalue upper bound (UB), which matches to the Dirichlet form convergence rate.

The point-wise convergence and Dirichlet form convergence of standard graph Laplacian only require a 

differentiable and decay condition of h as originally taken in [10], and even without Assumption 2(C3) 

non-negativity. Our analysis of density-corrected graph Laplacian assumes Wij ≥ 0, and our main result of 

eigen-convergence needs h to be Gaussian, thus we include (C3) in Assumption 2 to simplify exposition. The 

need of Gaussian h shows up in proving the (initial crude) eigenvalue lower bound (LB), to be explained in 

below, and it is due to the fundamental connection between Gaussian kernel and the manifold heat kernel.

1.1.2. Eigenvalue UB/LB and the interpolation mapping

To explain these results and the difference in proving eigenvalue UB and LB, we start by introducing the 

notion of point-wise rate and form rate. In the current paper,

• Point-wise convergence of graph Laplacians is shown to have the rate of O

(

ε,
√

log N
Nεd/2+1

)

. We call this 

rate the “point-wise rate”, and denote by Errpt.

• Convergence of the graph Dirichlet form 1
εN2 uT (D − W )u applied to smooth manifold functions, i.e., 

u = {f(xi)}N
i=1 for f smooth on M, is shown to have the rate of O

(

ε,
√

log N
Nεd/2

)

. We call this rate the “form 

rate”, and denote by Errform.

In literature, the point-wise convergence of random-walk graph Laplacian (I −D−1W ) with differentiable 

and decay h was firstly shown to have rate O(ε, 
√

log N
Nεd/2+1 ) in [27]. The exposition in [27] was for Gaussian 

h but the analysis therein extends directly to general h. The Dirichlet form convergence with differentiable 

h was shown to have rate O(ε, 
√

log N
Nεd/2 ) in [9] via a V-statistic analysis. [9] also derived point-wise rate for 

both the random-walk and the un-normalized graph Laplacian (D − W ). The analysis in [9] was mainly 

developed for kernel with adaptive bandwidth, and higher order regularity of h (C4 instead of C2) was 

assumed to handle the complication due to variable kernel bandwidth. For the fixed-bandwidth kernel as in 

(1), the analysis in [9] can be simplified to proceed under less restrictive conditions of h. We include more 

details in below when quoting these previous results, which pave the way towards proving eigen-convergence.



X. Cheng, N. Wu / Appl. Comput. Harmon. Anal. 61 (2022) 132–190 137

Table 2 illustrates a difference between eigenvalue UB and LB analysis. Specifically, the eigenvalue UB 

holds for general differentiable h, while the initial crude eigenvalue LB, and consequently the final eigenvalue 

and eigenvector convergence rate, need h to be Gaussian. This difference between eigenvalue UB and LB 

analysis is due to the subtlety of the variational principle approach in analyzing empirical eigenvalues. To 

be more specific, by “projecting” the population eigenfunctions to vectors in RN and use as “candidate” 

eigenvectors in the variational form, the Dirichlet form convergence rate directly translates into a rate of 

eigenvalue UB (for fixed finitely many low-lying eigenvalues). This is why the eigenvalue UB matches the 

form rate before any LB is derived, and we call this the “Step 0” of our analysis.

The eigenvalue LB, however, is more difficult, as has been pointed out in [6]. In [6] and following works 

taking the variational principle approach, the LB analysis is by “interpolating” the empirical eigenvectors to 

be functions on M. Unlike with the population eigenfunctions which are known to be smooth, there is less 

property of the empirical eigenvectors that one can use, and any regularity property of these discrete objects 

is usually non-trivial to obtain [8]. The interpolation mapping in [6] first assigns a point xi to a Voronoi cell 

Vi, assuming that {xi}i forms an ε-net of M to begin with (a non-probabilistic setting), and this maps a 

vector u to a piece-wise constant function P ∗u on M; next, P ∗u is convolved with a kernel function which 

is compacted supported on a small geodesic ball, and this produces “candidate” eigenfunctions, whose 

manifold differential Dirichlet form is upper bounded by the graph Dirichlet form of u, up to an error, 

through differential geometry calculations. Under the probabilistic setting of i.i.d. samples, [32] constructed 

the mapping P ∗ using a Wasserstein-∞ optimal transport (OT) map, where the ∞-OT distance between 

the empirical measure 1
N

∑

i δxi
and the population measure pdV is bounded by constructing a Voronoi 

tessellation of M when d ≥ 2. This led to an overall eigen-convergence rate of Õ(N−1/2d) in [32] when h

is compactly supported and satisfies certain regularity conditions and d ≥ 2, the Õ(·) indicating a possible 

a factor of certain power of log N . A typical example is when h is an indicator function h = 1[0,1), which 

is called “ε-graph” in computer science literature (ε corresponds to 
√

ε in our notation). The approach was 

extended to kNN graphs in [7], where the rate of eigenvalue and 2-norm eigenvector convergence was also 

improved to match the point-wise rate of the epsilon-graph or kNN graph Laplacians, leading to a rate of 

Õ(N−1/(d+4)) when εd/2+2 = Ω( log N
N ). The same rate was shown for ∞-norm consistency of eigenvectors 

in [8], combined with Lipschitz regularity analysis of empirical eigenvectors using advanced PDE tools. 

Eigenvalue consistency with degraded rate was obtained under the regime εd/2 = Ω( log N
N ), which is very 

sparse graph just beyond graph connectivity threshold [7].

In the current work, we take a different approach for the interpolation mapping in the eigenvalue LB 

analysis. Our method is based on manifold heat kernels, and the analysis makes use of the fact that at short 

time and on small local neighborhoods, the heat kernel Ht(x, y) can be approximated by

Gt(x, y) :=
1

(4πt)d/2
e− dM(x,y)2

4t , (3)

and consequently by Kt(x, y) when h is Gaussian as in (2). The first approximation Ht ≈ Gt is by classical 

results of elliptical operators on Riemannian manifolds, cf. Theorem 2.1. Next, we show that Gt ≈ Kt

because Kt replaces geodesic distance dM(x, y) with Euclidean distance ‖x − y‖ in Gt, and the two locally 

match by dM(x, y) = ‖x − y‖ + O(‖x − y‖3). (The constant in the big-O here depends on the second 

fundamental form, and by compactness of M is universal for x. Similar universal constant in big-O holds 

throughout the paper.) These estimates allow us to construct interpolated C∞(M) functions Ir[v] from 

discrete vector v ∈ R
N by convolving with the heat kernel at time r = εδ

2 , where 0 < δ < 1 is a fixed 

constant determined by the first K = kmax + 1 low-lying population eigenvalues μk of −Δ. Specifically, 

δ is inversely proportional to the smallest eigen-gap between μk for k ≤ K (μk assumed to have single 

multiplicity in the first place, and then the result generalizes to greater than one multiplicity), which is an 

O(1) constant determined by −Δ and K. Applying the variational principle to the operator I − Qt, where 
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Qt is the diffusion semi-group operator and Qt’s spectrum is determined by that of −Δ, allows to prove an 

initial eigenvalue LB smaller than half of the minimum first-K eigen-gap.

The step to derive O(1) initial crude eigenvalue LB using manifold heat kernel interpolation mapping is 

called “Step 1” in our analysis. While the interpolation mapping by convolving with a smooth kernel has 

been used in previous works [6,32,7], using the manifold heat kernel plays a special role in the eigenvalue 

LB analysis, and this cannot be equivalently achieved by other choices of kernels (unless the kernel locally 

approximates the heat kernel, like the Gaussian kernel here). Specifically, Lemma 4.3 is proved using heat 

kernel properties (without using concentration of i.i.d. data samples), and the lemma connects the continuous 

integral form of interpolated candidate eigenfunctions with the graph Dirichlet form.

1.1.3. Road-map of analysis

The previous subsection has explained Step 0 and 1 of our analysis. Here we summarize the rest of the 

analysis and provide a road-map.

After an O(1) initial crude eigenvalue LB is obtained in Step 1, we adopt the “bootstrap strategy” from 

[7], named as therein, to obtain a refined (2-norm) eigenvector consistency rate to match to the graph 

Laplacian point-wise convergence rate. We call this “Step 2”. Note that the use of smooth kernel (like 

Gaussian) has an improved bias error in the point-wise rate than compactly supported kernel function, and 

then consequently improves the eigen-convergence rate, see more in Remark 4.

Next, leveraging the eigenvector consistency proved in Step 2, we further improve the eigenvalue con-

vergence to match the form rate, which is better than the point-wise rate. We call this “Step 3”. Then 

the refined eigenvalue LB matches the eigenvalue UB in rate. In the process, the first K many empirical 

eigenvalues are upper bounded to be O(1), which follows by the eigenvalue UB proved in the beginning.

In summary, our eigen-convergence analysis consists of the following four steps,

- Step 0. Eigenvalue UB by the Dirichlet form convergence, matching to the form rate.

- Step 1. Initial crude eigenvalue LB, providing eigenvalue error up to the smallest first K eigen-gap.

- Step 2. 2-norm consistency of eigenvectors, up to the point-wise rate.

- Step 3. Refined eigenvalue consistency, up to the form rate.

Step 1 requires h to be non-negative and currently only covers the Gaussian case. This may be relaxed, 

since the proof only uses the approximation property of h, namely that Kε ≈ Hε. In this work, we restrict 

to the Gaussian case for simplicity and the wide use of Gaussian kernels in applications.

1.2. More related works

As we adopt a Dirichlet form-based analysis, the eigen-convergence result in the current paper is of the 

same type as in previous works using variational principle [6,32,7]. In particular, the rate concerns the 

convergence of the first kmax many low-lying eigenvalues of the Laplacian, where kmax is a fixed finite 

integer. The constants in the big-O notations in the bounds are treated as O(1), and they depend on 

kmax and these leading eigenvalues and eigenfunctions of the manifold Laplacian. Such results are useful 

for applications where leading eigenvectors are the primary focus, e.g., spectral clustering and dimension-

reduced spectral embedding. An alternative approach is to analyze functional operator consistency [4,34,28,

26], which may provide different eigen-consistency bounds, e.g., ∞-norm consistency of eigenvectors using 

compact embedding of Glivenko-Cantelli function classes [11].

The current work considers noise-less data on M, while the robustness of graph Laplacian against noise in 

data is important for applications. When manifold data vectors are perturbed by noise in the ambient space, 

[13] showed that Gaussian kernel function h has special property to make kernelized graph Laplacian robust 

to noise (by a modification of diagonal entries). More recently, [20] showed that bi-stochastic normalization 
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can make the Gaussian kernelized graph affinity matrix robust to high dimensional heteroskedastic noise 

in data. These results suggest that Gaussian h is a special and useful choice of kernel function for graph 

Laplacian methods.

Meanwhile, bi-stochastically normalized graph Laplacian has been studied in [23], where the point-wise 

convergence of the kernel integral operator to the manifold operator was proved. The spectral conver-

gence of bi-stochastically normalized graph Laplacian for data on hyper-torus was recently proved to be 

O(N−1/(d/2+4)+o(1)) in [36]. The density-corrected affinity kernel matrix W̃ = D−1WD−1, which is an-

alyzed in the current work, provides another normalization of the graph Laplacian which recovers the 

Laplace-Beltrami operator. It would be interesting to explore the connections to these works and extend 

our analysis to bi-stochastically normalized graph Laplacians, which may have better properties of spectral 

convergence and noise-robustness.

2. Preliminaries

2.1. Graph and manifold Laplacians

We define the following moment constants of function h satisfying Assumption 2,

m0[h] :=

∫

Rd

h(‖u‖2)du, m2[h] :=
1

d

∫

Rd

‖u‖2h(‖u‖2)du, m̃[h] :=
m2[h]

2m0[h]
.

By (C3), h ≥ 0 and the case h ≡ 0 is excluded, thus m0[h], m2[h] > 0. With Gaussian h as in (2), m0 = 1, 

m2 = 2, and m̃ = 1. Denote m2[h] and m0[h] by m2 and m0 for a shorthand notation, and

• The un-normalized graph Laplacian Lun is defined as

Lun :=
1

m2

2 pεN
(D − W ). (4)

Note that the standard un-normalized graph Laplacian is usually D −W , and we divide by the constant 
m2

2 pεN for the convergence of Lun to −Δ.

• The random-walk graph Laplacian Lrw is defined as

Lrw :=
1

m2

2m0
ε
(I − D−1W ), (5)

with the constant normalization to ensure convergence to −Δ.

The matrix Lun is real-symmetric, positive semi-definite (PSD), and the smallest eigenvalue is zero. Suppose 

eigenvalues of Lun are λk, k = 1, 2, · · · , and sorted in ascending order, that is,

0 = λ1(Lun) ≤ λ2(Lun) ≤ · · · ≤ λN (Lun).

The Lrw matrix is well-define when Di > 0 for all i, which holds w.h.p. under the regime that εd/2 = Ω( log N
N ), 

cf. Lemma 3.5. We always work under the εd/2 = Ω( log N
N ) regime, namely the connectivity regime. Due to 

that D−1W is similar to D−1/2WD−1/2 which is PSD, Lrw is also real-diagonalized and has N non-negative 

real eigenvalues, sorted and denoted as 0 = λ1(Lrw) ≤ λ2(Lrw) ≤ · · · ≤ λN (Lrw). We also have that, by 

the min-max variational formula for real-symmetric matrix,
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λk(Lun) = min
L⊂RN , dim(L)=k

sup
v∈L,v �=0

vT Lunv

vT v
, k = 1, · · · , N.

We define the graph Dirichlet form EN (u) for u ∈ R
N as

EN (u) =
1

m2

2

1

εN2
uT (D − W )u =

1
m2

2

1

2εN2

N
∑

i,j=1

Wi,j(ui − uj)2. (6)

By (4), EN (u) = p 1
N uT Lunu, and thus

λk(Lun) = min
L⊂RN , dim(L)=k

sup
v∈L,v �=0

EN (v)

p 1
N ‖v‖2

, k = 1, · · · , N. (7)

Similarly, we have

λk(Lrw) = min
L⊂RN , dim(L)=k

sup
v∈L,v �=0

EN (v)
1

m0

1
N2 vT Dv

, k = 1, · · · , N. (8)

To introduce notations of manifold Laplacian, we define inner-product in H := L2(M, dV ) as 〈f, g〉 :=
∫

M f(x)g(x)dV (x), for f, g ∈ L2(M, dV ). We also use 〈·, ·〉q to denote inner-product in L2(M, qdV ), qdV be-

ing a general measure on M (not necessarily probability measure), that is 〈f, g〉q :=
∫

M f(x)g(x)q(x)dV (x), 

for f, g ∈ L2(M, qdV ). For smooth connected compact manifold M, the (minus) manifold Laplacian-

Beltrami operator −Δ has eigen-pairs {μk, ψk}∞
k=1,

0 = μ1 < μ2 ≤ · · · ≤ μk ≤ · · · ,

−Δψk = μkψk, 〈ψk, ψl〉 = δk,l, ψk ∈ C∞(M), k, l = 1, 2, · · · .

The second eigenvalue μ2 > 0 due to connectivity of M. When μi = · · · = μi+l−1 = μ for some eigenvalue 

μ of −Δ having multiplicity l, the eigenfunctions ψi, · · · , ψi+l−1 can be set to be an orthonormal basis of 

the l-dimensional eigenspace associated with μ. Note that ψk ∈ C∞(M) for generic smooth M.

2.2. Heat kernel on M

We leverage the special property of Gaussian kernel in the ambient space RD that it locally approximates 

the manifold heat kernel on M. We start from the notations of manifold heat kernel. Since M is smooth 

compact (no-boundary), the Green’s function of the heat equation on M exists, namely the heat kernel 

Ht(x, y) of M. We denote the heat diffusion semi-group operator as Qt which can be formally written as 

Qt = etΔ, and

Qtf(x) =

∫

M

Ht(x, y)f(y)dV (y), ∀f ∈ L2(M, dV ).

By that Qt is semi-group, we have the reproduce property

∫

M

Ht(x, y)Ht(y, z)dV (y) = H2t(x, z), ∀x, z ∈ M, ∀t > 0.

Meanwhile, by the probability interpretation,
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∫

M

Ht(x, y)dV (y) = 1, ∀x ∈ M, ∀t > 0.

Using the eigenvalue and eigenfunctions {μk, ψk}k of −Δ, the heat kernel has the expansion representation 

Ht(x, y) =
∑∞

k=1 e−tμk ψk(x)ψk(y). We will not use the spectral expansion of Ht in our analysis, but only 

that ψk are also eigenfunctions of Qt, that is,

Qtψk = e−tμk ψk, k = 1, 2, · · · (9)

Next, we derive Lemma 2.2, which characterizes two properties of the heat kernel Ht at sufficiently short 

time: First, on a local neighborhood on M, Ht(x, y) can be approximated by Kt(x, y) in the leading order, 

where Kt is defined as in (1) with Gaussian h; Second, globally on the manifold the heat kernel Ht(x, y)

has a sub-Gaussian decay. These are based on classical results about heat kernel on Riemannian manifolds 

[21,16,25,17], summarized in the following theorem.

Theorem 2.1 (Heat kernel parametrix and decay [25,16]). Suppose M is as in Assumption 1 (A1), and 

m > d/2 + 2 is a positive integer. Then there are positive constants t0 < 1, δ0 < inj(M) i.e. the injective 

radius of M, and both t0 and δ0 depend on M, and

1) Local approximation: There are positive constants C1, C2 which depending on M, and u0, · · · , um

∈ C∞(M), where u0 satisfies that

|u0(x, y) − 1| ≤ C1dM(x, y)2, ∀y ∈ M, dM(y, x) < δ0,

and Gt is defined as in (3), such that, when t < t0, for any x ∈ M,

∣

∣

∣

∣

∣

Ht(x, y) − Gt(x, y)

(

m
∑

l=0

tlul(x, y)

)∣

∣

∣

∣

∣

≤ C2tm−d/2+1, ∀y ∈ M, dM(y, x) < δ0. (10)

2) Global decay: There is positive constant C3 depending on M such that, when t < t0,

Ht(x, y) ≤ C3t−d/2e− dM(x,y)2

5t , ∀x, y ∈ M. (11)

Part 1) is by the classical parametrix construction of heat kernel on M, see e.g. Chapter 3 of [25], and 

Part 2) follows the classical upper bound of heat kernel by Gaussian estimate dating back to 60s [1,17]. We 

include a proof of the theorem in Appendix B for completeness.

The theorem directly gives to the following lemma (proof in Appendix B), which is useful for our con-

struction of interpolation mapping using heat kernel. We denote by Bδ(x) the Euclidean ball in RD centered 

at point x of radius δ.

Lemma 2.2. Suppose M is as in Assumption 1 (A1), and t → 0+. Let δt :=
√

6(10 + d
2 )t log 1

t , and Kt(x, y)

be with Gaussian kernel h, i.e., Kt(x, y) = (4πt)−d/2e−‖x−y‖2/4t. Then there is positive constant ε0 depending 

on M such that, when t < ε0, for any x ∈ M,

Ht(x, y) = Kt(x, y)(1 + O(t(log t−1)2)) + O(t3), ∀y ∈ Bδt
(x) ∩ M, (12)

Ht(x, y) = O(t10), ∀y /∈ Bδt
(x) ∩ M, (13)

Ht(x, y) = O(t−d/2), ∀x, y ∈ M. (14)

The constants in big-O in all the equations only depend on M and are uniform for all x.
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3. Eigenvalue upper bound

In this section, we consider uniform p on M, and standard graph Laplacians Lun and Lrw with the 

kernelized affinity matrix W , Wij = Kε(xi, xj) defined as in (1). We show the eigenvalue UB for general 

differentiable h satisfying Assumption 2, not necessarily Gaussian.

3.1. Un-normalized graph Laplacian eigenvalue UB

We now derive Step 0 for Lun, the result being summarized in the following proposition.

Proposition 3.1 (Eigenvalue UB of Lun). Under Assumption 1(A1), p being uniform on M, and Assump-

tion 2. For fixed K ∈ N, if as N → ∞, ε → 0+ and εd/2 = Ω( log N
N ), then for sufficiently large N , w.p. 

> 1 − 4K2N−10,

λk(Lun) ≤ μk + O

(

ε,

√

log N

Nεd/2

)

, k = 1, · · · , K.

The proposition holds when the population eigenvalues μk have more than 1 multiplicities, as long as they 

are sorted in an ascending order. The proof is by constructing a k-dimensional subspace L in (7) spanned 

by vectors in RN which are produced by evaluating the population eigenfunctions ψk at the N data points. 

The proof is given in the end of this subsection after we introduce a few needed middle-step results.

Given X = {xi}N
i=1, define the function evaluation operator ρX applied to f : M → R as

ρX : C(M) → R
N , ρXf = (f(x1), · · · , f(xN )).

We will use uk = 1√
pρXψk as “candidate” approximate eigenvectors. To analyze EN( 1√

pρXψk), the following 

result from [9] shows that it converges to the differential Dirichlet form

p−1〈ψk, (−Δ)ψk〉p2 = pμk

with the form rate. The result is for general smooth p and weighted Laplacian Δq, which is defined as 

Δq := Δ + ∇q
q · ∇ for measure qdV on M. Δq is reduced to Δ when q is uniform.

Theorem 3.2 (Theorem 3.4 in [9]). Under Assumptions 1 and 2, as N → ∞, ε → 0+, εd/2 = Ω( log N
N ), then 

for any f ∈ C∞(M), when N is sufficiently large, w.p. > 1 − 2N−10,

EN (ρXf) = 〈f, −Δp2f〉p2 + Op,f (ε) + O

⎛

⎜

⎝

√

√

√

√

log N

Nεd/2

∫

M

|∇f |4p2

⎞

⎟

⎠
.

The constant in Op,f (·) depends on the C4 norm of p and f on M, and that in O(·) is an absolute one.

Proof of Theorem 3.2. The proof is by a going through of the proof of Theorem 3.4 of [9] under the simplified 

situation when β = 0 (no normalization of the estimated density is involved). Specifically, the proof uses the 

concentration of the V -statistics Vij := 1
ε Kε(xi, xj)(f(xi) − f(xj))2. The expectation of EVij , i �= j, equals 

1
ε

∫

M
∫

M Kε(x, y)(f(x) − f(y))2p(x)p(y)dV (x)dV (y) = m2[h]〈f, −Δp2f〉p2 + Op,f (ε). Meanwhile, |Vij | is 

bounded by O(ε−d/2), and the variance of the Vij can also be bounded by O(ε−d/2) with the constant as in the 

theorem, following the calculation in the proof of Theorem 3.4 in [9]. The concentration of 1
N(N−1)

∑N
i,j=1 Vij
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at EVij then follows by the decoupling of the V -statistics, and it gives the high probability bound in the 

theorem.

Note that the results in [9] are proved under the assumption that h to be C4 rather than C2, that is, 

requiring Assumption 2(C1)(C2) to hold for up to 4-th derivative of h. This is because C4 regularity of 

h is used to handle complication of the adaptive bandwidth in the other analysis in [9]. With the fixed 

bandwidth kernel Kε(x, y) as defined in (1), C2 regularity suffices, as originally assumed in [10]. �

Remark 1 (Relaxation of Assumption 2). Since the proof only involves the computation of moments of 

the V -statistic, it is possible to relax Assumption 2(C3) non-negativity of h and replace with certain non-

vanishing conditions on m0[h] and m2[h], e.g., as in [10] and Assumption A.3 in [9]. Since the non-negativity 

of Wij is used in other places in the paper, and our eigenvalue LB needs h to be Gaussian, we adopt the 

non-negativity of h in Assumption 2 for simplicity. The C4 regularity of f may also be relaxed, and the 

constant in Op,f (·) may be improved accordingly. These extensions are not further pursued here.

Remark 2 (Dirichlet form convergence with compactly supported h). The “epsilon-graph” corresponds to 

construct graph affinity using the indicator function kernel h = 1[0,1). Note that the “epsilon” stands for 

the scale of local distance and thus is the 
√

ε here, because our ε is “time”. When h = 1[0,1), using the same 

method as in the proof of Lemma 8 in [10], one can verify that (proof in Appendix C.1), for i �= j,

EVij = m2[h]〈f, −Δp2f〉p2 + Op,f (ε), f ∈ C∞(M). (15)

The boundedness and variance of Vij are again bounded by O(ε−d/2), and thus the Dirichlet form convergence 

with h = 1[0,1) has the same rate O(ε, 
√

log N
Nεd/2 ) as in Theorem 3.2. This firstly implies that the eigenvalue 

UB also has the same rate, following the same proof of Proposition 3.1. The final eigen-convergence rate 

also depends on the point-wise rate of the graph Laplacian, see more in Remark 4.

In Theorem 3.2 and in below, the log N factor in the variance error bound is due to the concentration 

argument. Throughout the paper, the classical Bernstein inequality Lemma B.1 is intensively used.

To proceed, recall the definition of EN (u) as in (6), we define the bi-linear form for u, v ∈ R
N as

BN (u, v) :=
1

4
(EN (u + v) − EN (u − v)) =

1

m2/2

1

εN2
uT (D − W )v,

which is symmetric, i.e., BN (u, v) = BN (v, u), and BN (u, u) = EN (u). The following lemma characterizes 

the forms EN and BN applied to ρXψk, proved in Appendix C.1.

Lemma 3.3. Under Assumption 1 (A1), p being uniform on M, and Assumption 2. As N → ∞, ε → 0+, 

εd/2N = Ω(log N). For fixed K, when N is sufficiently large, w.p. > 1 − 2K2N−10,

EN (
1√
p

ρXψk) = pμk + O(ε) + O

(

√

log N

Nεd/2

)

, k = 1, · · · , K,

BN (
1√
p

ρXψk,
1√
p

ρXψl) = O(ε) + O

(

√

log N

Nεd/2

)

, k �= l, 1 ≤ k, l ≤ K.

(16)

We need to show the linear independence of the vectors ρXψ1, · · · , ρXψK such that they span a K-

dimensional subspace in RN . This holds w.h.p. at large N , by the following lemma showing the near-isometry 

of the projection mapping ρX , proved in Appendix C.1.
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Lemma 3.4. Under Assumption 1 (A1), p being uniform on M. For fixed K, when N is sufficiently large, 

w.p. > 1 − 2K2N−10,

1

N
‖ 1√

p
ρXψk‖2 = 1 + O(

√

log N

N
), 1 ≤ k ≤ K;

1

N
(

1√
p

ρXψk)T (
1√
p

ρXψl) = O(

√

log N

N
), k �= l, 1 ≤ k, l ≤ K.

(17)

Given these estimates, we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. For fixed K, consider the intersection of both good events in Lemma 3.3 and 3.4, 

which happens w.p. > 1 − 4K2N−10 with large enough N . Let uk = 1√
pρXψk, by (17), the set {u1, · · · , uK}

is linearly independent.

For any 1 ≤ k ≤ K, let L = Span{u1, · · · , uk}, then dim(L) = k. By (7), to show the UB of λk as in the 

proposition, it suffices to show that

sup
v∈L,‖v‖2=N

1

p
EN (v) ≤ μk + O(ε) + O

(

√

log N

Nεd/2

)

.

For any v ∈ L, ‖v‖2 = N , there are cj , 1 ≤ j ≤ k, such that v =
∑k

j=1 cjuj . By (17),

1 =
1

N
‖v‖2 =

k
∑

j=1

c2
j (1 + O(

√

log N

N
)) +

k
∑

j �=l,j,l=1

|cj ||cl|O(

√

log N

N
) = ‖c‖2(1 + O(K

√

log N

N
)),

thus ‖c‖2 = 1 + O(
√

log N
N ). Meanwhile, EN (v) = EN (

∑k
j=1 cjuj) =

∑k
j,l=1 cjclBN (uj , ul), and by (16),

EN (v) =
k
∑

j=1

c2
j

(

pμj + O(ε,

√

log N

Nεd/2
)

)

+
k
∑

j �=l,j,l=1

|cj ||cl|O(ε,

√

log N

Nεd/2
)

= p
k
∑

j=1

μjc2
j + K‖c‖2O(ε,

√

log N

Nεd/2
) ≤ ‖c‖2

{

pμk + O(ε,

√

log N

Nεd/2
)

}

, (18)

where since K is fixed integer, we incorporate it into the big-O. Also, μk ≤ μK = O(1), and then

1

p
EN (v) ≤

(

1 + O(

√

log N

N
)

){

μk + O(ε) + O

(

√

log N

Nεd/2

)}

= μk + O(ε) + O

(

√

log N

Nεd/2

)

,

which finishes the proof. �

3.2. Random-walk graph Laplacian eigenvalue UB

We fist establish a concentration argument of Di in the following lemma, which shows that Di > 0

w.h.p., by that 1
N Di concentrates at the value of m0p > 0. Consequently, 1

N2 uT Du also concentrates and 

the deviation is uniformly bounded for all u ∈ R
N , which will be used in analyzing (8).

Lemma 3.5. Under Assumption 1(A1), p uniform, and Assumption 2. Suppose as N → 0, ε → 0+ and 

εd/2 = Ω( log N
N ). Then, when N is large enough, w.p. > 1 − 2N−9,
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1) The degree Di concentrates for all i, namely,

1

N
Di = m0p + O

(

ε,

√

log N

Nεd/2

)

, ∀i = 1, · · · , N. (19)

2) The from 1
N2 uT Du concentrates for all u, namely,

1

N2
uT Du =

1

N
‖u‖2

(

m0p + O

(

ε,

√

log N

Nεd/2

))

, ∀u ∈ R
N . (20)

The constants in big-O in (19) and (20) are determined by (M, h) and uniform for all i and u.

Part 2) immediately follows from Part 1), the latter being proved by standard concentration argument of 

independent sum and a union bound for N events. With Lemma 3.5, the proof of the following proposition 

is similar to that of Proposition 3.1, and the difference lies in handling the denominator of the Rayleigh 

quotient in (8). The proofs of Lemma 3.5 and Proposition 3.6 are in Appendix C.1.

Proposition 3.6 (Eigenvalue UB of Lrw). Suppose M, p uniform, h, K, μk, and ε are under the same 

condition as in Proposition 3.1, then for sufficiently large N , w.p. > 1 − 2N−9 − 4K2N−10, Di > 0 for all 

i, and

λk(Lrw) ≤ μk + O

(

ε,

√

log N

Nεd/2

)

, k = 1, · · · , K.

4. Eigenvalue crude lower bound in Step 1

In this section, we prove O(1) eigenvalue LB in Step 1, first for Lun, and then the proof for Lrw is similar.

We consider for t > 0 the operator Lt on H = L2(M, dV ) defined as

Lt := I − Qt, Ltf(x) = f(x) −
∫

M

Ht(x, y)f(y)dV (y), f ∈ H.

The semi-group operator Qt is Hilbert-Schmidt, compact, and has eigenvalues and eigenfunctions as in (9). 

Thus, the operator Lt is self-adjoint and PSD, and has

Ltψk = (1 − e−tμk )ψk, k = 1, 2, · · ·

For any t > 0, the eigenvalues {1 − e−tμk }k are ascending from 0 and have limit point 1. We denote 

‖f‖2 = 〈f, f〉 for f ∈ H. By the variational principle, we have that when t > 0, for any k,

1 − e−tμk = inf
L⊂H, dim(L)=k

sup
f∈L, ‖f‖2 �=0

〈f, Ltf〉
〈f, f〉 . (21)

For the first result, we assume that μk are all of multiplicity 1 for simplicity. When population eigenvalues 

have greater than one multiplicity, the result extends by considering eigenspace rather than eigenvectors in 

the standard way, see Remark 5.
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4.1. Un-normalized graph Laplacian eigenvalue crude LB

We now derive Step 1 for Lun, the result being summarized in the following proposition.

Proposition 4.1 (Initial crude eigenvalue LB of Lun). Under Assumption 1 (A1), suppose p is uniform on 

M, and h is Gaussian. For fixed kmax ∈ N, K = kmax + 1, suppose 0 = μ1 < · · · < μK < ∞ are all of 

single multiplicity, and define

γK :=
1

2
min

1≤k≤kmax

(μk+1 − μk), (22)

γK > 0 and is a fixed constant. Then there is a absolute constant cK determined by M and kmax (specifically, 

cK = c(μK

γK
)d/2γ−2

K , where c is a constant depending on M), such that, if as N → ∞, ε → 0+, and 

εd/2+2 > cK
log N

N , then for sufficiently large N , w.p. > 1 − 4K2N−10 − 4N−9,

λk(Lun) > μk − γK , k = 2, · · · , K.

We prove Proposition 4.1 in the end of this subsection after we introduce heat kernel interpolation and 

establish the needed lemmas.

Suppose {λk, vk}K
k=1 are eigenvalue and eigenvectors of Lun, to construct a test function fk on M from 

the vector vk, we define the interpolation mapping (the terminology “interpolation” is inherited from [6]) 

by the heat kernel with diffusion time r, 0 < r < ε to be determined. Specifically, define

Ir[u](x) :=
1

N

N
∑

j=1

ujHr(x, xj), Ir : R
N → C∞(M),

and then for any t > 0,

〈Ir[u], QtIr[u]〉 =
1

N2

N
∑

i,j=1

uiujH2r+t(xi, xj), 〈Ir[u], Ir[u]〉 =
1

N2

N
∑

i,j=1

uiujH2r(xi, xj). (23)

We define the quadratic form

qs(u) :=
1

N2

N
∑

i,j=1

uiujHs(xi, xj), s > 0, u ∈ R
N .

We also define q
(0)
s and q

(2)
s as below, and then for any u ∈ R

N , qs(u) = q
(0)
s (u) − q

(2)
s (u), where

q(0)
s (u) :=

1

N

N
∑

i=1

u2
i

⎛

⎝

1

N

N
∑

j=1

Hs(xi, xj)

⎞

⎠ , q(2)
s (u) :=

1

2

1

N2

N
∑

i,j=1

Hs(xi, xj)(ui − uj)2 (24)

We will show that q
(0)
s (u) ≈ p 1

N ‖u‖2 by concentration of the independent sum 1
N

∑N
j=1 Hs(xi, xj); q

(2)
s (u) ≥

0 by definition, and will be O(s) when u is an eigenvector with ‖u‖2 = N .

Lemma 4.2. Under Assumption 1 (A1), p being uniform on M. Suppose as N → 0, s → 0+ and sd/2 =

Ω( log N
N ). Then, when N is large enough, w.p. > 1 − 2N−9,

q(0)
s (u) =

1

N
‖u‖2

(

p + OM(

√

log N

Nsd/2
)

)

, ∀u ∈ R
N .
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The notation OM(·) indicates that the constant depends on M and is uniform for all u.

Proof of Lemma 4.2. By definition, q
(0)
s (u) = 1

N

∑N
i=1 u2

i (Ds)i, where (Ds)i := 1
N

∑N
j=1 Hs(xi, xj), and 

{(Ds)i}N
i=1 are N positive valued random variables. It suffices to show that with large enough N , w.p. 

indicated in the lemma,

(Ds)i = p + OM(

√

log N

Nsd/2
), ∀i = 1, · · · , N. (25)

This can be proved using concentration argument, similar as in the proof of Lemma 3.5 1), where we use 

the boundedness of the heat kernel (14) in Lemma 2.2. The proof of (25) is given in Appendix C.2. Note 

that (25) is a property of the r.v. Hs(xi, xj) only, which is irrelevant to the vector u. Thus the threshold of 

large N in the lemma and the constant in big-O depend on M and are uniform for all u. �

Lemma 4.3. Under Assumption 1 (p can be non-uniform), h being Gaussian, let 0 < α < 1 be a fixed 

constant. Suppose ε → 0+ as N → ∞, then with sufficiently small ε, for any realization of X,

0 ≤ q(2)
ε (u) =

(

1 + O(ε(log
1

ε
)2)

)

uT (D − W )u

N2
+

‖u‖2

N
O(ε3), ∀u ∈ R

N , (26)

and

0 ≤ q(2)
αε (u) ≤ 1.1α−d/2 uT (D − W )u

N2
+

‖u‖2

N
O(ε3), ∀u ∈ R

N . (27)

The constants in big-O only depend on M and are uniform for all u and α.

Proof of Lemma 4.3. For any u ∈ R
N , q

(2)
ε (u) = 1

2
1

N2

∑N
i,j=1 Hε(xi, xj)(ui − uj)2 ≥ 0. Since ε = o(1), take t

in Lemma 2.2 to be ε, when ε < ε0, the three equations hold. By (13), truncate at an δε =
√

6(10 + d
2 )ε log 1

ε

Euclidean ball,

q(2)
ε (u) =

1

2

1

N2

N
∑

i,j=1

Hε(xi, xj)1{xj∈Bδε (xi)}(ui − uj)2 + O(ε10)
1

2

1

N2

N
∑

i,j=1

(ui − uj)2.

By that 1
N2

∑N
i,j=1(ui−uj)2 ≤ 2

N ‖u‖2, and apply (12) with the short hand that Õ(ε) stands for O(ε(log 1
ε )2),

q(2)
ε (u) =

1

2

1

N2

N
∑

i,j=1

(

Kε(xi, xj)(1 + Õ(ε)) + O(ε3)
)

1{xj∈Bδε (xi)}(ui − uj)2 + O(ε10)
‖u‖2

N

= (1 + Õ(ε))
1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)1{xj∈Bδε (xi)}(ui − uj)2 + O(ε3)
‖u‖2

N
.

By the truncation argument for Kε(xi, xj), we have that

1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)1{xj∈Bδε (xi)}(ui − uj)2 =
uT (D − W )u

N2
+

‖u‖2

N
O(ε10). (28)

Putting together, we have
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q(2)
ε (u) = (1 + Õ(ε))

(

uT (D − W )u

N2
+

‖u‖2

N
O(ε10)

)

+ O(ε3)
‖u‖2

N
,

which proves (26).

To prove (27), since α < 1 is a fixed positive constant, 0 < αε < ε < ε0, we then apply Lemma 2.2 with 

t therein being αε. With a truncation at δαε-Euclidean ball, and by (12),

q(2)
αε (u) =

1

2

1

N2

N
∑

i,j=1

(

Kαε(xi, xj)(1 + Õ(αε)) + O(α3ε3)
)

1{xj∈Bδαε (xi)}(ui − uj)2 +
‖u‖2

N
O(ε10)

= (1 + Õ(ε))
1

2

1

N2

N
∑

i,j=1

Kαε(xi, xj)1{xj∈Bδαε (xi)}(ui − uj)2 +
‖u‖2

N
O(ε3).

Suppose ε is sufficiently small such that 1 + Õ(ε) is less than 1.1. Note that

Kαε(x, y) =
1

(4παε)d/2
e− ‖x−y‖2

4αε ≤ 1

αd/2

1

(4πε)d/2
e− ‖x−y‖2

4ε = α−d/2Kε(x, y), ∀x, y ∈ M, (29)

then, by that 1{xj∈Bδαε (xi)} ≤ 1{xj∈Bδε (xi)}, and again with (28),

q(2)
αε (u) ≤ 1.1

1

2

1

N2

N
∑

i,j=1

α−d/2Kε(xi, xj)1{xj∈Bδε (xi)}(ui − uj)2 +
‖u‖2

N
O(ε3)

= 1.1α−d/2

(

uT (D − W )u

N2
+

‖u‖2

N
O(ε10)

)

+
‖u‖2

N
O(ε3),

and this proves (27). �

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. For fixed kmax, since γK < μK , define

δ :=
0.5γK

μK
< 0.5, (30)

δ > 0 and is a fixed constant determined by M and kmax. For ε > 0, let

r :=
δε

2
, t = ε − 2r = (1 − δ)ε.

For Lunvk = λkvk, where vk are normalized s.t.

1

N
vT

k vl = δkl, 1 ≤ k, l ≤ N, (31)

let fk = Ir[vk], k = 1, · · · , K, then fk ∈ C∞(M) ⊂ H. Because εd/2+2 > cK
log N

N , and ε = o(1), εd/2 =

Ω( log N
N ). Thus, under the assumption of the current proposition, the condition needed in Proposition 3.1 is 

satisfied, and then when N is sufficiently large, there is an event EUB which happens w.p. > 1 − 4K2N−10, 

under which

λk ≤ μk + 0.1μK ≤ 1.1μK , 1 ≤ k ≤ K. (32)
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We first show that {fj}K
j=1 are linearly independent by considering 〈fk, fl〉. By definition, for 1 ≤ k ≤ K,

〈fk, fk〉 = q2r(vk) = q
(0)
δε (vk) − q

(2)
δε (vk),

and for k �= l, 1 ≤ k, l ≤ K,

〈(fk ± fl), (fk ± fl)〉 = q2r(vk ± vl) = q
(0)
δε (vk ± vl) − q

(2)
δε (vk ± vl).

Because s = δε, under the condition of the proposition, s satisfies the condition in Lemma 4.2, and thus, 

with sufficiently large N , there is an event E(0) which happens w.p. > 1 − 2N−9, under which

q
(0)
δε (vk) = p + O(

√

log N

Nεd/2
), 1 ≤ k ≤ K; q

(0)
δε (vk ± vl) = 2p + O(

√

log N

Nεd/2
), k �= l, 1 ≤ k, l ≤ K,

where we used that the factor δ−d/2 is a fixed constant. Meanwhile, applying (27) in Lemma 4.3 where 

α = δ, and note that

vT
k (D − W )vk

N2
= pελk;

(vk ± vl)
T (D − W )(vk ± vl)

N2
= pε(λk + λl), k �= l, 1 ≤ k, l ≤ K,

we have that

q
(2)
δε (vk) = O(δ−d/2)pελk + O(ε3), 1 ≤ k ≤ K,

q
(2)
δε (vk ± vl) = O(δ−d/2)pε(λk + λl) + 2O(ε3), k �= l,

and by that λk, λl ≤ 1.1μK which is a fixed constant, so is δ, we have that

q
(2)
δε (vk) = O(ε), 1 ≤ k ≤ K; q

(2)
δε (vk ± vl) = O(ε), k �= l, 1 ≤ k, l ≤ K. (33)

Putting together, we have that

〈fk, fk〉 = p + O(

√

log N

Nεd/2
, ε), 1 ≤ k ≤ K,

〈fk, fl〉 =
1

4
(qδε(vk + vl) − qδε(vk − vl)) = O(

√

log N

Nεd/2
, ε), k �= l, 1 ≤ k, l ≤ K.

(34)

This proves linear independence of {fj}K
j=1 when N is large enough, since O(

√

log N
Nεd/2 , ε) = o(1).

We consider first K eigenvalues of Lt, t = (1 − δ)ε. For each 2 ≤ k ≤ K, let Lk = Span{f1, · · · , fk} be a 

k-dimensional subspace in H, then by (21),

1 − e−(1−δ)εμk ≤ sup
f∈Lk, ‖f‖2 �=0

〈f, Ltf〉
〈f, f〉 =

〈f, f〉 − 〈f, Qtf〉
〈f, f〉 . (35)

For any f ∈ Lk, ‖f‖2 �= 0, there is c ∈ R
k, c �= 0, such that f =

∑k
j=1 cjfj . Thus

f =
k
∑

j=1

cjIr[vj ] = Ir[
k
∑

j=1

cjvj ] = Ir[v], v :=
k
∑

j=1

cjvj .

Because vj are orthogonal, ‖vj‖2 = N , we have that
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‖v‖2

N
= ‖c‖2,

vT (D − W )v

N2
=

k
∑

j=1

c2
j (pελj) ≤ λkpε‖c‖2.

By definition, 〈f, f〉 = qδε(v), and 〈f, Qtf〉 = qε(v).

We first upper bound the numerator of the r.h.s. of (35). By that q
(2)
δε (v) ≥ 0,

〈f, f〉 − 〈f, Qtf〉 = qδε(v) − qε(v) = q
(0)
δε (v) − q

(2)
δε (v) − q(0)

ε (v) + q(2)
ε (v)

≤ (q
(0)
δε (v) − q(0)

ε (v)) + q(2)
ε (v). (36)

We have already obtained the good event E(0) when applying Lemma 4.2 with s = δε. We apply the 

lemma again to s = ε, which gives that with sufficiently large N there is an event E(1) which happens 

w.p. > 1 − 2N−9, and then under E(0) ∩ E(1),

q
(0)
δε (v) = ‖c‖2(p + OM(

√

δ−d/2
log N

Nεd/2
)), q(0)

ε (v) = ‖c‖2(p + OM(

√

log N

Nεd/2
)). (37)

We track the constant dependence here: the constant in OM(·) in Lemma 4.2 is only depending on M
(and not on K), thus we use the notation OM(·) in (37) and below to emphasize that the constant is 

M-dependent only and independent from K. Then (37) gives that

q
(0)
δε (v) − q(0)

ε (v) = ‖c‖2δ−d/4OM

(

√

log N

Nεd/2

)

.

The UB of q
(2)
ε (v) follows from (26) in Lemma 4.3, with the shorthand that Õ(ε) stands for O(ε(log 1

ε )2),

q(2)
ε (v) =

vT (D − W )v

N2
(1 + Õ(ε)) + ‖c‖2O(ε3) ≤ ε‖c‖2(λkp(1 + Õ(ε)) + O(ε2)).

Thus, (36) continues as

〈f, f〉 − 〈f, Qtf〉 ≤ ε‖c‖2

(

λkp(1 + Õ(ε)) + O(ε2) + δ−d/4OM(
1

ε

√

log N

Nεd/2
)

)

. (38)

Next we lower bound the denominator 〈f, f〉. Here we use (27) in Lemma 4.3, which gives that

0 ≤ q
(2)
δε (v) ≤ Θ(δ−d/2)

vT (D − W )v

N2
+ ‖c‖2O(ε3) ≤ ε‖c‖2

(

λkpΘ(δ−d/2) + O(ε2)
)

.

Note that we assume under event EUB so that the eigenvalue UB (32) holds, thus λkpΘ(δ−d/2) + O(ε2) =

O(1). Together with that δ is a fixed constant, we have that

q
(2)
δε (v) = ‖c‖2O(ε).

Then, again under E(1),

〈f, f〉 = q
(0)
δε (v) − q

(2)
δε (v) = ‖c‖2

(

p + O(

√

δ−d/2
log N

Nεd/2
) − O(ε)

)

≥ ‖c‖2

(

p − O(ε,

√

log N

Nεd/2
)

)

.
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Putting together with (38), and by that λk ≤ 1.1μK , we have that

〈f, f〉 − 〈f, Qtf〉
〈f, f〉 ≤

ε

(

λkp + Õ(ε) + δ−d/4OM( 1
ε

√

log N
Nεd/2 )

)

p − O(ε,
√

log N
Nεd/2 )

≤ ε

(

λk + Õ(ε) +
C

ε

√

log N

Nεd/2

)

,

where C = c(M)δ−d/4, and c(M) is a constant only depending on M. We set

cK := (
C

0.1γK
)2 = (

c(M)

0.1
)2δ−d/2γ−2

K ,

and since we assume εd/2+2 > cK
log N

N in the current proposition, we have that C
ε

√

log N
Nεd/2 < 0.1γK . Then, 

comparing to l.h.s. of (35), we have that

1 − e−(1−δ)εμk ≤ 〈f, f〉 − 〈f, Qtf〉
〈f, f〉 ≤ ε

(

λk + Õ(ε) + 0.1γK

)

.

By the relation that 1 − e−x ≥ x − x2 for any x ≥ 0, 1 − e−(1−δ)εμk ≥ ε(1 − δ) 
(

μk − (1 − δ)εμ2
k

)

, and when 

ε is sufficiently small s.t. εμ2
k ≤ ε(1.1μK)2 < 0.1γK ,

1 − e−(1−δ)εμk ≥ ε(1 − δ) (μk − 0.1γK) > 0.

Noting that for k ≥ 2, μk ≥ μ2 ≥ 2γK > 0, because μ1 = 0. Thus, when ε is sufficiently small and the Õ(ε)

term is less than 0.1γK , under the good events E(1) ∩ EUB , which happens w.p. > 1 − 4K2N−10 − 4N−9, 

we have that

0 < (1 − δ)(μk − 0.1γK) ≤ λk + Õ(ε) + 0.1γK < λk + 0.2γK .

Recall that by definition (30), δμK = 0.5γK , then δμk ≤ δμK = 0.5γK , also 0 < δ < 0.5. Re-arranging the 

terms give that μk < λk + 0.8γK . This can be verified for all 2 ≤ k ≤ K, and note that the good event E(1)

is w.r.t. X, and EUB is constructed for fixed kmax, and none is for specific k ≤ K. �

4.2. Random-walk graph Laplacian eigenvalue crude LB

The counterpart result of random-walk graph Laplacian is the following proposition. It replaces Propo-

sition 3.1 with Proposition 3.6 in obtaining the eigenvalue UB in the analysis, and consequently the high 

probability differs slightly.

Proposition 4.4 (Initial crude eigenvalue LB of Lrw). Under the same condition and setting of M, p being 

uniform, h being Gaussian, and kmax, μk, ε same as in Proposition 4.1. Then, for sufficiently large N , 

w.p.> 1 − 4K2N−10 − 6N−9, λk(Lrw) > μk − γK , for k = 2, · · · , K.

The proof is similar to that of Proposition 4.1 and left to Appendix C.2. The difference lies in that 

the empirical eigenvectors vk are D-orthonormal rather than orthonormal, and the degree concentration 

Lemma 3.5 is used to relate ‖v‖2

N with 1
N2 vT Dv for arbitrary vector v.

5. Steps 2-3 and eigen-convergence

In this section, we obtain eigen-convergence rate of Lun and Lrw from the initial crude eigenvalue bound 

in Step 1. We first derive the Steps 2-3 for Lun, and the proof for Lrw is similar.
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Fig. 1. Population eigenvalues μk of −Δ, and empirical eigenvalues λk of graph Laplacian matrix LN , LN can be Lun or Lrw. The 
positive integer kmax is fixed, and the constant γK is half of the minimum first-K eigen-gaps, defined as in (22). Eigenvalue UB 
and initial LB are proved for k ≤ K, which guarantees (41). Extending to greater than one multiplicity by defining γK as in (46).

5.1. Step 2 eigenvector consistency

In Step 1, the crude bound of eigenvalue (the UB already matches the form rate, the LB is crude) gives 

that for fixed kmax and at large N , each λk will fall into the interval (μk − γK , μk + γK), where γK is less 

than half of the smallest eigenvalue gaps (μ2 − μ1), · · · , (μkmax+1 − μkmax
), illustrated in Fig. 1. This means 

that λk is separated from neighboring μk−1 and μk+1 by an O(1) distance away. This O(1) initial separation 

is enough for proving eigenvector consistency up to the point-wise rate, which is a standard argument, see 

e.g. proof of Theorem 2.6 part 2) in [7]. In below we provide an informal explanation and then the formal 

statement in Proposition 5.2, with a proof for completeness.

We first give an illustrative informal derivation. Take k = 2 for example, let LN = Lun, LN uk = λkuk, 

and we want to show that u2 and ρXψ2 are aligned.

r2 := LN (ρXψ2) − ρX(−Δ)ψ2 ∈ R
N , r2(i) = LN (ρXψ2)(xi) − (−Δ)ψ2(xi),

the point-wise convergence of graph Laplacian gives L∞ bound of the residual vector r2, suppose ‖r2‖2 ≤
ε‖ρXψ2‖2. Meanwhile, for any l = 1, 3, · · · , N , the crude bound of eigenvalues λ3 gives that

λ3 > μ2 + γK ,

where γK > 0 is an O(1) constant determined by kmax and M. Because empirical eigenvalues are sorted, 

λl for l ≥ 3 are also γK away from μ2. As a result,

|λl − μ2| > γK > 0, l �= 2, 1 ≤ l ≤ N.

Then we use the relation that for each l �= 2, uT
l r2 = uT

l (LN (ρXψ2) − μ2ρXψ2) = (λl − μ2)uT
l (ρXψ2), which 

gives that

|uT
l (ρXψ2)| =

|uT
l r2|

|λl − μ2| ≤ ε

γK
‖ul‖2‖ρXψ2‖2.

This shows that ρXψ2 has O(ε) alignment with all the other eigenvectors than u2, and since {u1, · · · , uN }
are orthogonal basis in RN , this guarantees 1 − O(ε) alignment between ρXψ2 and u2.

To proceed, we use the point-wise rate of graph Laplacian with C2 kernel h as in the next theorem. 

The analysis of point-wise convergence was given in [27] and [9]: The original theorem in [27] considers the 

normalized graph Laplacian (I − D−1W ). The analysis is similar for (D − W ) and leads to the same rate, 

which was derived in [9] under the setting of variable kernel bandwidth. These previous works consider a 

fixed point x0 on M, and since the concentration result has exponentially high probability, it directly gives 

the version of uniform error bound at every data point xi, which is needed here.

Theorem 5.1 ([27,9]). Under Assumptions 1 and 2, if as N → ∞, ε → 0+, εd/2+1 = Ω( log N
N ), then for any 

f ∈ C4(M),
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1) When N is large enough, w.p. > 1 − 4N−9,

1

ε m2

2m0

(

(I − D−1W )(ρXf)
)

i
= −Δp2f(xi) + εi, sup

1≤i≤N
|εi| = O(ε) + O(

√

log N

Nεd/2+1
).

2) When N is large enough, w.p. > 1 − 2N−9,

1

ε m2

2 p(xi)N
((D − W )(ρXf))i = −Δp2f(xi) + εi, sup

1≤i≤N
|εi| = O(ε) + O(

√

log N

Nεd/2+1
).

The constants in the big-O notations depend on M, p and the C4 norm of f .

Note that Theorem 5.1 holds for non-uniform p, while in our eigen-convergence analysis of graph Laplacian 

with W in below, we only use the result when p is uniform. Meanwhile, similar to Theorem 3.2, Assump-

tion 2(C3) may be relaxed for Theorem 5.1 to hold, cf. Remark 1.

Proof of Theorem 5.1. Consider the N events such that εi is less than the error bound. For each of the 

i-th event, condition on xi, Theorem 3.8 in [9] can be directly used to show that the event holds w.p. 

> 1 − 4N−10 for the case 1) random-walk graph Laplacian. For the case 2) un-normalized graph Laplacian, 

adopting the same technique of Theorem 3.6 in [9] proves the same rate as for the fixed-bandwidth kernel, 

and gives that the event holds w.p. > 1 − 2N−10. Specifically, the proof is by showing the concentration 

of the 1
εN

∑N
j=1 Kε(xi, xj)(f(xj) − f(xi)), which is an independent summation condition on xi. The r.v. 

Hj := 1
ε Kε(xi, xj)(f(xj) − f(xi)), j �= i, has expectation EHj = m2

2 p(xi)Δp2f(xi) + Of,p(ε), and EH2
j

can be shown to be bounded by Θ(ε−d/2−1), and |Hj | is also bounded by Θ(ε−d/2−1), following the same 

calculation as in the proof of Theorem 3.6 in [9]. This shows that the bias error is O(ε), and the variance 

error is O(
√

log N
Nεd/2+1 ), by classical Bernstein. Same as in Theorem 3.2, C2 regularity and decay up to 2nd 

derivative of h are enough here.

Strictly speaking, the analysis in [9] is for the “ 1
N−1

∑N
j �=i,j=1” summation and not the “ 1

N

∑N
j �=i,j=1” one 

here. However, the difference between 1
N−1 and 1

N only introduces an O( 1
N ) relative error and is of higher 

order, and the i = j term cancels out in the summation of (D − W )ρXf . In proving this large deviation 

bound at xi, the needed threshold for large N is determined by (M, f, p) and uniform for xi. Then, when N

exceeds a threshold uniform for all xi, by the independence of the xi’s, the i-th event holds w.p.> 1 −4N−10

and > 1 − 2N−10 for cases 1) and 2) respectively. The current theorem, in both 1) and 2), follows by a 

union bound. �

We are ready for Step 2 for the unnormalized graph Laplacian Lun = 1
ε

m2
2 pN

(D − W ). Here we consider 

eigenvectors normalized to have 2-norm 1, i.e., Lunuk = λkuk, uT
k ul = δkl, and we compare uk to

φk :=
1√
pN

ρXψk ∈ R
N , (39)

where ψk are population eigenfunctions which are orthonormal in H = L2(M, dV ), same as above.

Proposition 5.2. Under Assumption 1(A1), p being uniform on M, and h is Gaussian, for fixed kmax ∈ N, 

K = kmax + 1, assume that the eigenvalues μk for k ≤ K are all single multiplicity, and γK > 0 as defined 

in (22), the constant cK as in Proposition 4.1. If as N → ∞, ε → 0+, εd/2+2 > cK
log N

N , then for sufficiently 

large N , w.p. > 1 − 4K2N−10 − (2K + 4)N−9, there exist scalars αk �= 0, actually |αk| = 1 + o(1), such that

‖uk − αkφk‖2 = O

(

ε,

√

log N

Nεd/2+1

)

, 1 ≤ k ≤ kmax.
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Proof of Proposition 5.2. The proof uses the same approach as that of Theorem 2.6 part 2) in [7], and since 

our setting is different, we include a proof for completeness.

When k = 1, we always have λ1 = μ1 = 0, u1 is the constant vector u1 = 1√
N

1N , and ψ1 is the constant 

function, and thus φ1 = u1 up to a sign. Under the condition of the current proposition, the assumptions of 

Proposition 4.1 are satisfied, and because εd/2+2 > cK
log N

N implies that εd/2+1 = Ω( log N
N ), the assumptions 

of Theorem 5.1 2) are also satisfied. We apply Theorem 5.1 2) to the K functions ψ1, · · · , ψK . By a union 

bound, we have that when N is large enough, w.p. > 1 − 2KN−9, ‖Lunφk − μkφk‖∞ = 1√
pN

(O(ε) +

O(
√

log N
Nεd/2+1 )) for 2 ≤ k ≤ K. By that ‖v‖2 ≤

√
N‖v‖∞ for any v ∈ R

N , this gives that there is Errpt > 0,

‖Lunφk − μkφk‖2 ≤ Errpt, 2 ≤ k ≤ K, Errpt = O(ε) + O(

√

log N

Nεd/2+1
). (40)

The constants in big-O depend on first K eigenfunctions and are absolute ones because K is fixed. Applying 

Proposition 4.1, and consider the intersection with the good event in Proposition 4.1, we have for each 

2 ≤ k ≤ K, |μk − λk| < γK . By definition of γK as in (22),

min
1≤j≤N, j �=k

|μk − λj | > γK > 0, 2 ≤ k ≤ kmax. (41)

For each k ≤ kmax, let Sk = Span{uk} be the 1-dimensional subspace in RN , and let S⊥
k be its orthogonal 

complement. We will show that ‖PS⊥
k

φk‖2 is small. By definition, PS⊥
k

μkφk =
∑N

j �=k,j=1 μk(uT
j φk)uj , and 

meanwhile, PS⊥
k

Lunφk =
∑N

j �=k,j=1(uT
j Lunφk)uj =

∑N
j �=k,j=1 λj(uT

j φk)uj . Subtracting the two gives that 

PS⊥
k

(μkφk − Lunφk) =
∑N

j �=k,j=1(μk − λj)(uT
j φk)uj . By that uj are orthonormal vectors, and (41),

‖PS⊥
k

(μkφk − Lunφk)‖2
2 =

N
∑

j �=k,j=1

(μk − λj)2(uT
j φk)2 ≥ γ2

K

N
∑

j �=k,j=1

(uT
j φk)2 = γ2

K‖PS⊥
k

φk‖2
2.

Then, combined with (40), we have that γK‖PS⊥
k

φk‖2 ≤ ‖PS⊥
k

(μkφk−Lunφk)‖2 ≤ ‖μkφk−Lunφk‖2 ≤ Errpt, 

namely, ‖PS⊥
k

φk‖2 ≤ Errpt

γK
.

By definition, PS⊥
k

φk = φk−(uT
k φk)uk, where ‖uk‖2 = 1. Note that φk are unit vectors up to an O(

√

log N
N )

error: Because the good event in Proposition 4.1 is under that in the eigenvalue UB Proposition 3.1, and 

specifically that of Lemma 3.4. Thus (17) holds, which means that |‖φk‖2 −1| ≤ Errnorm, 1 ≤ k ≤ K, where 

Errnorm = O(
√

log N
N ). Then, one can verify that

|uT
k φk| = 1 + O(Errnorm, Err2

pt) = 1 + o(1), (42)

and then we set αk = 1
uT

k φk
, and have that

‖αkφk − uk‖2 =
O(Errpt)

|uT
k φk| ≤ O(Errpt)

1 − O(Errnorm, Err2
pt)

= O(Errpt)(1 + O(Errnorm, Err2
pt)) = O(Errpt).

The bound holds for each k ≤ kmax. �

5.2. Step 3: refined eigenvalue LB

We now derive Step 3 for Lun, the result being summarized in the following proposition.
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Proposition 5.3. Under the same condition of Proposition 5.2, kmax is fixed. Then, for sufficiently large N , 

with the same indicated high probability,

|μk − λk| = O

(

ε,

√

log N

Nεd/2

)

, 1 ≤ k ≤ kmax.

Proof of Proposition 5.3. We inherit the notations in the proof of Proposition 5.2. Again μ1 = λ1 = 0. For 

2 ≤ k ≤ kmax, note that

uT
k (Lunφk − μkφk) = (λk − μk)uT

k φk, (43)

and meanwhile, we have shown that uk = αkφk + εk, where αk = 1 + o(1) and ‖εk‖2 = O(Errpt). Thus the 

l.h.s. of (43) equals

(αkφk + εk)T (Lunφk − μkφk) = αk(φT
k Lunφk − μk‖φk‖2

2) + εT
k (Lunφk − μkφk) =: 1� + 2�.

By definition of φk, φT
k Lunφk = 1

pN (ρXψk)T Lun(ρXψk) = 1
p2 EN (ρXψk). The good event in Proposition 5.2

is under the good event EUB, under which Lemma 3.3 and Lemma 3.4 hold. Then by (16), EN (ρXψk) =

p2μk +O(ε, 
√

log N
Nεd/2 ); By (17), ‖φk‖2 = 1 +O(

√

log N
N ). Putting together, and by that αk = 1 +o(1) = O(1),

1� = αk(φT
k Lunφk − μk‖φk‖2

2) = O(1)

(

μk + O(ε,

√

log N

Nεd/2
) − μk(1 + O(

√

log N

N
))

)

= O(ε,

√

log N

Nεd/2
).

Meanwhile, by (40), ‖Lunφk − μkφk‖2 ≤ Errpt, and then

| 2�| ≤ ‖εk‖2‖Lunφk − μkφk‖2 = O(Err2
pt).

Because εd/2+2 > cK
log N

N for some cK > 0, log N
Nεd/2+1 = ε log N

Nεd/2+2 < ε
cK

, thus Errpt = O(ε +
√

log N
Nεd/2+1 ) =

O(
√

ε), and then 2� = O(Err2
pt) = O(ε). Back to (43), we have that

|λk − μk||uT
k φk| = | 1� + 2�| = O(ε,

√

log N

Nεd/2
) + O(ε),

and by (42), |uT
k φk| = 1 + o(1), thus |λk − μk| = | 1�+ 2�|

1+o(1) = O(| 1� + 2�|) = O(ε, 
√

log N
Nεd/2 ). The above holds for 

all k ≤ kmax. �

5.3. Eigen-convergence rate

We are ready to prove the main theorems on eigen-convergence of graph Laplacians, when p is uniform 

and the kernel function h is Gaussian.

Theorem 5.4 (eigen-convergence of Lun). Under Assumption 1 (A1), p is uniform on M, and h is Gaussian. 

For kmax ∈ N fixed, assume that the eigenvalues μk for k ≤ K := kmax+1 are all single multiplicity, and the 

constant cK as in Proposition 4.1. Consider first kmax eigenvalues and eigenvectors of Lun, Lunuk = λkuk, 

uT
k ul = δkl, and the vectors φk are defined as in (39). If as N → ∞, ε → 0+, εd/2+2 > cK

log N
N , then for 

sufficiently large N , w.p. > 1 − 4K2N−10 − (2K + 4)N−9,

|μk − λk| = O

(

ε,

√

log N

Nεd/2

)

, 1 ≤ k ≤ kmax, (44)
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and there exist scalars αk �= 0, actually |αk| = 1 + o(1), such that

‖uk − αkφk‖2 = O

(

ε,

√

log N

Nεd/2+1

)

, 1 ≤ k ≤ kmax. (45)

Remark 3 (Choice of ε and overall rates). The eigen-convergence bounds (44) and (45) are provided in the 

combined form of ε and N , as long as the condition ε = o(1) and εd/2+2 > cK log N/N holds. The bias 

error in both cases is O(ε), and the variance error has a different inverse power of ε (−d/4 and −d/4 − 1/2

respectively). The eigenvalue convergence (44) achieves the form rate Errform = O

(

ε,
√

log N
Nεd/2

)

, which 

is the rate of the Dirichlet form convergence, cf. Theorem 3.2. The (2-norm) eigenvector convergence (45)

achieves the point-wise rate Errpt = O

(

ε,
√

log N
Nεd/2+1

)

, which is the rate of point-wise convergence of graph 

Laplacian, cf. Theorem 5.1.

The different powers of ε lead to different optimal choice of ε, in order of N , to achieve the best overall 

rates for eigenvalue and eigenvector convergence respectively. Specifically,

• The optimal choice of ε to minimize Errform is when ε = (c′ log N
N )1/(d/2+2) for c′ > cK (which is also 

the smallest order of ε allowed by the theorem). This choice leads to

|μk − λk| = O
(

(log N/N)1/(d/2+2)
)

= Õ(N−1/(d/2+2)), 1 ≤ k ≤ kmax,

which is the best overall rate of eigenvalue convergence by our theory. We use Õ(·) to denote the 

involvement of certain factor of log N . In this case, ‖uk − αkφk‖2 = O(( log N
N )1/(d+4)).

• The optimal choice of ε to minimize Errpt is when ε ∼ (log N/N)1/(d/2+3), which leads to

‖uk − αkφk‖2 = O
(

(log N/N)1/(d/2+3)
)

= Õ(N−1/(d/2+3)), 1 ≤ k ≤ kmax,

which is the best overall rate of eigenvector convergence. In this case, |μk − λk| = Õ(N−1(d/2+3)).

We can see that the overall rate of eigenvalue convergence achieves the best overall rate of form convergence 

Õ(N−1/(d/2+2)), and that of eigenvector (2-norm) convergence achieves the best overall rate of point-wise 

convergence Õ(N−1/(d/2+3)), at the optimal ε for each convergence respectively.

Proof of Theorem 5.4. Under the condition of the theorem, the eigenvector and eigenvalue error bounds 

have been proved in Proposition 5.2 and Proposition 5.3. For the two specific asymptotic scaling of ε, the 

rate follows from the bounds involving both ε and N . �

Remark 4 (Comparison to compactly supported h). For h = 1[0,1) (see also Remark 2), the point-wise 

convergence of graph Laplacian is known to have the rate as Errpt,ind = O

(√
ε,
√

log N
Nεd/2+1

)

, see [19,4,

27,7] among others. While our way of Step 1 cannot be applied to such h, [7] covered this case when 

d ≥ 2, and provided the eigenvalue and eigenvector consistency up to Errpt,ind when εd/2+2 = Ω( log N
N ). 

The scaling εd/2+2 = Θ̃(N−1) is the optimal one to balance the bias and variance errors in Errpt,ind, 

and then it gives the overall error rate as Õ(N−1/(d+4)), which agrees with the eigen-convergence rate in 

[7]. Here Õ(·) and Θ̃(·) indicate that the constant is possibly multiplied by a factor of certain power of 

log N . Meanwhile, we note that, if following our approach of using the Dirichlet form convergence rate, the 

eigenvalue consistency can be improved to be squared namely Õ(N−1/(d/2+2)) when ε = Θ̃(N−1/(d/2+2)). 

Specifically, by Remark 2, the Dirichlet form convergence with indicator h is Errform,ind = O(ε, 
√

log N
Nεd/2 ). 
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Then, once the initial crude eigenvalue LB is established, in Step 2, the eigenvector 2-norm consistency 

can be shown to be Errpt,ind. In Step 3, the eigenvalue consistency for the first kmax eigenvalues can 

be shown to be O(Errform,ind, Err2
pt,ind) = O(ε, 

√

log N
Nεd/2 ). This would imply the eigenvalue convergence 

rate of Õ(N−1/(d/2+2)) under the regime where ε = Θ̃(N−1/(d/2+2)), while the eigenvector consistency 

remains Õ(N−1/(d+4)). Compared to Remark 3, these rates are the same as Gaussian kernel when setting 

ε = Θ̃(N−1/(d/2+2)) (the optimal order to minimize the eigenvalue rate which is Errform). However, using 

Gaussian kernel allows to obtain a better rate for eigenvector convergence, namely Õ(N−1/(d/2+3)), by 

setting ε ∼ Θ̃(N−1/(d/2+3)) (the optimal order to minimize the eigenvector convergence rate which is Errpt). 

This improved eigenvector (2-norm) rate is due to the improved point-wise rate of smooth kernel Errpt than 

that of the indicator kernel Errpt,ind, and specifically, the bias error is O(ε) instead of O(
√

ε).

Remark 5 (Extension to larger eigenvalue multiplicity). The result extends when the population eigenvalues 

μk have multiplicity greater than one. Suppose we consider 0 = μ(1) < μ(2) < · · · < μ(M) < · · · , which 

are distinct eigenvalues, and μ(m) has multiplicity lm ≥ 1. Then let kmax =
∑M

m=1 lm, K =
∑M+1

m=1 lm, 

μK = μ(M+1), and {μk, ψk}K
k=1 are sorted eigenvalues and associated eigenfunctions. Step 0. eigenvalue UB 

holds, since Proposition 3.1 does not require single multiplicity. In Step 1, the only place in Proposition 4.1

where single multiplicity of μk is used is in the definition of γK . Then, by changing to

γ(M) =
1

2
min

1≤m≤M
(μ(m+1) − μ(m)) > 0, (46)

and defining δ = 0.5 γ(M)

μK
, 0 < δ < 0.5 is a positive constant depending on M and K, Proposition 4.1 proves 

that |λk − μ(m)| < γ(M) for all k ≤ K, i.e. m ≤ M + 1. This allows to extend Step 2 Proposition 5.2 by 

considering the projection PS⊥ where the subspace in R
N is spanned by eigenvectors whose eigenvalues 

λk approaches μk = μ(m), similar as in the original proof of Theorem 2.6 part 2) in [7]. Specifically, 

suppose μi = · · · = μi+lm−1 = μ(m), 2 ≤ m ≤ M , let S(m) = Span{ui, · · · , ui+lm−1}, and the index set 

Im := {i, · · · , i + lm − 1}. For eigenfunction ψk, k ∈ Im, then μk = μ(m), similarly as in the proof of 

Proposition 5.2, one can verify that

‖P(S(m))⊥(μkφk − Lunφk)‖2
2 =

∑

j /∈Im

(μk − λj)2(uT
j φk)2 ≥ (γ(M))2

∑

j /∈Im

(uT
j φk)2 = (γ(M))2‖P(S(m))⊥φk‖2

2,

which gives that ‖φk − PS(m)φk‖2 = ‖P(S(m))⊥φk‖2 ≤ 1
γ(M) Errpt, for all k ∈ Im. By that {φk}K

k=1 are near 

orthonormal with large N (Lemma 3.4), this proves that there exists an lm-by-lm orthogonal transform 

Qm, and |αk| = 1 + o(1), such that ‖uk − αkφ′
k‖2 = O(Errpt) = O(ε, 

√

log N
Nεd/2+1 ), k ∈ Im, where [φ′

k]k∈Im
=

[φk]k∈Im
Qm, and the notation [vj ]j∈J stands for the N -by-|J | matrix formed by concatenating the vectors 

vj as columns. This proves consistency of empirical eigenvectors uk up to the point-wise rate for k ≤ kmax. 

Finally, Step 3 Proposition 5.3 extends by considering (43) for uk and φ′
k, making use of ‖uk − αkφ′

k‖2 =

O(Errpt), the Dirichlet form convergence of EN(ρXψk) (Lemma 3.3), and that {φ′
k}k∈Im

is transformed 

from {φk}k∈Im
by an orthogonal matrix Qm.

To address the eigen-convergence of Lrw, we define the D/N -weighted 2-norm as

‖u‖2
D
N

=
1

N
uT Du,

and recall that eigenvectors of Lrw are D-orthogonal. The following theorem is the counterpart of Theo-

rem 5.4 for Lrw, obtaining the same rates.
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Theorem 5.5 (eigen-convergence of Lrw). Under the same condition and setting of M, p being uniform, h

being Gaussian, and kmax, K, μk, ε same as in Theorem 5.4. Consider first kmax eigenvalues and eigenvec-

tors of Lrw, Lrwvk = λkvk, vT
k Dvl = δklNp, i.e. ‖vk‖2

D
N

= p, and the vectors φk defined as in (39). Then, 

for sufficiently large N , w.p. > 1 − 4K2N−10 − (4K + 6)N−9, ‖vk‖2 = 1 + o(1), and the same bound of 

|μk − λk| and ‖vk − αkφk‖2 as in Theorem 5.4 hold for 1 ≤ k ≤ kmax, with certain scalars αk satisfying 

|αk| = 1 + o(1),

The extension to when μk has greater than 1 multiplicity is possible, similarly as in Remark 5. The proof 

of Lrw uses almost the same method as for Lun, and the difference is that vk are no longer orthonormal but 

D-orthogonal. This is handled by that ‖u‖2
2 and 1

p‖u‖2
D/N agrees in relative error up to the form rate, due 

to the concentration of Di/N (Lemma 3.5). The detailed proof is left to Appendix C.3.

6. Density-corrected graph Laplacian

We consider p as in Assumption 1(A2). The density-corrected graph Laplacian is defined as [10]

L̃rw =
1

m2

2m0
ε
(I − D̃−1W̃ ), W̃ij =

Wij

DiDj
, D̃ii =

N
∑

j=1

W̃ij ,

where Wij = Kε(xi, xj) as before, and D is the degree matrix of W . The density-corrected graph Laplacian

recovers Laplace-Beltrami operator when p is not uniform. In this section, we extend the theory of point-wise 

convergence, Dirichlet form convergence, and eigen-convergence to such graph Laplacian.

6.1. Point-wise convergence of L̃rw

This subsection proves Theorem 6.2, which shows that the point-wise rate of L̃rw is same as that of Lrw

without the density-correction. The result is for general differentiable h satisfying Assumption 2, which can 

be of independent interest.

We first establish the counterpart of Lemma 3.5 about the concentration of all 1
N Di = 1

N

∑N
j=1 Wij when 

p is not uniform. The deviation bound is uniform for all i and has an bias error at O(ε2).

Lemma 6.1. Under Assumptions 1 and 2, suppose as N → ∞, ε → 0+, εd/2 = Ω( log N
N ). Then,

1) When N is large enough, w.p. > 1 − 2N−9, Di > 0 for all i s.t. W̃ is well-defined, and

1

N
Di = m0p̃ε(xi) + O

(

ε2,

√

log N

Nεd/2

)

, p̃ε := p + m̃ε(ωp + Δp), 1 ≤ i ≤ N. (47)

where ω ∈ C∞(M) is determined by manifold extrinsic coordinates, and m̃[h] = m2[h]
2m0[h] .

2) When N is large enough, w.p. > 1 − 4N−9, D̃i > 0 for all i s.t. L̃rw is well-defined, and

N
∑

j=1

Wij
1

Dj
= 1 + O

(

ε,

√

log N

Nεd/2

)

, 1 ≤ i ≤ N. (48)

The constants in big-O in parts 1) and 2) depend on (M, p), and are uniform for all i.

The proof is left to Appendix D. The following theorem proves the point-wise rate of L̃rw.
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Theorem 6.2. Under Assumptions 1 and 2, if as N → ∞, ε → 0+, εd/2+1 = Ω( log N
N ), then for any 

f ∈ C4(M), when N is large enough, w.p. > 1 − 8N−9,

1

ε m2

2m0

(I − D̃−1W̃ )(ρXf)(xi) = −Δf(xi) + εi, sup
1≤i≤N

|εi| = O(ε) + O

(

√

log N

Nεd/2+1

)

.

The constants in the big-O notation depend on M, p and the C4 norm of f .

The theorem slightly improves the point-wise convergence rate of O(ε, 
√

log N
Nεd/2+2 ) in [28]. It is proved 

using the same techniques as the analysis of point-wise convergence of Lrw in [27,9], and we include a proof 

for completeness here.

Proof of Theorem 6.2. By definition,

− 1

ε m2

2m0

(I − D̃−1W̃ )(ρXf)(xi) =
1

ε m2

2m0

∑N
j=1 Wij

f(xj)−f(xi)
Dj

∑N
j=1 Wij

1
Dj

. (49)

The proof of Lemma 6.1 has constructed two good events E1 and E2 (E1 is for Part 1) to hold, Part 2) 

assumes E1 and E2), such that with large enough N , E1 ∩ E2 happens w.p. > 1 − 4N−9, under which 

Di, D̃i > 0 for all i, W̃ and L̃rw are well-defined, and equations (47), (D.1), and (48) hold. (48) provides 

the concentration of the denominator of the r.h.s. of (49). We now consider the numerator. Note that, 

with sufficiently small ε, p̃ε is uniformly bounded from below by O(1) constant p′
min. This is because 

ω, p ∈ C∞(M), M is compact, then (ωp + Δp) is uniformly bounded, and meanwhile p is uniformly 

bounded from below. Thus, under E1,

1

N

N
∑

j=1

Wij
f(xj) − f(xi)

1
N Dj

=
1

N

N
∑

j=1

Wij(f(xj) − f(xi))

m0p̃ε(xj)(1 + εj)
, max

1≤j≤N
|εj | = O(ε2,

√

log N

Nεd/2
),

and the equation equals

1

N

N
∑

j=1

Wij(f(xj) − f(xi))

m0p̃ε(xj)
(1 + ε′

j) =
1

N

N
∑

j=1

Wij(f(xj) − f(xi))

m0p̃ε(xj)
+

1

N

N
∑

j=1

Wij(f(xj) − f(xi))

m0p̃ε(xj)
ε′

j

=: 1� + 2�, max
1≤j≤N

|ε′
j | = O(ε2,

√

log N

Nεd/2
)

and we analyze the two terms respectively.

To bound | 2�|, we use Wij ≥ 0 and again that p̃ε(x) ≥ p′
min > 0 to have

| 2�| ≤ 1

N

N
∑

j=1

Wij |f(xj) − f(xi)|
m0p̃ε(xj)

|ε′
j | ≤

max1≤j≤N |ε′
j |

m0p′
min

· 1

N

N
∑

j=1

Wij |f(xj) − f(xi)|.

We claim that, for large enough N , w.p. > 1 − 2N−9, and we call this good event E3, under which

1

N

N
∑

j=1

Wij |f(xj) − f(xi)| = O(
√

ε), 1 ≤ i ≤ N, (50)

and the proof is in below. With (50), under E3, | 2�| can be bounded by
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| 2�| = ( max
1≤j≤N

|ε′
j |)O(

√
ε) = O(ε2,

√

log N

Nεd/2
)O(

√
ε) = O(ε5/2,

√

log N

Nεd/2−1
). (51)

The analysis of 1� uses concentration of independent sum again. Condition on xi and consider

1�′ =
1

N − 1

N
∑

j �=i,j=1

Kε(xi, xj)
f(xj) − f(xi)

p̃ε(xj)
=:

1

N − 1

N
∑

j �=i,j=1

Yj ,

and we have 1� = 1
m0

(1 − 1
N ) 1�′. Due to uniform boundedness of p̃ε from below by p′

min > 0, |Yj | are bounded 

by LY = Θ(ε−d/2). We claim that the expectation (proof in below)

EYj =

∫

M

Kε(xi, y)
f(y)p(y)

p̃ε(y)
dV (y) − f(xi)

∫

M

Kε(xi, y)
p(y)

p̃ε(y)
dV (y) =

m2

2
εΔf(xi) + O(ε2). (52)

The variance of Yj is bounded by

EY 2
j =

∫

M

Kε(xi, y)2

(

f(y) − f(xi)

p̃ε(y)

)2

p(y)dV (y)

≤ 1

p′ 2
min

∫

M

Kε(xi, y)2 (f(y) − f(xi))
2

p(y)dV (y) ≤ νY = Θf,p(ε−d/2+1),

which follows the same derivation as in the proof of the point-wise convergence of Lrw without density-

correction, cf. Theorem 5.1 1), and can be directly verified by a similar calculation as in (54). We attempt 

at the large deviation bound at Θ(
√

log N
N νY ) ∼ ( log N

Nεd/2−1 )1/2 which is of small order than νY

LY
= Θ(ε) under 

the theorem condition that εd/2+1 = Ω( log N
N ). Thus the classical Bernstein gives that for large enough N , 

where the threshold is determined by (M, f, p) and uniform for xi, w.p. > 1 − 2N−10,

1�′ = EYj + O(

√

log N

N
νY ) =

m2

2
εΔf(xi) + O(ε2) + O(

√

log N

Nεd/2−1
),

and as a result,

1� = m̃εΔf(xi) + O(ε2) + O(

√

log N

Nεd/2−1
). (53)

By a union bound over the events needed at N points, we have that (53) holds at all xi under a good event 

E4 which happens w.p. > 1 − 2N−9.

Putting together, under E3 and E4, by (51) and (53), at all xi,

1

ε

N
∑

j=1

Wij
f(xj) − f(xi)

Dj
= m̃Δf(xi) + O(ε) + O(

√

log N

Nεd/2+1
) + O(ε3/2,

√

log N

Nεd/2+1
)

= m̃Δf(xi) + O(ε,

√

log N

Nεd/2+1
).

Combined with (48), under E1, E2, E3, E4,

1

εm̃

∑N
j=1 Wij

f(xj)−f(xi)
Dj

∑N
j=1 Wij

1
Dj

=
Δf(xi) + O(ε,

√

log N
Nεd/2+1 )

1 + O(ε,
√

log N
Nεd/2 )

= Δf(xi) + O(ε,

√

log N

Nεd/2+1
).
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It remains to establish (50) and (52) to finish the proof of the theorem.

Proof of (50): Define r.v. Yj = Wij |f(xj) −f(xi)| and condition on xi, for j �= i, EYj =
∫

M Kε(xi, y)|f(y) −
f(xi)|p(y)dV (y). Let δε =

√

(d+10
a )ε log 1

ε , for any x ∈ M, Kε(x, y) = O(ε10) when y /∈ Bδε
(x), then

∫

M

Kε(x, y)|f(y) − f(x)|p(y)dV (y)

=

∫

Bδε (x)

Kε(x, y)|f(y) − f(x)|p(y)dV (y) + O(ε10)‖f‖∞‖p‖∞

≤
∫

Bδε (x)

Kε(x, y)(‖∇f‖∞‖y − x‖)p(y)dV (y) + Of,p(ε10)

= Of,p(
√

ε) + Of,p(ε10) = O(
√

ε).

The Of,p(
√

ε) is obtained because ‖p‖∞, ‖∇f‖∞ are finite constants, and

1√
ε

∫

Bδε (x)

Kε(x, y)‖y − x‖dV (y) =

∫

Bδε (x)

ε−d/2h(
‖x − y‖2

ε
)
‖y − x‖√

ε
dV (y)

≤
∫

Bδε (x)

ε−d/2a0e−a ‖x−y‖2

ε
‖y − x‖√

ε
dV (y)

≤
∫

‖u‖<1.1δε, u∈Rd

a0e− a
1.1 ‖u‖2 ‖u‖

0.9
(1 + O(‖u‖2))du = O(1), (54)

where u ∈ R
d is the projected coordinates in the tangent plane Tx(M), and the comparison of ‖x − y‖RD

to ‖u‖ (namely 0.9‖x − y‖RD < ‖u‖ < 1.1‖x − y‖RD ) and the volume comparison (namely dV (y) =

(1 + O(‖u‖2))du) hold when δε < δ0(M) which is a constant depending on M, see e.g. Lemma A.1 in [9].

Meanwhile, |Yj | is bounded by LY = ‖f‖∞Θ(ε−d/2), and the variance of Yj is bounded by EY 2
j and then 

bounded by νY = Θ(ε−d/2+1), by a similar calculation as in (54). We attempt at the large deviation bound 

at Θ(
√

log N
N νY ) ∼ ( log N

Nεd/2−1 )1/2 which is of small order than νY

LY
= Θ(ε) under the theorem condition that 

εd/2+1 = Ω( log N
N ). Thus, for each i, when N is enough where the threshold is determined by (M, f, p) and 

uniform for xi, w.p. > 1 − 2N−10,

1

N − 1

∑

j �=i

Yj = EYj + O(

√

log N

Nεd/2−1
) = O(

√
ε) + o(ε) = O(

√
ε).

The j = i term in (50) equals zero. By the same argument of independence of xi from {xj}j �=i and the 

union bound over N events, we have proved (50).

Proof of (52): Note that

p

p̃ε
=

1

1 + εm̃(ω + Δp
p )

= 1 − εm̃(ω +
Δp

p
) + ε2rε = 1 − εr1 + ε2rε,

where r1 := m̃(ω + Δp
p ) is a deterministic function, r1 ∈ C∞(M); rε ∈ C∞(M), and ‖rε‖∞ = O(1) when ε

is less than some O(1) threshold due to that ‖ω + Δp
p ‖∞ = O(1). Then,
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∫

M

Kε(xi, y)
fp

p̃ε
(y)dV (y) =

∫

M

Kε(xi, y)f(y)(1 − εr1 + ε2rε)(y)dV (y)

=

∫

M

Kε(xi, y)f(y)dV (y) − ε

∫

M

Kε(xi, y)(fr1)(y)dV (y) + ε2

∫

M

Kε(xi, y)(frε)(y)dV (y)

=
(

m0f(xi) +
m2

2
ε(ωf + Δf)(xi) + O(ε2)

)

− ε (m0fr1(xi) + O(ε)) + O(ε2)

= m0f(xi) +
m2

2
ε(ωf + Δf − 1

m̃
fr1)(xi) + O(ε2),

and taking f = 1 gives that

∫

M

Kε(xi, y)
p

p̃ε
(y)dV (y) = m0 +

m2

2
ε(ω − 1

m̃
r1)(xi) + O(ε2).

Putting together and subtracting the two terms in (52) proves that EYj = m2

2 εΔf(xi) + O(ε2). �

6.2. Dirichlet form convergence of density-corrected graph Laplacian

The graph Dirichlet form of density-corrected graph Laplacian is defined as

ẼN (u) :=
1

m2

2m2
0
ε
uT (D̃ − W̃ )u =

1
m2

m2
0
ε

N
∑

i,j=1

W̃i,j(ui − uj)2 =
1

m2

m2
0
ε

N
∑

i,j=1

Wi,j
(ui − uj)2

DiDj
. (55)

We establish the counter part of Theorem 3.2, which achieves the same form rate. The theorem is for general 

differentiable h, which can be of independent interest.

Theorem 6.3. Under Assumptions 1 and 2, if as N → ∞, ε → 0+, εd/2N = Ω(log N), then for any 

f ∈ C∞(M), when N is sufficiently large, w.p. > 1 − 2N−9 − 2N−10,

ẼN (ρXf) = 〈f, −Δf〉 + Op,f

(

ε,

√

log N

Nεd/2

)

.

Proof of Theorem 6.3. By definition (55),

ẼN (ρXf) =
1

m2

m2
0
ε

1

N2

N
∑

i,j=1

Wi,j
(f(xi) − f(xj))2

Di

N
Dj

N

.

The following lemma (proved in Appendix D) makes use of the concentration of Di/N to reduce the graph 

Dirichlet form to be a V-statistics up to a relative error at the form rate.

Lemma 6.4. Under the good event in Lemma 6.1 1),

ẼN (u) =

⎛

⎝

1

m2[h]ε

1

N2

N
∑

i,j=1

Wi,j
(ui − uj)2

p(xi)p(xj)

⎞

⎠

(

1 + O(ε,

√

log N

Nεd/2
)

)

, ∀u ∈ R
N ,

and the constant in big-O is determined by (M, p) and uniform for all u.
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We consider under the good event in Lemma 6.1 1), which is called E1 and happens w.p. > 1 − 2N−9. 

Then applying Lemma 6.4 with u = ρXf , we have that

ẼN (ρXf) =

⎧

⎨

⎩

1

m2ε

1

N2

N
∑

i,j=1

Wi,j
(f(xi) − f(xj))2

p(xi)p(xj)

⎫

⎬

⎭

(1 + O(ε,

√

log N

Nεd/2
)) =: 3�(1 + O(ε,

√

log N

Nεd/2
)) (56)

The term 3� in (56) equals 1
N2

∑N
i,j=1 Vi,j , where Vi,j := 1

m2ε Kε(xi, xj)
(f(xi)−f(xj))2

p(xi)p(xj) , and Vi,i = 0. We follow 

the same approach as in the proof of Theorem 3.4 in [9] to analyze this V-statistic, and show that (proof in 

Appendix D)

{ 3� in (56) } = 〈f, −Δf〉 + Of,p(ε,

√

log N

Nεd/2
). (57)

Back to (56), we have shown that under E1 ∩ E3,

ẼN (ρXf) = 3�(1 + O(ε,

√

log N

Nεd/2
)) =

(

〈f, −Δf〉 + O(ε,

√

log N

Nεd/2
)

)

(1 + O(ε,

√

log N

Nεd/2
))

= 〈f, −Δf〉 + O(ε,

√

log N

Nεd/2
),

and the constant in big-O depends on M, f and p. �

6.3. Eigen convergence of L̃rw

In this subsection, let λk be eigenvalues of L̃rw and vk the associated eigenvectors. By (55), recall that 

m̃ = m2

2m0
, the analogue of (8) is the following

λk = min
L⊂RN , dim(L)=k

sup
v∈L,v �=0

1
εm̃ vT (D̃ − W̃ )v

vT D̃v
=

1
m0

ẼN (v)

vT D̃v
, 1 ≤ k ≤ N. (58)

The methodology is same as before, with a main difference in the definition of the heat interpolation mapping 

with weights p(xj) as in (59). This gives to the p-weighted quadratic form q̃s(u) defined in (60), for which 

we derive the concentration argument of for q̃
(0)
s in (D.13) and the upper bound of q̃

(2)
s in Lemma D.2. The 

other difference is that the D̃-weighted 2-norm is considered because the eigenvectors are D̃-orthogonal. All 

the proofs of the Steps 0-3 and Theorem 6.7 are left to Appendix D.

Step 0. We first establish eigenvalue UB based on Lemma 6.1 and the form convergence in Theorem 6.3.

Proposition 6.5 (Eigenvalue UB of L̃rw). Under Assumptions 1 and 2, for fixed K ∈ N, Suppose 0 = μ1 <

· · · < μK < ∞ are all of single multiplicity. If as N → ∞, ε → 0+, and εd/2 = Ω( log N
N ), then for sufficiently 

large N , w.p. > 1 − 4N−9 − 4K2N−10, L̃rw is well-defined, and

λk ≤ μk + O

(

ε,

√

log N

Nεd/2

)

, k = 1, · · · , K.

Step 1. Eigenvalue crude LB. We prove with the p-weighted interpolation mapping defined as

Ĩr[u] =
1

N

N
∑

j=1

uj

p(xj)
Hr(x, xj) = Ir[ũ], ũi = ui/p(xi). (59)



164 X. Cheng, N. Wu / Appl. Comput. Harmon. Anal. 61 (2022) 132–190

Then, same as before, 〈Ĩr[u], Ĩr[u]〉 = qδε(ũ), and 〈Ĩr[u], QtĨr[u]〉 = qε(ũ), where for s > 0,

q̃s(u) :=
1

N2

N
∑

i,j=1

Hs(xi, xj)

p(xi)p(xj)
uiuj = qs(ũ) = q̃(0)

s (u) − q̃(2)
s (u),

q̃(0)
s (u) :=

1

N

N
∑

i=1

u2
i

⎛

⎝

1

N

N
∑

j=1

Hs(xi, xj)

p(xi)p(xj)

⎞

⎠ , q̃(2)
s (u) :=

1

2N2

N
∑

i,j=1

Hs(xi, xj)

p(xi)p(xj)
(ui − uj)2.

(60)

Proposition 6.6 (Initial crude eigenvalue LB of L̃rw). Under Assumption 1, h is Gaussian. For fixed kmax ∈
N, K = kmax + 1, and μk, ε and N satisfy the same condition as in Proposition 4.1, where the definition 

of cK is the same except that c is a constant depending on (M, p). Then, for sufficiently large N , w.p.>

1 − 4K2N−10 − 8N−9, λk > μk − γK , for k = 2, · · · , K.

Steps 2-3. We prove eigenvector consistency and refined eigenvalue convergence rate. Define

‖u‖2
D̃

:=
N
∑

i=1

u2
i D̃i, ∀u ∈ R

N . (61)

The proof uses same techniques as before, and the differences are in handling the D̃-orthogonality of the 

eigenvectors and using the concentration arguments in Lemma 6.1. Same as before, extension to when μk

has greater than 1 multiplicity is possible (Remark 5).

Theorem 6.7 (eigen-convergence of L̃rw). Under the same condition and setting of M, p being uniform, 

h being Gaussian, and kmax, K, μk, ε same as in Theorem 5.4, where the definition of cK is the same 

except that c is a constant depending on (M, p). Consider first kmax eigenvalues and eigenvectors of L̃rw, 

L̃rwvk = λkvk, and vk are normalized s.t. N‖vk‖2
D̃

= 1. Define for 1 ≤ k ≤ K,

φ̃k := ρX

(

1√
N

ψk

)

.

Then, for sufficiently large N , w.p.> 1 − 4K2N−10 − (4K + 8)N−9, ‖vk‖2 = Θ(1), and the same bounds as 

in Theorem 5.4 hold for |μk − λk| and ‖vk − αkφ̃k‖2, for 1 ≤ k ≤ kmax, with certain scalars αk satisfying 

|αk| = 1 + o(1),

7. Numerical experiments

In this section gives numerical results of point-wise convergence and eigen-convergence of graph Laplacians 

built from simulated manifold data. Codes are released at https://github .com /xycheng /eigconvergence _

gaussian _kernel.

7.1. Eigen-convergence of Lrw

We test on two simulated datasets, which are uniformly sampled on S1 (embedded in R4, the formula is 

in Appendix A) and unit sphere S2 (embedded in R3). For both datasets, we compute over an increasing 

number of samples N = {562, · · · , 1584} and a range of values of ε, where the grid points of both N and ε

are evenly spaced in log scale. For each value of N and ε, we generate N data points, construct the kernelized 

matrix Wij = Kε(xi, xj) as defined in (1) with Gaussian h, and compute the first 10 eigenvalues λk and 

eigenvectors vk of Lrw. The errors are computed by
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Fig. 2. Data points are sampled uniformly on S1 embedded in R4. (a) The eigenvalue relative error RelErrλ, visualized (in log10) as 
a field on a grid of (log10) N and ε, kmax = 9. The red curve on the left plot indicates the post-selected optimal ε which minimizes 
the error, and that minimal error as a function of N is plotted on the right in log-log scale. (b) Same plot as (a) for eigenvector 
relative error RelErrv. The relative errors are defined in (62). The empirical errors are averaged over 500 runs of experiments, 
and the log error values are smoothed over the grid for better visualization. Plots of the raw values are shown in Fig. A.1. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Data points are sampled uniformly on S2 embedded in R3, same plots as Fig. 2. kmax = 9, and the plots of raw values are 
shown in Fig. A.2.

RelErrλ =

kmax
∑

k=2

|λk − μk|
μk

, RelErrv =

kmax
∑

k=2

‖vk − φk‖2

‖φk‖2
, (62)

where φk is as defined by (39). The experiment is repeated for 500 replicas from which the averaged empirical 

errors are computed. For the data on S1, ε = {10−2.8, · · · , 10−4}. The manifold (in first 3 coordinates) is 

illustrated in Fig. 4(a) but the density is uniform here. See more details in Appendix A. For the data on S2, 

ε = {10−0.2, · · · , 10−1.8}. These ranges are chosen so that the minimal error over ε for each N are observed, 

at least for RelErrλ. Note that for S1, the population eigenvalues starting from μ2 are of multiplicity 2, and 

for S2, the multiplicities are 3, 5, · · · .

The results are shown in Figs. 2 and 3. For data on S1, Fig. 2 (a) shows that RelErrλ as a function 

of N (with post-selected best ε) shows a convergence order of about N−0.4, which is consistent with the 

theoretical bound of N−1/(d/2+2) in Theorem 5.5, since d = 1 here. In the left plot of colored field, the log 

error values are smoothed over the grid of N and ε, and the best ε scales with N as about N−0.4. The 

empirical scaling of optimal ε is less stable to observe: depending on the level of smoothing, the slope of 

log10 ε varies between -0.2 and -0.5 (the left plot), while the slope for best (log) error is always about -0.4 

(the right plot). The result without smoothing is shown in Fig. A.1. The eigenvector error in Fig. 2(b) shows 

an order of about N−0.5, which is better than the theoretical prediction. For the data on S2, the eigenvalue 

convergence shows an order of about N−0.33, in agreement with the theoretical rate of N−1/(d/2+2) when 

d = 2. The eigenvector error again shows an order of about N−0.5 which is better than theory. The small 

error of eigenvector estimation at very large value of ε may be due to the symmetry of the simple manifolds 

S1 and S2. In both experiments, the eigenvector estimation prefers a much larger value of ε than the 

eigenvalue estimation, which is consistent with the theory.
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Fig. 4. (a) Random sampled data on S1 embedded in R4, the first 3 coordinates are shown, and colored by the density. (b) Density 
p and the test function f plotted as a function of intrinsic coordinate (arc-length) on [0, 1) of S1. (c) One realization of L̃rw(ρX f)
plotted in comparison with the true function of ρX (Δf). (d) Log relative error log10 RelErrpt, as defined in (63), computed over a 
range of values of ε, averaged over 50 runs of repeated experiments. The two fitted lines show the approximate scaling of RelErrpt

at small ε, where variance error dominates, and at large ε, where bias error dominates.

Fig. 5. Same eigenvalue and eigenvector relative error plots as Fig. 2, where data are non-uniformly sampled on S1 as in Fig. 4(a). 
kmax = 9, and the plots of raw values are shown in Fig. A.3.

7.2. Density-corrected graph Laplacian

To examine the density-corrected graph Laplacian, we switch to non-uniform density on S1, illustrated 

in Fig. 4(a). We first investigate the point-wise convergence of −L̃rwf to Δf , on a test function f : S1 → R, 

see more details in Appendix A. The error is computed as

RelErrpt =
‖ − L̃rwρXf − ρX(Δf)‖1

‖ρX(Δf)‖1
, (63)

and the result is shown in Fig. 4. Theorem 6.2 predicts the bias error to be O(ε) and the variance error to 

be O(ε−d/4−1/2) = O(ε−3/4) since N is fixed, which agrees with Fig. 4(d).

The results of RelErrλ and RelErrv are shown in Fig. 5. The order of convergence with best ε appears 

to be about N−0.8 for both eigenvalue and eigenvector errors, which is better than those of Lrw (when p is 

uniform) in Fig. 2, and better than the theoretical prediction in Theorem 6.7.

8. Discussion

The current result may be extended in several directions. First, for manifold with smooth boundary, 

the random-walk graph Laplacian recovers the Neumann Laplacian [10], and one can expect to prove the 

spectral convergence as well, such as in [22]. Second, extension to kernel with variable or adaptive bandwidth 

[5,9], and other normalization schemes, e.g., bi-stochastic normalization [23,20,36], would be important to 

improve the robustness against low sampling density and noise in data, and even the spectral convergence as 

well. Related is the problem of spectral convergence to other manifold diffusion operators, e.g., the Fokker-
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Fig. A.1. Same plots as Fig. 2 where the log error values on the (log) grid of N and ε are without smoothing.

Planck operator, on L2(M, pdV ). It would also be interesting to extend to more general types of kernel 

function h which is not Gaussian, and even not symmetric [37], for the spectral convergence. Relaxing the 

condition on the kernel bandwidth ε can also be useful: the optimal transport approach was able to show 

spectral consistency in the regime just beyond graph connectivity, namely when εd/2 � log N/N [7], which is 

less restrictive than the condition needed by Gaussian kernel in the current paper. Being able to extend the 

analysis to very sparse graph is important for applications. At last, further investigation is needed to explain 

the good spectral convergence observed in experiments, particularly that of the eigenvector convergence and 

the faster rate with density-corrected graph Laplacian. For the eigenvector convergence, the current work 

focuses on the 2-norm consistency, while the ∞-norm consistency as has been derived in [11,8] is also 

important to study.
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Appendix A. Details of numerical experiments

In the example of S1 data, the isometric embedding in R4 is by

ι(t) =
1

2π
√

5

(

cos(2πt), sin(2πt),
2

3
cos(2π3t),

2

3
sin(2π3t)

)

,

where t ∈ [0, 1) is the intrinsic coordinate of S1 (arc-length). In the example in Section. 7.2 where p is not 

uniform, p(t) = 1 + 1
2 sin(2π2t) + 0.6

2 sin(2π5t), and the test function f(t) = 0.2 sin(4πt) − 0.8 sin(4π2t). In 

the example of S2 data, sample are on unit sphere in R3.

In both plots of the raw error data without smoothing, Figs. A.1 and A.2 the slope of error convergence 

rates (about -0.4 and - 0.33) are about the same. The slope of post-selected optimal (log) ε as a function of 

(log) N changes, due to the closeness of the values over the multiple values of ε.

Appendix B. More preliminaries

Throughout the paper, we use the following version of classical Bernstein inequality, where the tail 

probability uses ν > 0 which is an upper bound of the variance. We use the sub-Gaussian near-tail, which 

holds when the tempted deviation threshold t < 3ν
L .
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Fig. A.2. Same plots as Fig. 3 where the log error values on the (log) grid of N and ε are without smoothing.

Fig. A.3. Same plots as Fig. 5 where the log error values on the (log) grid of N and ε are without smoothing.

Lemma B.1 (Classical Bernstein). Let ξj be i.i.d. bounded random variables, j = 1, · · · , N , Eξj = 0. If 

|ξj | ≤ L and Eξ2
j ≤ ν for L, ν > 0, then

Pr[
1

N

N
∑

j=1

ξj > t], Pr[
1

N

N
∑

j=1

ξj < −t] ≤ exp{− t2N

2(ν + tL
3 )

}, ∀t > 0.

In particular, when tL < 3ν, both the tail probabilities are bounded by exp{−1
4

Nt2

ν }.

Additional proofs in Section 2:

Proof of Theorem 2.1. Part 1): We provide a direct verification of (10) based on the parametrix construction 

for completeness, which is not explicitly included in [25].

First note that there is t0, determined by M s.t. when t < t0,

∫

M

Gt(x, y)dV (y) =

∫

M

Gt(y, x)dV (y) ≤ C6, ∀x ∈ M,

for some C6 > 0 depending on M. This is because 
∫

M Gt(x, y)dV (y) up to an O(t) truncation error equals 

the integral on Bt := {y ∈ M, dM(x, y) < δt :=
√

(d/2 + 1)t log 1
t }. By change to the projected coordinate 

u in Tx(M), the integral domain of u is contained in 1.1δt-ball in Rd for small enough δt, then

∫

Bt

Gt(x, y)dV (y) =
1

(4πt)d/2

∫

Bt

e− dM(x,y)2

4t dV (y) ≤ 1

(4πt)d/2

∫

u∈Rd, ‖u‖<1.1δt

e− 0.9‖u‖2

4t (1 + O(δ2
t ))du

≤ Θ(1)(1 + O(t log
1

t
)) = O(1).
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Next, as has been shown in Chapter 3 of [25], there exist ul ∈ C∞(M × M) for l = 1, · · · , m, u0 satisfies 

the needed property, and we define Pm(t, x, y) = Gt(x, y) 
(
∑m

l=0 tlul(x, y)
)

, Pm ∈ C∞((0, ∞), M × M). By 

Theorem 3.22 of [25],

Ht(x, y) − Pm(t, x, y) =

t
∫

0

ds

∫

M

Qm(t − s, x, z)Pm(s, z, y)dV (z),

where by Lemma 3.18 of [25], there is C7(t0) and thus is determined by M s.t.

sup
x,y∈M

|Qm(s, x, y)| ≤ C7sm−d/2, ∀0 ≤ s ≤ t0.

As a result, for t < t0,

|Ht(x, y) − Pm(t, x, y)| ≤
t
∫

0

ds

∫

M

|Qm(t − s, x, z)|Gs(z, y)

∣

∣

∣

∣

∣

m
∑

l=0

tlul(z, y)

∣

∣

∣

∣

∣

dV (z)

≤ C7tm−d/2(

m
∑

l=0

‖ul‖∞)

t
∫

0

ds

∫

M

Gs(z, y)dV (z)

≤ C7tm−d/2(

m
∑

l=0

‖ul‖∞)C6t = O(tm−d/2+1).

Part 2) is a classical result proved in several places, see e.g. Theorem 1.1 in [16] combined with 

supx∈M Ht(x, x) ≤ C5t−d/2 for some C5 depending on manifold, which can be deduced from Part 1). 

The constant 5 in 5t in the exponential in (11) can be made any constant greater than 4, and the constant 

C3 change accordingly. �

Proof of Lemma 2.2. Let m = � d
2 + 3�, m is a positive integer m − d

2 ≥ 3. Since t → 0, and δt = o(1), 

the Euclidean ball of radius δt contains δt-geodesic ball and is contained (1.1δt)-geodesic ball, for small 

enough t. Then both claims in Theorem 2.1 hold when t < ε0 for some ε0 depending on M, and in 1) for 

y ∈ Bδt
(x) ∩ M, C2tm−d/2+1 = O(t3). Here by choosing larger m can make the term of higher order of t, 

yet O(t3) is enough for our later analysis.

Proof of (12): We use the shorthand notation Õ(t) to denote O(t log 1
t ). In Theorem 2.1, m is fixed, ‖ul‖∞

for l ≤ m are finite constants depending on M, thus

Ht(x, y) = Gt(x, y) (u0(x, y) + O(t)) + O(t3).

Note that dM(x, y)2 = ‖x − y‖2(1 + O(‖x − y‖2)), and thus when y ∈ Bδt
(x), dM(x, y)2 = O(‖x − y‖2) =

O(δ2
t ) = Õ(t). By the property of u0,

u0(x, y) = 1 + O(dM(x, y)2) = 1 + Õ(t).

Meanwhile, by mean value theorem and that dM(x, y) ≥ ‖x − y‖,

e− dM(x,y)2

t = e− ‖x−y‖2(1+O(‖x−y‖2))
t = e− ‖x−y‖2

t (1 + O(
‖x − y‖4

t
)),

and then
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Gt(x, y) = Kt(x, y)(1 + O(
‖x − y‖4

t
)) = Kt(x, y)(1 + O(t(log

1

t
)2)).

Thus, for any y ∈ Bδt
(x) ∩ M,

Ht(x, y) = Kt(x, y)(1 + O(t(log
1

t
)2))

(

1 + Õ(t) + O(t)
)

+ O(t3),

which proves (12), and the constants in big-O are all determined by M.

Proof of (13) and (14): When y is outside the δt-Euclidean ball, it is outside the δt-geodesic ball. Then, by 

Theorem 2.1 2) and the definition of δt, Ht(x, y) ≤ C3t−d/2e− δ2
t

5t ≤ C3t10, which proves (13). (14) directly 

follows from (11). �

Appendix C. Proofs about graph Laplacians with W

C.1. Proofs in Section 3

Proof of (15) in Remark 2. We want to show that

1

ε

∫

M

∫

M

Kε(x, y)(f(x) − f(y))2p(x)p(y)dV (x)dV (y) = m2[h]〈f, −Δp2f〉p2 + O(ε).

First consider when p is uniform. Denote by Br(x) the Euclidean ball in RD centered at x with radius r. 

When y ∈ B√
ε(x) ∩ M, (f(x) − f(y))2 = (∇f(x)T u)2 + Qx,3(u) + O(‖u‖4), where u ∈ R

d is the local 

projected coordinate, i.e., let φx be the projection onto Tx(M), u = φx(y − x), also ‖u‖ ≤ ‖y − x‖ <
√

ε. 

Qx,3(·) is a three-order polynomial where the coefficients depend on the derivatives of extrinsic coordinates 

of M and f at x. Then,

1

ε

∫

M

Kε(x, y)(f(x) − f(y))2dV (y) =

∫

M

ε−d/2h(
‖x − y‖2

ε
)
(f(x) − f(y))2

ε
dV (y) (C.1)

= ε−d/2

∫

B̃

(

(∇f(x)T u)2

ε
+

Qx,3(u)

ε
+ O(ε)

)

(1 + O(ε))du, B̃ := φx(B√
ε(x) ∩ M)

and B̃ ⊂ B√
ε(0; Rd), where we used the volume comparison relation dV (y) = (1 + O(‖u‖2))du. By the 

metric comparison, ‖y − x‖ = ‖u‖(1 + O(‖u‖2)), thus

Vol(B√
ε(0; R

d)\B̃) ≤ Vol(B√
ε(0; R

d)\B√
ε(1−O(ε))(0; R

d)) = εd/2O(ε).

Meanwhile, the integration of odd power of u vanishes on 
∫

B√
ε(0;Rd)

du. Thus one can verify that 

ε−d/2
∫

B̃
(∇f(x)T u)2

ε du = m2[h]|∇f(x)|2 + O(ε), ε−d/2
∫

B̃
Qx,3(u)

ε du = O(ε3/2), and thus the l.h.s. of (C.1)

= m2[h]|∇f(x)|2 + O(ε). Integrating over 
∫

M dV (x) proves that the bias error is O(ε). When p is not uni-

form, one can similarly show that 1
ε

∫

M Kε(x, y)(f(x) − f(y))2p(y)dV (y) = m2[h]|∇f(x)|2p(x) + O(ε) and 

the proof extends. �

Proof of Lemma 3.3. Since p is a constant, Δp2 = Δ. Apply Theorem 3.2 to when f = ψk, and (ψk ± ψl)

where k �= l, which are K2 cases and are all in C∞(M). Since the set {ψk}K
k=1 is orthonormal in L2(M, dV ),

p−1〈ψk, −Δψk〉p2 = pμk; p−1〈ψk ± ψl, −Δ(ψk ± ψl)〉p2 = p(μk + μl), k �= l, 1 ≤ k, l ≤ K.
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Under the intersection of the K2 good events which happens with the indicated high probability, (16) holds. 

The needed threshold of N is the max of the K2 many ones. These thresholds and the constants in the 

big-O’s depend on p and ψk for k up to K, and K is a fixed integer. This means that these constants are 

determined by M, and thus are treated as absolute ones. �

Proof of Lemma 3.4. First, for any f ∈ C(M), when N > Nf depending on f , w.p. > 1 − 2N−10,

1

N
‖ρXf‖2

2 = 〈f, f〉p + Of (

√

log N

N
). (C.2)

This is because, by definition, 1
N ‖ρXf‖2

2 = 1
N

∑N
j=1 f(xi)

2, which is independent sum of r.v. Yj := f(xi)
2. 

EYj =
∫

M f(y)2pdV (y) = 〈f, f〉p, and boundedness |Yj | ≤ LY := ‖f‖2
∞,M which is Of (1) constant. 

The variance of Yj is bounded by EY 2
j =

∫

M f(y)4pdV (y) := νY , which again is Of (1) constant. Since 

log N/N = o(1), (C.2) follows by the classical Bernstein.

Now consider the K vectors uk = 1√
pρXψk. Apply (C.2) to when f = 1√

pψk and 1√
p (ψk ± ψl) for 

k �= l, and consider the intersection of the K2 good events, which happens w.p. > 1 − 2K2N−10, when 

N exceeds the maximum thresholds of N for the K2 cases. By 〈ψk, ψl〉p = pδkl, and the polar formula 

4uT
k ul = ‖uk + ul‖2 − ‖uk − ul‖2, this gives (17). Both the K2 thresholds and all the constants in big-O in 

(17) depend on {ψk}K
k=1. �

Proof of Lemma 3.5. Suppose Part 1) has been shown with uniform constant in big-O for each i, then 

under the good event of Part 2), Part 2) holds automatically. In particular, since (19) is a property of the 

random r.v. Wij only, where Wij are determined by the random points xi and irrelevant to the vector u, 

the threshold of large N is determined by when Part 1) holds and is uniform for all u.

It suffices to prove Part 1) to finish proving the lemma. For each i, we construct an event under which 

the bound in (19) holds for Di, and then apply a union bound. For i fixed,

1

N
Di =

1

N
Kε(xi, xi) +

1

N

∑

j �=i

Kε(xi, xj) =: 1� + 2�.

By Assumption 2(C2), Kε(xi, xi) = ε−d/2h(0) ≤ Θ(ε−d/2). and thus 1� = O(N−1ε−d/2). Consider 2�′ :=
1

N−1

∑

j �=i Kε(xi, xj), which is an independent sum condition on xi and over the randomness of {xj}j �=i. 

The (N − 1) r.v.

Yj := Kε(xi, xj), j �= i,

satisfies that (Lemma 8 in [10], Lemma A.3 in [9])

EYj =

∫

M

Kε(xi, y)pdV (y) = pm0 + O(ε).

Boundedness: again by Assumption 2(C2), |Yj | ≤ LY = Θ(ε−d/2). Variance of Yj is bounded by

EY 2
j =

∫

M

Kε(xi, y)2pdV (y) = p

∫

M

ε−dh2(
‖xi − y‖2

ε
)dV (y),

where since h2(r) as a function on [0, ∞) also satisfies Assumption 2,

EY 2
j = ε−d/2p(m0[h2] + O(ε)) ≤ νY = Θ(ε−d/2).
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The constants in the big-Θ notation of LY and νY are absolute ones depending on M and do not depend on 

xi. Since 
√

log N
Nεd/2 = o(1), the classical Bernstein gives that when N is sufficiently large w.p. > 1 − 2N−10,

| 2�′ − EYj | = O(

√

νY
log N

N
) = O(

√

log N

Nεd/2
) | condition on xi.

Under this event, 2�′ = O(1), and then 2� = (1 − 1
N ) 2�′ gives that

2� = m0p + O(ε) + O(

√

log N

Nεd/2
) + O(

1

N
) = m0p + O(ε,

√

log N

Nεd/2
),

and then

1

N
Di = O(N−1ε−d/2) + m0p + O(ε,

√

log N

Nεd/2
) = m0p + O(ε,

√

log N

Nεd/2
).

By that xi is independent from {xj}j �=i, and that the bound is uniform for all location of xi, we have that 

w.p. > 1 − 2N−10, the bound in (19) for i, and applying union bound to the N events proves Part 1). �

Proof of Proposition 3.6. Under the condition of the current proposition, Lemma 3.5 applies. For fixed K, 

take the intersection of the good events in Lemma 3.5, 3.4 and 3.3, which happens w.p. > 1 − 4K2N−10 −
2N−9 for large enough N . Same as before, let uk = 1√

pρXψk, and by 3.4, the set {u1, · · · , uK} is linearly 

independent. Let L = Span{u1, · · · , uk}, then dim(L) = k for each k ≤ K. For any v ∈ L, v �= 0, there 

are cj , 1 ≤ j ≤ k, such that v =
∑k

j=1 cjuj . Again, by (17), we have 1
N ‖v‖2 = ‖c‖2(1 + O(

√

log N
N )), and 

together with Lemma 3.5 2),

1

m0

1

N2
vT Dv =

1

N
‖v‖2(p + O(ε,

√

log N

Nεd/2
)) = ‖c‖2(1 + O(

√

log N

N
))(p + O(ε,

√

log N

Nεd/2
))

= ‖c‖2p(1 + O(ε,

√

log N

Nεd/2
)), (C.3)

and the constant in O(·) is uniform for all v. For EN (v), (18) still holds, and by that K is fixed it gives

EN (v) ≤ ‖c‖2

(

pμk + O(ε,

√

log N

Nεd/2
)

)

.

Together with (C.3), we have that

EN (v)
1

m0

1
N2 vT Dv

≤
pμk + O(ε,

√

log N
Nεd/2 )

p(1 + O(ε,
√

log N
Nεd/2 ))

= μk + O(ε,

√

log N

Nεd/2
),

and the r.h.s. upper bounds λk(Lrw) by (8). �

C.2. Proofs in Section 4

Proof of (25) in Lemma 4.2. Suppose s is small enough such that Lemma 2.2 holds with ε being s here. For 

each i, we construct an event under which the bound in (25) holds for (Ds)i, and then apply a union bound. 

For i fixed,
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(Ds)i =
1

N
Hs(xi, xi) +

1

N

∑

j �=i

Hs(xi, xj) =: 1� + 2�.

By (14), Hs(xi, xi) = O(s−d/2), and thus 1� = O(N−1s−d/2). Consider 2�′ := 1
N−1

∑

j �=i Hs(xi, xj), which is 

an independent sum condition on xi and over the randomness of {xj}j �=i. The (N − 1) r.v. Yj := Hs(xi, xj), 

j �= i, satisfies that EYj =
∫

M Hs(xi, y)pdV (y) = p, and boundedness: again by (14), |Yj | ≤ LY = Θ(s−d/2). 

Variance of Yj is bounded by EY 2
j =

∫

M Hs(xi, y)2pdV (y) = pH2s(xi, xi) ≤ νY = Θ(s−d/2). The constants 

in the big-Θ notation of LY and νY are from (14) which only depend on M and not on xi. We use the 

notation OM(·) to stress this. Since 
√

log N
Nsd/2 = o(1), the classical Bernstein gives that with sufficiently large 

N , w.p. > 1 − 2N−10,

| 2�′ − p| = O(

√

νY
log N

N
) = OM(

√

log N

Nsd/2
) | condition on xi.

The rest of the proof is the same as that of Lemma 3.5 1), namely, by that 2� = (1 − 1
N ) 2�′, one can verify 

that both 2� and then (Ds)i equals p +OM(
√

log N
Nsd/2 ) w.p. > 1 −2N−10, and then (25) follows from applying 

union bound to the N events. �

Proof of Proposition 4.4. The proof is by the same method as that of Proposition 4.1, and the difference 

is that the eigenvectors are D-orthogonal here and normalized differently. Denote λk(Lrw) as λk, and let 

Lrwvk = λkvk, normalized s.t.

1

N2
vT

k Dvl = δkl, 1 ≤ k, l ≤ N.

Note that this normalization of vk differs from what is used in the final eigen-convergence rate result, 

Theorem 5.5, because the current proposition concerns eigenvalue only.

Because εd/2+2 > cK
log N

N , εd/2 = Ω( log N
N ), then the conditions needed in Proposition 3.6 are satisfied. 

Thus, with sufficiently large N , there is an event E′
UB which happens w.p. > 1 − 2N−9 − 4K2N−10, under 

which Di > 0 for all i s.t. Lrw is well-defined, and (32) holds for λk = λk(Lrw). Because the good event 

E′
UB in Proposition 3.6 assumes the good event in Lemma 3.5, then (20) also holds for all the vk and vk ±vl, 

which gives that (m0 = 1 because h is Gaussian)

1 =
1

N2
vT

k Dvk =
1

N
‖vk‖2(p + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K,

2 =
1

N2
(vk ± vl)

T D(vk ± vl) =
1

N
‖vk ± vl‖2(p + O(ε,

√

log N

Nεd/2
)) k �= l, 1 ≤ k, l ≤ K,

and, equivalently (because p > 0 is a constant)

1

N
‖vk‖2 =

1

p
(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K,

1

N
‖vk ± vl‖2 =

1

p
(2 + O(ε,

√

log N

Nεd/2
)), k �= l, 1 ≤ k, l ≤ K.

(C.4)

We set δ, r, t, in the same way, and let fk = Ir[vk], fk ∈ C∞(M). Because the good event E(0) only concerns 

randomness of Hδε(xi, xj), under E(0) which happens w.p. > 1 − 2N−9,
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q
(0)
δε (vk) =

1

N
‖vk‖2(p + O(

√

log N

Nεd/2
)) = 1 + O(ε,

√

log N

Nεd/2
), 1 ≤ k ≤ K,

q
(0)
δε (vk ± vl) =

1

N
‖vk ± vl‖2(p + O(

√

log N

Nεd/2
)) = 2 + O(ε,

√

log N

Nεd/2
), k �= l, 1 ≤ k, l ≤ K.

(C.5)

Next, note that since (D − W )vk = m̃ελkDvk, and with Gaussian h, m̃ = 1, and vk are D-orthogonal,

vT
k (D − W )vk

N2
= ελk

1

N2
vT

k Dvk = ελk, 1 ≤ k ≤ K,

(vk ± vl)
T (D − W )(vk ± vl)

N2
= ε(λk + λl), k �= l, 1 ≤ k, l ≤ K.

(C.6)

Then, (27) in Lemma 4.3 where α = δ gives that

q
(2)
δε (vk) = O(δ−d/2)ελk + O(ε3), 1 ≤ k ≤ K,

q
(2)
δε (vk ± vl) = O(δ−d/2)ε(λk + λl) + 2O(ε3), k �= l, 1 ≤ k, l ≤ K,

then same as in (33), they are both O(ε). Together with (C.5), this gives that

〈fk, fk〉 = 1 + O(ε,

√

log N

Nεd/2
) + O(ε), 1 ≤ k ≤ K,

〈fk, fl〉 =
1

4
(qδε(vk + vl) − qδε(vk − vl)) = O(ε,

√

log N

Nεd/2
) + O(ε), k �= l, 1 ≤ k, l ≤ K.

(C.7)

Then due to that O(ε, 
√

log N
Nεd/2 ) = o(1), we have linear independence of {fj}K

j=1 with large enough N .

Again, we let Lk = Span{f1, · · · , fk}, and have (35). For any f ∈ Lk, f =
∑k

j=1 cjfj , f = Ir[v], 

v :=
∑k

j=1 cjvj ,

1

N2
vT Dv =

k
∑

j=1

c2
j

1

N2
vT

j Dvj = ‖c‖2,

and, by that Lemma 3.5 2) holds, (20) applies to v to give 1
N2 vT Dv = 1

N ‖v‖2(p + O(ε, 
√

log N
Nεd/2 )), thus

1

N
‖v‖2 =

‖c‖2

p
(1 + O(ε,

√

log N

Nεd/2
)). (C.8)

Meanwhile, by (C.6),

vT (D − W )v

N2
=

k
∑

j=1

c2
j

vT
j (D − W )vj

N2
=

k
∑

j=1

c2
jελj ≤ ελk‖c‖2. (C.9)

With the good event E(1) same as before (Lemma 4.2 at s = ε), under E(0) ∩ E(1), and the OM(·) notation 

means that the constant depends on M only and not on K,

q(0)
ε (v) =

1

N
‖v‖2(p + OM(

√

log N

Nεd/2
)), q

(0)
δε (v) =

1

N
‖v‖2(p + OM(

√

δ−d/2
log N

Nεd/2
)), (C.10)

and then, again,
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q
(0)
δε (v) − q(0)

ε (v) =
1

N
‖v‖2OM(δ−d/4

√

log N

Nεd/2
) =

‖c‖2

p
(1 + O(ε,

√

log N

Nεd/2
))OM(δ−d/4

√

log N

Nεd/2
)

= ‖c‖2OM(δ−d/4

√

log N

Nεd/2
),

where we used (C.8) to substitute the 1
N ‖v‖2 term after the leading 1

N ‖v‖2p term is canceled in the sub-

traction. The UB of q
(2)
ε (v) is similar as before, namely, by (26) in Lemma 4.3, inserting (C.9), and with 

the shorthand that Õ(ε) stands for O(ε(log 1
ε )2),

q(2)
ε (v) =

vT (D − W )v

N2
(1 + Õ(ε)) + ‖c‖2O(ε3) ≤ ε‖c‖2(λk(1 + Õ(ε)) + O(ε2)).

Thus we have that

〈f, f〉 − 〈f, Qtf〉 ≤ (q
(0)
δε (v) − q(0)

ε (v)) + q(2)
ε (v)

≤ ε‖c‖2

(

λk(1 + Õ(ε)) + O(ε2) + δ−d/4OM(
1

ε

√

log N

Nεd/2
)

)

= ε‖c‖2

(

λk + Õ(ε) + δ−d/4OM(
1

ε

√

log N

Nεd/2
)

)

. (by λk ≤ 1.1μK) (C.11)

To lower bound 〈f, f〉, again by (27) in Lemma 4.3, inserting (C.9),

0 ≤ q
(2)
δε (v) ≤ Θ(δ−d/2)

vT (D − W )v

N2
+ ‖c‖2O(ε3) ≤ ε‖c‖2

(

λkΘ(δ−d/2) + O(ε2)
)

,

and then since λkΘ(δ−d/2) +O(ε2) = O(1), we again have that q
(2)
δε (v) = ‖c‖2O(ε). We have derived formula 

of q
(0)
δε (v) in (C.10) under E(0) ∩ E(1), and inserting (C.8),

q
(0)
δε (v) =

1

N
‖v‖2(p + O(

√

log N

Nεd/2
)) = ‖c‖2(1 + O(ε,

√

log N

Nεd/2
)). (C.12)

Thus,

〈f, f〉 = q
(0)
δε (v) − q

(2)
δε (v) = ‖c‖2

(

1 + O(ε,

√

log N

Nεd/2
) − O(ε)

)

≥ ‖c‖2

(

1 − O(ε,

√

log N

Nεd/2
)

)

.

Together with (C.11), this gives

〈f, f〉 − 〈f, Qtf〉
〈f, f〉 ≤

ε

(

λk + Õ(ε) + δ−d/4OM( 1
ε

√

log N
Nεd/2 )

)

1 − O(ε,
√

log N
Nεd/2 )

≤ ε

(

λk + Õ(ε) +
C

ε

√

log N

Nεd/2

)

,

where the notation of C is defined in the same way as in the proof of Proposition 4.1. The rest of the 

proof is the same, and the intersection of all the needed good events E(0), E(1), and E′
UB , which happens 

w.p.> 1 − 2N−9 − 4K2N−10 − 4N−9. �
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C.3. Proofs in Section 5

Proof of Theorem 5.5. With sufficiently large N , we restrict to the intersection of the good events in Propo-

sition 4.4 and the K = kmax + 1 good events of applying Theorem 5.1 1) to {ψk}K
k=1, which happens 

w.p.> 1 − 4K2N−10 − (6 + 4K)N−9. The good event in Proposition 4.4 is contained in the good event E′
UB

of Proposition 3.6 of the eigenvalue UB, which is again contained in the good event of Lemma 3.5. As a 

result, Di > 0 for all i, and thus Lrw is well-defined, and (20) holds.

Applying (20) to u = vk, and because ‖vk‖2
D/N = p, we have that (m0 = 1 due to that h is Gaussian)

p = ‖vk‖2
D
N

= p‖vk‖2
2(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K. (C.13)

This verifies that ‖vk‖2
2 = 1 + O(ε, 

√

log N
Nεd/2 ) = 1 + o(1), for 1 ≤ k ≤ K.

Because the good event E′
UB is under that in Lemma 3.4, ‖φk‖2

2 = 1 + O(
√

log N
N ), 1 ≤ k ≤ K, and then, 

applying (20) to u = φk,

‖φk‖2
D
N

= p‖φk‖2(1 + O(ε,

√

log N

Nεd/2
)) = p(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K. (C.14)

Step 2. for Lrw: We follow a similar approach as in Proposition 5.2. When k = 1, λ1 = 0, and v1 is 

always the constant vector, thus the discrepancy is zero. Consider 2 ≤ k ≤ K, by Theorem 5.1 1), and that 

‖u‖2 ≤
√

N‖u‖∞ for any u ∈ R
N ,

‖Lrwφk − μkφk‖2 = O(ε,

√

log N

Nεd/2+1
), 2 ≤ k ≤ K, (C.15)

and then by (20) which holds uniformly for all u ∈ R
N ,

‖Lrwφk − μkφk‖ D
N

= ‖Lrwφk − μkφk‖2
√

p(1 + O(ε,

√

log N

Nεd/2
)) = O(‖Lrwφk − μkφk‖2).

Thus, there is Errpt > 0, s.t.

‖Lrwφk − μkφk‖ D
N

≤ Errpt, 2 ≤ k ≤ K, Errpt = O(ε,

√

log N

Nεd/2+1
). (C.16)

The constant in big-O depends on first K eigenfunctions, and is an absolute one because K is fixed. Next, 

same as in the proof of Proposition 5.2, under the good event of Proposition 4.4 and by the definition of 

γK as the maximum (half) eigen-gap among {μk}1≤k≤K , (41) holds for λk.

Let Sk = Span{( D
N )1/2vk}, Sk is a 1-dimensional subspace in RN . Because vj ’s are D-orthogonal, S⊥

k =

Span{( D
N )1/2vj , j �= k, 1 ≤ j ≤ N}. Note that

PS⊥
k

(

(
D

N
)1/2μkφk

)

= (
D

N
)1/2

N
∑

j �=k,j=1

vT
j ( D

N )φk

‖vj‖2
D
N

μkvj , (C.17)

and because

LT
rwDvj =

1

ε
(I − WD−1)Dvj =

1

ε
(D − W )vj = Dλjvj , (C.18)



X. Cheng, N. Wu / Appl. Comput. Harmon. Anal. 61 (2022) 132–190 177

PS⊥
k

(

(
D

N
)1/2Lrwφk

)

= (
D

N
)1/2

N
∑

j �=k,j=1

vT
j ( D

N )Lrwφk

‖vj‖2
D
N

vj = (
D

N
)1/2

N
∑

j �=k,j=1

1
N (LT

rwDvj)T φk

‖vj‖2
D
N

vj

= (
D

N
)1/2

N
∑

j �=k,j=1

1
N (Dvj)T φk

‖vj‖2
D
N

λjvj . (C.19)

Subtracting (C.17) and (C.19) gives

PS⊥
k

(

(
D

N
)1/2(Lrwφk − μkφk)

)

=
N
∑

j �=k,j=1

(λj − μk)
vT

j
D
N φk

‖vj‖2
D
N

(
D

N
)1/2vj ,

and by that vj are D-orthogonal, and (41),

‖PS⊥
k

(

(
D

N
)1/2(Lrwφk − μkφk)

)

‖2
2 =

N
∑

j �=k,j=1

|λj − μk|2
|vT

j
D
N φk|2

‖vj‖2
D
N

≥ γ2
K

N
∑

j �=k,j=1

|vT
j

D
N φk|2

‖vj‖2
D
N

.

The square-root of the l.h.s.

‖PS⊥
k

(

(
D

N
)1/2(Lrwφk − μkφk)

)

‖2 ≤ ‖(
D

N
)1/2(Lrwφk − μkφk)‖2 = ‖Lrwφk − μkφk‖ D

N
≤ Errpt,

and the last inequality is by (C.16). This gives that

⎛

⎝

N
∑

j �=k,j=1

|vT
j

D
N φk|2

‖vj‖2
D
N

⎞

⎠

1/2

≤ Errpt

γK
.

Meanwhile, PS⊥
k

(

( D
N )1/2φk

)

=
∑N

j �=k,j=1

vT
j ( D

N )φk

‖vj‖2
D
N

( D
N )1/2vj , and by D-orthogonality of vj again,

∑N
j �=k,j=1

|vT
j

D
N φk|2

‖vj‖2
D
N

= ‖PS⊥
k

(

( D
N )1/2φk

)

‖2
2. Thus,

‖PS⊥
k

(

(
D

N
)1/2φk

)

‖2 =

⎛

⎝

N
∑

j �=k,j=1

|vT
j

D
N φk|2

‖vj‖2
D
N

⎞

⎠

1/2

≤ Errpt

γK
= O(ε,

√

log N

Nεd/2+1
). (C.20)

Finally, define

βk :=
vT

k ( D
N )φk

‖vk‖2
D
N

, βk(
D

N
)1/2vk = PSk

(
D

N
)1/2φk,

PS⊥
k

(

(
D

N
)1/2φk

)

= (
D

N
)1/2φk − PSk

(
D

N
)1/2φk = (

D

N
)1/2 (φk − βkvk) ,

and then, together with (C.20),

‖φk − βkvk‖ D
N

= ‖PS⊥
k

(

(
D

N
)1/2φk

)

‖2 = O(ε,

√

log N

Nεd/2+1
).

Applying (20) to u = φk −βkvk, ‖φk −βkvk‖2 = ( 1
p (1 +O(ε, 

√

log N
Nεd/2 )))1/2‖φk −βkvk‖ D

N
= O(‖φk −βkvk‖ D

N
), 

and we have shown that
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‖φk − βkvk‖2 = O(‖φk − βkvk‖ D
N

) = O(ε,

√

log N

Nεd/2+1
).

To finish Step 2, it remains to show that |βk| = 1 + o(1), and then we define αk = 1
βk

. By definition of βk,

‖φk‖2
D
N

= ‖(
D

N
)1/2φk‖2

2 = ‖PS⊥
k

(

(
D

N
)1/2φk

)

‖2
2 + ‖βk(

D

N
)1/2vk‖2

2 = ‖PS⊥
k

(

(
D

N
)1/2φk

)

‖2
2 + β2

k‖vk‖2
D
N

,

by that ‖vk‖2
D
N

= p, and (C.14), and (C.20), this gives p(1 + o(1)) = o(1) + β2
kp, and thus β2

k = 1 + o(1).

Step 3. of Lrw: For 2 ≤ k ≤ kmax, by the relation (C.18),

vT
k D(Lrwφk − μkφk) = (LT

rwDvk)T φk − μkvT
k Dφk = (λk − μk)vT

k Dφk,

and we have shown that

vk = αkφk + εk, αk = 1 + o(1), ‖εk‖ D
N

= O(ε,

√

log N

Nεd/2+1
).

Similar as in the proof of Proposition 5.3,

|λk − μk||vT
k

D

N
φk| = |vT

k

D

N
(Lrwφk − μkφk)| = |(αkφk + εk)T D

N
(Lrwφk − μkφk)|

≤ |αk||φT
k

D

N
Lrwφk − μk‖φk‖2

D
N

| + |εT
k

D

N
(Lrwφk − μkφk)| =: 1� + 2�.

By (C.14), ‖φk‖2
D
N

= p(1 +O(ε, 
√

log N
Nεd/2 )), and meanwhile, φT

k
D
N Lrwφk = 1

pEN (ρXψk) = pμk +O(ε, 
√

log N
Nεd/2 )

by (16). Thus 1� = O(|φT
k

D
N Lrwφk − μk‖φk‖2

D
N

|) = O(ε, 
√

log N
Nεd/2 ). By (C.16) and the bound of εk, | 2�| ≤

‖εk‖ D
N

‖Lrwφk − μkφk‖ D
N

= O(Err2
pt) which is O(ε) as shown in the proof of Proposition 5.3. Finally, by the 

definition of βk, and that ‖vk‖2
D
N

= p,

|λk − μk||βk| ≤ | 1�| + | 2�|
‖vk‖2

D
N

=
O(ε,

√

log N
Nεd/2 ) + O(ε)

p
= O(ε,

√

log N

Nεd/2
).

Since |βk| = 1 + o(1), this proves the bound of |λk − μk|, and the argument for all k ≤ kmax. �

Appendix D. Proofs about the density-corrected graph Laplacian with W̃

D.1. Proofs of the point-wise convergence of L̃rw

Proof of Lemma 6.1. Part 1): By that 1
N Di = 1

N (Yi +
∑N

j �=i Yj), Yj := Kε(xi, xj). For j �= i, Yj has 

expectation (Lemma 8 in [10], Lemma A.3 in [9])

∫

M

Kε(xi, y)p(y)dV (y) = m0p(xi) +
m2

2
ε(ωp(xi) + Δp(xi)) + Op(ε2),

where ω ∈ C∞(M) is determined by manifold extrinsic coordinates; Meanwhile, Kε(xi, xi) = ε−d/2h(0) =

O(ε−d/2); In the independent sum 1
N−1

∑

j �=i Yj , |Yj | is bounded by Θ(ε−d/2) and has variance bounded by 

Θ(ε−d/2). The rest of the proof is the same as in proving Lemma 3.5 1).
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Part 2): By part 1), under a good event E1, which happens w.p. > 1 − 2N−9, (47) holds. Because 

p(x) ≥ pmin > 0 for any x ∈ M, we then have

1

N
Di = m0p(xi)(1 + ε

(D)
i ), sup

1≤i≤N
|ε(D)

i | = O(ε,

√

log N

Nεd/2
). (D.1)

Since O(ε, 
√

log N
Nεd/2 ) = o(1), with large enough N and under E1, Di > 0, then W̃ is well-defined. Furtherly, 

by (D.1),

1

N

N
∑

j=1

Wij
1

1
N Dj

=
1

N

N
∑

j=1

Wij

m0p(xj)(1 + ε
(D)
j )

=

⎛

⎝

1

m0

1

N

N
∑

j=1

Wij
1

p(xj)

⎞

⎠

(

1 + O(ε,

√

log N

Nεd/2
)

)

. (by that p > 0, Wij ≥ 0)

Consider the r.v. Yj = Kε(xi, xj)p−1(xj) (condition on xi), for j �= i,

EYj =

∫

M

Kε(xi, y)p−1(y)p(y)dV (y) =

∫

M

Kε(xi, y)dV (y) = m0 + O(ε),

Yj is bounded by Θ(ε−d/2) and so is its variance, where the constants in big-Θ depend on p. Then, similar 

as in proving (47), we have a good event E2 which happens w.p. > 1 − 2N−9, under which

1

m0

1

N

N
∑

j=1

Wij
1

p(xj)
= 1 + O(ε,

√

log N

Nεd/2
), 1 ≤ i ≤ N, (D.2)

and the constant in big-O depends on p, the function h, and is uniform for all xi. Then under E1 ∩ E2,

N
∑

j=1

Wij
1

Dj
=

(

1 + O(ε,

√

log N

Nεd/2
)

)(

1 + O(ε,

√

log N

Nεd/2
)

)

= 1 + O(ε,

√

log N

Nεd/2
),

which proves (48). Meanwhile, combining (48) and (D.1),

ND̃i =
N

Di

N
∑

j=1

Wij

Dj
=

1

m0p(xi)(1 + ε
(D)
i )

(1 + O(ε,

√

log N

Nεd/2
)) =

1

m0p(xi)
(1 + O(ε,

√

log N

Nεd/2
)), (D.3)

and thus under E1 ∩ E2, with large N , D̃i > 0 and L̃rw is well-defined. �

D.2. Proofs of the Dirichlet form convergence

Proof of Lemma 6.4. As has been shown in the proof of Lemma 6.1, under the good event in Lemma 6.1

1), (47) and then (D.1) hold. Notation of ε
(D)
i as in (D.1), and omitting h in the notations m2, m0, we have 

that

ẼN (u) =
1

m2

m2
0
ε

1

N2

N
∑

i,j=1

Wi,j
(ui − uj)2

Di

N
Dj

N
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=
1

m2ε

1

N2

N
∑

i,j=1

Wi,j
(ui − uj)2

p(xi)p(xj)(1 + ε
(D)
i )(1 + ε

(D)
j )

=
1

m2ε

1

N2

N
∑

i,j=1

Wi,j
(ui − uj)2

p(xi)p(xj)
(1 + εij), εij = O(ε

(D)
i , ε

(D)
j )

=

⎛

⎝

1

m2ε

1

N2

N
∑

i,j=1

Wi,j
(ui − uj)2

p(xi)p(xj)

⎞

⎠ (1 + O(ε,

√

log N

Nεd/2
)),

where the last row uses the non-negativity of Wi,j
(ui−uj)2

p(xi)p(xj) . �

Proof of (57) in the proof of Theorem 6.3:

Proof. Proof of (57) : By definition, for i �= j,

EVi,j =
1

m2ε

∫

M

∫

M

Kε(x, y)(f(x) − f(y))2dV (x)dV (y)

=
2

m2ε

∫

M

f(x)

⎛

⎝

∫

M

Kε(x, y)(f(x) − f(y))dV (y)

⎞

⎠ dV (x)

By Lemma A.3 in [9], 
∫

M Kε(x, y)(f(x) − f(y))dV (y) = −ε m2

2 Δf(x) + Of (ε2), and thus,

EVi,j = 〈f, −Δf〉 + Of (ε).

Meanwhile, by that p ≥ pmin > 0, 0 ≤ Vij ≤ Θp(1) 1
m2ε Kε(xi, xj)(f(xi) − f(xj))2, and then by the 

boundedness and variance calculation in the proof of Theorem 3.4 of [9], one can verify that, with constants 

depending on (f, p),

|Vij | ≤ L = Θ(ε−d/2), EV 2
ij ≤ ν = Θ(ε−d/2).

Then, by the same decoupling argument to derive the concentration of V-statistics, under good event E3

which happens w.p. > 1 − 2N−10,

1

N(N − 1)

N
∑

i�=j,i,j=1

Vij = EVij + Of,p(

√

log N

Nεd/2
).

As a result,

3� in (56) = (1 − 1

N
)

1

N(N − 1)

N
∑

i�=j,i,j=1

Vij = (1 − 1

N
)

(

〈f, −Δf〉 + Of (ε) + Of,p(

√

log N

Nεd/2
)

)

,

which proves (57) because O( 1
N ) is higher order than O(

√

log N
Nεd/2 ). �

D.3. Proofs of the eigen-convergence of L̃rw

Proof of Proposition 6.5. The proof is similar to that of Proposition 3.6. We first restrict to the good events 

E1 ∩ E2 in Lemma 6.1, which happens w.p. > 1 − 4N−9, under which W̃ and L̃rw are well-defined, and (47)

and (48) hold.
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Let uk = ρXψk. The following lemma, proved in below, shows the near D̃-orthonormal of the vectors uk

and is an analogue of Lemma 3.4.

Lemma D.1. Under the same assumption of Lemma 6.1, when N is sufficiently large, w.p. > 1 − 4N−9 −
2K2N−10,

‖ρXψk‖2
D̃

=
1

m0
(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K;

(ρXψk)T D̃(ρXψl) = O(ε,

√

log N

Nεd/2
), k �= l, 1 ≤ k, l ≤ K.

(D.4)

Under the good event of Lemma D.1, called E5 ⊂ E1 ∩ E2, D̃i > 0 for all i, and with large enough N , 

the set {D̃1/2uk}K
k=1 is linearly independent, and then so is the set {uk}K

k=1. Let L = Span{u1, · · · , uk}, 

then dim(L) = k for each k ≤ K. For any v ∈ L, v �= 0, there are cj , 1 ≤ j ≤ k, such that v =
∑k

j=1 cjuj . 

By (D.4), we have

m0‖v‖2
D̃

= ‖c‖2(1 + O(ε,

√

log N

Nεd/2
)). (D.5)

Meanwhile, by defining B̃N (u, v) := 1
4 (ẼN (u + v) − ẼN (u − v)), similarly as in Lemma 3.3, applying 

Theorem 6.3 to the K2 cases where f = ψk and (ψk ± ψl) gives that, under a good event E6 which happens 

w.p.> 1 − 2K2N−10,

ẼN (ρXψk) = μk + O(ε,

√

log N

Nεd/2
), k = 1, · · · , K,

B̃N (ρXψk, ρXψl) = O(ε,

√

log N

Nεd/2
), k �= l, 1 ≤ k, l ≤ K.

(D.6)

Then, similar as in (18),

ẼN (v) =
k
∑

j,l=1

cjckB̃N (uj , uk) =
k
∑

j=1

c2
j

(

μj + O(ε,

√

log N

Nεd/2
)

)

+
k
∑

j �=l,j,l=1

|cj ||cl|O(ε,

√

log N

Nεd/2
)

=
k
∑

j=1

μjc2
j + ‖c‖2KO(ε,

√

log N

Nεd/2
) ≤ ‖c‖2

(

μk + O(ε,

√

log N

Nεd/2
)

)

. (D.7)

Back to the r.h.s. of (58), together with (D.5), we have that

1
m0

ẼN (v)

vT D̃v
≤

μk + O(ε,
√

log N
Nεd/2 )

1 + O(ε,
√

log N
Nεd/2 )

= μk + O(ε,

√

log N

Nεd/2
), (D.8)

and thus provides an UB of λk. The bound holds for all the 1 ≤ k ≤ K, under good events E5 ∩ E6. �

Proof of Lemma D.1. Restrict to the good events E1 ∩ E2 in Lemma 6.1, which happens w.p. > 1 − 4N−9, 

under which W̃ and L̃rw are well-defined, and (D.3) holds. Then,

‖ρXψk‖2
D̃

=
1

N

N
∑

i=1

ψk(xi)
2

m0p(xi)
(1 + O(ε,

√

log N

Nεd/2
)) =

‖ρX(p−1/2ψk)‖2

Nm0
(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K,
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‖ρX(ψk ± ψl)‖2
D̃

=
‖ρX(p−1/2(ψk ± ψl))‖2

Nm0
(1 + O(ε,

√

log N

Nεd/2
)), k �= l, 1 ≤ k, l ≤ K.

Apply (C.2) to when f = p−1/2ψk and p−1/2(ψk ± ψl) for k �= l, and recall that 〈ψk, ψl〉 = δkl, we have

1

N
‖ρX(p−1/2ψk)‖2 = 1 + O(

√

log N

N
),

1

N
‖ρX(p−1/2(ψk ± ψl))‖2 = 2 + O(

√

log N

N
),

under a good event which happens w.p.> 1 − 2K2N−10 with large enough N , and then

‖ρXψk‖2
D̃

=
1

m0
(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K,

‖ρX(ψk ± ψl)‖2
D̃

=
2

m0
(1 + O(ε,

√

log N

Nεd/2
)), k �= l, 1 ≤ k, l ≤ K,

which proves (D.4). �

Proof of Proposition 6.6. The proof follows the same strategy of proving Proposition 4.4, where we introduce 

weights by p(xi) in the heat kernel interpolation map when constructing candidate eigenfunctions from 

eigenvectors.

We restrict to the good event E′′
UB in Proposition 6.5, which is contained in E1 ∩E2 in Lemma 6.1. Under 

E′′
UB, Di > 0, D̃i > 0, and L̃rw is well-defined, and, with sufficiently large N , λk ≤ λK ≤ 1.1μK = O(1). 

Let L̃rwvk = λkvk, normalized s.t.

vT
k D̃vl = δkl, 1 ≤ k, l ≤ N.

Note that always λ1 = 0. Under E1 ∩ E2, (D.3) holds, and thus

m0‖u‖2
D̃

=
m0

N

N
∑

i=1

u2
i (ND̃i) =

(

1

N

N
∑

i=1

u2
i

p(xi)

)

(1 + O(ε,

√

log N

Nεd/2
)), ∀u ∈ R

N , (D.9)

and the constant in big-O is determined by (M, p) and uniform for all u. Define the notation

‖u‖2
p−1 :=

1

N

N
∑

i=1

u2
i

p(xi)
, ∀u ∈ R

N . (D.10)

Taking u to be vk and (vk ± vl) gives that

m0 = ‖vk‖2
p−1(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K,

2m0 = ‖vk ± vl‖2
p−1(1 + O(ε,

√

log N

Nεd/2
)), k �= l, 1 ≤ k, l ≤ K.

(D.11)

Set δ, r, t in the same way as in the proof of Proposition 4.4, and define Ĩr[u] as in (59). We have 

〈Ĩr[u], Ĩr[u]〉 = qδε(ũ), 〈Ĩr[u], QtĨr[u]〉 = qε(ũ), and (60) for s > 0. Next, similar as in the proof of Lemma 4.2, 

one can show that with large N and w.p.> 1 − 2N−9,

1

N

N
∑

j=1

Hs(xi, xj)

p(xi)p(xj)
=

1

p(xi)
(1 + OM,p(

√

log N

Nsd/2
)), 1 ≤ i ≤ N, (D.12)
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where the notation OM,p(·) indicates that the constant depends on (M, p) and is uniform for all xi. Applying 

(D.12) to s = δε gives that, under a good event E′
(0), which happens w.p.> 1 − 2N−9,

q̃
(0)
δε (u) =

1

N

N
∑

i=1

u2
i

p(xi)
(1 + OM,p(δ−d/4

√

log N

Nεd/2
))

= ‖u‖2
p−1(1 + OM,p(δ−d/4

√

log N

Nεd/2
)), ∀u ∈ R

N . (D.13)

Applying (D.12) to s = ε gives the good event E′
(1), which happens w.p.> 1 − 2N−9, under which

q̃(0)
ε (u) = ‖u‖2

p−1(1 + OM,p(

√

log N

Nεd/2
)), ∀u ∈ R

N . (D.14)

The constants in big-O in (D.13) and (D.14) are determined by (M, p) only and uniform for all u.

We also need an analogue of Lemma 4.3 to upper bound q̃
(2)
s , proved in below. The proof follows same 

method of Lemma 4.3, and makes use of the uniform boundedness of p from below, and Lemma 6.4.

Lemma D.2. Under Assumption 1, h being Gaussian, let 0 < α < 1 be a fixed constant. Suppose ε = o(1), 

εd/2 = Ω( log N
N ), then with sufficiently large N , and under the good event E1 of Lemma 6.1 1),

0 ≤ q̃(2)
ε (u) =

(

1 + O

(

ε(log
1

ε
)2,

√

log N

Nεd/2

))

(uT (D̃ − W̃ )u) + ‖u‖2
p−1O(ε3), ∀u ∈ R

N , (D.15)

and

0 ≤ q̃(2)
αε (u) ≤ 1.1α−d/2(uT (D̃ − W̃ )u) + ‖u‖2

p−1O(ε3), ∀u ∈ R
N . (D.16)

The constants in big-O only depend on (M, p) and are uniform for all u and α.

We proceed to define fk = Ĩr[vk], fk ∈ C∞(M). Next, note that since (I − D̃−1W̃ )vk = ελkvk, and vk

are D̃-orthonormal, then

vT
k (D̃ − W̃ )vk = ελkvT

k D̃vk = ελk, 1 ≤ k ≤ K,

(vk ± vl)
T (D̃ − W̃ )(vk ± vl) = ε(λk + λl), k �= l, 1 ≤ k, l ≤ K.

(D.17)

Taking α = δ in Lemma D.2, (D.16) then gives

q̃
(2)
δε (vk) = O(δ−d/2)ελk + O(ε3), 1 ≤ k ≤ K,

q̃
(2)
δε (vk ± vl) = O(δ−d/2)ε(λk + λl) + 2O(ε3), k �= l, 1 ≤ k, l ≤ K,

and both are O(ε). Meanwhile, (D.13)and (D.11) give that (with that δ > 0 is a fixed constant determined 

by K and −Δ)

q̃
(0)
δε (vk) = ‖vk‖2

p−1(1 + O(

√

log N

Nεd/2
)) = m0(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K,

q̃
(0)
δε (vk ± vl) = ‖vk ± vl‖2

p−1(1 + O(

√

log N

Nεd/2
)) = 2m0(1 + O(ε,

√

log N

Nεd/2
)), k �= l, 1 ≤ k, l ≤ K.

(D.18)
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Putting together with the bounds of q
(2)
δε , this gives that

〈fk, fk〉 = q̃
(0)
δε (vk) − q̃

(2)
δε (vk) = m0(1 + O(ε,

√

log N

Nεd/2
)) − O(ε), 1 ≤ k ≤ K,

〈fk, fl〉 =
1

4
(q̃δε(vk + vl) − q̃δε(vk − vl)) = O(ε,

√

log N

Nεd/2
) + O(ε), k �= l, 1 ≤ k, l ≤ K.

(D.19)

Then due to that O(ε, 
√

log N
Nεd/2 ) = o(1), we have linear independence of {fj}K

j=1 with large enough N .

Same as before, for any 2 ≤ k ≤ K, we let Lk = Span{f1, · · · , fk}, and have (35). For any f ∈ Lk, 

f =
∑k

j=1 cjfj , f = Ĩr[v], v :=
∑k

j=1 cjvj , and

vT D̃v =

k
∑

j=1

c2
jvT

j D̃vj = ‖c‖2.

Meanwhile, by (D.9), m0 = 1,

‖c‖2 = ‖v‖2
D̃

= ‖v‖2
p−1(1 + O(ε,

√

log N

Nεd/2
)), (D.20)

and by (D.17),

vT (D̃ − W̃ )v = ε
k
∑

j=1

λjc2
j ≤ ε‖c‖2λk. (D.21)

Then, as we work under E(0) ∩ E(1), (D.13) and (D.14) hold. Applying to u = v and subtracting the two,

q̃
(0)
δε (v) − q̃(0)

ε (v) = ‖v‖2
p−1OM,p(δ−d/4

√

log N

Nεd/2
) = ‖c‖2(1 + O(ε,

√

log N

Nεd/2
))OM,p(δ−d/4

√

log N

Nεd/2
)

= ‖c‖2OM,p(δ−d/4

√

log N

Nεd/2
),

where we used (D.20) to obtain the 2nd equality. To upper bound q̃
(2)
ε (v), by (D.15), and with the shorthand 

that Õ(ε) stands for O(ε(log 1
ε )2),

q̃(2)
ε (v) =

(

1 + Õ(ε) + O(

√

log N

Nεd/2
)

)

(vT (D̃ − W̃ )v) + ‖v‖2
p−1O(ε3)

≤
(

1 + Õ(ε) + O(

√

log N

Nεd/2
)

)

ε‖c‖2λk + ‖c‖2(1 + O(ε,

√

log N

Nεd/2
))O(ε3)

≤ ε‖c‖2

{

λk

(

1 + Õ(ε) + O(

√

log N

Nεd/2
)

)

+ O(ε2)

}

.

Thus we have that

〈f, f〉 − 〈f, Qtf〉 ≤ (q
(0)
δε (v) − q(0)

ε (v)) + q(2)
ε (v)

≤ ε‖c‖2

{

λk

(

1 + Õ(ε) + O(

√

log N

Nεd/2
)

)

+ O(ε2) + OM,p(δ−d/4 1

ε

√

log N

Nεd/2
)

}
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= ε‖c‖2

{

λk + Õ(ε) + OM,p(δ−d/4 1

ε

√

log N

Nεd/2
)

}

. (by λk ≤ 1.1μK) (D.22)

To lower bound 〈f, f〉, again by (D.16), (D.20) and (D.21),

0 ≤ q̃
(2)
δε (v) ≤ Θ(δ−d/2)(vT (D̃ − W̃ )v) + ‖v‖2

p−1O(ε3) ≤ ε‖c‖2
(

λkΘ(δ−d/2) + O(ε2)
)

= ‖c‖2O(ε).

By (D.13) and (D.20),

q̃
(0)
δε (v) = ‖v‖2

p−1(1 + O(

√

log N

Nεd/2
)) = ‖c‖2(1 + O(ε,

√

log N

Nεd/2
)), (D.23)

Thus,

〈f, f〉 = q̃
(0)
δε (v) − q̃

(2)
δε (v) = ‖c‖2

(

1 + O(ε,

√

log N

Nεd/2
) − O(ε)

)

≥ ‖c‖2

(

1 − O(ε,

√

log N

Nεd/2
)

)

.

the rest of the proof is the same as that in Proposition 4.4, where the constant C is defined as C = cM,pδ−d/4, 

cM,p being a constant determined by (M, p), and then the constant c in the definition of cK also depends 

on p. The needed good events are E′
(0), E

′
(1), and E′′

UB , and the LB holds for k ≤ K. �

Proof of Lemma D.2. By definition, for any u ∈ R
N ,

q̃(2)
ε (u) =

1

2

1

N2

N
∑

i,j=1

Hε(xi, xj)

p(xi)p(xj)
(ui − uj)2 ≥ 0.

Take t in Lemma 2.2 to be ε, since ε = o(1), the three equations hold when ε < ε0. By (13), truncate at an 

δε =
√

6(10 + d
2 )ε log 1

ε Euclidean ball, there is C3, a positive constant determined by M, s.t.

1

2

1

N2

N
∑

i,j=1

Hε(xi, xj)

p(xi)p(xj)
1{xj /∈Bδε (xi)}(ui − uj)2 ≤ C3ε10 1

N2

N
∑

i,j=1

(ui − uj)2

p(xi)p(xj)
1{xj /∈Bδε (xi)}.

Note that

1

N2

N
∑

i,j=1

(ui − uj)2

p(xi)p(xj)
=

2

N

N
∑

i=1

u2
i

p(xi)

⎛

⎝

1

N

N
∑

j=1

1

p(xj)

⎞

⎠− 2

(

1

N

N
∑

i=1

ui

p(xi)

)2

≤ 2

N

N
∑

i=1

u2
i

p(xi)

⎛

⎝

1

N

N
∑

j=1

1

p(xj)

⎞

⎠ ≤ 2

N

N
∑

i=1

u2
i

p(xi)

1

pmin
=

2

pmin
‖u‖2

p−1 , (D.24)

thus,

q̃(2)
ε (u) =

1

2

1

N2

N
∑

i,j=1

Hε(xi, xj)

p(xi)p(xj)
1{xj∈Bδε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε10). (D.25)

Apply (12) with the short hand that Õ(ε) stands for O(ε(log 1
ε )2),
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q̃(2)
ε (u) =

1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)(1 + Õ(ε)) + O(ε3)

p(xi)p(xj)
1{xj∈Bδε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε10)

= (1 + Õ(ε))
1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)

p(xi)p(xj)
1{xj∈Bδε (xi)}(ui − uj)2 + O(ε3)

1

N2

N
∑

i,j=1

(ui − uj)2

p(xi)p(xj)
+ ‖u‖2

p−1O(ε10)

= (1 + Õ(ε))
1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)

p(xi)p(xj)
1{xj∈Bδε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε3) (by (D.24)).

The truncation for Kε(xi, xj) gives that Kε(xi, xj)1{xj /∈Bδε (xi)} = O(ε10), and then similarly as in (D.25),

1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)

p(xi)p(xj)
1{xj∈Bδε (xi)}(ui − uj)2 =

1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)

p(xi)p(xj)
(ui − uj)2 − ‖u‖2

p−1O(ε10). (D.26)

By Lemma 6.4, and m2 = 2 with Gaussian h, we have that under the good event E1 of Lemma 6.1 1),

ẼN (u) =

⎛

⎝

1

2ε

1

N2

N
∑

i,j=1

Wi,j
(ui − uj)2

p(xi)p(xj)

⎞

⎠ (1 + O(ε,

√

log N

Nεd/2
)), ∀u ∈ R

N ,

and the constant in big-O is determined by (M, p) and uniform for all u. This gives that

1

2

1

N2

N
∑

i,j=1

Kε(xi, xj)

p(xi)p(xj)
(ui − uj)2 = εẼN (u)(1 + O(ε,

√

log N

Nεd/2
)), (D.27)

and as a result, together with (D.26),

q̃(2)
ε (u) = (1 + Õ(ε))

(

εẼN (u)(1 + O(ε,

√

log N

Nεd/2
)) − ‖u‖2

p−1O(ε10)

)

+ ‖u‖2
p−1O(ε3)

= εẼN (u)(1 + Õ(ε) + O(

√

log N

Nεd/2
)) + ‖u‖2

p−1O(ε3).

Recall that ẼN (u) = 1
ε uT (D̃ − W̃ )u, this proves (D.15).

To prove (D.16), since 0 < αε < ε, apply Lemma 2.2 with t = αε, and similarly as in (D.25),

q̃(2)
αε (u) =

1

2

1

N2

N
∑

i,j=1

Hαε(xi, xj)

p(xi)p(xj)
1{xj∈Bδαε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε10)

=
1

2

1

N2

N
∑

i,j=1

Kαε(xi, xj)(1 + Õ(αε)) + O(α3ε3)

p(xi)p(xj)
1{xj∈Bδαε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε10) (by (12))

= (1 + Õ(ε))
1

2

1

N2

N
∑

i,j=1

Kαε(xi, xj)

p(xi)p(xj)
1{xj∈Bδαε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε3). (by (D.24))

Then, using (29), (D.26) and (D.27),

q̃(2)
αε (u) ≤ (1 + Õ(ε))α−d/2 1

2N2

N
∑

i,j=1

Kε(xi, xj)

p(xi)p(xj)
1{xj∈Bδαε (xi)}(ui − uj)2 + ‖u‖2

p−1O(ε3)
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= (1 + Õ(ε))α−d/2

(

εẼN (u)(1 + O(ε,

√

log N

Nεd/2
)) − ‖u‖2

p−1O(ε10)

)

+ ‖u‖2
p−1O(ε3)

= (1 + Õ(ε) + O(ε,

√

log N

Nεd/2
))α−d/2εẼN (u) + ‖u‖2

p−1O(ε3),

which proves (D.16) because Õ(ε) + O(ε, 
√

log N
Nεd/2 ) = o(1) and thus the constant in front of α−d/2 is less 

than 1.1 for sufficiently small ε. �

Proof of Theorem 6.7. With sufficiently large N , we restrict to the intersection of the good events in Propo-

sition 6.6 and the K = kmax + 1 good events of applying Theorem 6.2 to {ψk}K
k=1. Because the good event 

in Proposition 6.6 is already under E′′
UB of Proposition 6.5, and under E1 ∩ E2 of Lemma 6.1, the extra 

good events in addition to what is needed in Proposition 6.6 are those corresponding to E3 ∩E4 in the proof 

of Theorem 6.2 where f = ψk for each 1 ≤ k ≤ K, and, by a union bound, happens w.p.> 1 − K · 4N−9. 

This gives to the final high probability indicated in the theorem. In addition, Di > 0, D̃i > 0 for all i, and 

L̃rw is well-defined.

The rest of the proof follows similar method as that of Theorem 5.5, but differs in the normalization of 

the eigenvectors and that of the eigenfunctions. With the definition of ‖u‖D̃ and ‖u‖p−1 in (61) and (D.10)

respectively, As has been shown in (D.9), under E1 ∩ E2,

‖u‖2
D̃

= ‖u‖2
p−1(1 + O(ε,

√

log N

Nεd/2
)), ∀u ∈ R

N , (D.28)

and the constant in big-O is determined by (M, p) and uniform for all u. This also gives that with sufficiently 

large N ,

0.9

pmax

‖u‖2
2

N
≤ 0.9‖u‖2

p−1 ≤ ‖u‖2
D̃

≤ 1.1‖u‖2
p−1 ≤ 1.1

pmin

‖u‖2
2

N
, ∀u ∈ R

N , (D.29)

because ‖u‖2
p−1 = 1

N

∑N
i=1

u2
i

p(xi) is upper bounded by 1
pminN ‖u‖2

2 and lower bounded by 1.1
pmax

‖u‖2
2

N . Apply 

(D.29) to u = vk, this gives that 0.9
pmax

‖vk‖2
2 ≤ ‖vk‖2

D̃
N = 1 ≤ 1.1

pmin
‖vk‖2

2, that is

√

pmin

1.1
≤ ‖vk‖2 ≤

√

pmax

0.9
, 1 ≤ k ≤ K,

and this verifies that ‖vk‖2 = Θ(1) under the high probability event.

Meanwhile, because the good event E′′
UB is under the one needed in Lemma D.1, as shown in the proof 

of Lemma D.1, we have that

‖ρXψk‖2
p−1 =

1

N

N
∑

i=1

ψk(xi)
2

p(xi)
= 1 + O(

√

log N

N
), 1 ≤ k ≤ K,

where the constant in big-O depends on (M, p) and is uniform for all k ≤ K. By definition, N‖φ̃k‖2
p−1 =

‖ρXψk‖2
p−1 , and then, apply (D.28) to u = φ̃k,

‖φ̃k‖2
D̃

= ‖φ̃k‖2
p−1(1 + O(ε,

√

log N

Nεd/2
)) =

1

N
(1 + O(ε,

√

log N

Nεd/2
)), 1 ≤ k ≤ K. (D.30)
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Step 2. for L̃rw: When k = 1, λ1 = 0, and v1 is always the constant vector, thus the discrepancy is zero. 

Consider 2 ≤ k ≤ K, by Theorem 6.2 and that ‖u‖2 ≤
√

N‖u‖∞,

‖L̃rwφ̃k − μkφ̃k‖2 = O(ε,

√

log N

Nεd/2+1
), 2 ≤ k ≤ K. (D.31)

Then, by (D.29), 
√

N‖L̃rwφ̃k −μkφ̃k‖D̃ = O(‖L̃rwφ̃k −μkφ̃k‖2) = O(ε, 
√

log N
Nεd/2+1 ), that is, there is Errpt > 0, 

s.t.

√
N‖Lrwφ̃k − μkφ̃k‖D̃ ≤ Errpt, 2 ≤ k ≤ K, Errpt = O(ε,

√

log N

Nεd/2+1
). (D.32)

Meanwhile, because we are under E′′
UB, (41) holds for λk. The proof then proceeds in the same way as the 

Step 2. in Theorem 5.5, replacing D
N with D̃. Specifically, let Sk = Span{D̃1/2vk}, S⊥

k = Span{D̃1/2vj , j �=
k, 1 ≤ j ≤ N}. We then have PS⊥

k

(

D̃1/2μkφ̃k

)

= D̃1/2
∑N

j �=k,j=1

vT
j D̃φ̃k

‖vj‖2
D̃

μkvj , and because

L̃T
rwD̃vj =

1

ε
(I − W̃ D̃−1)D̃vj =

1

ε
(D̃ − W̃ )vj = D̃λjvj , (D.33)

we also have PS⊥
k

(

D̃1/2L̃rwφ̃k

)

= D̃1/2
∑N

j �=k,j=1

vT
j D̃φ̃k

‖vj‖2
D̃

λjvj . Take subtraction PS⊥
k

(

D̃1/2(L̃rwφ̃k − μkφ̃k)
)

and do the same calculation as before, by (D.32), it gives that

‖PS⊥
k

(

D̃1/2φ̃k

)

‖2 =

⎛

⎝

N
∑

j �=k,j=1

|vT
j D̃φ̃k|2
‖vj‖2

D̃

⎞

⎠

1/2

≤ Errpt√
NγK

=
1√
N

O(ε,

√

log N

Nεd/2+1
). (D.34)

We similarly define βk :=
vT

k D̃φ̃k

‖vk‖2
D̃

, βkD̃1/2vk = PSk
D̃1/2φ̃k, and PS⊥

k

(

D̃1/2φ̃k

)

= D̃1/2φ̃k − PSk
D̃1/2φ̃k =

D̃1/2
(

φ̃k − βkvk

)

. Then, by (D.34), we have ‖φ̃k − βkvk‖D̃ = ‖PS⊥
k

(

D̃1/2φ̃k

)

‖2 = 1√
N

O(ε, 
√

log N
Nεd/2+1 ), and 

by (D.29),

‖φ̃k − βkvk‖2 = O(ε,

√

log N

Nεd/2+1
).

To finish Step 2, it remains to show that |βk| = 1 + o(1), and then we define αk = 1
βk

. Note that

‖φ̃k‖2
D̃

= ‖D̃1/2φ̃k‖2
2 = ‖PS⊥

k

(

D̃1/2φ̃k

)

‖2
2 + ‖PSk

(

D̃1/2φ̃k

)

‖2
2 = ‖PS⊥

k

(

D̃1/2φ̃k

)

‖2
2 + β2

k‖vk‖2
D̃

. (D.35)

By that ‖vk‖2
D̃

= 1
N , inserting into (D.35) together with (D.34), (D.30),

1

N
(1 + O(ε,

√

log N

Nεd/2
)) = (

1√
N

O(ε,

√

log N

Nεd/2+1
))2 + β2

k

1

N
,

which gives that 1 + o(1) = o(1) + β2
k by multiplying N to both sides.

Step 3. of L̃rw: The proof is the same as Step 3. in Theorem 5.5, replacing D
N with D̃. Specifically, using 

the relation (D.33), and the eigenvector consistency in Step 2, we have

|λk − μk||vT
k D̃φ̃k| ≤ |αk||φ̃T

k D̃L̃rwφ̃k − μk‖φ̃‖2
D̃

| + |εT
k D̃(L̃rwφ̃k − μkφ̃k)| =: 1� + 2�.
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where ‖εk‖D̃ = 1√
N

O(ε, 
√

log N
Nεd/2+1 ) and αk = 1 + o(1). By (D.6), φ̃T

k D̃L̃rwφ̃k = ẼN (φ̃k) = 1
N (μk +

O(ε, 
√

log N
Nεd/2 ). Together with (D.30), one can show that N 1� = O(ε, 

√

log N
Nεd/2 ). For 2�, with (D.32), one 

can verify that 2� ≤ ‖εk‖D̃‖L̃rwφ̃k − μkφ̃k‖D̃ = 1
N O(Err2

pt) =
O(ε)

N , where used that O(Err2
pt) = O(ε) same 

as before. Putting together, and with the definition of βk above,

|λk − μk||βk| ≤ 1� + 2�

‖vk‖2
D̃

=
(O(ε,

√

log N
Nεd/2 ) + O(ε))/N

1/N
= O(ε,

√

log N

Nεd/2
).

We have shown that |βk| = 1 + o(1), thus the bound of |λk − μk| is proved, and holds for k ≤ kmax. �
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