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Abstract—Short-range radars are widely used for micro-
Doppler-based human activity recognition by using the super-
vised training paradigm. However, acquiring labeled trained RF
data is not always possible. This paper presents a self-supervised
contrastive learning (SSCL) framework that utilizes physics-
aware augmented radar micro-Doppler signatures for human
activity recognition. The SSCL requires two augmented views
of the input data samples. For the first augmented view, the
Short-time-Fourier-transform properties have been manipulated
to generate Multi-Resolution micro-Doppler (MR-mD) signa-
tures. The Second augmented view has been generated through
synthesizing micro-Doppler signatures by a Physics-aware Gener-
ative adversarial Network (PhGAN). Experimental result shows
that the proposed SSCL framework achieved 4% improvement
over conventional unsupervised autoencoder pretraining while
classifying 14 ambulatory human activities.

Index Terms—Radar micro-Doppler, Activity recognition, Su-
pervised training, Self-supervised learning, Data Augmentation.

I. INTRODUCTION

Human activity recognition (HAR) is an important compo-
nent of enabling technologies for aging-in-place and remote
patient monitoring outside of a hospital setting. An effective
HAR system could provide critical medical data that can serve
an important role in telemedicine; namely, 1) monitoring of
mental and physical health, as well as mobility issues for
aging-in-place, 2) diagnoses of neuro-muscular disorders, such
as Parkinson’s or Cerebral Palsy, and 3)rehabilitation, the ob-
jective assessment of establishing a normal gait. Towards this
aim, short-range radar could be a game-changer to improve
the quality of care and facilitate aging-in-place by enabling
continuous ambulatory recordings over an extended duration
in real-life settings. On top of that, they are low-cost, non-
intrusive, non-contact sensors that can work remotely in an
indoor environment without acquiring personal imagery of the
environment or user. Eying the promise of this sensor for
telemedicine and telehealth applications, plenty of research has
been conducted in recent years on radar-based human sensing
for daily activity monitoring [1], Fall detection [2], Gait
analysis [3], sensing for smart environments [4], and human-
computer interfaces [5] via gesture [6] and sign language
recognition [7].

Current literature on radar-based activity recognition is
predominantly relying on fixed snapshots in time of RF data
acquired for a single activity. Collecting activity-wise shorter
duration of RF data is helpful in labeling the data to train

a supervised deep neural network (DNN). This paradigm of
supervised learning has a proven track record for training
specialist models that perform extremely well on the task they
were trained to do. However, the nature of human motion is
continuous, and human motion has nearly unlimited diversity.
Practically speaking, it’s impossible to collect and label all
the combinations of humanly possible motions and used them
in training a supervised deep neural network. Moreover, a
massive amount of data is also required to attain state-of-the-
art recognition performance. Even though, someone takes the
burden of collecting a massive amount of continuous RF data,
labeling those collected data is a daunting task because such
signals are not human interpretable. Therefore, Supervised
learning is a bottleneck for building more intelligent generalist
models that can do multiple tasks and acquire new skills
without massive amounts of labeled data. If DNNs can garner
a deeper, more nuanced understanding of reality beyond the
specified training data set, they will be more useful and
ultimately bring Al closer to human-level intelligence [8].
The above limitations of supervised learning motivate the
need for learning from unlabelled RF data. Self-supervised
learning (SSL) enables DNNs to learn good representations
of high-dimensional observations from large amounts of unla-
belled data [8]. In SSL, a common approach is to learn a joint
embedding of similar observations or views such that their
representation is close [9]-[12]. These methods usually rely
on data augmentations techniques to generate additional views
to preserve the semantic characteristics of observation, while
changing other “nuisance” aspects [13]. As most unsupervised/
self-supervised representation learning methods are designed
for computer vision, therefore, these methods rely on RGB-
specific augmentation techniques such as random cropping &
resizing, flipping, rotating, color distortion, Gaussian blur, etc.
However, those RGB augmentation technique does not directly
translate for Radar data as they might change the underlying
physics of the radar perception for human motion sensing.
Therefore, a lot of effort has been made in the literature to do
physics-aware RF data augmentation which can be broadly
categories into model-based synthesis and direct synthesis.
Model-based synthesis generates the time-frequency transform
of the expected radar return computed from a skeletal model
comprised of point targets animated using motion capture
(MOCAP) data [14]. Whereas, direct synthesis generates the
micro-Doppler signature using generative adversarial networks
(GANSs) trained on a small number of measured signatures.



Specifically, in [15], authors proposed a physics-aware Multi-
Branch GAN (PhGAN), to generate micro-Doppler signatures
for ambulatory human activities with high kinematic fidelity.

State-of-the-art SSL. method like contrastive learning [9]-
[12], [16] requires two distinct augmented views for the
same instance of the unlabeled data so that the augmentation
of an instance can be accurately retrieved from a pool of
instances through learning joint embedding. In RF domain,
these two aforementioned physics-based micro-Doppler data
augmentation techniques could play a pivotal role to apply
SSL in radar data. However, the unavailability of MOCAP data
could make the model-based synthesis infeasible. Therefore,
we propose a new augmentation technique named “Multi-
Resolution micro-Doppler (MR-mD)” view that can gener-
ate multiple micro-Doppler signatures for the same RF data
instance at different spatial and temporal resolution levels.
As a result, MR-mD and PhGAN-generated micro-Doppler
are the two augmented views that can be leveraged in SSL
training. So, the contribution of this work is proposing a
self-supervised training framework that utilizes novel physics-
aware data augmentation techniques for radar-based human
activity recognition.

The paper is organized as follows: Section II describes state-
of-the-art self-supervised methods and introduces SSL con-
trastive learning framework. In section III, the physics-aware
data augmentation techniques and SSL for Radar data have
been presented. Finally, section IV describes the experimental
results for 14 ambulatory human motion recognition using
SSL.

II. SELF-SUPERVISED LEARNING

In recent years, a lot of new approaches have been proposed
for self-supervised learning, in particular for computer vision,
that have resulted in great improvements over supervised
models when few labels are available. Early work on un-
supervised representation learning has focused on designing
pretext tasks and training the network to predict their pseudo
labels [17], [18]. Later on, unsupervised learning based on
predictive models including auto-regressive (AR) and auto-
encoding (AE) models [19] shows less dependence on the
labled data. The family of autoencoders such as denoising
auto-encoders [20], and variational auto-encoders [21] provide
a popular framework for unsupervised representation learning
using a predictive loss. Recently, contrastive learning has
become widely popular for learning effective representations.
The core idea of contrastive learning is to keep features from
positive sample pairs close, and features from negative samples
far from each other. DIfferent contrastive learning frameworks
namely SimCLR [9], the momentum-contrastive approach
(MoCo) [10], ContrastiveMultiview-Coding [22], and BYOL
[16] are available in literature.

In the Radar literature, the concept of SSL has appeared in
the context of radar image enhancement [23], super-resolved
radar beamforming [24], unsupervised human sensing [25],
and human activity recognition [26]. In [23], the SSL net-
work is trained to learn the mapping function between the
original radar image and the high-quality radar image. In

[24], authors used SSL to super-resolve a radar array, by
training an auto-encoder with a diluted radar array and used
to reconstruct the amplitude and phase of missing receiving
channels. In [26], authors consider semi-supervised training of
an attention-augmented convolutional autoencoder (AA-CAE)
for human activity recognition using radar micro-Doppler
signatures. The AA-CAE learns global information along with
spatially localized features to help the classifier overcome the
limited receptive field of a CAE. Khatabi et.al. [25] proposed
a trajectory-guided CAE-based unsupervised learning frame-
work for human pose and human activity recognition. The
authors used Range-Azimuth and Range-elevation heatmaps
from customized FMCW hardware. As the heatmaps are
sparse, therefore, authors applied an ROI selection in each
frame and tried to reconstruct the ROIL. Once the CAE learns
to reconstruct the ROI, the decoder part is taken off and
downstream task-specific modules are integrated.

This work presents a self-supervised contrastive learning
framework [9] for Radar micro-Doppler based human activity
recognition. Contrastive learning first uses unlabeled training
data to generate two augmented views of the same data
samples. These augmented views are then passed through
an encoder network for latent feature representation learning.
Afterward, the non-linear projections of the latent represen-
tation are computed using a fully-connected network (i.e.,
MLP). The projection head highlights the invariant features
from the latent representation. The generic representations
are learned by simultaneously maximizing agreement between
differently augmented views of the input image and min-
imizing agreement between transformed views of different
images, following a method called contrastive learning. This
simple self-supervised contrastive learning framework is called
SimCLR.

III. SELF-SUPERVISED CONTRASTIVE LEARNING IN
RADAR-BASED ACTIVITY RECOGNITION

The heart of the SimCLR is the strong data augmentation
techniques (e.g., resize & random crop, random color distor-
tion, and random Gaussian blur) that help the learned repre-
sentation to be more robust under different transformations,
which can help the model to learn transformation invariant
representations. However, these RGB-specific augmentation
techniques are not directly applicable to RF Data. RF data
is not an image, but rather a time-frequency representation of
the received I/Q data. These I/Q data are obtained by analyzing
the back-scattered signal power reflected from different objects
located in space. There is no color information in RF signals,
and the signal is not invariant to rotation transformation,
making most of the existing unsupervised learning methods
not directly applicable to RF signals. Therefore, designing an
effective data augmentation technique for RF data that does not
change the underlying physics of radar perception of human
motion, is a novel research question, which we tend to answer
in this work.

A. RF Micro-Doppler Data Augmentation

The radar received signals are raw complex I/Q Data.
These 1/Q data go through a signal processing pipeline before
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Fig. 1. Multi-Resolution micro-Doppler (MR-mD) Augmented View

generating time-frequency representation. The raw complex
RF data are first reshaped in a 2D matrix based on the fast-
time and slow-time samples. A Fast Fourier Transform (FFT)
is applied in the fast-time dimension to generate the range
profile. Afterward, a fourth-order butter-worth high pass filter
is applied to remove static clutter. Finally, the micro-Doppler
signature is computed by finding the spectrogram, S(t,w),
which is the square modulus of the short-time Fourier trans-
form (STFT), of the signal x(¢), which spans the appropriate
range bins. For a window function w(t), the spectrogram is
found as
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The application of the SSL framework requires two distinct
augmented views of a data sample. We propose the following
two techniques for micro-Doppler data augmentation:

1) Multi-Resolution Micro-Doppler (MR-mD) Augmented
View: This augmentation technique takes advantage of
STFT properties to generate multi-resolution micro-
Doppler signatures from the same RF data. Specifically,
varying the window size, window function, overlapping
length, and dynamic range generates micro-Doppler
signatures of different spatial and temporal resolutions.

Spectrogram for last 5 sec data

Spect. using Kaiser window (B=60)

« While applying STFT, the choice of window size

and overlapping length dictates the temporal reso-
lution in micro-Doppler patterns. Therefore, a fixed
window length of 256, and a small overlapping
length of 90 generate a low temporal resolution
micro-Doppler signature. On the contrary, a high-
temporal resolution signature can be generated by
choosing an overlapping length of 200.

Varying the time duration in time-frequency trans-
form helps in generating multiple spectrograms
from long-duration RF data. For example, from
10 seconds of collected data, two distinct micro-
Doppler signatures can be generated by separating
the received pulses for the first and last 5 seconds.
This resembles cropping the data.

Changing both the temporal and spatial resolution
of the micro-Doppler signature is another way of
augmenting the data. This is achieved by lowering
the temporal resolution by a small overlapping win-
dow length, followed by a lower number of FFT
points. usually choosing the number of FFT points
the same as the window length lowers the frequency
resolution.

Another way of data augmentation is to use a dif-
ferent window function. Instead of using a hanning
window, choosing a kaiser window [27] with a high
shape factor 8 changes the resolution of the micro-
Doppler signature. Increasing [ widens the main-
lobe and decreases the amplitude of the side-lobes.
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where I is the zeroth-order modified Bessel func-
tion of the first kind. The length L = N + 1.
Finally, choosing a high dynamic range allows the
weakest reflected signals to appear in the micro-
Doppler signature, this in turn allows some back-
ground noises in the spectrograms.

Therefore, by diversifying the STFT properties, the RF

Fig. 2. PhGAN Augmented View for the activity class *walking towards the micro-D 0ppler051gnatures can be augmented without vio-
radar’. lating the physics of radar perception for human motion.
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Fig. 3. Self-supervised contrastive learning framework for RF Micro-Doppler feature extraction.

Figure 1 depicts the MR-mD augmented signatures for
the activity class ’walking toward the radar’.

2) Physics-aware GAN (PhGAN) Augmented View: Gen-
erative adversarial network (GAN) has been shown
effective in generating micro-Doppler signatures [15],
[28]-[30] in recent years. Generative models are able
to map from simple latent distributions to arbitrarily
complex data distributions. The latent space of such
generators captures semantic variation in the data distri-
bution. However, conventional GANs generate a lot of
kinematically inconsistent signatures, while synthesizing
micor-Doppler signatures. Using those erroneous data
degrades the classification performance [31]. Therefore,
the newly proposed physics-aware GAN (PhGAN) [15]
has been employed to synthesize RF micro-Doppler
signatures with enhanced kinematic fidelity. The PnGAN
architecture integrates the envelopes of the signatures as
the auxiliary branches into the discriminator and adds
a physics-based constraint into the discriminator loss
function. This modification in architecture and in loss
function provides the most accurate synthetic signatures
with distinct torso response, accurate Doppler shift, and
consistent periodicity. Therefore, the second augmented
view of the proposed SSL framework has been generated
through PhGAN. Figure 2 shows the PhGAN augmented
views used in SSL training.

B. The Self-Supervised Framework

The contrastive learning framework for self-supervised
Radar micro-Doppler feature extraction has been illustrated in
figure 3. specifically, given a randomly sampled mini-batch of
activity micro-Doppler spectrogram, two augmented views Xi
and Xj are generated through MR-mD and PhGAN augmenta-
tion techniques. The two images are encoded via an encoder
network, namely ResNet [32] to generate representations Hi
and Hj. The representations are transformed again with a non-
linear transformation network, namely a MLP projection head,
yielding Zi and Zj that are used for the contrastive loss. The
projection head amplifies the invariant features and maximizes
the ability of the network to identify different augmented views
of the same image. For a minibatch of N samples, a total of

2N augmented examples are considered, the contrastive loss
between a pair of augmented image is given as follows:

exp(sim(zi, z3)/T)
SRty Lpexp(sim(zi, 2§) /)

li; = —log (3)
where 1[k # ] is an indicator function evaluating to 1 iff
[k # 4] and T denotes a temperature parameter. Updating the
parameters of the neural network using this contrastive objec-
tive causes representations of corresponding views to “attract”
each other, while representations of non-corresponding views
“repel” each other.

1V. EXPERIMENTAL RESULTS
A. RF Data acquisition and Pre-Processing:

The data for this study is collected with a TI AWR1642
single-chip 76-GHz to 81-GHz automotive radar in an indoor
laboratory environment. The radar has been placed on a table
1.5 meters up from the ground facing a walkway that was 6
meters long and 3 meters wide. The Data are acquired for
14 different ambulatory activities, which are articulated while
moving toward the radar. A total of 100 samples (10 sec.
duration for each sample) per activity have been recorded from
10 participants. The data have been split into 80/20 % train-test
set. For the first augmented view, the 80% raw training data

List of Activities

Vacuuming the Floor Forward Marching

Normal Walking Limping with Knee Brace
Short Step Walking Walking W/Loads on Both Hands
Walking with a Cane Walking W/Loads on One Hand
Dragging Furniture ‘Walking on toes
Walking with Crutches Scissor Gait Walking

Skipping Putting Books on the Bookshelf

Vacuuming

Dragging Furniture, Normal Walking

Fig. 4. List of activities and example spectrograms.



TABLE I
CLASSIFICATION PERFORMANCE FOR 14 HUMAN DAILY MOTION RECOGNITION.

Training Data Pre-training Network Fine-tuning data Accuracy (%)

Real samples: 1120
(80% training Data)
7000
(MR-mD Augmented Data)

7000
(PhGAN Augmented Data)

14000
(MR-mD & PhGAN
Augmented Data)

Pre-training using CAE
Pre-training using CAE

Pre-training using CAE

Pre-training using CAE

7000 pairs
(MR-mD & PhGAN
Augmented Data)

Pre-training using
SimCLR

have been passed through the MR-mD augmentation module
to generate a total of 7000 augmented views for 14 classes.
For the PhAGAN augmented view, the raw training data have
been converted into micro-Doppler spectrograms by applying
STFT with a window size of 256, an overlapping length of
200, a Hanning window function, and 2'2 FFT points. After
generating the micro-Doppler signatures, these data has been
utilized in training the PhGAN to generate 7000 PhGAN
augmented views for all the classes (500 per class).

B. Training and Evaluation

The Augmented views are paired in a way, so that, each
pair consists of a MR-mD augmented view and a GAN-
augmented view. A total of 7000 pairs have been formed and
fed into the self-supervised framework without any labels. A

0.601
0.501
0.401
0.301

0.201

Training loss

0.101

0.001

0 100 200

# Epoch

300 400 500

Fig. 5. Contrastive learning training loss.

No Fine-tuning 80.36
Fine-tuned with 1120 real samples 84.64
Fine-tuned with 1120 real samples 89.00
Fine-tuned with 1120 real samples 87.14

Fine-tuned with 224 real samples 88.00
(20%)

Fine-tuned with 448 real samples 90.00
(40%)

Fine-tuned with 672 real samples 92.00
(60%)

Fine-tuned with 1120 real samples 93.00
(100%)

resnet-18 architecture (Up to the average pooling layer) has
been utilized as the encoder network, which is followed by a
non-linear MLP projection head. The projection head consists
of a fully connected layer followed by a ReLu activation
and a Dropout of 0.3, which is finally followed by another
fully connected layer. While training, a batch size of 128,
temperature value of 2 (used in contrastive loss function), and
trained for 500 epochs. The decreasing training loss shown in
figure 5, indicates the model is learning similar features from
the corresponding views in a self-supervised setting.

To Evaluate the efficacy of the self-supervised contrastive
learning, a 14-class activity recognition downstream task has
been conducted. After training is completed, the projection
head is replaced with a linear classification layer with 14
output neurons. The entire resnet encoder has been frozen,
except the final convolution layer. Freezing the final convo-
lutional layer provides sub-optimal recognition performance.
The network is now fine-tuned with labeled data and compared
with a couple of baselines performance as shown in table
I. First of all, unsupervised pertaining a Convolutional Au-
toEncoder (CAE) [33] with the 80% (1120 samples) training
data achieved an accuracy of 80.36% while tested on 20%
(280 samples) test set. Pretraining the CAE separately with
the two augmented views and finetuning with all the real
training samples acquire an accuracy of 84.64% and 89.00%
respectively for the MR-mD and PhGAN augmented data.
While pretraining the CAE with the combined data from
both augmented views achieved an accuracy of 87.14% after
finetuning. This shows that combining both views in training
actually degrades the classification performance.

Finally, while pre-training the proposed SSL framework
with the proposed paired augmented views, an accuracy of



88% is achieved while fine-tuning with just 20% of labeled
data. This performance is comparable with the classification
accuracy achieved while pretraining with PhGAN augmented
data and finetuned with all the real samples. With the in-
creasing fine-tuning data, the SimCLR provides increasing
classification performance and a maximum of 93% accuracy
is obtained while using all the available labeled real data for
fine-tuning.

V. CONCLUSION

This paper presents a Self-supervised contrastive learning
(SimCLR) framework for radar-based human activity recog-
nition. The proposed framework uses multi-resolution micro-
Doppler augmentation and Physics-aware GAN augmentation
to learn the joint embedding between the corresponding views.
The contrastive loss maximize the agreement between the
paired corresponding view and minimize the agreement be-
tween the dissimilar view. The experimental result shows that
the proposed self-supervised framework achieved a 4% higher
accuracy compared to the conventional unsupervised CAE-
based pre-training while classifying 14 ambulatory human
activities.
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