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Abstract—Current methods for acquiring datasets for human
motion classification are limited to controlled settings where
participants are directed by a human experiment organizer.
Datasets acquired in controlled settings often cannot capture
natural human behaviors and are inadequate for obtaining
large amounts of real-world data in a sustainable fashion. This
paper proposes a new paradigm for automated acquisition of
natural human movements based on Interactive RF Gaming.
The training of AI/ML models is considered over an evolution of
time: pre-deployment via physics-aware batch training and post-
deployment via continual learning from interactions. Algorithms
needed to address real-world considerations such as the parsing
of continuous streams of data, computational constraints, real-
time processing, and game design considerations based on cyber-
physical human system requirements are also discussed.

Index Terms—micro-Doppler, RF sensing, radar, human-
computer interaction, human sensing, human activity recognition,
gesture recognition, sign language

I. INTRODUCTION

The advent of low-cost, low-power radio frequency (RF)
sensors has paved the way for many new commercial appli-
cations involving indoor monitoring, telemedicine, automotive
perception, and human computer interaction. As technology
advances and an increasing number of devices enter our homes
and workplace, however, an important aspect of autonomous
system design involves human-system collaboration that is
optimized through improved understanding of human behavior
[1]. RF sensing represents an exciting new frontier in this
context, as radar provides an “invisible” mode of perception
that can operate in an ambient fashion and is effective when
alternative sensors may not. Among advantages of RF sensors
includes their ability to operate at night, in the dark, and
without acquiring of privacy invasive information, such as
facial or background imagery. Unlike wearables, RF sensors
cannot be “forgotten” and are a non-intrusive modality. Of
course, RF sensors can be utilized in a stand-alone or in
a collaborative fashion with other Internet-of-Things (IoT)
Sensors.

However, accurate and robust machine understanding of
human motion with RF sensors has been precluded by several
fundamental challenges [2]:
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Human motion has nearly unlimited diversity. Yet,
current techniques are designed to recognize just a small
number (10-20) of pre-defined classes. Thus, it is almost
certain that the sensor will encounter motions other than
the pre-defined classes. Lumping all open-set data into
a single “unknown” class may prevent some confusions
but does not address the fact that huge numbers of
motions will remain unidentified.

Physical factors can distort, block, or mask patterns
seen in the RF data. RF sensors measure radial, not
absolute velocity, so the path of motion and angle of
observation modulate the amplitude of micro-Doppler
frequencies measured, resulting in mismatch with train-
ing data that is acquired by participants moving along
a straight line and reducing classification accuracy to
just 5% in some cases [3]. Also, obstructions and the
presence of other motion sources, such as other people,
pets, or ceiling fans, can result in missing components
or intertwined signatures. But current techniques cannot
effectively decouple such returns, preventing correct
classification. Most studies consider only straight, linear
paths, without any obstruction or masking.

Human data is a time-varying, continuous stream
of sequential motion. Most current machine learning
(ML) approaches convert the complex time-stream of
RF data into 2D real images representing the micro-
Doppler signature (mDS) of the data over a finite
duration window. But, this approach forces the RF data
to conform to structure of deep neural networks (DNNs)
originally designed for computer vision applications,
and is not well suited to the processing of sequential
data. Although there have been some works [4]-[8]
investigating recurrent neural networks (RNNs) and their
variants, these do not account for the transition pe-
riod between motion classes. The patterns and duration
of the transitions depend on the classes involved and
constraints imposed by biomechanics. Thus, sequential
classification remains an open problem.
Environmental factors can also vary with time. Life
is dynamic: not just the person of interest, but other
vehicles, people, animals, and motion sources also move.
Obstructions and masking are typically transient, not



persistent, causes for degradation. Sources of RF inter-
ference can block the receive frequency band and corrupt
the received human return. Most current techniques in
the literature are effective only under ideal conditions,
and do not account for dynamically changing real-world
environmental factors.

5) Insufficient Training Data for Conventional DNNs:
The training of deep models requires a lot of data
that spans all probable subject profiles; e.g., people of
all heights and walking styles — a typically unfeasible
task, resulting in most RF studies using only several
thousand samples. This in turn severely limits DNN
depth, and, hence, the accuracy and generalization of
resulting models to real-world conditions.

Among all these challenges, the issue of how to most
effectively train AI/ML models with limited data remains the
most critical. The problem is not just the gquantity of data,
but the quality of data. Ideally, we would want to obtain data
representative of every single variant of human movement,
acquired under every possible antenna-target geometry and
environment, for as many different people as possible. This is
quite a daunting and impractical task, especially considering
the current way in which RF human subject data is acquired:
namely, measurements conducted in controlled settings under
direction of a study organizer, under highly restrictive condi-
tions, and with just a few participants.

This approach to acquiring human subjects data is nei-
ther realistic nor sustainable. It is not sustainable because it
requires continually time and effort on behalf of the study
organizer to direct the experiments. And it is not realistic
because controlled experiments do not capture the “natural
flow of life.” If you tell someone to do a certain activity, it
will be cognizantly articulated. The same person doing the
same activity at home during the day without thinking about it
will move differently. Moreover, when people know that they
are being observed, they tend to behave differently. This is
a common challenge for in-hospital quantitative gait analysis
methods, which utilize force plates and cameras, to monitor
and assess gait: doctor assessments can be skewed by the
patient trying harder to walk well, when in fact they may
experience more instabilities walking at home not thinking
about what they are doing.

This is effect is even more pronounced when we consider
gesture and sign language recognition, and the initial and
subsequent positions of the hands effect the way the ges-
ture/sign actually looks in the time-frequency domain. This
phenomenon is referred to as co-articulation and is a signif-
icant factor that degrades recognition accuracy when training
data is recorded for specific starting and ending positions.

The current state-of-the-art in radar micro-Doppler based
human movement recognition has shown that AI/ML models
can recognize about a dozen distinct activities with high
accuracy [2]. Future applications rely on the recognition of
more subtle changes and sophisticated movements. In ap-
plications of remote health monitoring, gait analysis, and
fall risk assessment, as well as gesture and sign language
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Fig. 1. Flow diagram of the proposed Interactive RF Gaming paradigm.

recognition, advancing AI/ML models requires the ability to
observe natural human movements without the intervention of
a human experiment organizer. In prior work [9], an Open
Radar Dataset together with a complete, integrated and repli-
cable hardware and software pipeline, which allowed users to
not only download existing data, but also to acquire additional
data with a compatible format was proposed.

While common datasets are important for comparing and
benchmarking algorithms, this paper instead proposes a new
paradigm for Interactive RF data acquisition. Rather than
directing human participants to articulate a particular motion
class, human behavior is guided via a software environment
and interactions of the participants with this software. The
resulting RF data acquired is thus more representative of real-
world human motion. This in turn requires and end-to-end pro-
cessing chain that can temporally segment or parse continuous
time streams of data, recognize intervals of movement versus
activity, understand which intervals contain the relevant infor-
mation (movement facilitating interaction), recognize/classify
relevant motions, and select what parts of the recordings
will be used to update models. Moreover, the InteractiveRF
software will need to manage and update the training of the
AI/ML model not only starting from pre-deployment but also
during the duration of operation via continual learning. This
paper discusses methods for addressing each one of these
processing and model training stages. Figure 1 illustrates the
overall end-to-end implementation of the proposed pipeline.

In Section II, first the problem of parsing continuous RF
data streams is considered. An approach for segmenting and
recognizing intervals where there is movement is presented.
Next, in Section III, methods for overcoming the data scarcity
problem are presented. Generative methods and implications
for classification and continual learning of real-world human
motion is discussed. In Section IV, command line control of
an RF sensing system is presented to enable data acquisition
without a human operator. This ability is essential to closing-
the-loop and integrating the RF sensor with the Interactive RF
gaming software, discussed in Section V, that implicitly guides
interactions. Section VI discusses conclusions and future work.



II. PARSING CONTINUOUS RF DATA STREAMS

A fundamental requirement of any Interactive RF system
is the ability to parse continuous RF data streams. Natural
human movements are inherently continuous and sequential.
Although there has been some work on sequential human
activity recognition [6], [10], [11], these works process the
entire recording in aggregate after acquisition. To enable real-
time processing, data streams must be temporally parsed and
only the intervals where there is motion extracted and supplied
to a classifier. One approach could be to set a fixed processing
interval, and apply sequential recognition on this interval.
However, in previous work [12], we found that the sequential
recognition accuracy over fixed intervals varied depending on
the duration of the interval, and that this duration also drove
the latency for actually computing the spectrogram. Reducing
the duration by half reduces the spectrogram computation time
by half. As the duration shortens, however, the likelihood that
a movement will be interrupted increases - such cropping can
result in clipping movements so that they are not recognizable.
Alternatively, first segmenting the continuous data stream
according to intervals of movement versus no-movement can
both save in computation time (on average) while preserving
the micro-Doppler signature of connected motion sequences.

A variety of methods have been proposed for identification
of motion intervals. While thresholding of the power burst
curve (PBC) has been proposed [13] for arm movement
classification, this method is prone to a high rate of false
triggering, especially in the presence of noise, because the
threshold is not adaptive. A dual windowing approach, using
short-time and long-time duration windows, can be used to
mitigate false triggering somewhat, but the fixed duration of
the windows still prevents sufficient adaptation to the dynamics
of the motion. While long windows may be suitable to detect
slow movements, performance can degrade significantly when
attempting to segment rapidly changing activities, such as
gestural communications.

Instead, we found that utilizing a variable window short-
time average over long-time average (VW-STA/LTA) tech-
nique on the absolute distance between the upper and lower
envelopes of the micro-Doppler signature achieved much im-
proved results in determining the starting and ending time of
motion. The STA(t) and LTA(t) are the leading and lagging
windows defined at time ¢ for each recording ¢, and may be
expressed as
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where T and T, are the lengths of short and long windows
respectively. The starting point of a motion is detected when
the following conditions are satisfied:

STA(t)
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where o, and o are predefined detection thresholds. Similarly,
the ending point is detected if

STA(t)

ITA@M =7 )
where o3 is the detection threshold for the stopping point.

The segmentation accuracy for the identification of motion
detected intervals (MDI) was evaluated by comparing VW-
STA/LTA based segmentation with ground truth generated
by a human analyst. We found that the proposed approach
maintained a consistent segmentation accuracy of about 85%,
whereas STA/LTA applied with fixed window length has a
maximum 76% accuracy with the window durations of 2.3
seconds, dropping to below 40% as shorter durations were uti-
lized. Thus, the proposed approach offered a more consistent
and robust segmentation method to extract MDL.

Once the MDI are extracted, any classifier of choice may
be utilized to recognize the sequence of activities contained
within. Approaches typically involve utilization of a recurrent
neural network (RNN), such as a Long Short-Term Memory
(LSTM) network, either alone or in combination with a Con-
volutional Neural Network (CNN). Although micro-Doppler
signatures offer a richer source of information relative to
range-Doppler or range-Angle maps, and are hence a better
basis for classification, our recent work [12] has shown that the
performance of a joint-domain multi-input multi-task learning
(JD-MIMTL) approach surpasses that of using micro-Doppler
only.

STA(t) < o3 and

III. LEARNING EFFECTIVE MODELS
A. Generative Batch Pre-Training

A critical limitation to any supervised classification ap-
proach, however, is the availability of a sufficient amount
of diverse data to train deep neural networks (DNNs) for
classification. Human subject experiments are time-consuming
and expensive, while the diversity in the subjects and scenarios
for which the data is collected is necessarily limited and cannot
span all possible positions, movements, and environments.

Consequently, there has been much work on micro-Doppler
signature synthesis [14]-[18]. These works may be grouped
according to two principle approaches: (1) synthesis by taking
the time-frequency transform of the received radar return
computed from a skeletal model comprised of point targets
animated using motion capture (MOCAP) data, and (2) direct
synthesis of the micro-Doppler signature using generative
adversarial network (GANSs) trained from a small number of
measured signatures. Model-based synthesis from MOCAP
has the advantage of allowing estimation of the resulting
target micro-Doppler for any desired antenna-target geometry.
Although the MOCAP data itself is still subject-specific data, a
diversification technique [19] that applies data augmentation to
the underlying skeleton has allowed for relatively few MOCAP
measurements to be used to generate thousands of statisti-
cally independent animations, which better span the range
of expected human profiles. However, one major drawback
is that model-based synthesis does not account for changes



in signal-to-noise ratio, sensor-related artifacts, non-stationary
clutter, interference or signal dispersion induced by frequency-
dependent barriers such as walls. In contrast, GANs have been
shown effective in modeling sensor imperfections, noise and
clutter in radar human activity data synthesis. A wide range of
GANSs have been utilized in synthesizing radar micro-Doppler
signatures for human motion recognition.

However, previous research [20] has revealed that GAN-
generated RF mDS exhibit systemic flaws in generation of
target kinematics, which correspond to physically impossible
features in the synthetic data. Examples of some of these kine-
matic flaws include disjoint components, malformed shapes,
inconsistencies in peak values, subdued regions, and additional
non-zero micro-Doppler components that make the signature
resemble a different activity class altogether. A hard, impulsive
fall may instead resemble a slower progressive fall. A walking
signature may include a period over which the person is
actually stopped and not moving at all. These kinematic
aberrations can significantly degrade classification accuracy
when the synthetic data is used for training.

In contrast, physics-aware GANs [21] integrate the domain
knowledge of human kinematics into the design of the GAN
architecture and loss functions, thereby improving the accu-
racy with which human mDS are synthesized. Because the
envelope constrains the maximum velocity incurred during
motion and differences between human gaits is captured by
the envelope, it is essential that the process for generating
synthetic samples consistently and realistically replicates the
envelopes characteristics of ambulatory classes. Gross kine-
matic errors can be precluded by supplying the micro-Doppler
envelopes as inputs to additional branches in the discriminator
and utilizing an additional physics-based loss term in the GAN
loss function. If the envelope is considered as a time-series or
a curve, the choice of the distance metric is tied to the ability
of the metric to produce a significant quantitative difference
between the two envelopes based on how dissimilar/similar
they are. One way of quantifying the similarity between
envelopes is the Dynamic Time Warping (DTW) distance. In
this case, the new loss function is

Loss = {D(I’) - D(G(Z))} + GP + )\PLphysicsa (4)

where G'P is the gradient penalty, L,pysics iS computed from
the DTW, D(z) is the discriminator’s estimate of the proba-
bility that real data instance x is real; G(z) is the generator’s
output when given noise z; D(G(z)) is the discriminator’s
estimate of the probability that a fake instance is real.

B. Continual Learning via Interactive RF

Studies conducted for both activity recognition [21] and
sign language [22] have shown improvements in the kinematic
fidelity of synthetic human signatures using PhGAN architec-
tures, and, hence, improvements in human motion recognition
accuracy. However, regardless of how well the signatures
for a given motion class are synthesized, there remains the
fundamental limitation that any synthetic training database will
be comprised of a limited number of motion classes. Given the

nearly boundless range in human movements, it is likely that in
real-world scenarios an open-set problem will be encountered:
in other words, our test data will not belong to the same class
as our training data. Moreover, when RF systems are deployed
in the real world, the test subjects will always be different from
those utilized in training. While data synthesis significantly
helps in improving the ability of a model to generalize, the
differences in the received signal due to subject-specific and
environment-specific shifts in the distribution will need to be
surmounted for robust performance. Such shifts in distribution
will need be bridged by continual learning on data that is
interactively acquired over extended periods of time in situ.

IV. INTERACTIVE RF GAME DESIGN

The idea of framing data acquisition of human movements
in the context of interactive games is appealing for several
key reasons: First, the game itself serves as the interface
automatically guiding the types of movements expected in
response to the gaming environment. For example, conversa-
tions can be designed to facilitate acquisition of natural sign
language; embodiment games can be designed requiring whole
body movements, such as in sports games, or activity-based
games, where the user does construction by virtually moving
objects; gesture-based games can be designed to control virtual
objects or vehicles. As a long-term vision for the possibilities
engendered by this paradigm, consider that virtual reality could
be paired so as to trigger responses a virtual environment
to prompt desired responses. Second, the game provides an
enjoyable experience that will stimulate more human participa-
tion. In controlled subjects testing, the experiences is repetitive
and mundane. Oftentimes, the participant fees given ($25-$50)
are not incentive enough for continued participation, inherently
limiting the amount of acquired data. With an interactive game,
participants who enjoy the experience will want to continue
to interact with the system, providing a steady supply of data
that can be used to continually learn more effective models
initialized with synthetically generated batch pre-training. In
the next sub-sections, details about the implementation of
Interactive RF is given.

A. Command Line Control of Radar

Texas Instruments (TI) provides a device firmware package
for users who want to control their radars using terminal-based
applications. These applications utilize the command line
interface (CLI) instead of TI’s graphical user interface (GUI)
to operate the radar. Although the provided GUI is intuitive
and mostly self-explanatory, to promote modularity of data
acquisition applications, using the CLI as the application back-
bone becomes essential as the manufacturer GUI is too rigid
and introduces restrictions on the functionality of the radar.
Using the CLI option, users can initialize the radar chip, begin
data capture sequences, and load data into data capture devices
without interrupting the higher-level application. Moreover,
configuration of the radar parameters, chirp profiles, antenna
configurations, and all other configurable parameters can be
dynamically changed while the main program is running.



In order to use a TI radar board coupled with a data capture
card (e.g., DCA1000 EVM) in the CLI mode, users set the
xWRxxxx BOOST radar module to use Serial Peripheral Inter-
face (SPI) Communication. The SPI configuration is achieved
with SOP4 mode module(i.e., placing jumpers on the SOPO
pin, while SOP1 and SOP2 pins are left open).

TI provides user examples for different operating systems
(OS) to be able to instantiate data collection procedures. These
examples are contained in the software development kit (SDK)
provided by the manufacturer for users who want to develop
their own applications around their application programming
interface. These applications can have extended functionality
such as creating advanced frames, advanced chirp, continuous
mode, dynamic chirp, and dynamic profile configurations.
Users can enable or disable these advanced features in an in-
built configuration file. They perform three key tasks:

o Initialize radar chip.

e Downloads the meta/OS image over serial peripheral
interface (SPI).

o Reads the application programming interface (API) pa-
rameters from the configuration text file.

After the radar initialization setup is completed, the radar
starts transmitting and receiving packets. A secondary ap-
plication that serves as a packet listener stores the packets
in a data capture card. After executing the application, the
DCAI1000EVM card connected through ethernet accesses the
configuration parameters from a custom JSON file which con-
tains information regarding the configuration and data capture
parameters of xXWRxxxx BOOST device. Four sequences are
executed during the data capture application:

o Connection and configuration of DCA1000 to a PC.
« Setting up a user-set packet delay.

« Initiating packet recording.

o Terminating the data capture.

B. Closing-the-Loop: User Interface

Using the CLI tools, a user can design their own higher
level application to interact with the radar system, such as
a simple interactive game. However, our goal is to replace
keyboard commands with gestural or sign language based
commands. With simple games, such as that described in
Section IV-C, the actual data we wish to record are not the
command signs, but activities or signs prompted during the
course of the game. Thus, there are actually two DNN models
utilized in the Interactive RF paradigm: one model for the
control DNN, which operates on raw RF data via a complex
neural network (e.g. Complex SincNet [23]) to provide real-
time predictions of a low set of command signs, and the
actual model we wish to train long-term based on the data
acquired during the game. The long term model may take as
input various RF data representations, as desired, and over
time will increasingly become more and more accurate via
utilization of continual learning to update the model based
on new annotated data acquired via the Interactive RF game.
The initial model, batch trained for 140 ASL signs using
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Fig. 2. Control model processing pipeline for end-to-end game design.

fluent signing data and PhGAN [21] synthesized signatures
(accessible from http://github.com/ci4r/ASL_Dataset), yields
a CNN-based prediction of over 65%, 82% and 86% testing
accuracies for Top-1, Top-2 and Top-3 accuracies, respectively.
When utilizing mDS spectrograms, computationally the
application pipeline can be divided into four phases: data
acquisition, raw data reading, spectrogram generation and
prediction. While data acquisition and saving is an instant step
with no delay, reading of raw data and extracting the radar
data cube (RDC) takes 0.2 sec for a 3 seconds recording.
RDC extraction time is proportional to the data recording
duration. Next, generation of a high resolution spectrogram
with 4096 Fast Fourier Transform (FFT) points and windowing
overlap factor of 90% takes around 0.7 sec which can also
be reduced drastically by reducing the overlap factor or the
number of FFT points. These are mostly application dependent
hyperparameters that user can optimize according to their
needs. Finally, the prediction for a sample spectrogram takes
1.4 sec and 0.03 sec without and with the graphical processing
unit (GPU) support. It is evident that the GPU support is
essential for low-latency required applications. The GPU used
in this work is Nvidia’s GTX 1660 Ti. Overall, the total time
spent from data acquisition to making a prediction does not
exceed 1 sec and can be further reduced if needed. Such radar-
based recognition system can be used to enable users to control
various applications using their hand and body motions.

C. Connecting Predictions to a Game Environment

Modern web-based technologies were used to translate
predictions from the raw radar processing steps to game
commands. In particular, Flask [24], socket.IO [25], and
Phaser.js [26] were used to build an interactive RF game that
operates in near real-time. As shown in Figure 2, processed
data from the radar system is passed to a Flask App. Flask
is a python web framework that enables a pythonic approach
to web application development. This approach enables the
configuration of a client/server architecture that allows the



Fig. 3. Example of a game controllable with sign language.

system to take advantage of both python libraries for data
processing/classification and JavaScript tools for rapid game
prototype development. The game prototype shown in Figure
3 was implemented using Phaser.js. Phaser.js is a lightweight
JavaScript game engine that supports the development of
2D games capable of running in a web browser. Socket.IO
manages communications between the python server and the
web client that displays the interactive RF game.

The game shown in Figure 3 is inspired by the mobile game
Paper Toss. The objective of the game is to throw the ball of
paper into the trash can. The game also features a fan that
influences the flight path of the paper ball. The player is tasked
with selecting a flight angle (indicated by the arrow) that will
result in the paper ball colliding with the trash can launched.
A hybrid approach is currently used to control the game. In
particular, the arrow keys are used to update the paper ball
flight angle. However, the player must perform a gesture to
trigger the launch command. While this game contains limited
commands, more complex interactive RF systems could be
designed using these core components.

V. CONCLUSION

This paper proposes an Interactive RF gaming paradigm to
address the challenge faced due to inadequate data - both in
terms of quantity and quality. Cyber-physical human systems
rely on the understanding of complex human behaviors, which
can be quite nuanced. Advancement of radar-based AI/ML
algorithms requires appropriate data that captures natural hu-
man movements. The novel interactive RF gaming paradigm
proposed enables the continual acquisition of real-world RF
data without the intervention of a human experiment organizer.
An example game based on paper toss that is controlled using
sign language is presented. In future work, we plan to further
develop the gaming environment, continually acquire data,
improve our ASL models, and expand interactive functionality
as the game is played over an extended period of time by fluent
ASL users.
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