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SUMMARY & CONCLUSIONS

One essential task in practice is to quantify and improve
the reliability of an infrastructure network in terms of the
connectivity of network components (i.e., all-terminal
reliability). However, as the number of edges and nodes in the
network increases, computing the all-terminal network
reliability using exact algorithms becomes prohibitive. This is
extremely burdensome in network designs requiring repeated
computations. In this paper, we propose a novel machine
learning-based framework for evaluating and improving all-
terminal network reliability using Deep Neural Networks
(DNNs) and Deep Reinforcement Learning (DRL). With the
help of DNNs and Stochastic Variational Inference (SVI), we
can effectively compute the all-terminal reliability for different
network configurations in DRL. Furthermore, the Bayesian
nature of the proposed SVI+DNN model allows for quantifying
the estimation uncertainty while enforcing regularization and
reducing overfitting. Our numerical experiment and case study
show that the proposed framework provides an effective tool
for infrastructure network reliability improvement.

1 INTRODUCTION

Interconnected infrastructures provide critical services for
the general population. Such critical infrastructures can take the
form of power networks, communication networks, water
networks, and transportation networks. Like other physical
entities, these networks are prone to failure due to natural
degradation and adverse events. An essential task in practice is
to evaluate the reliability of an infrastructure network in terms
of the connectivity of its components. Focusing on the
probability that all components remain communicated with
each other, the requirement can be conceptualized as the all-
terminal reliability of the network [1].

Consider an n-node network (V, £) with edge topology X =
[X1,25 «wes Xi s o s Xn1n] With x; ; = 1, if edge e;; is present; 0,
otherwise. Let p(x; ;) be the reliability of edge (i,/), and Q be
all operational states with all nodes being connected. Then, the
general equation for computing the all-terminal network
reliability is [2]:
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The computational effort of exact algorithms for
computing the all-terminal reliability of a network scales
exponentially as the number of edges and nodes increases and
eventually becomes prohibitive [3]. As a result, this
computational step can become burdensome in applications that
require repeated computations of all-terminal reliability for
different network configurations. As an alternative to exact
methods, approximate methods have been developed with
varying degrees of precision. The gamut of such methods
includes simulation-based methods such as Monte Carlo
simulation [4], surrogate models like Artificial Neural
Networks (ANNs) [2], and highly flexible models such as Deep
Neural Networks (DNNSs) supported by Graph Embeddings [2].
Beyond network reliability evaluation, improving the all-
terminal reliability of a network is an essential task and can be
implemented in different ways. These include, but are not
limited to, Dynamic Programming and evolution-based
methods [5] such as Simulated Annealing, Ant Colony
Optimization, and Artificial Bee Colony algorithm. By taking
advantage of machine learning methods, it would be practically
valuable and more efficient to tackle the network reliability
improvement problem using machine learning.

In this work, our goal is to develop a machine learning-
based framework for evaluating and improving all-terminal
network reliability. In particular, the reliability improvement
problem focuses on data-driven network design optimization,
for which for an initial network structure, we determine the best
sequence for adding links to maximize the metrics related to the
all-terminal reliability over a finite time horizon.

It is worth pointing out that for our problem of interest, the
complexity of the problem is heightened by making the design
space larger, as multiple link options of varying quality are
considered. Additional practical constraints, such as budget
constraints, pose tracking the feasibility of each action as an
essential factor to consider in algorithm development. Given
these, we consider the network design as a Reinforcement
Learning (RL) problem. Furthermore, by using Deep Neural
Networks to model network reliability, we frame the design
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problem as a Deep Reinforcement Learning (DRL) problem [6].
2 RELATED WORK

With the extent of interconnected networks in everyday
life, there is an essential need to understand network reliability
and achieve better resilience in such critical infrastructures.
Numerous studies in this area try to maximize all-terminal
network reliability, and such problems are classified as NP-hard
problems [3]. Indeed, in solving such problems, calculating all-
terminal network reliability, and optimizing the network
structure are of the most computational challenges.

Dengiz et al. [5] used a genetic algorithm to maximize a
network’s all-terminal reliability. Ramirez-Marquez and Rocco
[4] suggested a novel algorithm based on hybrid optimization,
which combines a probabilistic solution discovery with a Monte
Carlo simulation to estimate the all-terminal reliability of the
network. Recently, Goharshady and Mohammadi [7] suggested
an innovative method for computing reliability for networks
with small treewidth (as in subway networks), which can be
scaled to networks with a higher count of vertexes.

Scholars have attempted to estimate network reliability by
developing ANNSs as surrogate models. Srivaree-Ratana and
Smith [2] developed an ANN model that used link reliability
and a reliability upper bound as inputs and computed the all-
terminal reliability as its target value for a network with ten
nodes. Davila-Frias et al. [8] proposed an approach to predict
the network’s reliability with varying graph sizes. They used
different graph embedding methods to represent the network as
the input of the DNN model. Recently, Davila-Frias and Yadav
[9] addressed all-terminal reliability estimation using
Convolutional Neural Networks (CNNs). They defined a multi-
dimensional vector representing the network adjacency matrix,
link reliability, and topological attributes as the input of the
CNN model. The output layer is a regression preceded by a
sigmoid layer that predicts the network’s reliability. This allows
for exploiting the power of CNNs to identify correlations in the
spatial patterns of the adjacency matrix that might be relevant
for minimizing the loss function during training.

3 METHODOLOGY

DNN models are a powerful tool for creating a surrogate
model for all-terminal reliability. We propose using a Bayesian
variant of a DNN model to estimate the reliability of networks
with vertex counts in a defined range. Exploiting the flexibility
of this type of models to estimate all-terminal reliability will be
balanced by the regularization capabilities of the Bayesian
component in the inference procedures.

A sequence of subtasks will be tackled before obtaining a
viable surrogate model. We first create a dataset comprised of
several sample networks with a relatively wide range of all-
terminal and individual edge reliability values. Then, the all-
terminal reliability is calculated using an exact state
enumeration algorithm. Next, we create a tensor representation
of these networks based on adjacency matrices and spectral
analysis. As these tensors arise from 2-dimensional arrays, we
consider they encode relevant spatial information that can be
extracted. To exploit this in a data-driven fashion, we train a

baseline CNN model to create two desired outputs: an initial
estimation of the all-terminal reliability and a data-driven
embedding of the sample networks. We then train a DNN model
in a Bayesian framework using Stochastic Variational Inference
with the CNN embedding as input. This procedure enables
inference on the all-terminal reliability values while quantifying
the uncertainty of the estimates through Bayesian reasoning by
sampling from the posterior distributions using DNNs as
learnable transformations conditioned on the observed data.
The complete modeling pipeline from tensor representation to
SVI+DNN is now the surrogate model.

One of the most valuable use cases for this surrogate model
is to speed up network design optimization tasks. Furthermore,
as this approximation is not as computationally expensive as
those exact methods, we can use iterative optimization methods
and take sequential samples from the decision space. To take
full advantage of this, we propose using a Deep Reinforcement
Learning framework in a setup where it will actively learn from
observed sequences of network designs while maximizing all-
terminal network reliability.

3.1 Dataset Generation

Network graphs are generated with sizes of 8, 9, and 10
nodes with random numbers of undirected edges. We generate
n graphs of each size for a total N = 3n samples. We consider
all nodes to be perfectly reliable, all edge failures are
independent, and edge reliabilities can take varying values on
pre-defined levels. Any given edge connecting two nodes is
included with a random uniform chance defined by pgqq- Link
reliabilities are randomly assigned and uniformly chosen from
a list of values ry,. For this dataset, all the graphs are
connected: all nodes can communicate with each other, so their
all-terminal reliability values are always non-zero.

The all-terminal reliability is first computed using an
enumeration algorithm. This calculation is validated by another
automated procedure developed to compute the reliability
polynomial of an arbitrary graph [1]. Finally, the pairs of graphs
and their exact all-terminal reliability values are stored for each
sample. The generated sets of random graphs have varying
numbers of edges and nodes, topology, and edge reliability
configurations. This procedure was inspired by the work in [2]
and [9]. However, more complexity was added by including
multiple vertex counts in a single modeling pipeline and by
making link reliability values vary both within a single graph
and across graphs.

3.2 Tensor representation

For each of the generated graphs in the dataset, we created
a tensor of size 10x10x3 comprised of three matrices of
encoded information about the network structure. Each matrix
is of size 10x10 as the largest vertex count in our samples is ten
nodes. For graphs with 8 and 9 nodes, we added zeroes on the
last 1 or 2 rows and columns correspondingly.

The adjacency matrix encoding the network edge and node
structure is the first matrix. The second matrix is analog to the
adjacency matrix but replaces the encoded values for each edge
with their corresponding reliability values. We refer to this as
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the edge reliability matrix in this paper. The third matrix is the
normalized Laplacian matrix. Given the adjacency matrix 4 and
the node degrees in diagonal matrix form D, the Laplacian
matrix L and normalized Laplacian matrix N are computed by:

L=D-A )

N = D~1/2Lp~1/2 3)

We hypothesize that as this matrix encodes spectral
information about the graph structure, it is a suitable input for a
data-driven model with capabilities for exploiting spatial

information. Therefore, the spatial information is encoded in
the matrix arrays and will be used for the CNN embedding.

3.3 CNN embedding

Inspired by the work in [9], we use a CNN architecture for
obtaining baseline estimation of all-terminal reliability. The
following is a list of the sequential layers in this model:
Convolution: 8 filters, 3x3x3
Leaky ReLU
Average Pool 2x2
Convolution: 16 filters, 3x3x8
Leaky ReLU
Average Pool 2x2
Convolution: 32 filters, 3x3x16
Leaky ReLU
Average Pool 2x2
Convolution: 32 filters, 3x3x%32
Leaky ReLU
Average Pool 2x2
Fully Connected Layer (288,512)

Leaky ReLU

Fully Connected Layer (512,1024)

Leaky ReLU

Fully Connected Layer (1024,1)

Sigmoid

We use a sigmoid function as the final activation to
guarantee that the output is a real number between 0 and 1. We
hypothesize that the three final fully connected layers work as
a latent space embedding of the features extracted from the
tensor representation.

The outputs of the second to last fully connected layer are
used as a representation of the graph in the latent space. We
refer to this as the data-driven CNN embedding in this paper.
This vector of size 1024, together with the baseline estimates,
is used as the input for the SVI+DNN model.

3.4 SVI+DNN surrogate model

To create a surrogate model for calculating all-terminal
reliability, we use a Bayesian framework to train the DNN
model [10]. In addition, we selected the Pyro probabilistic
programming framework [11] and wused their proposed
terminology to describe the procedures.

On the weights and biases of the layers of the DNN, we
place probabilistic priors. Conditioning this on the observed
data will lead to an intractable posterior formulation. To resolve
the challenge, sampling methods such as Hamiltonian Monte
Carlo (HMC) can be applied. However, such an approach

would be computationally costly for models with many
parameters. Instead, we approximate the intractable posterior
using Stochastic Variational Inference (SVI) [12]. This
involves optimizing the Evidence Lower Bound (ELBO) using
stochastic gradient steps, where the said lower bound is related
to the Kulback-Leibler (KL) divergence of a proposed surrogate
distribution function, called guide, and the true posterior. This
proposed guide is based on the DNN model and a selected
family of probability distributions. As the distribution family,
we selected the Delta distribution, leading to Maximum a
Posteriori estimates of the posterior distribution parameters.

The following equation shows the ELBO as an expectation
with regards to the guide distribution:

ELBO = Eg,, [logpe(x,2) — logqy (x,2)]  (4)

where observations are represented by x and latent random
variables z, and py(X,Z) is their joint probability distribution
with parameters 8. qg (X,z) is the guide distribution with
parameters ¢. Stochastic Gradient Descent is performed in the
parameter space for ¢ to find a guide to decrease the divergence
between the guide and posterior.

As this approximation would scale inefficiently for fully
parameterized guides, we exploited the idea of amortization,
which involves using a DNN to map the inputs to the required
parameters in the guide model to reduce the number of trainable
parameters. It is an exchange of parameters for a functional
mapping.

This framework allows for estimating predictive
distributions for all-terminal network reliability using the
network CNN embedding and the baseline estimates as the
inputs. The architecture of the model network is as follows:
Bayesian Linear Layer (1025,128)

Leaky ReL.U

Bayesian Linear Layer (128,128)

Leaky ReLU

Bayesian Linear Layer (128,2)

Sigmoid — (Output[1], Output[2])
Normal Distribution

o Mean: initial estimation + Output[1]
o Variance: Output[2]

3.5 DRL for network design optimization

We use DRL to solve the sequential network design
problem. The choice for DRL stems from the sequential nature
of the design problem. Technically, feasibility constraints are
factored-in by using Maskable Proximal Policy Optimization
(M-PPO) as our optimization algorithm [13], which is a variant
of Proximal Policy Optimization (PPO) that can take into
account rule-based action feasibility.

We formulate the design problem with a reliability
improvement objective. The DRL agent will decide the best
next edge to be included in the graph for a given initial network
to maximize the all-terminal reliability. We enable discrete
levels of edge quality with varying levels of cost and reliability.
Moreover, we also consider a cost constraint such that a budget
limits how many edges can be added. The agent must find a
finite sequence of edge decisions that maximize its reward.
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Mathematically, the problem is formulated as:

Enl%x Ry =1og(R) —log(1 —R) + AR,y (5)
tIYt

A; =[x, q35] (6)

Ot = [xij' Cij» Ct—l] (7)

1ij = (X)) Gij) (®)

s.t.Zisziij:CtSB (9)

For all decision steps t, the DRL decides the actions 4, to
take given the observations O, to maximize the reward R,
which depends on the all-terminal reliability R, and a discount
factor A that balances the cumulative rewards. The available
actions include adding a new edge x;; with a chosen quality
level g;;. The quality level affects the cost of adding said link,
¢;j, and the link reliability value, ;. The observations include
the graph topology represented by the links in the network, the
cost of each of the present links, and the total cost of the
network up to the previous decision step C;_;. The last equation
shows the budget constraint to keep the total cost below B.

For implementation, we created an environment using the
OpenAl-Gym [14] framework and trained the agents based on
the Stable Baselines specified models [15]. The SVI+DNN
surrogate model is used to approximate the all-terminal
reliability to speed up the required computations.

4 NUMERICAL EXPERIMENT

We conducted a numerical experiment by creating a dataset
with N = 6000 randomly generated networks with vertex
counts of 8, 9, and 10 nodes (i.e., n = 2000). Edge creation
probability is p 44 = 0.3. We considered five options for the
levels of edge reliability: ;5 = [0.8,0.85,0.9,0.95,0.99]. For
model validation purposes, we separate these samples into
“train,” “validation,” and “test” subsets, with proportions of
75%, 15%, and 10%, respectively.

We run our experiment on a Google Collaboratory Virtual
Machine with 8 Intel Xeon processors with 4-Cores@2.2Ghz
and 51GB of RAM. First, all the graphs in the sample were
transformed to their respective tensor representation. This step
took between 4ms and 6ms per graph. The initial CNN model
was adjusted on the training set using an Adam optimizer to
minimize an MSE loss metric. The learning rate was set on
0.002 following a cosine annealing schedule until 0.001. We
use mini-batch updates of 128 samples during 1000 epochs.
This procedure took 13m and 46s (i.e., 0.8s per epoch). This
step output the initial estimation and the CNN embedding. For
a new tensor representation, obtaining an initial estimation and
embedding took between 4 and 8ms.

We trained the SVI+DNN model during 20 optimization
steps, using mini-batch updates of 32 graphs and a
ClippedAdam optimizer. The learning rate was set to 0.001.
The training took 14m and 51s with around 40s per step for
training and S5s per step to evaluate performance on the
validation set. We sampled 100 times from the predictive
posterior distribution for estimations and use the mean as the
final prediction. Given a graph, executing the complete
estimation from tensor representation to the surrogate model

took around 200ms. For graphs of similar size, our
implementation of the enumeration algorithm took 30s for an
exact calculation of the corresponding all-terminal reliability.

Figure 1 shows the predictions on the training set (blue
line) compared to the sorted actual values (black line). The
shaded area around these lines represents the 90% credible
interval for the posterior estimates. One can see that the
predictions are generally close to the true values. For example,
the RMSE values of the predictions on the train, validation, and
test sets are 0.003, 0.08, and 0.08, respectively. Compared to
the results presented in the related studies [2], our proposed
methodology achieves adequate precision in tackling a more
difficult task of estimating all-terminal network reliability for
sets of graphs with varying node counts and edge reliability
values on a single modeling pipeline.

Prediction on Training Set
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Figure 1. Prediction comparison

After completing the surrogate model, the model was used
to estimate the reliability of sequential graphs during the
training of our M-PPO agents. We defined a DRL environment
with an initial path network with eight nodes. For the initial
edges, the reliability was set to be 0.8. For any given decision
step, the agent can add edges with one of three quality levels:
0.9, 0.95, and 0.99, and these edges have costs of 1, 2, and 3
units. Moreover, there is a maximum budget of 10 units of cost,
and the agent stops adding edges when the budget is exceeded.

We trained the M-PPO agent during 5000 episodes, and it
was completed in 24m and 42s. For a similar setup using a
Reliability Polynomial for the all-terminal exact calculations,
the observed training time was close to 16 hours.

Figure 2. Initial (left) and final (vight) graphs

The designed final network prioritizes connectivity over
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individual edge quality. This is observed from the exclusive use
of links with the lowest quality and cost. The reliability
estimated by the surrogate model is 0.9452, and the exact
calculation is 0.9927, within the bounds of our validation error.
Similar designs maximizing connectivity are also preferred by
the M-PPO agent when the training is done using the exact
computations in similar problem setups. Figure 2 shows the
initial and final graphs for the best solution found after training,
where the black links represent the existing edgesinitial
network.

5 CASE STUDY

To further illustrate the proposed methodology, we conduct
a case study involving budget constraints. We focus our
attention on the backbone computer network of the Gazi
University in Ankara, Turkey [16]. The computer network with
11 nodes is shown in Figure 3. Three types of links can be
chosen with individual edge reliability values of [0.99, 0.995,
0.999]. The quality level of each edge has an associated cost per
meter of distance covered: [$12, $17, $28].

Figure 3. Initial (left) and final (right) graphs for the Case
Study

Before applying our method, some adjustments to the
original formulation are made. First, to apply the current
surrogate model, we merge one of the nodes in the network to
its neighbor for simplicity. Second, we assume that all the links
in the original network are at the same quality level (set it at the
lowest value). We use a budget value of $218,635, as in the
solution with the lowest cost in the original formulation. Third,
while the lengths of existing edges were provided in [16], to
compute the distances not considered in the original
formulation, we located the university buildings using Google
Earth and measured the related distances so that the associated
costs for adding new edges can be calculated.

We created a DRL agent to maximize the all-terminal
reliability of the Gazi Network by adding new edges between
nodes. The best solution in the original formulation [16] had an
all-terminal reliability of 0.9945 and a cost of $322,865. This
solution did not modify the network topology. Our best solution
found has a higher reliability of 0.9998, and it is shown in
Figure 3 as the final (right) network. The total cost is $199,140.
It is worth pointing out that our solution added edges and
modified the network topology. Moreover, our solution

maximizes the number of edges by choosing the lowest quality
level and adding edges with the lowest distances between pairs
of nodes not yet in the network.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a surrogate model to efficiently
evaluate all-terminal network reliability. With the goal of
improving the all-terminal reliability of a network, a DRL
environment defining the action space, the per-period rewards,
feasibility constraints, system evolution conditions, and state
transition dynamics was developed for solving the network
design problem. The practical value of this work is twofold.
First, the Bayesian data-driven model is flexible enough to
approximate the all-terminal network reliability of arbitrary
graphs of varying sizes. It can work with varying edge
reliability values and does not need additional computations as
input, such as reliability upper bounds. The SVI framework
allows for quantifying estimation uncertainty and incentivizing
regularization to avoid overfitting. Second, enhanced and
supported by the SVI+DNN approximation method, exploring
the use of DRL for network reliability improvement provides a
useful data-driven algorithm capable of tackling complex
design problems in ample design spaces.

Our future work will be focused on validating the network
design solutions by diagnosing convergence and identifying
suitable conditions. Indeed, validating such a data-driven model
is challenging, but quantifying the optimality gap using total
enumeration for small-scale problems is still possible.
Furthermore, we have identified research opportunities for
leveraging the estimation uncertainty naturally arising from the
Bayesian model. We will exploit this by using other
optimization methods such as Bayesian Optimization with
Gaussian Process surrogate models or Thompson Sampling. In
another direction, we will explore possibilities of balancing
maximizing reliability with other objectives such as the equity
across a network in humanitarian applications.
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