
Applying Machine Learning Methods to Improve All-Terminal 
Network Reliability   

José Azucena, University of Arkansas 
Farid Hashemian, University of Arkansas 
Haitao Liao, Ph.D., University of Arkansas 
Edward Pohl, Ph.D., University of Arkansas 

Key Words: reliability models, reliability growth analysis, deep reinforcement learning 

SUMMARY & CONCLUSIONS  

One essential task in practice is to quantify and improve 
the reliability of an infrastructure network in terms of the 
connectivity of network components (i.e., all-terminal 
reliability). However, as the number of edges and nodes in the 
network increases, computing the all-terminal network 
reliability using exact algorithms becomes prohibitive. This is 
extremely burdensome in network designs requiring repeated 
computations. In this paper, we propose a novel machine 
learning-based framework for evaluating and improving all-
terminal network reliability using Deep Neural Networks 
(DNNs) and Deep Reinforcement Learning (DRL). With the 
help of DNNs and Stochastic Variational Inference (SVI), we 
can effectively compute the all-terminal reliability for different 
network configurations in DRL. Furthermore, the Bayesian 
nature of the proposed SVI+DNN model allows for quantifying 
the estimation uncertainty while enforcing regularization and 
reducing overfitting. Our numerical experiment and case study 
show that the proposed framework provides an effective tool 
for infrastructure network reliability improvement. 

1 INTRODUCTION 

Interconnected infrastructures provide critical services for 
the general population. Such critical infrastructures can take the 
form of power networks, communication networks, water 
networks, and transportation networks. Like other physical 
entities, these networks are prone to failure due to natural 
degradation and adverse events. An essential task in practice is 
to evaluate the reliability of an infrastructure network in terms 
of the connectivity of its components. Focusing on the 
probability that all components remain communicated with 
each other, the requirement can be conceptualized as the all-
terminal reliability of the network [1].  

Consider an n-node network (V, E) with edge topology 𝑋𝑋 =
[𝑥𝑥1,2, … , 𝑥𝑥𝑖𝑖,𝑗𝑗 , … , 𝑥𝑥𝑛𝑛−1,𝑛𝑛] with 𝑥𝑥𝑖𝑖,𝑗𝑗 = 1, if edge ei,j is present; 0, 
otherwise. Let 𝑝𝑝(𝑥𝑥𝑖𝑖,𝑗𝑗) be the reliability of edge (i,j), and Ω be 
all operational states with all nodes being connected. Then, the 
general equation for computing the all-terminal network 
reliability is [2]: 

𝑅𝑅 = ∑ �∏ 𝑝𝑝(𝑥𝑥𝑖𝑖,𝑗𝑗)(𝑖𝑖,𝑗𝑗)∈𝑋𝑋′ �𝑋𝑋′∈ Ω �∏ (1 − 𝑝𝑝�𝑥𝑥𝑘𝑘,𝑙𝑙�) (𝑘𝑘,𝑙𝑙)∈(𝑋𝑋\𝑋𝑋′) � (1) 
The computational effort of exact algorithms for 

computing the all-terminal reliability of a network scales 
exponentially as the number of edges and nodes increases and 
eventually becomes prohibitive [3]. As a result, this 
computational step can become burdensome in applications that 
require repeated computations of all-terminal reliability for 
different network configurations. As an alternative to exact 
methods, approximate methods have been developed with 
varying degrees of precision. The gamut of such methods 
includes simulation-based methods such as Monte Carlo 
simulation [4], surrogate models like Artificial Neural 
Networks (ANNs) [2], and highly flexible models such as Deep 
Neural Networks (DNNs) supported by Graph Embeddings [2]. 

Beyond network reliability evaluation, improving the all-
terminal reliability of a network is an essential task and can be 
implemented in different ways. These include, but are not 
limited to, Dynamic Programming and evolution-based 
methods [5] such as Simulated Annealing, Ant Colony 
Optimization, and Artificial Bee Colony algorithm. By taking 
advantage of machine learning methods, it would be practically 
valuable and more efficient to tackle the network reliability 
improvement problem using machine learning. 

In this work, our goal is to develop a machine learning-
based framework for evaluating and improving all-terminal 
network reliability. In particular, the reliability improvement 
problem focuses on data-driven network design optimization, 
for which for an initial network structure, we determine the best 
sequence for adding links to maximize the metrics related to the 
all-terminal reliability over a finite time horizon. 

It is worth pointing out that for our problem of interest, the 
complexity of the problem is heightened by making the design 
space larger, as multiple link options of varying quality are 
considered. Additional practical constraints, such as budget 
constraints, pose tracking the feasibility of each action as an 
essential factor to consider in algorithm development. Given 
these, we consider the network design as a Reinforcement 
Learning (RL) problem. Furthermore, by using Deep Neural 
Networks to model network reliability, we frame the design 
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problem as a Deep Reinforcement Learning (DRL) problem [6]. 

2 RELATED WORK 

With the extent of interconnected networks in everyday 
life, there is an essential need to understand network reliability 
and achieve better resilience in such critical infrastructures. 
Numerous studies in this area try to maximize all-terminal 
network reliability, and such problems are classified as NP-hard 
problems [3]. Indeed, in solving such problems, calculating all-
terminal network reliability, and optimizing the network 
structure are of the most computational challenges. 

Dengiz et al. [5] used a genetic algorithm to maximize a 
network’s all-terminal reliability. Ramirez-Marquez and Rocco 
[4] suggested a novel algorithm based on hybrid optimization, 
which combines a probabilistic solution discovery with a Monte 
Carlo simulation to estimate the all-terminal reliability of the 
network. Recently, Goharshady and Mohammadi [7] suggested 
an innovative method for computing reliability for networks 
with small treewidth (as in subway networks), which can be 
scaled to networks with a higher count of vertexes. 

Scholars have attempted to estimate network reliability by 
developing ANNs as surrogate models. Srivaree-Ratana and 
Smith [2] developed an ANN model that used link reliability 
and a reliability upper bound as inputs and computed the all-
terminal reliability as its target value for a network with ten 
nodes. Davila-Frias et al. [8] proposed an approach to predict 
the network’s reliability with varying graph sizes. They used 
different graph embedding methods to represent the network as 
the input of the DNN model. Recently, Davila-Frias and Yadav 
[9] addressed all-terminal reliability estimation using 
Convolutional Neural Networks (CNNs). They defined a multi-
dimensional vector representing the network adjacency matrix, 
link reliability, and topological attributes as the input of the 
CNN model. The output layer is a regression preceded by a 
sigmoid layer that predicts the network’s reliability. This allows 
for exploiting the power of CNNs to identify correlations in the 
spatial patterns of the adjacency matrix that might be relevant 
for minimizing the loss function during training. 

3 METHODOLOGY 

DNN models are a powerful tool for creating a surrogate 
model for all-terminal reliability. We propose using a Bayesian 
variant of a DNN model to estimate the reliability of networks 
with vertex counts in a defined range. Exploiting the flexibility 
of this type of models to estimate all-terminal reliability will be 
balanced by the regularization capabilities of the Bayesian 
component in the inference procedures.  

A sequence of subtasks will be tackled before obtaining a 
viable surrogate model. We first create a dataset comprised of 
several sample networks with a relatively wide range of all-
terminal and individual edge reliability values. Then, the all-
terminal reliability is calculated using an exact state 
enumeration algorithm. Next, we create a tensor representation 
of these networks based on adjacency matrices and spectral 
analysis. As these tensors arise from 2-dimensional arrays, we 
consider they encode relevant spatial information that can be 
extracted. To exploit this in a data-driven fashion, we train a 

baseline CNN model to create two desired outputs: an initial 
estimation of the all-terminal reliability and a data-driven 
embedding of the sample networks. We then train a DNN model 
in a Bayesian framework using Stochastic Variational Inference 
with the CNN embedding as input. This procedure enables 
inference on the all-terminal reliability values while quantifying 
the uncertainty of the estimates through Bayesian reasoning by 
sampling from the posterior distributions using DNNs as 
learnable transformations conditioned on the observed data. 
The complete modeling pipeline from tensor representation to 
SVI+DNN is now the surrogate model.  

One of the most valuable use cases for this surrogate model 
is to speed up network design optimization tasks. Furthermore, 
as this approximation is not as computationally expensive as 
those exact methods, we can use iterative optimization methods 
and take sequential samples from the decision space. To take 
full advantage of this, we propose using a Deep Reinforcement 
Learning framework in a setup where it will actively learn from 
observed sequences of network designs while maximizing all-
terminal network reliability.  

3.1 Dataset Generation 

Network graphs are generated with sizes of 8, 9, and 10 
nodes with random numbers of undirected edges. We generate 
𝑛𝑛 graphs of each size for a total 𝑁𝑁 = 3𝑛𝑛 samples. We consider 
all nodes to be perfectly reliable, all edge failures are 
independent, and edge reliabilities can take varying values on 
pre-defined levels. Any given edge connecting two nodes is 
included with a random uniform chance defined by 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎. Link 
reliabilities are randomly assigned and uniformly chosen from 
a list of values 𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖. For this dataset, all the graphs are 
connected: all nodes can communicate with each other, so their 
all-terminal reliability values are always non-zero.  

The all-terminal reliability is first computed using an 
enumeration algorithm. This calculation is validated by another 
automated procedure developed to compute the reliability 
polynomial of an arbitrary graph [1]. Finally, the pairs of graphs 
and their exact all-terminal reliability values are stored for each 
sample. The generated sets of random graphs have varying 
numbers of edges and nodes, topology, and edge reliability 
configurations. This procedure was inspired by the work in [2] 
and [9]. However, more complexity was added by including 
multiple vertex counts in a single modeling pipeline and by 
making link reliability values vary both within a single graph 
and across graphs. 

3.2 Tensor representation 

For each of the generated graphs in the dataset, we created 
a tensor of size 10×10×3 comprised of three matrices of 
encoded information about the network structure. Each matrix 
is of size 10×10 as the largest vertex count in our samples is ten 
nodes. For graphs with 8 and 9 nodes, we added zeroes on the 
last 1 or 2 rows and columns correspondingly. 

The adjacency matrix encoding the network edge and node 
structure is the first matrix. The second matrix is analog to the 
adjacency matrix but replaces the encoded values for each edge 
with their corresponding reliability values. We refer to this as 
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the edge reliability matrix in this paper. The third matrix is the 
normalized Laplacian matrix. Given the adjacency matrix 𝑨𝑨 and 
the node degrees in diagonal matrix form 𝑫𝑫, the Laplacian 
matrix 𝑳𝑳 and normalized Laplacian matrix 𝑵𝑵 are computed by: 

𝑳𝑳 = 𝑫𝑫 − 𝑨𝑨   (2) 
𝑵𝑵 = 𝑫𝑫−𝟏𝟏/𝟐𝟐𝑳𝑳𝑫𝑫−𝟏𝟏/𝟐𝟐   (3) 

We hypothesize that as this matrix encodes spectral 
information about the graph structure, it is a suitable input for a 
data-driven model with capabilities for exploiting spatial 
information. Therefore, the spatial information is encoded in 
the matrix arrays and will be used for the CNN embedding. 

3.3 CNN embedding 

Inspired by the work in [9], we use a CNN architecture for 
obtaining baseline estimation of all-terminal reliability. The 
following is a list of the sequential layers in this model: 
• Convolution: 8 filters, 3×3×3 
• Leaky ReLU 
• Average Pool 2×2 
• Convolution: 16 filters, 3×3×8 
• Leaky ReLU 
• Average Pool 2×2 
• Convolution: 32 filters, 3×3×16 
• Leaky ReLU 
• Average Pool 2×2 
• Convolution: 32 filters, 3×3×32 
• Leaky ReLU 
• Average Pool 2×2 
• Fully Connected Layer (288,512) 
• Leaky ReLU 
• Fully Connected Layer (512,1024) 
• Leaky ReLU 
• Fully Connected Layer (1024,1) 
• Sigmoid 

We use a sigmoid function as the final activation to 
guarantee that the output is a real number between 0 and 1. We 
hypothesize that the three final fully connected layers work as 
a latent space embedding of the features extracted from the 
tensor representation.  

The outputs of the second to last fully connected layer are 
used as a representation of the graph in the latent space. We 
refer to this as the data-driven CNN embedding in this paper. 
This vector of size 1024, together with the baseline estimates, 
is used as the input for the SVI+DNN model. 

3.4 SVI+DNN surrogate model  

To create a surrogate model for calculating all-terminal 
reliability, we use a Bayesian framework to train the DNN 
model [10]. In addition, we selected the Pyro probabilistic 
programming framework [11] and used their proposed 
terminology to describe the procedures.  

On the weights and biases of the layers of the DNN, we 
place probabilistic priors. Conditioning this on the observed 
data will lead to an intractable posterior formulation. To resolve 
the challenge, sampling methods such as Hamiltonian Monte 
Carlo (HMC) can be applied. However, such an approach 

would be computationally costly for models with many 
parameters. Instead, we approximate the intractable posterior 
using Stochastic Variational Inference (SVI) [12]. This 
involves optimizing the Evidence Lower Bound (ELBO) using 
stochastic gradient steps, where the said lower bound is related 
to the Kulback-Leibler (KL) divergence of a proposed surrogate 
distribution function, called guide, and the true posterior. This 
proposed guide is based on the DNN model and a selected 
family of probability distributions. As the distribution family, 
we selected the Delta distribution, leading to Maximum a 
Posteriori estimates of the posterior distribution parameters.  

The following equation shows the ELBO as an expectation 
with regards to the guide distribution:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞𝜙𝜙(𝒛𝒛) [log𝑝𝑝𝜃𝜃(𝐱𝐱, 𝐳𝐳) −  log 𝑞𝑞𝜙𝜙 (𝐱𝐱, 𝐳𝐳)]      (4) 
where observations are represented by 𝐱𝐱 and latent random 
variables 𝐳𝐳, and  𝑝𝑝𝜃𝜃(𝐱𝐱, 𝐳𝐳) is their joint probability distribution 
with parameters θ.  𝑞𝑞𝜙𝜙 (𝐱𝐱, 𝐳𝐳) is the guide distribution with 
parameters 𝜙𝜙. Stochastic Gradient Descent is performed in the 
parameter space for 𝜙𝜙 to find a guide to decrease the divergence 
between the guide and posterior. 

As this approximation would scale inefficiently for fully 
parameterized guides, we exploited the idea of amortization, 
which involves using a DNN to map the inputs to the required 
parameters in the guide model to reduce the number of trainable 
parameters. It is an exchange of parameters for a functional 
mapping. 

This framework allows for estimating predictive 
distributions for all-terminal network reliability using the 
network CNN embedding and the baseline estimates as the 
inputs. The architecture of the model network is as follows: 
• Bayesian Linear Layer (1025,128) 
• Leaky ReLU 
• Bayesian Linear Layer (128,128) 
• Leaky ReLU 
• Bayesian Linear Layer (128,2) 
• Sigmoid → (Output[1], Output[2]) 
• Normal Distribution 

o Mean: initial estimation + Output[1] 
o Variance: Output[2] 

3.5 DRL for network design optimization 

We use DRL to solve the sequential network design 
problem. The choice for DRL stems from the sequential nature 
of the design problem. Technically, feasibility constraints are 
factored-in by using Maskable Proximal Policy Optimization 
(M-PPO) as our optimization algorithm [13], which is a variant 
of Proximal Policy Optimization (PPO)  that can take into 
account rule-based action feasibility. 

We formulate the design problem with a reliability 
improvement objective. The DRL agent will decide the best 
next edge to be included in the graph for a given initial network 
to maximize the all-terminal reliability. We enable discrete 
levels of edge quality with varying levels of cost and reliability. 
Moreover, we also consider a cost constraint such that a budget 
limits how many edges can be added. The agent must find a 
finite sequence of edge decisions that maximize its reward. 
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Mathematically, the problem is formulated as:   
max
𝑨𝑨𝒕𝒕|𝑶𝑶𝒕𝒕

ℛ𝑡𝑡 = log(𝑅𝑅𝑡𝑡) − log(1 − 𝑅𝑅𝑡𝑡) + 𝜆𝜆ℛ𝑡𝑡−1    (5) 

𝑨𝑨𝒕𝒕 = [𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑞𝑞𝑖𝑖𝑖𝑖]                     (6) 
𝑶𝑶𝒕𝒕 = [𝑥𝑥𝒊𝒊𝒊𝒊, 𝑐𝑐𝑖𝑖𝑗𝑗 ,𝐶𝐶𝑡𝑡−1]               (7) 
𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑞𝑞𝑖𝑖𝑖𝑖)                  (8) 

𝒔𝒔. 𝒕𝒕.∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑡𝑡𝑗𝑗 ≤ 𝐵𝐵𝑖𝑖          (9) 
For all decision steps 𝑡𝑡, the DRL decides the actions 𝑨𝑨𝒕𝒕  to 

take given the observations 𝑶𝑶𝒕𝒕 to maximize the reward ℛ𝑡𝑡 
which depends on the all-terminal reliability 𝑅𝑅𝑡𝑡 and a discount 
factor 𝜆𝜆 that balances the cumulative rewards. The available 
actions include adding a new edge 𝑥𝑥𝑖𝑖𝑖𝑖 with a chosen quality 
level 𝑞𝑞𝑖𝑖𝑖𝑖. The quality level affects the cost of adding said link,  
𝑐𝑐𝑖𝑖𝑖𝑖, and the link reliability value, 𝑟𝑟𝑖𝑖𝑖𝑖. The observations include 
the graph topology represented by the links in the network, the 
cost of each of the present links, and the total cost of the 
network up to the previous decision step 𝐶𝐶𝑡𝑡−1. The last equation 
shows the budget constraint to keep the total cost below 𝐵𝐵. 

For implementation, we created an environment using the 
OpenAI-Gym [14] framework and trained the agents based on 
the Stable Baselines specified models [15]. The SVI+DNN 
surrogate model is used to approximate the all-terminal 
reliability to speed up the required computations.    

4 NUMERICAL EXPERIMENT 

We conducted a numerical experiment by creating a dataset 
with 𝑁𝑁 = 6000 randomly generated networks with vertex 
counts of 8, 9, and 10 nodes (i.e., 𝑛𝑛 = 2000). Edge creation 
probability is 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 0.3. We considered five options for the 
levels of edge reliability: 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [0.8, 0.85 ,0.9 ,0.95, 0.99]. For 
model validation purposes, we separate these samples into 
“train,” “validation,” and “test” subsets, with proportions of 
75%, 15%, and 10%, respectively.  

We run our experiment on a Google Collaboratory Virtual 
Machine with 8 Intel Xeon processors with 4-Cores@2.2Ghz 
and 51GB of RAM. First, all the graphs in the sample were 
transformed to their respective tensor representation. This step 
took between 4ms and 6ms per graph. The initial CNN model 
was adjusted on the training set using an Adam optimizer to 
minimize an MSE loss metric. The learning rate was set on 
0.002 following a cosine annealing schedule until 0.001. We 
use mini-batch updates of 128 samples during 1000 epochs. 
This procedure took 13m and 46s (i.e., 0.8s per epoch). This 
step output the initial estimation and the CNN embedding. For 
a new tensor representation, obtaining an initial estimation and 
embedding took between 4 and 8ms. 

We trained the SVI+DNN model during 20 optimization 
steps, using mini-batch updates of 32 graphs and a 
ClippedAdam optimizer. The learning rate was set to 0.001. 
The training took 14m and 51s with around 40s per step for 
training and 5s per step to evaluate performance on the 
validation set. We sampled 100 times from the predictive 
posterior distribution for estimations and use the mean as the 
final prediction. Given a graph, executing the complete 
estimation from tensor representation to the surrogate model 

took around 200ms. For graphs of similar size, our 
implementation of the enumeration algorithm took 30s for an 
exact calculation of the corresponding all-terminal reliability.  

Figure 1 shows the predictions on the training set (blue 
line) compared to the sorted actual values (black line). The 
shaded area around these lines represents the 90% credible 
interval for the posterior estimates. One can see that the 
predictions are generally close to the true values. For example, 
the RMSE values of the predictions on the train, validation, and 
test sets are 0.003, 0.08, and 0.08, respectively. Compared to 
the results presented in the related studies [2], our proposed 
methodology achieves adequate precision in tackling a more 
difficult task of estimating all-terminal network reliability for 
sets of graphs with varying node counts and edge reliability 
values on a single modeling pipeline.  

Figure 1. Prediction comparison 

After completing the surrogate model, the model was used 
to estimate the reliability of sequential graphs during the 
training of our M-PPO agents. We defined a DRL environment 
with an initial path network with eight nodes. For the initial 
edges, the reliability was set to be 0.8. For any given decision 
step, the agent can add edges with one of three quality levels: 
0.9, 0.95, and 0.99, and these edges have costs of 1, 2, and 3 
units. Moreover, there is a maximum budget of 10 units of cost, 
and the agent stops adding edges when the budget is exceeded. 

We trained the M-PPO agent during 5000 episodes, and it 
was completed in 24m and 42s. For a similar setup using a 
Reliability Polynomial for the all-terminal exact calculations, 
the observed training time was close to 16 hours.   

 

Figure 2. Initial (left) and final (right) graphs 

The designed final network prioritizes connectivity over 

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on June 23,2023 at 15:33:57 UTC from IEEE Xplore.  Restrictions apply. 



individual edge quality. This is observed from the exclusive use 
of links with the lowest quality and cost. The reliability 
estimated by the surrogate model is 0.9452, and the exact 
calculation is 0.9927, within the bounds of our validation error. 
Similar designs maximizing connectivity are also preferred by 
the M-PPO agent when the training is done using the exact 
computations in similar problem setups. Figure 2 shows the 
initial and final graphs for the best solution found after training, 
where the black links represent the existing edgesinitial 
network. 

5 CASE STUDY 

To further illustrate the proposed methodology, we conduct 
a case study involving budget constraints. We focus our 
attention on the backbone computer network of the  Gazi 
University in Ankara, Turkey [16]. The computer network with 
11 nodes is shown in Figure 3. Three types of links can be 
chosen with individual edge reliability values of [0.99, 0.995, 
0.999]. The quality level of each edge has an associated cost per 
meter of distance covered: [$12, $17, $28]. 

 

Figure 3. Initial (left) and final (right) graphs for the Case 
Study 

Before applying our method, some adjustments to the 
original formulation are made. First, to apply the current 
surrogate model, we merge one of the nodes in the network to 
its neighbor for simplicity. Second, we assume that all the links 
in the original network are at the same quality level (set it at the 
lowest value). We use a budget value of $218,635, as in the 
solution with the lowest cost in the original formulation. Third, 
while the lengths of existing edges were provided in [16], to 
compute the distances not considered in the original 
formulation, we located the university buildings using Google 
Earth and measured the related distances so that the associated 
costs for adding new edges can be calculated. 

We created a DRL agent to maximize the all-terminal 
reliability of the Gazi Network by adding new edges between 
nodes. The best solution in the original formulation [16] had an 
all-terminal reliability of 0.9945 and a cost of $322,865. This 
solution did not modify the network topology. Our best solution 
found has a higher reliability of 0.9998, and it is shown in 
Figure 3 as the final (right) network. The total cost is $199,140. 
It is worth pointing out that our solution added edges and 
modified the network topology. Moreover, our solution 

maximizes the number of edges by choosing the lowest quality 
level and adding edges with the lowest distances between pairs 
of nodes not yet in the network. 

6 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we proposed a surrogate model to efficiently 
evaluate all-terminal network reliability. With the goal of 
improving the all-terminal reliability of a network, a DRL 
environment defining the action space, the per-period rewards, 
feasibility constraints, system evolution conditions, and state 
transition dynamics was developed for solving the network 
design problem. The practical value of this work is twofold. 
First, the Bayesian data-driven model is flexible enough to 
approximate the all-terminal network reliability of arbitrary 
graphs of varying sizes. It can work with varying edge 
reliability values and does not need additional computations as 
input, such as reliability upper bounds. The SVI framework 
allows for quantifying estimation uncertainty and incentivizing 
regularization to avoid overfitting. Second, enhanced and 
supported by the SVI+DNN approximation method, exploring 
the use of DRL for network reliability improvement provides a 
useful data-driven algorithm capable of tackling complex 
design problems in ample design spaces. 

Our future work will be focused on validating the network 
design solutions by diagnosing convergence and identifying 
suitable conditions. Indeed, validating such a data-driven model 
is challenging, but quantifying the optimality gap using total 
enumeration for small-scale problems is still possible. 
Furthermore, we have identified research opportunities for 
leveraging the estimation uncertainty naturally arising from the 
Bayesian model. We will exploit this by using other 
optimization methods such as Bayesian Optimization with 
Gaussian Process surrogate models or Thompson Sampling. In 
another direction, we will explore possibilities of balancing 
maximizing reliability with other objectives such as the equity 
across a network in humanitarian applications. 
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