2023 Annual Reliability and Maintainability Symposium (RAMS) | 978-1-6654-6053-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/RAMS51473.2023.10088257

Multi-sensor Corrosion Growth Modeling with Latent Variables Using

Hierarchical Clustering and Vector Autoregression Model

Abdulsalam Ahmed Alqarni, North Dakota State University

Phat K. Huynh, University of South Florida

Om Prakash Yadav, Ph.D., North Carolina A&T State University

Trung Q. Le, Ph.D., University of South Florida
Ying Huang, Ph.D., North Dakota State University

Key Words: corrosion growth models, clustering, oil refinery, time-series forecasting, latent variables

SUMMARY & CONCLUSIONS

Modeling corrosion growth for complex systems such as
the oil refinery system is a major challenge since the corrosion
process of oil and gas pipelines are inherently stochastic and
depends on many factors including exposures to environmental
conditions, operating conditions, and electrochemical reactions.
Moreover, the number of sensors is usually limited, and sensor
data are incomplete and scattering, which hinders the capability
of capturing the corrosion growth behaviors. Therefore, this
paper proposes Multi-sensor Corrosion Growth Model with
Latent Variables to predict the corrosion growth process in oil
refinery piping. The proposed model is a combination of the
hierarchical clustering algorithm and the vector autoregression
(VAR) model. The clustering algorithm aims to find the hidden
(i.e., latent) data clusters of the measured time series data, from
which the time series from the same cluster will be included in
the VAR model to predict the corrosion depth from multiple
sensors. The model can capture the relationship between sensor
time series data and identify latent variables. A real case study
of an oil refinery system, in which in-line inspection (ILI) data
were collected, was utilized to validate model. Regarding
corrosion growth prediction, the paper compared the prediction
accuracy of VAR model with other three forms of power law
model, which is widely accepted to expect the time-dependent
depth of corrosion such as power function (PF), PF with
initiation time of corrosion (PFIT), and PF with initiation time
of corrosion and covariates (PFCOV). The results showed that
VAR model has the lowest prediction error based on the mean
absolute percentage error (MAPE) evaluation for test data.
Finally, the proposed model is believed to be useful for dealing
with a complex system that has a variety of corrosion growth
behaviors, such as the oil refinery system, as well as it can be
applied in other real-time applications.

1. INTRODUCTION

Corrosion growth phenomena is a major threat to oil
refineries which grows over time and threatens the refinery
piping's safety and reliability, which can result in loss-of-
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containment incidents leading to severe sequences such as
human and environmental disasters and economic losses [1].
Capturing corrosion growth behavior in a complex system such
as an oil refinery system is challenging since it contains a lot of
pipes, and each group of pipes has different corrosion growth
behavior due to exposure to different environmental conditions,
operating conditions, and chemical reactions. In literature,
several models have been proposed to capture corrosion growth
behavior in oil and gas pipelines. Several linear models have
been proposed based on either corrosion rate is equal to a single
value of 0.4 mm/year which is recommended by National
Association of Corrosion Engineers (NACE) [2], or based on
single ILI data [2], or based on two ILIs data [3], or multiple
ILIs data [4]. Linear models are widely used in practice because
they are simple and capable to predict the corrosion growth
process of pipelines when having limited In-line Inspection
(ILI) datasets [5]. These models should be restricted to use for
special cases only because the corrosion growth nature is
nonlinear. Another researcher [6] suggests a model that
combines linear and nonlinear by making the first phase a rapid
exponential pit growth and the second phase is slow linear
growth. In the research community, the power law model is
widely accepted to expect time-dependent depth of corrosion
and it was first postulated for atmospheric corrosion by [7].
This model is preferable to predict corrosion depth over time of
pipeline because it somehow follows the corrosion growth
mechanism where corrosion rate starts at a higher rate at the
beginning stage and then slows down with time [8]. The de
Waard-Milliams model is most commonly used in predicting
internal corrosion rate which is discussed with other CO2
corrosion models in [9]. It is conducted in a comparative study
in [10] among other artificial intelligent models, and it is found
that de Waard-Milliams has the lowest prediction accuracy
regarding corrosion rate prediction. As the corrosion process is
associated with high uncertainties, Gamma process model,
Monte Carlo simulation, and other probabilistic models have
been discussed in [11] which have been used to predict the
corrosion rate and corrosion depth of the pipeline. A Markov
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chain has been used to predict the external corrosion growth in
underground pipelines [12]. The Weibull distribution has been
used to estimate pit initiation of corrosion, and the non-
homogenous Markov chain model has been used to estimate
corrosion pit growth distribution [13]. An inverse Gaussian
process-based model is used in [14] to predict corrosion growth
of depths on underground pipelines. The second-order
polynomial dynamic linear model (DLM) is used to predict the
growth of corrosion depths on buried energy pipelines
[15]. These models can overcome the high uncertainties
inherited in corrosion growth nature because probability is
considered as a primary factor in these predictive models.
However, these stochastic process models could be invalidated
when any change occurs in operating conditions, environment,
or temperature [11]. Recently, machine learning (ML) models
have become a candidate for predicting the corrosion growth
process of pipelines. Several studies [16] [17] discuss Artificial
Neural Network (ANN), Random Forest (RF), Support Vector
Machine (SVM), and polynomial models in predicting internal
corrosion rate. ML models are also used in predicting corrosion
depth; for example, [18] discusses predicting time-dependent
corrosion depth using Particle Swarm Optimization & Feed-
Forward Artificial Neural Network (PSO-FFANN), Gradient
Boosting Machine (GBM), and Deep Neural Network (DNN).
[19] discusses estimating time-dependent corrosion depth of
pipelines using feed-forward Subspace Clustered Neural
Network (SSCN) and Particle Swarm Optimization (PSO).
SVM models are widely discussed in [10] [20] [21] in
predicting corrosion growth of pipelines based on the
integration of SVM with meta-heuristic optimization
techniques to optimize the hyperfine parameters in SVR.
Isotonic regression is discussed in [22] regarding predicting
corrosion depth for internal corrosion of oil refinery piping. A
recent study [23] proposes a physics-informed latent variable
model that identifies type of soil and predicts the corrosion
depth over time in oil and gas pipelines.

Most significant research efforts focus on finding suitable
corrosion growth models for the upstream and midstream oil
and gas industry based on a study of a single or limited number
of pipelines. In addition, data scarcity is a major issue facing
these researchers; therefore, most of the proposed models are
built based on only one or two inspections and consider
temporal cases only. In contrast, using those models to predict
the corrosion growth for refinery piping (downstream) is
challenging since it carries out numerous operations, and
various corrosion behaviors occur due to latent variables (e.g.,
exposure to different environmental conditions, operating
conditions, and electrochemical reactions). However, this paper
proposes Multi-sensor Corrosion Growth Model with Latent
Variables to predict the corrosion growth process in oil refinery
piping. The model is built based on the combination of the
hierarchical clustering algorithm and the Vector Autoregression
(VAR) model. This paper contributes to validating the proposed
model using a real-life ILI data set from oil refinery piping. For
future work, we will be working on extending the work by
conducting more realistic experiments using simulated data and
real data.

The rest of the paper is divided into five sections; Section
2 gives a brief background of the hierarchical clustering
algorithm and VAR Model. Section 3 presents the proposed
model and Section 4 introduces the case study and discusses the
model implementation. Finally, the paper concludes in Section
5.

2. HIERARCHICAL CLUSTERING ALGORITHM AND
VECTOR AUTOREGRESSION

2.1 Hierarchical Clustering Algorithm

Hierarchical clustering is an algorithm used to group
different objects into groups (clusters). Agglomerative
hierarchical clustering process discussed in [24] is most
commonly used to group objects where each object begins in its
own cluster and as one moves up the hierarchy, pairs of clusters
are merged based on similarity using a dendrogram, which is a
tree-structured graph, to visualize the hierarchical relationship
between the clusters. Several distance metrics have been
developed, such as Euclidean, Chebychev, Manhattan,
Correlation, and others. These distance metrics are selected to
measure the similarity of two objects. Type of distance metric
is usually selected based on the aim and concern of the study.

2.2 Vector Autoregression (VAR) Model

VAR model is a stochastic process model that captures the
relationship between multiple variables over time and these
variables are treated as endogenous variables which means that
each variable changed by its relationship with other variables.
A general form of VAR model that includes p-lags of variables,
VAR(p), is as follows [25]:

Yi=c+m¥Y +mY ,++mY,_,+& )

where t=1,...,T and Y, = (}’1,t yYout s Ynt )’ denotes
(n x 1) vector of time series variables at time t and ¢ denotes
intercept where ¢ = (¢, ¢5,...,¢p) , and m; are (n Xn)
coefficient matrices for each i lag as follow:
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wherei=1,..,pand ¥Y;_; = (yl,t_1 v Y210 0 Vg1 ) and
similarly for ¥,_, and Y,_,. & = (&1, &, ...,&,)" represents
(n x 1) unobservable zero mean white noise vector process.

3. MULTI-SENSOR CORROSION GROWTH MODEL
WITH LATENT VARIABLES

This section discusses the proposed model, which is called
the Multi-sensor Corrosion Growth Model with Latent
Variables. The model is built based on the combination of the
hierarchical clustering algorithm to identify latent variables and
the Vector Autoregression (VAR) model to predict the
corrosion growth process of piping, as discussed in detail below
in Section 3.1. and 3.2.
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3.1 Sensor Grouping of the Refinery System using
Hierarchical Clustering

Hierarchical clustering is used to identify latent variables
by grouping sensors with similar corrosion growth behaviors in
one cluster, believing those sensors are exposed to similar
environmental  conditions, operating conditions, and
electrochemical reactions. The hyperparameter tuning process
in the hierarchical clustering algorithm can be challenging since
we have to pre-define various hyperparameters such as the
number of clusters, distance threshold, and distance metric. One
possibility is to use a validation data set and domain knowledge
to fine-tune the hyperparameters. In hierarchical clustering, the
correlation-based distance which is donated by c is selected as
a dissimilarity measure because it fits the aim of the study,
which is grouping sensors based on the similarity of corrosion
growth behavior of sensors even though the time series values
between sensors are far in terms of geometrical distance and the
criteria of similarity of corrosion growth behavior indicates that
sensors within a cluster are exposed to similar environmental
conditions, operating conditions, and electrochemical reactions
. Correlation-based distance metric (c¢) measures distance

. . T T .
between two time series, ({Di,t}tﬂ, {Dj't}tzl) which represent

the corrosion depth at time ¢ for the i*" and jt" time series
where t =1,..,T and i=1,..,n and j=1,..,n and c is
calculated using the following equation:

c=1- le’,Dj (3)

where Pp;p; is Pearson correlation coefficient which measures

the correlation of two (i"and ') time series
T T . .
({Di,t} =1’ {D j't}t: 1) using the following formula:
21=1(Dit=Di)(D}c~D))
pDi,D]- t=1\"it Jt—7J (4)
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where D; . and D; , represents value of corrosion depth at time t

in the i*" time series and the j* time series, respectively. D; is
average of D;.

3.2 Estimating Time-Dependent Corrosion Depth using the
VAR Model.

The VAR(p) model is selected because it is capable of
describing and forecasting the dynamic behavior of corrosion
growth for multiple time series variables using the following
equation:

Dyt =ay + P111D1p—1 + -+ BinpDnr—p + &
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where D, ; denotes the forecasted corrosion depth (the reference

sensor data) and n is the number of sensors in one cluster. ay,

denotes intercept and B; are (n X n) coefficient matrices as
follow:
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where i = 1, ...,p represents p-lages of variables included in
the model.

4. REAL-LIFE CASE STUDY OF OIL REFINERY SYSTEM
4.1 Overview of Case Study

In this study, the degradation data were obtained from 404
sensors attached to oil refinery piping. The oil refinery consists
of three processing units (PUs) and each PU contains several
groups. Each group has multiple sensors measuring operating
condition parameters such as corrosion rate (CR), basic
sediment and water (BS& W), temperature (temp), salt, pressure
(P), and flow rate (FR). Cross-correlation was used to see if
there is any relationship between the target parameter (CR) with
other parameters, as shown in Figure 1. The corrosion rate data
were converted to corrosion depth using the following equation:

Dit11 = Diy + CR;(At) @)

where D; 4, denotes the corrosion depth in the i*" time series
at time t + 1 for t = 1,2,...,T. CR;, represents the corrosion
rate in the i™" time series at time t, and At denotes the time
interval between two data points. In hierarchical clustering,
dendrogram graph was used to visualize the hierarchical
relationship between sensors, as shown in Figure 2(a) and
Figure 3(a). Regarding the corrosion growth prediction process,
four corrosion growth models were conducted in the
comparative study, such as PF, PFIT, PFCOV, and the VAR
model. Mean absolute percentage error (MAPE) was used to
measure the prediction performance for each model using the
following equation:

100% Tiest
Trest <11

Dit=Diy
Dit

MAPE; =
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where D; . is the actual corrosion depth in the it" time series at
time ¢ and D; , denotes the forecasted corrosion depth in the ith
time series at time t and Ty is the length of testing data.

4.2 Cross-correlation between CR and Other Operating
Conditions Parameters

Correlation between operating conditions parameters and
the corrosion rate, which is the target variable, was studied in
the corrosion growth modeling process using cross-correlation
of two time series signals as shown in Figure 1 to see if these
features are leading factors that contribute to the corrosion
growth process. As shown in Figure 1, no relationship between
CR and the other parameters was captured based on a range of
lags between -10 to 10. For example, Table 1 shows cross-
correlation values at lag zero. Based on ccf values at lag zero
in Table 1, it can be noticed that there is no significant
relationship between CR and other operating condition
parameters. Therefore, this paper neglected these parameters in
corrosion growth modeling and focused on predicting corrosion
depth based on CR sensor data using the VAR model.
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Figure 1 - Sensor data visualization & cross-correlation between CR vs other operating condition parameters

Table 1 - Cross-correlation (ccf) between CR and other

parameters
Parameters ccf values at zero time lag
CR vs. BS&W 0.26
CR vs. Salt 0.11
CR vs. temp 0.29
CRvs. P -0.54
CR vs. FR 0.50

4.3 Model Implementation

Before the corrosion growth prediction process,
hierarchical clustering was performed to identify the latent
variables using dendrogram as shown in Figure 2 and Figure 3.

Figure 2 - (a) Hierarchical clustering of sensors in Group A
using dendrogram, & (b) Corrosion growth behaviors of
sensor #1 and #2 using correlation-based metric

Figure 2 shows that hierarchical clustering of sensors were
implemented for 11 sensors from group A at 1% PU. Multiple
sensors were grouped in different clusters. For example, time
series signals for sensor #1 and #2 are visualized in Figure 2(b)
where they both have similar corrosion growth behavior that

was captured from clustering based on correlation-based metric
using Equation (3). Similarly, hierarchical clustering was
implemented in Group C at 1* PU. In Figure 3, 30 sensors were
grouped in different clusters, and based on specifying cluster
distance; the sensors can be grouped in clusters. For example,
sensor #28 and sensor #29 were grouped in a cluster when
looking for high correlated sensors where they both have
similar corrosion growth behavior as shown in Figure 3(b).
After implementing the hierarchical clustering process,
corrosion growth prediction can be implemented using a
suitable corrosion growth model for each cluster of sensors as
they have similar corrosion growth behavior. Therefore, the
selection of an appropriate model becomes much easier after
sensors clustering because latent variables can be identified.

Cuserdistance

Figure 3 - (a) Hierarchical clustering of sensors in Group C
using dendrogram, & (b) Corrosion growth behaviors of
sensor #28 and #29 using correlation-based metric

As shown in Figure 4, the pipeline corrosion rate
mechanism starts with a high rate at the beginning of the
corrosion growth process, then it slows down over time because
the stainless pipeline produces a passive film, which helps to
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mitigate the corrosion damage. In this study, the VAR model
was selected to predict the corrosion growth process for all
sensors in oil refinery piping as it is suitable for analyzing
multivariate time series. The VAR model performance was
compared with the power law model which is the most widely
accepted model in predicting corrosion depth over time using
three forms of power law model such as PF, PFIT, and PFCOV.
In Figure 2, sensor #1 in Group A was used as a reference and
sensor #2 in Group A was used as a predictor for both models:
PFCOV and VAR models. The effectiveness of the VAR model
is demonstrated in Figure 4 where the VAR model has lowest
prediction error based on MAPE evaluation for test data and it
is also better for long-term prediction compared to the other
power law models. Finally, the proposed model was found a
useful for modeling corrosion growth in a complex system such
as the oil refinery system where it can capture the relationship
between sensors based on corrosion growth behavior and
identifying the latent variable. It was also able to include a
nearby sensor in a cluster as a predictor to predict corrosion
depth over time for other sensors within the same cluster.

Corrosion depth

E 400 500 600
Time t

Corrosion depth (mm)

=
£
3

Vector Autoregression (VAR)

400 500 600
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Mean absolute percentage error (MAPE)
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Figure 4 - Evaluation of prediction accuracy of each model
using MAPE of test data

5. CONCLUSION

The paper proposes Multi-sensor Corrosion Growth Model
with Latent Variables to predict the corrosion growth process
in oil refinery piping. The proposed model is built based on
collaboration between the hierarchical clustering algorithm and
Vector Autoregression (VAR) model. The paper finds the
model is capable of capturing the relationship between sensors
based on corrosion growth behavior and identifying the latent
variable. It is also able to include a nearby sensor in a cluster as
a predictor to predict corrosion depth over time for other
sensors within the same cluster. A real case study of
degradation data from an oil refinery is used. Regarding
corrosion growth prediction, the paper compares the prediction

accuracy of VAR model with other three forms of power law
model such as PF, PFIT, and PFCOV. The results show that
VAR model has the lowest prediction error based on MAPE
evaluation for test data.
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