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SUMMARY & CONCLUSIONS 

Modeling corrosion growth for complex systems such as 
the oil refinery system is a major challenge since the corrosion 
process of oil and gas pipelines are inherently stochastic and 
depends on many factors including exposures to environmental 
conditions, operating conditions, and electrochemical reactions. 
Moreover, the number of sensors is usually limited, and sensor 
data are incomplete and scattering, which hinders the capability 
of capturing the corrosion growth behaviors. Therefore, this 
paper proposes Multi-sensor Corrosion Growth Model with 
Latent Variables to predict the corrosion growth process in oil 
refinery piping. The proposed model is a combination of the 
hierarchical clustering algorithm and the vector autoregression 
(VAR) model. The clustering algorithm aims to find the hidden 
(i.e., latent) data clusters of the measured time series data, from 
which the time series from the same cluster will be included in 
the VAR model to predict the corrosion depth from multiple 
sensors. The model can capture the relationship between sensor 
time series data and identify latent variables. A real case study 
of an oil refinery system, in which in-line inspection (ILI) data 
were collected, was utilized to validate model. Regarding 
corrosion growth prediction, the paper compared the prediction 
accuracy of VAR model with other three forms of power law 
model, which is widely accepted to expect the time-dependent 
depth of corrosion such as power function (PF), PF with 
initiation time of corrosion (PFIT), and PF with initiation time 
of corrosion and covariates (PFCOV). The results showed that 
VAR model has the lowest prediction error based on the mean 
absolute percentage error (MAPE) evaluation for test data. 
Finally, the proposed model is believed to be useful for dealing 
with a complex system that has a variety of corrosion growth 
behaviors, such as the oil refinery system, as well as it can be 
applied in other real-time applications. 

1. INTRODUCTION 

Corrosion growth phenomena is a major threat to oil 
refineries which grows over time and threatens the refinery 
piping's safety and reliability, which can result in loss-of-

containment incidents leading to severe sequences such as 
human and environmental disasters and economic losses [1]. 
Capturing corrosion growth behavior in a complex system such 
as an oil refinery system is challenging since it contains a lot of 
pipes, and each group of pipes has different corrosion growth 
behavior due to exposure to different environmental conditions, 
operating conditions, and chemical reactions. In literature, 
several models have been proposed to capture corrosion growth 
behavior in oil and gas pipelines. Several linear models have 
been proposed based on either corrosion rate is equal to a single 
value of 0.4 mm/year which is recommended by National 
Association of Corrosion Engineers (NACE) [2], or based on 
single ILI data [2], or based on two ILIs data [3], or multiple 
ILIs data [4]. Linear models are widely used in practice because 
they are simple and capable to predict the corrosion growth 
process of pipelines when having limited In-line Inspection 
(ILI) datasets [5]. These models should be restricted to use for 
special cases only because the corrosion growth nature is 
nonlinear. Another researcher [6] suggests a model that 
combines linear and nonlinear by making the first phase a rapid 
exponential pit growth and the second phase is slow linear 
growth. In the research community, the power law model is 
widely accepted to expect time-dependent depth of corrosion 
and it was first postulated for atmospheric corrosion by [7]. 
This model is preferable to predict corrosion depth over time of 
pipeline because it somehow follows the corrosion growth 
mechanism where corrosion rate starts at a higher rate at the 
beginning stage and then slows down with time [8]. The de 
Waard-Milliams model is most commonly used in predicting 
internal corrosion rate which is discussed with other CO2 
corrosion models in [9]. It is conducted in a comparative study 
in [10] among other artificial intelligent models, and it is found 
that de Waard-Milliams has the lowest prediction accuracy 
regarding corrosion rate prediction. As the corrosion process is 
associated with high uncertainties, Gamma process model, 
Monte Carlo simulation, and other probabilistic models have 
been discussed in [11] which have been used to predict the 
corrosion rate and corrosion depth of the pipeline. A Markov 
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chain has been used to predict the external corrosion growth in 
underground pipelines [12]. The Weibull distribution has been 
used to estimate pit initiation of corrosion, and the non-
homogenous Markov chain model has been used to estimate 
corrosion pit growth distribution [13]. An inverse Gaussian 
process-based model is used in [14] to predict corrosion growth 
of depths on underground pipelines. The second-order 
polynomial dynamic linear model (DLM) is used to predict the 
growth of corrosion depths on buried energy pipelines 
[15].  These models can overcome the high uncertainties 
inherited in corrosion growth nature because probability is 
considered as a primary factor in these predictive models. 
However, these stochastic process models could be invalidated 
when any change occurs in operating conditions, environment, 
or temperature [11]. Recently, machine learning (ML) models 
have become a candidate for predicting the corrosion growth 
process of pipelines. Several studies [16] [17] discuss Artificial 
Neural Network (ANN), Random Forest (RF), Support Vector 
Machine (SVM), and polynomial models in predicting internal 
corrosion rate. ML models are also used in predicting corrosion 
depth; for example, [18] discusses predicting time-dependent 
corrosion depth using Particle Swarm Optimization & Feed-
Forward Artificial Neural Network (PSO-FFANN), Gradient 
Boosting Machine (GBM), and Deep Neural Network (DNN). 
[19] discusses estimating time-dependent corrosion depth of 
pipelines using feed-forward Subspace Clustered Neural 
Network (SSCN) and Particle Swarm Optimization (PSO). 
SVM models are widely discussed in [10] [20] [21] in 
predicting corrosion growth of pipelines based on the 
integration of SVM with meta-heuristic optimization 
techniques to optimize the hyperfine parameters in SVR. 
Isotonic regression is discussed in [22] regarding predicting 
corrosion depth for internal corrosion of oil refinery piping. A 
recent study [23] proposes a physics-informed latent variable 
model that identifies type of soil and predicts the corrosion 
depth over time in oil and gas pipelines. 

Most significant research efforts focus on finding suitable 
corrosion growth models for the upstream and midstream oil 
and gas industry based on a study of a single or limited number 
of pipelines. In addition, data scarcity is a major issue facing 
these researchers; therefore, most of the proposed models are 
built based on only one or two inspections and consider 
temporal cases only. In contrast, using those models to predict 
the corrosion growth for refinery piping (downstream) is 
challenging since it carries out numerous operations, and 
various corrosion behaviors occur due to latent variables (e.g., 
exposure to different environmental conditions, operating 
conditions, and electrochemical reactions). However, this paper 
proposes Multi-sensor Corrosion Growth Model with Latent 
Variables to predict the corrosion growth process in oil refinery 
piping. The model is built based on the combination of the 
hierarchical clustering algorithm and the Vector Autoregression 
(VAR) model. This paper contributes to validating the proposed 
model using a real-life ILI data set from oil refinery piping. For 
future work, we will be working on extending the work by 
conducting more realistic experiments using simulated data and 
real data. 

The rest of the paper is divided into five sections; Section 
2 gives a brief background of the hierarchical clustering 
algorithm and VAR Model. Section 3 presents the proposed 
model and Section 4 introduces the case study and discusses the 
model implementation. Finally, the paper concludes in Section 
5. 

2. HIERARCHICAL CLUSTERING ALGORITHM AND 
VECTOR AUTOREGRESSION  

2.1 Hierarchical Clustering Algorithm 

Hierarchical clustering is an algorithm used to group 
different objects into groups (clusters). Agglomerative 
hierarchical clustering process discussed in [24] is most 
commonly used to group objects where each object begins in its 
own cluster and as one moves up the hierarchy, pairs of clusters 
are merged based on similarity using a dendrogram, which is a 
tree-structured graph, to visualize the hierarchical relationship 
between the clusters. Several distance metrics have been 
developed, such as Euclidean, Chebychev, Manhattan, 
Correlation, and others. These distance metrics are selected to 
measure the similarity of two objects. Type of distance metric 
is usually selected based on the aim and concern of the study.  

2.2 Vector Autoregression (VAR) Model 

VAR model is a stochastic process model that captures the 
relationship between multiple variables over time and these 
variables are treated as endogenous variables which means that 
each variable changed by its relationship with other variables. 
A general form of VAR model that includes 𝑝𝑝-lags of variables, 
VAR(𝑝𝑝), is as follows [25]: 

𝒀𝒀𝑡𝑡 = 𝒄𝒄 + 𝝅𝝅1𝒀𝒀𝑡𝑡−1 + 𝝅𝝅2𝒀𝒀𝑡𝑡−2 + ⋯+ 𝝅𝝅𝑝𝑝𝒀𝒀𝑡𝑡−𝑝𝑝 + 𝜺𝜺𝑡𝑡        (1) 

where 𝑡𝑡 = 1, … ,𝑇𝑇 and 𝒀𝒀𝑡𝑡 =  �𝑦𝑦1,𝑡𝑡 ,𝑦𝑦2,𝑡𝑡 , … ,𝑦𝑦𝑛𝑛,𝑡𝑡 �
′
 denotes 

(𝑛𝑛 × 1) vector of time series variables at time 𝑡𝑡 and 𝒄𝒄  denotes 
intercept where 𝒄𝒄 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐n)′ , and 𝝅𝝅𝑖𝑖 are (𝑛𝑛 × 𝑛𝑛) 
coefficient matrices for each 𝑖𝑖𝑡𝑡ℎ lag as follow: 

𝝅𝝅𝑖𝑖 = �

𝜋𝜋11 𝜋𝜋12 ⋯ 𝜋𝜋1𝑛𝑛
𝜋𝜋21 𝜋𝜋22 ⋯ 𝜋𝜋2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝜋𝜋𝑛𝑛1 𝜋𝜋𝑛𝑛2 ⋯ 𝜋𝜋𝑛𝑛𝑛𝑛

�                      (2) 

where 𝑖𝑖 = 1, … ,𝑝𝑝 and 𝒀𝒀𝑡𝑡−1 =  �𝑦𝑦1,𝑡𝑡−1 ,𝑦𝑦2,𝑡𝑡−1 , … ,𝑦𝑦𝑛𝑛,𝑡𝑡−1 �′and 
similarly for 𝒀𝒀𝑡𝑡−2 and 𝒀𝒀𝑡𝑡−p. 𝜺𝜺𝑡𝑡 = (𝜀𝜀1, 𝜀𝜀2, … , 𝜀𝜀𝑛𝑛)′ represents 
(𝑛𝑛 × 1) unobservable zero mean white noise vector process. 

3. MULTI-SENSOR CORROSION GROWTH MODEL 
WITH LATENT VARIABLES 

This section discusses the proposed model, which is called 
the Multi-sensor Corrosion Growth Model with Latent 
Variables. The model is built based on the combination of the 
hierarchical clustering algorithm to identify latent variables and 
the Vector Autoregression (VAR) model to predict the 
corrosion growth process of piping, as discussed in detail below 
in Section 3.1. and 3.2. 
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3.1 Sensor Grouping of the Refinery System using 
Hierarchical Clustering 

Hierarchical clustering is used to identify latent variables 
by grouping sensors with similar corrosion growth behaviors in 
one cluster, believing those sensors are exposed to similar 
environmental conditions, operating conditions, and 
electrochemical reactions. The hyperparameter tuning process 
in the hierarchical clustering algorithm can be challenging since 
we have to pre-define various hyperparameters such as the 
number of clusters, distance threshold, and distance metric. One 
possibility is to use a validation data set and domain knowledge 
to fine-tune the hyperparameters. In hierarchical clustering, the 
correlation-based distance which is donated by 𝑐𝑐 is selected as 
a dissimilarity measure because it fits the aim of the study, 
which is grouping sensors based on the similarity of corrosion 
growth behavior of sensors even though the time series values 
between sensors are far in terms of geometrical distance and the 
criteria of similarity of corrosion growth behavior indicates that 
sensors within a cluster are exposed to similar environmental 
conditions, operating conditions, and electrochemical reactions 
. Correlation-based distance metric (𝑐𝑐) measures distance 
between two time series, ��𝐷𝐷𝑖𝑖,𝑡𝑡�𝑡𝑡=1

𝑇𝑇 , �𝐷𝐷𝑗𝑗,𝑡𝑡�𝑡𝑡=1
𝑇𝑇 � which represent 

the corrosion depth at time 𝑡𝑡 for the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ time series 
where 𝑡𝑡 = 1, … ,𝑇𝑇 and 𝑖𝑖 = 1, … ,𝑛𝑛 and 𝑗𝑗 = 1, … ,𝑛𝑛 and 𝑐𝑐 is 
calculated using the following equation: 

𝑐𝑐 =  1 −  𝜌𝜌𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗                            (3) 

where 𝜌𝜌𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗 is Pearson correlation coefficient which measures 
the correlation of two (𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ) time series 
��𝐷𝐷𝑖𝑖,𝑡𝑡�𝑡𝑡=1

𝑇𝑇 , �𝐷𝐷𝑗𝑗,𝑡𝑡�𝑡𝑡=1
𝑇𝑇 � using the following formula:  

𝜌𝜌𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗 =
∑ �𝐷𝐷𝑖𝑖,𝑡𝑡−𝐷𝐷�𝑖𝑖��𝐷𝐷𝑗𝑗,𝑡𝑡−𝐷𝐷�𝑗𝑗�𝑇𝑇
𝑡𝑡=1

�∑ �𝐷𝐷𝑖𝑖,𝑡𝑡−𝐷𝐷�𝑖𝑖�
2 ∑ �𝐷𝐷𝑗𝑗,𝑡𝑡−𝐷𝐷�𝑗𝑗�

2𝑇𝑇
𝑡𝑡=1

𝑇𝑇
𝑡𝑡=1

                    (4) 

where 𝐷𝐷𝑖𝑖,𝑡𝑡 and 𝐷𝐷𝑗𝑗,𝑡𝑡 represents value of corrosion depth at time 𝑡𝑡 
in the 𝑖𝑖𝑡𝑡ℎ time series and the 𝑗𝑗𝑡𝑡ℎ time series, respectively. 𝐷𝐷�𝑖𝑖 is 
average of 𝐷𝐷𝑖𝑖. 

3.2 Estimating Time-Dependent Corrosion Depth using the 
VAR Model. 

The VAR(𝑝𝑝) model is selected because it is capable of 
describing and forecasting the dynamic behavior of corrosion 
growth for multiple time series variables using the following 
equation:  

𝐷𝐷1,𝑡𝑡 = 𝛼𝛼1 + 𝛽𝛽11,1𝐷𝐷1,𝑡𝑡−1 + ⋯+ 𝛽𝛽1𝑛𝑛,𝑝𝑝𝐷𝐷𝑛𝑛,𝑡𝑡−𝑝𝑝 + 𝜀𝜀1
⋮

𝐷𝐷𝑛𝑛,𝑡𝑡 = 𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛1,1𝐷𝐷1,𝑡𝑡−1 + ⋯+ 𝛽𝛽𝑛𝑛𝑛𝑛,𝑝𝑝𝐷𝐷𝑛𝑛,𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑛𝑛
         (5) 

where Dn,t denotes the forecasted corrosion depth (the reference 
sensor data) and 𝑛𝑛 is the number of sensors in one cluster. αn 
denotes intercept and 𝜷𝜷𝑖𝑖 are (𝑛𝑛 × 𝑛𝑛) coefficient matrices as 
follow: 

𝜷𝜷𝑖𝑖 =

⎣
⎢
⎢
⎡
𝛽𝛽11,𝑖𝑖 𝛽𝛽12,𝑖𝑖 ⋯ 𝛽𝛽1𝑛𝑛,𝑖𝑖
𝛽𝛽21,𝑖𝑖 𝛽𝛽22,𝑖𝑖 ⋯ 𝛽𝛽2𝑛𝑛,𝑖𝑖
⋮ ⋮ ⋱ ⋮

𝛽𝛽𝑛𝑛1,𝑖𝑖 𝛽𝛽𝑛𝑛2,𝑖𝑖 ⋯ 𝛽𝛽𝑛𝑛𝑛𝑛,𝑖𝑖⎦
⎥
⎥
⎤
                      (6) 

where 𝑖𝑖 = 1, … ,𝑝𝑝 represents 𝑝𝑝-lages of variables included in 
the model. 

4. REAL-LIFE CASE STUDY OF OIL REFINERY SYSTEM 

4.1 Overview of Case Study 

In this study, the degradation data were obtained from 404 
sensors attached to oil refinery piping. The oil refinery consists 
of three processing units (PUs) and each PU contains several 
groups. Each group has multiple sensors measuring operating 
condition parameters such as corrosion rate (CR), basic 
sediment and water (BS&W), temperature (temp), salt, pressure 
(P), and flow rate (FR). Cross-correlation was used to see if 
there is any relationship between the target parameter (CR) with 
other parameters, as shown in Figure 1. The corrosion rate data 
were converted to corrosion depth using the following equation: 

𝐷𝐷𝑖𝑖,𝑡𝑡+1 = 𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡(∆𝑡𝑡)                       (7) 
where 𝐷𝐷𝑖𝑖,𝑡𝑡+1 denotes the corrosion depth in the 𝑖𝑖𝑡𝑡ℎ time series 
at time 𝑡𝑡 + 1 for 𝑡𝑡 = 1,2, … ,𝑇𝑇. 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 represents the corrosion 
rate in the 𝑖𝑖𝑡𝑡ℎ time series at time 𝑡𝑡, and ∆𝑡𝑡 denotes the time 
interval between two data points. In hierarchical clustering, 
dendrogram graph was used to visualize the hierarchical 
relationship between sensors, as shown in Figure 2(a) and 
Figure 3(a). Regarding the corrosion growth prediction process, 
four corrosion growth models were conducted in the 
comparative study, such as PF, PFIT, PFCOV, and the VAR 
model. Mean absolute percentage error (MAPE) was used to 
measure the prediction performance for each model using the 
following equation: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 =  100%
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∑ �𝐷𝐷𝑖𝑖,𝑡𝑡−𝐷𝐷
�𝑖𝑖,𝑡𝑡

𝐷𝐷𝑖𝑖,𝑡𝑡
�𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡=1                     (8) 

where 𝐷𝐷𝑖𝑖,𝑡𝑡 is the actual corrosion depth in the 𝑖𝑖𝑡𝑡ℎ time series at 
time 𝑡𝑡 and 𝐷𝐷�𝑖𝑖,𝑡𝑡 denotes the forecasted corrosion depth in the 𝑖𝑖𝑡𝑡ℎ 
time series at time 𝑡𝑡 and 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the length of testing data. 

4.2 Cross-correlation between CR and Other Operating 
Conditions Parameters 

Correlation between operating conditions parameters and 
the corrosion rate, which is the target variable, was studied in 
the corrosion growth modeling process using cross-correlation 
of two time series signals as shown in Figure 1 to see if these 
features are leading factors that contribute to the corrosion 
growth process. As shown in Figure 1, no relationship between 
CR and the other parameters was captured based on a range of 
lags between -10 to 10. For example, Table 1 shows cross-
correlation values at lag 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧. Based on 𝑐𝑐𝑐𝑐𝑐𝑐 values at lag zero 
in Table 1, it can be noticed that there is no significant 
relationship between CR and other operating condition 
parameters. Therefore, this paper neglected these parameters in 
corrosion growth modeling and focused on predicting corrosion 
depth based on CR sensor data using the VAR model.  
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Figure 1 - Sensor data visualization & cross-correlation between CR vs other operating condition parameters 

Table 1 - Cross-correlation (ccf) between CR and other 
parameters 

Parameters 𝑐𝑐𝑐𝑐𝑐𝑐 values at zero time lag 
CR vs. BS&W 0.26 

CR vs. Salt 0.11 
CR vs. temp 0.29 

CR vs. P -0.54 
CR vs. FR 0.50 

4.3 Model Implementation 

Before the corrosion growth prediction process, 
hierarchical clustering was performed to identify the latent 
variables using dendrogram as shown in Figure 2 and Figure 3.  

 

Figure 2 - (a) Hierarchical clustering of sensors in Group A 
using dendrogram, & (b) Corrosion growth behaviors of 

sensor #1 and #2 using correlation-based metric 

Figure 2 shows that hierarchical clustering of sensors were 
implemented for 11 sensors from group A at 1st PU. Multiple 
sensors were grouped in different clusters. For example, time 
series signals for sensor #1 and #2 are visualized in Figure 2(b) 
where they both have similar corrosion growth behavior that 

was captured from clustering based on correlation-based metric 
using Equation (3). Similarly, hierarchical clustering was 
implemented in Group C at 1st PU. In Figure 3, 30 sensors were 
grouped in different clusters, and based on specifying cluster 
distance; the sensors can be grouped in clusters. For example, 
sensor #28 and sensor #29 were grouped in a cluster when 
looking for high correlated sensors where they both have 
similar corrosion growth behavior as shown in Figure 3(b). 
After implementing the hierarchical clustering process, 
corrosion growth prediction can be implemented using a 
suitable corrosion growth model for each cluster of sensors as 
they have similar corrosion growth behavior. Therefore, the 
selection of an appropriate model becomes much easier after 
sensors clustering because latent variables can be identified. 

 

Figure 3 - (a) Hierarchical clustering of sensors in Group C 
using dendrogram, & (b) Corrosion growth behaviors of 

sensor #28 and #29 using correlation-based metric 

As shown in Figure 4, the pipeline corrosion rate 
mechanism starts with a high rate at the beginning of the 
corrosion growth process, then it slows down over time because 
the stainless pipeline produces a passive film, which helps to 
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mitigate the corrosion damage. In this study, the VAR model 
was selected to predict the corrosion growth process for all 
sensors in oil refinery piping as it is suitable for analyzing 
multivariate time series. The VAR model performance was 
compared with the power law model which is the most widely 
accepted model in predicting corrosion depth over time using 
three forms of power law model such as PF, PFIT, and PFCOV. 
In Figure 2, sensor #1 in Group A was used as a reference and 
sensor #2 in Group A was used as a predictor for both models: 
PFCOV and VAR models. The effectiveness of the VAR model 
is demonstrated in Figure 4 where the VAR model has lowest 
prediction error based on MAPE evaluation for test data and it 
is also better for long-term prediction compared to the other 
power law models. Finally, the proposed model was found a 
useful for modeling corrosion growth in a complex system such 
as the oil refinery system where it can capture the relationship 
between sensors based on corrosion growth behavior and 
identifying the latent variable. It was also able to include a 
nearby sensor in a cluster as a predictor to predict corrosion 
depth over time for other sensors within the same cluster. 

 

Figure 4 - Evaluation of prediction accuracy of each model 
using MAPE of test data 

5. CONCLUSION 

The paper proposes Multi-sensor Corrosion Growth Model 
with Latent Variables to predict the corrosion growth process 
in oil refinery piping. The proposed model is built based on 
collaboration between the hierarchical clustering algorithm and 
Vector Autoregression (VAR) model. The paper finds the 
model is capable of capturing the relationship between sensors 
based on corrosion growth behavior and identifying the latent 
variable. It is also able to include a nearby sensor in a cluster as 
a predictor to predict corrosion depth over time for other 
sensors within the same cluster. A real case study of 
degradation data from an oil refinery is used. Regarding 
corrosion growth prediction, the paper compares the prediction 

accuracy of VAR model with other three forms of power law 
model such as PF, PFIT, and PFCOV. The results show that 
VAR model has the lowest prediction error based on MAPE 
evaluation for test data.  
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